CN115906699A - 超快速预测水或蒸汽管道破口处临界质量流速的方法 - Google Patents

超快速预测水或蒸汽管道破口处临界质量流速的方法 Download PDF

Info

Publication number
CN115906699A
CN115906699A CN202211521897.3A CN202211521897A CN115906699A CN 115906699 A CN115906699 A CN 115906699A CN 202211521897 A CN202211521897 A CN 202211521897A CN 115906699 A CN115906699 A CN 115906699A
Authority
CN
China
Prior art keywords
break
upstream
pressure
critical
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211521897.3A
Other languages
English (en)
Other versions
CN115906699B (zh
Inventor
王成龙
刘硕
金钊
苏光辉
秋穗正
田文喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202211521897.3A priority Critical patent/CN115906699B/zh
Publication of CN115906699A publication Critical patent/CN115906699A/zh
Application granted granted Critical
Publication of CN115906699B publication Critical patent/CN115906699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

超快速预测水或蒸汽管道破口处临界质量流速的方法,主要步骤如下:1.输入管道、破口几何参数及管道边界参数用于初始化计算;2.对破口管道划分控制体,对每个控制体建立两相质量、动量、能量守恒微分方程组,根据破口上游控制体流量、压力、焓值计算当前时刻破口的上游滞止参数;3.根据上游滞止参数中的静态质量含气率选择相应的破口计算模块;4.计算当前时刻破口处的临界压力、临界质量流速;5.根据计算的破口流量更新边界条件,转至步骤2,进行下一时刻的计算,直至计算终止时刻。本发明的方法可以计算水或蒸汽管道破口处临界质量流速,并且在计算时可以得到更精确的计算结果。

Description

超快速预测水或蒸汽管道破口处临界质量流速的方法
技术领域
本发明涉及核反应堆破口事故分析技术领域,具体涉及超快速预测水或蒸汽管道破口处临界质量流速的方法。
背景技术
破口事故的瞬态性状和物理现象已经基本明确,关于研究集中在临界流动喷放实验以及模块化建模,而大量破口事故程序往往基于单相临界流动准则进行简化,其适用范围有限,难以准确计算水/蒸汽破口。对于破口事故的计算要求,亟需开发计算精度更高的破口数值计算模块,充分考虑喷放过程中各工况下临界流模型中热不平衡及声速出现第一类间断点的特征,准确计算临界流量,克服目前大量破口程序在低欠热度、低含气率条件下计算模型误差大的缺陷。
发明内容
为了克服上述现有技术存在的问题,本发明的目的在于提供超快速预测水或蒸汽管道破口处临界质量流速的方法,以破口上游的静态质量含气率为划分标准,对于不同质量含气率范围内的上游条件,采用不同计算模型求解破口处的临界质量流速,充分体现各个范围内的热工水力特性,提高了求解的准确性,有效增加了本方法对不同问题的适应性。
为了实现上述目的,本发明采取了以下技术方案:
超快速预测水或蒸汽管道破口处临界质量流速的方法,该方法包括以下步骤:
步骤1:输入破口处管道几何参数及管道边界条件上游流动参数初始化计算条件:破口处管道几何参数具体包括管道长度、面积、破口面积,初始化计算条件包括管道内初始流量,管道进出口初始压力;
步骤2:对破口处管道划分控制体,对每个控制体建立两相质量、动量、能量守恒微分方程组,根据破口上游控制体流量、压力、焓值计算当前时刻破口的上游滞止参数;
控制体质量、动量和能量守恒微分方程组具体形式如下:
Figure BDA0003971417250000021
