CN115910796A - Method for forming semiconductor element - Google Patents
Method for forming semiconductor element Download PDFInfo
- Publication number
- CN115910796A CN115910796A CN202211547990.1A CN202211547990A CN115910796A CN 115910796 A CN115910796 A CN 115910796A CN 202211547990 A CN202211547990 A CN 202211547990A CN 115910796 A CN115910796 A CN 115910796A
- Authority
- CN
- China
- Prior art keywords
- layer
- dielectric layer
- gate
- forming
- threshold voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提出一种半导体元件的形成方法,包括:提供一基底;在所述基底上形成一介电层,其中所述介电层内形成有一第一栅极沟槽;所述第一栅极沟槽内形成有第一介质层以及第一高介电常数介电层;对所述第一高介电常数介电层进行第一退火工艺;在所述第一栅极沟槽内进行一第一阈值电压掺杂制作工艺;在所述第一栅极沟槽内形成第一栅极。该半导体元件的形成方法,在高介电常数介电层形成之后对沟道区域进行阈值电压掺杂制作工艺注入离子,可以减少高介电常数介电层退火工艺的热效应对离子扩散的影响。
The present invention provides a method for forming a semiconductor element, comprising: providing a substrate; forming a dielectric layer on the substrate, wherein a first gate trench is formed in the dielectric layer; the first gate A first dielectric layer and a first high-permittivity dielectric layer are formed in the trench; a first annealing process is performed on the first high-permittivity dielectric layer; a first annealing process is performed in the first gate trench A first threshold voltage doping process; forming a first gate in the first gate trench. In the forming method of the semiconductor element, after the high dielectric constant dielectric layer is formed, the threshold voltage doping process is performed on the channel region to implant ions, which can reduce the influence of the thermal effect of the high dielectric constant dielectric layer annealing process on ion diffusion.
Description
技术领域technical field
本发明属于半导体制作方法技术领域,尤其涉及一种半导体元件的形成方法。The invention belongs to the technical field of semiconductor manufacturing methods, in particular to a method for forming a semiconductor element.
背景技术Background technique
随着MOS晶体管特征尺寸越来越小,为了增大饱和电流,必须要调低阈值电压。阈值电压的影响因素主要有:栅极氧化层中正电荷密度,衬底掺杂浓度,介质介电常数,栅极材料与衬底的功函数之差等。目前,业界常利用金属栅极来取代多晶硅栅极作为控制电极,与高介电常数的栅极介电层匹配,同时通过离子注入调整晶体管的阈值电压,但是通过离子注入方式调节阈值电压时,由于后续工艺不可控的干扰,获得的半导体其阈值电压往往不能达到预期。As the feature size of MOS transistors becomes smaller and smaller, in order to increase the saturation current, the threshold voltage must be lowered. The main factors affecting the threshold voltage are: the positive charge density in the gate oxide layer, the doping concentration of the substrate, the dielectric constant of the dielectric, the difference between the work function of the gate material and the substrate, etc. At present, the industry often uses metal gates to replace polysilicon gates as control electrodes, which match with high dielectric constant gate dielectric layers, and at the same time adjust the threshold voltage of transistors by ion implantation. However, when adjusting the threshold voltage by ion implantation, Due to the uncontrollable interference of the subsequent process, the threshold voltage of the obtained semiconductor often cannot meet expectations.
发明内容Contents of the invention
为克服现有技术其中一缺陷,本发明提供一种半导体元件形成方法。To overcome one of the defects in the prior art, the present invention provides a method for forming a semiconductor device.
本发明采用的技术方案为:The technical scheme adopted in the present invention is:
一种半导体元件的形成方法,包括:A method of forming a semiconductor device, comprising:
提供一基底;provide a base;
在所述基底上形成一介电层,其中所述介电层内形成有一第一栅极沟槽;forming a dielectric layer on the substrate, wherein a first gate trench is formed in the dielectric layer;
所述第一栅极沟槽内形成有第一介质层以及第一高介电常数介电层;A first dielectric layer and a first high dielectric constant dielectric layer are formed in the first gate trench;
对所述第一高介电常数介电层进行第一退火工艺;performing a first annealing process on the first high-k dielectric layer;
在所述第一栅极沟槽内进行一第一阈值电压掺杂制作工艺;performing a first threshold voltage doping process in the first gate trench;
在所述第一栅极沟槽内形成第一栅极。A first gate is formed in the first gate trench.
在其中一些实施例中,在所述第一阈值电压掺杂制作工艺之后,进行第二退火工艺。In some of the embodiments, after the first threshold voltage doping process, a second annealing process is performed.