Figure BDA0003971417250000022
Figure BDA0003971417250000023
式中,ρ——两相平均密度,kg/m3
G——质量流速,kg/(m2·s);
t——时间,s;
z——长度,m;
P——压降,Pa;
τ——剪切力,Pa;
U——湿周,m;
A——管道流动面积,m2
θ——管道与竖直方向所呈夹角;
α——空泡份额;
Q——传热量,W;
ρg——气相密度,kg/m3
ρf——液相密度,kg/m3
hg——气相比焓,J/kg;
hf——液相比焓,J/kg;
pvm——比推动功,J/kg;
求解上述方程组得管道各控制体参数即压力、速度、密度,破口处管道控制体参数即为破口上游参数,破口上游滞止压力的表达式如下:
Figure BDA0003971417250000031
式中,p0——破口上游滞止压力,Pa;
pup——破口上游压力,Pa;
vup——破口上游流体速度,m/s;
ρl0——破口上游流体密度,kg/m3
步骤3:根据破口上游的质量含气率选择相应的破口计算模型;
①质量含气率<0.000001,选用Bernoulli方程,即单相过冷区计算模型;
②0.000001≤质量含气率<0.2,选用Henry-Fauske模型,即两相低含气率区计算模型;
③0.2≤质量含气率<0.998,选用Moody模型,即两相高含气率区计算模型;
④质量含气率≥0.998,选用连续性方程,即单相蒸汽区计算模型;
步骤4:计算当前时刻破口处的临界压力、临界质量流速;
(一)单相过冷区计算模型
式(5)-(10)为单相过冷区计算模型,当破口上游的流体处于过冷或饱和状态时,基于Bernoulli方程,临界质量流速的表达式为:
Figure BDA0003971417250000041
式中,C——喷放系数,对于孔口型破口,C=0.61;
pc——临界压力,Pa;
vl0——破口上游流体比容,m3/kg;
xc——出口质量含气率,m3/kg;
vgc——临界压力下的饱和蒸汽比容,m3/kg;
Gc——临界质量流速,kg/(m2·s);
为了确定临界压力,引入临界压力比η,其表达式为:
η=pc/p0 (6)
在破口所在管道的长径比L/D<12时,临界压力比随长径比增加而增大;在长径比L/D≥12时,临界压力比为一固定常数0.55;
Figure BDA0003971417250000042
为了求解出口质量含气率xc,基于等熵假设,引入出口热平衡含气率xe,其表达式为:
Figure BDA0003971417250000043
式中,s0——由上游滞止压力与上游滞止温度确定的比熵,J/(kg·K);
sg——在出口临界压力下对应的饱和汽比熵,J/(kg·K);
sl——在出口临界压力下对应的饱和水比熵,J/(kg·K);
由于热不平衡效应的影响,实际的出口质量含气率xc应该小于出口热平衡含气率xe,因此,需要对出口热平衡含气率xe进行修正,令N=xc/xe,用来表示热不平衡的程度,N的表达式为:
N=(0.0376L/D-0.163)exp(-0.0322ΔTsub) (9)
式中,L/D——破口所在管道的长径比;
ΔTsub——过冷度,K;
当L/D<5时,忽略闪蒸过程,整个管道内都是单相液体,临界质量流速直接用下式计算:
Figure BDA0003971417250000051
式中,ρl——破口上游流体密度,kg/m3
p0——破口上游滞止压力,Pa;
η——临界压力比;
当上游过冷度ΔTsub>50K时,用上游滞止温度对应的饱和压力psat(t0)作为出口临界压力,此时,临界压力比表示为η=psat(t0)/p0
(二)两相低含气率区计算模型
式(11)-(13)为两相低含气率区计算模型,在两相低质量含气率下,基于Henry-Fauske模型计算临界质量流速,其表达式为:
Figure BDA0003971417250000052
式中,n——热力平衡多变指数;
x0——静态质量含气率;
vg——破口处临界压力下对应的饱和蒸汽比容,m3/kg;
vf0——上游滞止压力下对应的比容,m3/kg;
sge——在热平衡时,临界压力下的饱和汽比熵,J/(kg·K);
sfe——在热平衡时,临界压力下的饱和水比熵,J/(kg·K);
sg0——在上游滞止压力下对应的饱和汽比熵,J/(kg·K);
sf0——在上游滞止压力下对应的饱和水比熵,J/(kg·K);
γ——定熵指数;
N——热不平衡修正项;
cpg——气相定压比热容,J/(kg·K);
Figure BDA0003971417250000061
——热平衡时饱和水比熵关于压力的导数项;
热力平衡多变指数的表达式为:
Figure BDA0003971417250000062
式中,x——质量含气率;
cf——液相比热容,J/(kg·K);
cpg——气相定压比热容,J/(kg·K);
在Henry-Fauske模型中,N的计算公式为:
Figure BDA0003971417250000063
式中,xe的计算方法与式(8)相同;值得注意的是,若计算出xe>0.14,则N=1;
在低质量含气率下,由于热不平衡的影响,临界压力比由式(7)计算;
(三)两相高含气率区计算模型
式(14)-(15)为两相高含气率区计算模型,当破口上游质量含气率较高时,两相处于热力学平衡状态,基于Moody模型计算临界质量流速,其表达式为:
Figure BDA0003971417250000071
式中,h0——破口上游滞止焓,J/kg;
s0——破口上游流体比熵,J/(kg·K);
sf——破口处临界压力下对应的饱和水比熵,J/(kg·K);
sg——破口处临界压力下对应的饱和蒸汽比熵,J/(kg·K);
vf——破口处临界压力下对应的饱和水比容,m3/kg;
在破口上游滞止参数一定的情况下,滑速比S是一个独立变量,其表达式为:
Figure BDA0003971417250000072
由于两相处于热力学平衡状态,临界压力比取0.55;
(四)单相蒸汽区计算模型
式(16)为单相蒸汽区计算模型,通过破口的蒸汽流量根据连续性方程计算,临界质量流速的表达式:
Figure BDA0003971417250000073
式中,v0——上游滞止压力下比容,m3/kg;
γ——与蒸汽性质相关的参数;对于过热蒸汽,γ=1.3;对于干饱和蒸汽,γ=1.135;
步骤5:根据计算的破口流量更新边界所有已知条件,转至步骤2,进行下一时刻的计算,直至计算终止时刻。
与现有技术相比,本发明有如下突出特点:
1、超快速预测水或蒸汽管道破口处临界质量流速的方法,以破口上游的静态质量含气率为划分标准,对于不同质量含气率范围内的上游条件,采用不同计算模型求解破口处的临界质量流速,充分体现各个范围内的热工水力特性,提高了求解的准确性,有效增加了本方法对不同问题的适应性。
2、超快速预测水或蒸汽管道破口处临界质量流速的方法,采用公认实验关系式确定临界压力,避免了常规的迭代求解,减小了计算量,有效地提高了计算效率,实现了超快速预测。
附图说明
图1为本发明方法流程图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明:
本发明为超快速预测水或蒸汽管道破口处临界质量流速的方法,以破口上游的静态质量含气率为划分标准,对于不同质量含气率范围内的上游条件,采用不同计算模型求解破口处的临界质量流速。如图1所示,该方法具体流程包括以下步骤:
步骤1:输入破口处管道几何参数及管道边界条件上游流动参数初始化计算条件:破口处管道几何参数具体包括管道长度、面积、破口面积,初始化计算条件包括管道内初始流量,管道进出口初始压力。例如,输入管道长度25m,管道面积3.14m2,破口面积0.00314m2,之后,进行初始化。
步骤2:对破口处管道划分控制体,对每个控制体建立两相质量、动量、能量守恒微分方程组,根据破口上游控制体流量、压力、焓值计算当前时刻破口的上游滞止参数。例如,计算后的上游滞止压力为16MPa,上游滞止温度为317.35℃,质量含气率为0。
控制体质量、动量和能量守恒微分方程组具体形式如下:
Figure BDA0003971417250000091
Figure BDA0003971417250000092
Figure BDA0003971417250000093
式中,ρ——两相平均密度,kg/m3
G——质量流速,kg/(m2·s);
t——时间,s;
z——长度,m;
P——压降,Pa;
τ——剪切力,Pa;
U——湿周,m;
A——管道流动面积,m2
θ——管道与竖直方向所呈夹角;
α——空泡份额;
Q——传热量,W;
ρg——气相密度,kg/m3
ρf——液相密度,kg/m3
hg——气相比焓,J/kg;
hf——液相比焓,J/kg;
pvm——比推动功,J/kg;
求解上述方程组得管道各控制体参数即压力、速度、密度,破口处管道控制体参数即为破口上游参数,破口上游滞止压力的表达式如下:
Figure BDA0003971417250000101
式中,p0——破口上游滞止压力,Pa;
pup——破口上游压力,Pa;
vup——破口上游流体速度,m/s;
ρl0——破口上游流体密度,kg/m3
步骤3:根据破口上游的质量含气率选择相应的破口计算模型。根据步骤2的质量含气率0,此时应该选择单相过冷区计算模型。
①质量含气率<0.000001,选用Bernoulli方程,即单相过冷区计算模型;
②0.000001≤质量含气率<0.2,选用Henry-Fauske模型,即两相低含气率区计算模型;
③0.2≤质量含气率<0.998,选用Moody模型,即两相高含气率区计算模型;
④质量含气率≥0.998,选用连续性方程,即单相蒸汽区计算模型;
步骤4:计算当前时刻破口处的临界压力、临界质量流速。根据步骤3的选择进行计算临界质量流速。
(一)单相过冷区计算模型
式(5)-(10)为单相过冷区计算模型,当破口上游的流体处于过冷或饱和状态时,基于Bernoulli方程,临界质量流速的表达式为:
Figure BDA0003971417250000111
式中,C——喷放系数,对于孔口型破口,C=0.61;
pc——临界压力,Pa;
vl0——破口上游流体比容,m3/kg;
xc——出口质量含气率,m3/kg;
vgc——临界压力下的饱和蒸汽比容,m3/kg;
Gc——临界质量流速,kg/(m2·s);
为了确定临界压力,引入临界压力比η,其表达式为:
η=pc/p0 (6)
在破口所在管道的长径比L/D<12时,临界压力比随长径比增加而增大;在长径比L/D≥12时,临界压力比为一固定常数0.55;
Figure BDA0003971417250000112
为了求解出口质量含气率xc,基于等熵假设,引入出口热平衡含气率xe,其表达式为:
Figure BDA0003971417250000113
式中,s0——由上游滞止压力与上游滞止温度确定的比熵,J/(kg·K);
sg——在出口临界压力下对应的饱和汽比熵,J/(kg·K);
sl——在出口临界压力下对应的饱和水比熵,J/(kg·K);
由于热不平衡效应的影响,实际的出口质量含气率xc应该小于出口热平衡含气率xe,因此,需要对出口热平衡含气率xe进行修正,令N=xc/xe,用来表示热不平衡的程度,N的表达式为:
N=(0.0376L/D-0.163)exp(-0.0322ΔTsub) (9)
式中,L/D——破口所在管道的长径比;
ΔTsub——过冷度,K;
当L/D<5时,忽略闪蒸过程,整个管道内都是单相液体,临界质量流速直接用下式计算:
Figure BDA0003971417250000121
式中,ρl——破口上游流体密度,kg/m3
p0——破口上游滞止压力,Pa;
η——临界压力比;
当上游过冷度ΔTsub>50K时,用上游滞止温度对应的饱和压力psat(t0)作为出口临界压力,此时,临界压力比表示为η=psat(t0)/p0
(二)两相低含气率区计算模型
式(11)-(13)为两相低含气率区计算模型,在两相低质量含气率下,基于Henry-Fauske模型计算临界质量流速,其表达式为:
Figure BDA0003971417250000122
式中,n——热力平衡多变指数;
x0——静态质量含气率;
vg——破口处临界压力下对应的饱和蒸汽比容,m3/kg;
vf0——上游滞止压力下对应的比容,m3/kg;
sge——在热平衡时,临界压力下的饱和汽比熵,J/(kg·K);
sfe——在热平衡时,临界压力下的饱和水比熵,J/(kg·K);
sg0——在上游滞止压力下对应的饱和汽比熵,J/(kg·K);
sf0——在上游滞止压力下对应的饱和水比熵,J/(kg·K);
γ——定熵指数;
N——热不平衡修正项;
cpg——气相定压比热容,J/(kg·K);
Figure BDA0003971417250000131
——热平衡时饱和水比熵关于压力的导数项;
热力平衡多变指数的表达式为:
Figure BDA0003971417250000132
式中,x——质量含气率;
cf——液相比热容,J/(kg·K);
cpg——气相定压比热容,J/(kg·K);
在Henry-Fauske模型中,N的计算公式为:
Figure BDA0003971417250000133
式中,xe的计算方法与式(8)相同;值得注意的是,若计算出xe>0.14,则N=1;