在其中一些实施例中,在所述第一退火工艺之前,在所述第一高介电常数介电层上沉积一层阻挡层。In some of the embodiments, before the first annealing process, a barrier layer is deposited on the first high-k dielectric layer.
在其中一些实施例中,在所述第二退火工艺之前,在所述阻挡层上形成一高介电常数介电层保护层;在所述第二退火工艺之后移除所述高介电常数介电层保护层。In some of these embodiments, before the second annealing process, a high-k dielectric protection layer is formed on the barrier layer; after the second annealing process, the high-k dielectric layer is removed. Dielectric protective layer.
在其中一些实施例中,在该基底上形成一第一虚置栅极结构,其中,所述第一虚置栅极结构包含所述第一介质层及一虚置栅极;In some of these embodiments, a first dummy gate structure is formed on the substrate, wherein the first dummy gate structure includes the first dielectric layer and a dummy gate;
移除所述第一虚置栅极结构的所述虚置栅极,以形成所述第一栅极沟槽。The dummy gate of the first dummy gate structure is removed to form the first gate trench.
在其中一些实施例中,在该基底上形成一鳍状结构,其中所述第一虚置栅极结构是形成在所述鳍状结构上。In some embodiments, a fin structure is formed on the substrate, wherein the first dummy gate structure is formed on the fin structure.
在其中一些实施例中,在所述第二退火工艺之后,在所述第一栅极形成之前,在所述第一栅极沟槽内形成有至少一个第一功函数层。In some of the embodiments, after the second annealing process and before the formation of the first gate, at least one first work function layer is formed in the first gate trench.
本发明还提供一种半导体元件的形成方法,包括:The present invention also provides a method for forming a semiconductor element, comprising:
提供一基底;provide a base;
在所述基底上形成一介电层,其中所述介电层内形成有一第一栅极沟槽和一第二栅极沟槽;forming a dielectric layer on the substrate, wherein a first gate trench and a second gate trench are formed in the dielectric layer;
所述第一栅极沟槽内形成有第一介质层以及第一高介电常数介电层,所述第二栅极沟槽内形成有第二介质层以及第二高介电常数介电层;A first dielectric layer and a first high-permittivity dielectric layer are formed in the first gate trench, and a second dielectric layer and a second high-permittivity dielectric layer are formed in the second gate trench. layer;
对所述第一高介电常数介电层以及所述第二高介电常数介电层进行第一退火工艺;performing a first annealing process on the first high-k dielectric layer and the second high-k dielectric layer;
在所述第一栅极沟槽内进行一第一阈值电压掺杂制作工艺;performing a first threshold voltage doping process in the first gate trench;
在所述第二栅极沟槽内进行一第二阈值电压掺杂制作工艺;performing a second threshold voltage doping process in the second gate trench;
所述第二阈值电压掺杂制作工艺是注入不同于所述第一阈值电压掺杂制作工艺的掺质;The second threshold voltage doping process is to implant dopants different from the first threshold voltage doping process;
在所述第一栅极沟槽内形成第一栅极;forming a first gate within the first gate trench;
在所述第二栅极沟槽内形成第二栅极。A second gate is formed in the second gate trench.
在其中一些实施例中,在所述第一退火工艺之前,在所述第一高介电常数介电层上和所述第二高介电常数介电层上沉积一层阻挡层;In some of the embodiments, before the first annealing process, a barrier layer is deposited on the first high-k dielectric layer and on the second high-k dielectric layer;
在所述第一阈值电压掺杂制作工艺及所述第二阈值电压掺杂制作工艺之后,进行第二退火工艺;After the first threshold voltage doping process and the second threshold voltage doping process, a second annealing process is performed;
在所述第二退火工艺之前,在所述阻挡层上形成一高介电常数介电层保护层;在所述第二退火工艺之后移除所述高介电常数介电层保护层。Before the second annealing process, a high-k dielectric protection layer is formed on the barrier layer; after the second annealing process, the high-k dielectric protection layer is removed.
在其中一些实施例中,在所述第二退火工艺之后,在所述第一栅极形成之前,在所述第一栅极沟槽内形成有一第一功函数层;在所述第二栅极形成之前,在所述第二栅极沟槽内形成有一第二功函数层;其中所述第二功函数层及所述第一功函数层具有相同的导电型及不同的厚度。In some of these embodiments, after the second annealing process, before the formation of the first gate, a first work function layer is formed in the trench of the first gate; Before the electrode is formed, a second work function layer is formed in the second gate trench; wherein the second work function layer and the first work function layer have the same conductivity type and different thicknesses.