在低质量含气率下,由于热不平衡的影响,临界压力比由式(7)计算;
(三)两相高含气率区计算模型
式(14)-(15)为两相高含气率区计算模型,当破口上游质量含气率较高时,两相处于热力学平衡状态,基于Moody模型计算临界质量流速,其表达式为:
Figure BDA0003971417250000141
式中,h0——破口上游滞止焓,J/kg;
s0——破口上游流体比熵,J/(kg·K);
sf——破口处临界压力下对应的饱和水比熵,J/(kg·K);
sg——破口处临界压力下对应的饱和蒸汽比熵,J/(kg·K);
vf——破口处临界压力下对应的饱和水比容,m3/kg;
在破口上游滞止参数一定的情况下,滑速比S是一个独立变量,其表达式为:
Figure BDA0003971417250000142
由于两相处于热力学平衡状态,临界压力比取0.55;
(四)单相蒸汽区计算模型
式(16)为单相蒸汽区计算模型,通过破口的蒸汽流量根据连续性方程计算,临界质量流速的表达式:
Figure BDA0003971417250000143
式中,v0——上游滞止压力下比容,m3/kg;
γ——与蒸汽性质相关的参数;对于过热蒸汽,γ=1.3;对于干饱和蒸汽,γ=1.135;
步骤5:根据计算的破口流量更新边界所有已知条件,转至步骤2,进行下一时刻的计算,直至计算终止时刻。

Claims (1)

1.超快速预测水或蒸汽管道破口处临界质量流速的方法,其特征在于:包括以下步骤:
步骤1:输入破口处管道几何参数及管道边界条件上游流动参数初始化计算条件:破口处管道几何参数具体包括管道长度、面积、破口面积,初始化计算条件包括管道内初始流量,管道进出口初始压力;
步骤2:对破口处管道划分控制体,对每个控制体建立两相质量、动量、能量守恒微分方程组,根据破口上游控制体流量、压力、焓值计算当前时刻破口的上游滞止参数;
控制体质量、动量和能量守恒微分方程组具体形式如下:
Figure FDA0003971417240000011
Figure FDA0003971417240000012
Figure FDA0003971417240000013
式中,ρ——两相平均密度,kg/m3
G——质量流速,kg/(m2·s);
t——时间,s;
z——长度,m;
P——压降,Pa;
τ——剪切力,Pa;
U——湿周,m;
A——管道流动面积,m2
θ——管道与竖直方向所呈夹角;
α——空泡份额;
Q——传热量,W;
ρg——气相密度,kg/m3
ρf——液相密度,kg/m3
hg——气相比焓,J/kg;
hf——液相比焓,J/kg;
pvm——比推动功,J/kg;
求解上述方程组得管道各控制体参数即压力、速度、密度,破口处管道控制体参数即为破口上游参数,破口上游滞止压力的表达式如下:
Figure FDA0003971417240000021
式中,p0——破口上游滞止压力,Pa;
pup——破口上游压力,Pa;
vup——破口上游流体速度,m/s;
ρl0——破口上游流体密度,kg/m3
步骤3:根据破口上游的质量含气率选择相应的破口计算模型;
①质量含气率<0.000001,选用Bernoulli方程,即单相过冷区计算模型;
②0.000001≤质量含气率<0.2,选用Henry-Fauske模型,即两相低含气率区计算模型;
③0.2≤质量含气率<0.998,选用Moody模型,即两相高含气率区计算模型;
④质量含气率≥0.998,选用连续性方程,即单相蒸汽区计算模型;
步骤4:计算当前时刻破口处的临界压力、临界质量流速;
(一)单相过冷区计算模型
式(5)-(10)为单相过冷区计算模型,当破口上游的流体处于过冷或饱和状态时,基于Bernoulli方程,临界质量流速的表达式为:
Figure FDA0003971417240000031
式中,C——喷放系数,对于孔口型破口,C=0.61;
pc——临界压力,Pa;
vl0——破口上游流体比容,m3/kg;
xc——出口质量含气率,m3/kg;
vgc——临界压力下的饱和蒸汽比容,m3/kg;
Gc——临界质量流速,kg/(m2·s);
为了确定临界压力,引入临界压力比η,其表达式为:
η=pc/p0 (6)
在破口所在管道的长径比L/D<12时,临界压力比随长径比增加而增大;在长径比L/D≥12时,临界压力比为一固定常数0.55;
Figure FDA0003971417240000032