与现有技术相比,本发明的优点和积极效果在于:在高介电常数介电层形成之后进行阈值电压掺杂制作工艺,为沟道区域注入离子,可以减少高介电常数介电层退火工艺的热效应对离子扩散的影响,因而减小高介电常数介电层对阈值电压调节的影响,使得阈值电压的调节更为精准。Compared with the prior art, the advantages and positive effects of the present invention are: after the high dielectric constant dielectric layer is formed, the threshold voltage doping process is performed to implant ions into the channel region, which can reduce the high dielectric constant dielectric layer. The influence of the thermal effect of the annealing process on the ion diffusion, thereby reducing the influence of the high dielectric constant dielectric layer on the adjustment of the threshold voltage, makes the adjustment of the threshold voltage more accurate.
附图说明Description of drawings
图1为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中虚置栅极结构已形成;1 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein a dummy gate structure has been formed;
图2为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中虚置栅极被移除;2 is a schematic cross-sectional view of steps in a method for forming a semiconductor device in an embodiment of the present invention, wherein dummy gates are removed;
图3为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中高介电常数介电层形成;3 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein a high-k dielectric layer is formed;
图4为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中第一阈值电压掺杂制作工艺正在实施;4 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein the first threshold voltage doping process is being implemented;
图5为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中第二阈值电压掺杂制作工艺正在实施;5 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein a second threshold voltage doping process is being implemented;
图6为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中第三阈值电压掺杂制作工艺正在实施;6 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein a third threshold voltage doping process is being implemented;
图7为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中功函数层和栅极已形成;7 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein a work function layer and a gate have been formed;
图8为本发明一实施例中半导体元件的形成方法的步骤剖面示意图,其中平坦化制作工艺已完成;8 is a schematic cross-sectional view of steps in a method for forming a semiconductor element in an embodiment of the present invention, wherein the planarization process has been completed;
图9为本发明一实施例中半导体元件的形成方法的流程示意图。FIG. 9 is a schematic flowchart of a method for forming a semiconductor device according to an embodiment of the present invention.
图中:In the picture:
100、基底;101、介电层;102、鳍状结构;103、源极/漏极;100, base; 101, dielectric layer; 102, fin structure; 103, source/drain;
110、第一晶体管区;110a、第一栅极;110b、第一虚置栅极结构;111、第一栅极沟槽;112、第一介质层;113、第一高介电常数介电层;114、第一虚置栅极;115、第一高介电常数介电层保护层;116、第一功函数层;110, the first transistor region; 110a, the first gate; 110b, the first dummy gate structure; 111, the first gate trench; 112, the first dielectric layer; 113, the first high dielectric constant dielectric layer; 114, the first dummy gate; 115, the first high dielectric constant dielectric layer protective layer; 116, the first work function layer;
120、第二晶体管区;120a、第二栅极;120b、第二虚置栅极结构;121、第二栅极沟槽;122、第二介质层;123、第二高介电常数介电层;124、第二虚置栅极;125、第二高介电常数介电层保护层;126、第二功函数层;120, the second transistor region; 120a, the second gate; 120b, the second dummy gate structure; 121, the second gate trench; 122, the second dielectric layer; 123, the second high dielectric constant dielectric layer; 124, the second dummy gate; 125, the second high dielectric constant dielectric layer protection layer; 126, the second work function layer;
130、第三晶体管区;130a、第三栅极;130b、第三虚置栅极结构;131、第三栅极沟槽;132、第三介质层;133、第三高介电常数介电层;134、第三虚置栅极;135、第三高介电常数介电层保护层;136、第三功函数层;130, the third transistor region; 130a, the third gate; 130b, the third dummy gate structure; 131, the third gate trench; 132, the third dielectric layer; 133, the third high dielectric constant dielectric layer; 134, the third dummy gate; 135, the third high dielectric constant dielectric layer protective layer; 136, the third work function layer;
200、第一图案化光致抗蚀剂层;200. A first patterned photoresist layer;
400、第二图案化光致抗蚀剂层;400. A second patterned photoresist layer;
600、第三图案化光致抗蚀剂层。600. A third patterned photoresist layer.
具体实施方式Detailed ways
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供了一种半导体元件的形成方法,包括:An embodiment of the present invention provides a method for forming a semiconductor element, including:
提供一基底100;providing a
在基底100上形成一介电层101,其中介电层101内形成有一第一栅极沟槽111;forming a
第一栅极沟槽内形成有第一介质层112以及第一高介电常数介电层113;A
对第一高介电常数介电层113进行第一退火工艺;performing a first annealing process on the first high-
在第一栅极沟槽111内进行一第一阈值电压掺杂制作工艺P1;performing a first threshold voltage doping process P1 in the
在第一栅极沟槽111内形成第一栅极110a。The
第一阈值电压掺杂制作工艺P1将阈值电压调节离子注入沟道区域,本申请选择在高介电常数介电层形成之后进行第一阈值电压掺杂制作工艺P1,可以减少高介电常数介电层退火工艺的热效应对离子扩散的影响,因而减小高介电常数介电层对阈值电压调节的影响。The first threshold voltage doping manufacturing process P1 implants threshold voltage adjusting ions into the channel region. This application chooses to perform the first threshold voltage doping manufacturing process P1 after the formation of the high dielectric constant dielectric layer, which can reduce the high dielectric constant dielectric layer. The influence of the thermal effect of the electric layer annealing process on ion diffusion, thereby reducing the influence of the high dielectric constant dielectric layer on threshold voltage adjustment.
图1至图8为本发明第一实施例中形成半导体元件的形成方法示意图。首先,如图1所示,提供一基底100。基底100可以是硅基底、含硅基底或硅覆绝缘基底等半导体基底。基底100上定义有至少一个晶体管区110。1 to 8 are schematic diagrams of a method for forming a semiconductor device in the first embodiment of the present invention. First, as shown in FIG. 1 , a
以鳍式场效应管(FinFET)为例,说明本申请的半导体元件的形成方法。在基底上形成有鳍状结构102,然后依序在鳍状结构102上形成介质材料层、虚置栅极材料层以及一帽盖材料层,再图案化这些堆叠材料层,形成一个虚置栅极结构,其中虚置栅极结构分别包含由介质层、虚置栅极以及盖层,在虚置栅极结构的侧壁分别形成间隙壁,并在虚置栅极结构的两侧形成源极/漏极。其中,介质层由氧化硅、氮化硅或氮氧化硅所构成的,虚置栅极由具有掺质的多晶硅材料、不具有任何掺质多晶硅材料或非晶硅材料所构成,盖层由单层或多层结构所构成。间隙壁材质包含高温氧化硅层、氮化硅、氧化硅、氮氧化硅或使用六氯二硅烷形成的氮化硅等材质。之后,形成接触洞蚀刻停止层覆盖整个虚置栅极结构,并于接触洞蚀刻停止层上形成一介电层。介电层材质包含氧化硅层或四乙氧基硅烷。然后平坦化介电层及接触洞蚀刻停止层,以暴露出虚置栅极的顶部,并进行一选择性的干蚀刻或湿蚀刻制作工艺去除虚置栅极,以在介电层中形成栅极沟槽。如图2所示,在其中一实施例中,在该基底上形成一第一虚置栅极结构110b,其中,第一虚置栅极结构110b包含第一介质层112及一第一虚置栅极114;移除第一虚置栅极114,以形成第一栅极沟槽111。Taking a Fin Field Effect Transistor (FinFET) as an example, the method for forming the semiconductor device of the present application will be described. A
接着,依序在第一栅极沟槽中形成第一高介电常数介电层113。如图3所示,第一介质层112为U型,第一高介电常数介电层113为U型。其形成方法,例如是包含在鳍状结构102上全面地形成一介质材料层、一高介电常数介电材料层,再进行一平坦化制作工艺,例如是化学机械研磨或蚀刻制作工艺,移除位于介电层的介质材料层、高介电常数介电材料层。在其中一些实施例中,第一介质层112例如是包含氧化硅或氮化硅。第一高介电常数介电层113例如是包含介电常数大于4的介电材料,例如是选自氧化铪(HfO2)、硅酸铪氧化合物(HfSiO4)、硅酸铪氮氧化合物(HfSiON)、氧化铝(Al2O3)等或其组合所组成的群组。Next, a first high-
在形成第一高介电常数介电层113之后,实施第一退火工艺。其中第一退火工艺,可以是匀温退火、尖峰退火、激光退火中的任一种方式,例如是,在大约400℃至大约900℃的范围内的温度下,以大约3秒至大约40秒的范围内的持续时间实施预热,并且在950℃至大约1200℃的范围内的峰值温度下,以大约1毫秒至大约20毫秒的范围内的持续时间实施退火。第一退火工艺使得第一高介电常数介电层113与第一介质层112界面相互混合。After forming the first high-
然后,对被暴露的第一栅极沟槽111进行第一阈值电压掺杂制作工艺P1,对于基底上仅有一个栅极沟槽(第一栅极沟槽111)的半导体元件来说,不需要采用图案化掩膜层,可以直接进行掺杂,由此调整后续形成的栅极结构的阈值电压。举例来说,若选择在晶体管区形成P型晶体管,则可掺杂N型掺质至鳍状结构,以调整在晶体管区形成的栅极结构的阈值电压。反之,若选择在晶体管区形成N型晶体管,则需掺杂P型掺质来调整阈值电压。在其中一些实施例中,N型掺质例如是砷原子、磷原子、锑原子或铋原子,P型掺质例如是硼原子、铝原子、镓原子或铟原子。Then, the first threshold voltage doping process P1 is performed on the exposed
如图1至图8所示,基底100上定义有多个晶体管区,例如三个晶体管区,具体为第一晶体管区110、第二晶体管区120和第三晶体管区130。当然,基底上也可以定义有两个晶体管区。对于三个晶体管区的情况来说,三个晶体管区为相同导电型式的晶体管区,例如都是PMOS晶体管区或都是NMOS晶体管区,且三个晶体管区分别预定为后续制作不同阈值电压的栅极结构。三个晶体管区也可选择包含不同导电型式的晶体管区。对于需要形成三个栅极沟槽的半导体来说,其形成方法,例如是在基底上形成有三个鳍状结构,然后依序在鳍状结构上形成介质材料层、虚置栅极材料层以及一帽盖材料层,再图案化这些堆叠材料层,形成三个虚置栅极结构,在三个虚置栅极结构的侧壁分别形成间隙壁,并在三个虚置栅极结构的两侧形成源极/漏极。之后,依序形成接触洞蚀刻停止层和介电层。然后平坦化介电层及接触洞蚀刻停止层,以暴露出三个虚置栅极的顶部,并去除三个虚置栅极,以在介电层中形成三个栅极沟槽。例如,如图1和图2所示,在该基底上形成一第一虚置栅极结构110b、一第二虚置栅极结构120b、一第三虚置栅极结构130b,其中,第一虚置栅极结构110b包含第一介质层112及一第一虚置栅极114,第二虚置栅极结构120b包含第二介质层122及一第二虚置栅极124,第三虚置栅极结构130b包含第三介质层132及一第三虚置栅极134;移除第一虚置栅极结构的第一虚置栅极114,以形成第一栅极沟槽111,移除第二虚置栅极结构的第二虚置栅极124,以形成第二栅极沟槽121,移除第三虚置栅极结构的第三虚置栅极134,以形成第三栅极沟槽131。接着,如图3所示,依序在第一栅极沟槽111、第二栅极沟槽121和第三栅极沟槽131中分别形成介质层和高介电常数介电层,位于第一栅极沟槽中的为第一介质层112和第一高介电常数介电层113,位于第二栅极沟槽121中的为第二介质层122和第二高介电常数介电层123,位于第三栅极沟槽131中的为第三介质层132和第三高介电常数介电层133。在形成高介电常数介电层之后,对高介电常数介电层实施第一退火工艺,使得高介电常数介电层与介质层的界面相互混合。As shown in FIGS. 1 to 8 , multiple transistor regions are defined on the
接着,如图4所示,对被暴露的第一栅极沟槽111进行第一阈值电压掺杂制作工艺P1。其形成方法,例如是形成一图案化掩膜层,例如一第一图案化光致抗蚀剂层200,覆盖第二晶体管区120和第三晶体管区130,并利用第一图案化光致抗蚀剂层200为掩模对被暴露的第一栅极沟槽111进行第一阈值电压掺杂制作工艺P1,形成一掺杂区,由此调整后续在第一晶体管区110内形成的栅极结构的阈值电压。而后,如图5所示,接着去除第一图案化光致抗蚀剂层200,并形成覆盖第一晶体管区110、第三晶体管区130的一第二图案化光致抗蚀剂层400。利用第二图案化光致抗蚀剂层400为掩模对被暴露的第二栅极沟槽121(位于第二晶体管区120内)进行第二阈值电压掺杂制作工艺P2,形成一掺杂区,调整后续在第二晶体管区120内形成的栅极结构的阈值电压。具体来说,第二阈值电压掺杂制作工艺P2可以选择利用与第一阈值电压掺杂制作工艺P1具有相同导电型式但包含不同掺杂材质的一掺质。举例来说,若第一阈值电压掺杂制作工艺P1是掺杂锑原子(N型掺质),则第二阈值电压掺杂制作工艺P2则可掺杂铋原子(N型掺质),以使第一晶体管区110内的栅极结构可相较于第二晶体管区120、第三晶体管区130具有不同的阈值,但不以此为限。而后,如图6所示,接着去除第二图案化光致抗蚀剂层400,并形成覆盖第一晶体管区110、第二晶体管区120的第三图案化光致抗蚀剂层600。利用第三图案化光致抗蚀剂层600为掩模对被暴露的第三栅极沟槽131(位于第三晶体管区130内)进行第三阈值电压掺杂制作工艺P3,形成一掺杂区,调整后续在第三晶体管区130内形成的栅极结构的阈值电压。第三阈值电压掺杂制作工艺P3可同样选择利用与第一阈值电压掺杂制作工艺P1具有相同导电型式但包含不同掺杂材质的一掺质,或者是选用与第一阈值电压掺杂制作工艺P1、第二阈值电压掺杂制作工艺P2相同的掺杂材质,但不同于第一阈值电压掺杂制作工艺P1、第二阈值电压掺杂制作工艺P2的掺杂剂量,以使第一晶体管区110、第二晶体管区120、第三晶体管区130分别具有不同的掺杂浓度而分别具有不同的阈值电压,但不限于此。Next, as shown in FIG. 4 , a first threshold voltage doping process P1 is performed on the exposed
在其中一些实施例中,在第一阈值电压掺杂制作工艺之后,进行第二退火工艺。第二退火工艺使得注入离子再进一步进行可控的扩散,以进一步调整后续在晶体管区110、120、130内形成的栅极结构的阈值电压。In some of the embodiments, after the first threshold voltage doping process, the second annealing process is performed. The second annealing process enables the implanted ions to further perform controllable diffusion, so as to further adjust the threshold voltage of the gate structures subsequently formed in the
在其中一些实施例中,在第一退火工艺之前,在高介电常数介电层113、123、133上沉积一层阻挡层。阻挡层可包含金属材料如氮化钛(TiN)、铝化钛TiAl、氮化钽(TaN)。在第一高介电常数介电层113上沉积一层第一阻挡层;在第二高介电常数介电层123上沉积一层第二阻挡层;在第三高介电常数介电层133上沉积一层第三阻挡层。采用原子层沉积法或物理气相沉积法形成TiN层,TiN层厚度为10至30埃。阻挡层可做为一阻挡物以保护高介电常数介电层113、123、133。TiN层用于防止在形成金属栅极过程中产生的离子向下面的功函数层扩散。In some of the embodiments, before the first annealing process, a barrier layer is deposited on the high-
在其中一些实施例中,如图3所示,在第二退火工艺之前,在高介电常数介电层113、123、133上形成一高介电常数介电层保护层115、125、135。高介电常数介电层保护层115、125、135可以是非晶硅层也可以是多晶硅层。在第二退火工艺之后移除高介电常数介电层保护层115、125、135。在第一高介电常数介电层113上形成第一高介电常数介电层保护层115;在第二高介电常数介电层123上形成第二高介电常数介电层保护层125;在第三高介电常数介电层133上形成第三高介电常数介电层保护层135。非晶硅层可在大约低于530℃的温度下沉积形成。非晶硅层可通过PVD、CVD、ALD、及PECVD法形成。非晶硅层可以在后续的退火工艺中避免该高介电常数介电层113、123、133劣化。对于在半导体形成方法中采用非晶硅层的实施例,第二退火工艺可以是尖峰退火,第二退火工艺可以例如是:尖峰退火的稳定温度为550℃~650℃,峰值温度范围为950℃~1050℃,升温速率为150℃/s~220℃/s。第二退火工艺使得非晶硅层吸收高介电常数介电层113、123、133中的氧元素。在鳍式场效应晶体管工艺中,在高介电常数介电层形成后沉积一层无定型硅即非晶硅层,非晶硅层通过退火吸收高介电常数介电层里面的氧元素,然后去除无定型硅层后进行金属栅沉积。In some of these embodiments, as shown in FIG. 3 , before the second annealing process, a high-k
在其中一些实施例中,在第二退火工艺之后,在栅极形成之前,在栅极沟槽内形成有一功函数层,其中各个栅极的功函数层具有相同的导电型及不同的厚度。例如,基底上形成有两个晶体管区,在第二退火工艺之后,在第一栅极110a形成之前,在第一栅极沟槽111内形成有一第一功函数层116,在第二栅极120a形成之前,在第二栅极沟槽121内形成有一第二功函数层126;其中第二功函数层126及第一功函数层116具有相同的导电型及不同的厚度。例如,如图7所示,基底上形成有三个晶体管区,在第二退火工艺之后,在第一栅极110a形成之前,在第一栅极沟槽111内形成有一第一功函数层116,在第二栅极120a形成之前,在第二栅极沟槽121内形成有一第二功函数层126,在第三栅极130a形成之前,在第三栅极沟槽131内形成有一第三功函数层136;其中第三功函数136、第二功函数层126及第一功函数层116具有相同的导电型及不同的厚度。功函数层的组成优选依据适用的晶体管型态而不同材质。例如,若晶体管为N型晶体管,功函数层可包含功函数为3.9电子伏特(eV)~4.3eV的金属材料,如铝化钛(TiAl)、铝化锆(ZrAl)、铝化钨(WAl)、铝化钽(TaAl)、铝化铪(HfAl)或碳化钛铝(TiAlC)等,但不以此为限。反之,若晶体管为P型晶体管,功函数层则包含功函数为4.8eV~5.2eV的金属材料,如氮化钛(TiN)、氮化钽(TaN)或碳化钽(TaC)等。In some of the embodiments, after the second annealing process, before forming the gate, a work function layer is formed in the gate trench, wherein the work function layers of each gate have the same conductivity type and different thicknesses. For example, two transistor regions are formed on the substrate. After the second annealing process, before the
在一些实施例中,鳍状结构的形成方法可以是,在基底上先形成一图案化掩模,再经过一蚀刻制作工艺,将该图案化掩模的图案转移至基底中。接着,因应三栅极晶体管元件或双栅极鳍状晶体管元件等结构特性的不同,而可选择性去除或留下部分该图案化掩模,再搭配沉积、化学机械研磨与回蚀刻制作工艺而形成该绝缘层,并使得突出于该绝缘层的基底形成鳍状结构。除此之外,在另一实施例中,鳍状结构的形成方式也选择先形成一图案化硬掩模层于基底上,再利用一外延制作工艺于暴露于该图案化掩模层外的基底上长出例如包含硅或硅锗等的半导体层,以作为相对应的鳍状结构。In some embodiments, the fin structure may be formed by first forming a patterned mask on the substrate, and then transferring the pattern of the patterned mask to the substrate through an etching process. Then, due to the different structural characteristics of tri-gate transistor elements or double-gate fin transistor elements, a part of the patterned mask can be selectively removed or left, and then combined with deposition, chemical mechanical polishing, and etch-back manufacturing processes. The insulating layer is formed, and the base protruding from the insulating layer forms a fin structure. In addition, in another embodiment, the formation method of the fin structure is also selected to first form a patterned hard mask layer on the substrate, and then use an epitaxial manufacturing process to expose the patterned mask layer. A semiconductor layer such as silicon or silicon germanium is grown on the substrate as a corresponding fin structure.
如图9所示,为本申请其中一实施例的半导体元件的形成方法,包括如下步骤:As shown in FIG. 9, the method for forming a semiconductor element according to one embodiment of the present application includes the following steps:
提供一基底,在基底上形成鳍状结构;providing a base on which fin structures are formed;
在鳍状结构上形成虚置栅极结构;forming a dummy gate structure on the fin structure;
移除虚置栅极,以形成栅极沟槽;removing dummy gates to form gate trenches;
在栅极沟槽中形成介质层和高介电常数介电层;forming a dielectric layer and a high-k dielectric layer in the gate trench;
在高介电常数介电层上形成阻挡层;forming a barrier layer on the high-k dielectric layer;
进行第一退火工艺;performing a first annealing process;
在阻挡层上形成高介电常数介电层保护层;forming a high-k dielectric layer protection layer on the barrier layer;
对栅极沟槽进行阈值电压掺杂制作工艺;performing a threshold voltage doping process on the gate trench;
进行第二退火工艺;Carrying out the second annealing process;
去除高介电常数介电层保护非晶硅层;Remove the high dielectric constant dielectric layer to protect the amorphous silicon layer;
沉积功函数层;depositing a work function layer;
沉积金属栅极;Depositing metal gates;
进行平坦化制作工艺。A planarization process is performed.
其中,基底为硅基底;介质层为氧化硅;高介电常数介电层为氧化铪(HfO2)和硅酸铪氧化合物(HfSiO4);阈值电压掺杂制作工艺掺杂的为P型掺质硼原子;功函数层包含铝化钛(TiAl);金属栅极可包括钛(Ti)、氮化钛铝(TiAlN)、碳化钽(TaC)、氮碳化钽(TaCN)、氮硅化钽(TaSiN)、氮化钛(TiN)、氮化钽(TaN)、其他适宜的金属材料及/或其组合。Among them, the substrate is a silicon substrate; the dielectric layer is silicon oxide; the high dielectric constant dielectric layer is hafnium oxide (HfO 2 ) and hafnium oxide silicate (HfSiO 4 ); the threshold voltage doping process is P-type Doped boron atoms; work function layer contains titanium aluminide (TiAl); metal gate can include titanium (Ti), titanium aluminum nitride (TiAlN), tantalum carbide (TaC), tantalum carbide nitride (TaCN), tantalum silicon nitride (TaSiN), titanium nitride (TiN), tantalum nitride (TaN), other suitable metal materials and/or combinations thereof.
综上所述,本发明的半导体元件的形成方法,主要是利用在高介电常数介电层形成之后,采用阈值电压掺杂制作工艺,来调整晶体管区的阈值电压。对于多个晶体管区并存的情况,通过在高介电常数介电层形成之后,采用不同阈值电压掺杂制作工艺,使后续在各晶体管区内形成的栅极结构可具有不同的阈值电压,形成具有不同阈值电压的金属栅极的半导体元件。本发明的形成方法可应用于制作三个或以上的金属栅极结构,使各金属栅极具有不同临界电压。To sum up, the method for forming the semiconductor device of the present invention mainly utilizes the threshold voltage doping process after the high-k dielectric layer is formed to adjust the threshold voltage of the transistor region. For the coexistence of multiple transistor regions, after the high-k dielectric layer is formed, different threshold voltage doping processes are used, so that the subsequent gate structures formed in each transistor region can have different threshold voltages, forming A semiconductor element with metal gates of different threshold voltages. The forming method of the present invention can be applied to fabricate three or more metal gate structures, so that each metal gate has different critical voltages.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211547990.1A CN115910796A (en) | 2022-12-05 | 2022-12-05 | Method for forming semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211547990.1A CN115910796A (en) | 2022-12-05 | 2022-12-05 | Method for forming semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115910796A true CN115910796A (en) | 2023-04-04 |
Family
ID=86478664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211547990.1A Pending CN115910796A (en) | 2022-12-05 | 2022-12-05 | Method for forming semiconductor element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115910796A (en) |
-
2022
- 2022-12-05 CN CN202211547990.1A patent/CN115910796A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10020230B2 (en) | FinFETs with multiple threshold voltages | |
TWI415263B (en) | Semiconductor device and method of manufacturing same | |
CN103311247B (en) | Semiconductor device and method for manufacturing the same | |
US8836038B2 (en) | CMOS dual metal gate semiconductor device | |
US20130260549A1 (en) | Replacement gate with reduced gate leakage current | |
US9698241B1 (en) | Integrated circuits with replacement metal gates and methods for fabricating the same | |
US9171934B2 (en) | Methods of forming semiconductor devices using a layer of material having a plurality of trenches formed therein | |
US9196706B2 (en) | Method for manufacturing P-type MOSFET | |
EP3316290A1 (en) | Semiconductor structure and fabrication method thereof | |
TW202018824A (en) | Method of metal gate formation and structures formed by the same | |
JP2011187478A (en) | Semiconductor device and method of manufacturing the same | |
US9142414B2 (en) | CMOS devices with metal gates and methods for forming the same | |
CN103855012A (en) | Manufacturing method of N-type MOSFET | |
US20140154853A1 (en) | Method for manufacturing n-type mosfet | |
KR20100138973A (en) | A semiconductor device comprising a metal gate stack having a reduced height and a method of manufacturing the semiconductor device. | |
JP2011003717A (en) | Semiconductor apparatus and method of manufacturing the same | |
CN107591368B (en) | Multi-threshold voltage fin field effect transistor and forming method thereof | |
KR20130022882A (en) | Semiconductor device and method for fabricating the same | |
CN109671673B (en) | Semiconductor structure and method of forming the same | |
CN115910796A (en) | Method for forming semiconductor element | |
KR20130051283A (en) | Semiconductor device and method for manufacturing the same | |
TWI509702B (en) | Metal gate transistor and method for fabricating the same | |
CN115775736A (en) | Method for forming semiconductor element and semiconductor element | |
KR102263324B1 (en) | Semiconductor device and method of manufacture | |
TWI515830B (en) | Method for fabricating semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250428 Address after: Room 430, Jinling Community Center, Jinsheng Second Road, Jihongtan Street, Chengyang District, Qingdao, Shandong 266111 Applicant after: Wuyuan Semiconductor Technology (Qingdao) Co.,Ltd. Country or region after: China Address before: 266111 Room 427, Community Center, Jinling District, Jinsheng Second Road, Chengyang District, Qingdao, Shandong Province Applicant before: Qingdao Wuyuan Technology Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right |