为了求解出口质量含气率xc,基于等熵假设,引入出口热平衡含气率xe,其表达式为:
Figure FDA0003971417240000033
式中,s0——由上游滞止压力与上游滞止温度确定的比熵,J/(kg·K);
sg——在出口临界压力下对应的饱和汽比熵,J/(kg·K);
sl——在出口临界压力下对应的饱和水比熵,J/(kg·K);
由于热不平衡效应的影响,实际的出口质量含气率xc应该小于出口热平衡含气率xe,因此,需要对出口热平衡含气率xe进行修正,令N=xc/xe,用来表示热不平衡的程度,N的表达式为:
N=(0.0376L/D-0.163)exp(-0.0322ΔTsub) (9)
式中,L/D——破口所在管道的长径比;
ΔTsub——过冷度,K;
当L/D<5时,忽略闪蒸过程,整个管道内都是单相液体,临界质量流速直接用下式计算:
Figure FDA0003971417240000041
式中,ρl——破口上游流体密度,kg/m3
p0——破口上游滞止压力,Pa;
η——临界压力比;
当上游过冷度ΔTsub>50K时,用上游滞止温度对应的饱和压力psat(t0)作为出口临界压力,此时,临界压力比表示为η=psat(t0)/p0
(二)两相低含气率区计算模型
式(11)-(13)为两相低含气率区计算模型,在两相低质量含气率下,基于Henry-Fauske模型计算临界质量流速,其表达式为:
Figure FDA0003971417240000042
式中,n——热力平衡多变指数;
x0——静态质量含气率;
vg——破口处临界压力下对应的饱和蒸汽比容,m3/kg;
vf0——上游滞止压力下对应的比容,m3/kg;
sge——在热平衡时,临界压力下的饱和汽比熵,J/(kg·K);
sfe——在热平衡时,临界压力下的饱和水比熵,J/(kg·K);
sg0——在上游滞止压力下对应的饱和汽比熵,J/(kg·K);
sf0——在上游滞止压力下对应的饱和水比熵,J/(kg·K);
γ——定熵指数;
N——热不平衡修正项;
cpg——气相定压比热容,J/(kg·K);
Figure FDA0003971417240000051
——热平衡时饱和水比熵关于压力的导数项;
热力平衡多变指数的表达式为:
Figure FDA0003971417240000052
式中,x——质量含气率;
cf——液相比热容,J/(kg·K);
cpg——气相定压比热容,J/(kg·K);
在Henry-Fauske模型中,N的计算公式为:
Figure FDA0003971417240000053
式中,xe的计算方法与式(8)相同;值得注意的是,若计算出xe>0.14,则N=1;
在低质量含气率下,由于热不平衡的影响,临界压力比由式(7)计算;
(三)两相高含气率区计算模型
式(14)-(15)为两相高含气率区计算模型,当破口上游质量含气率较高时,两相处于热力学平衡状态,基于Moody模型计算临界质量流速,其表达式为:
Figure FDA0003971417240000061
式中,h0——破口上游滞止焓,J/kg;
s0——破口上游流体比熵,J/(kg·K);
sf——破口处临界压力下对应的饱和水比熵,J/(kg·K);
sg——破口处临界压力下对应的饱和蒸汽比熵,J/(kg·K);
vf——破口处临界压力下对应的饱和水比容,m3/kg;
在破口上游滞止参数一定的情况下,滑速比S是一个独立变量,其表达式为:
Figure FDA0003971417240000062
由于两相处于热力学平衡状态,临界压力比取0.55;
(四)单相蒸汽区计算模型
式(16)为单相蒸汽区计算模型,通过破口的蒸汽流量根据连续性方程计算,临界质量流速的表达式:
Figure FDA0003971417240000063
式中,v0——上游滞止压力下比容,m3/kg;
γ——与蒸汽性质相关的参数;对于过热蒸汽,γ=1.3;对于干饱和蒸汽,γ=1.135;
步骤5:根据计算的破口流量更新边界所有已知条件,转至步骤2,进行下一时刻的计算,直至计算终止时刻。
CN202211521897.3A 2022-11-30 2022-11-30 超快速预测水或蒸汽管道破口处临界质量流速的方法 Active CN115906699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211521897.3A CN115906699B (zh) 2022-11-30 2022-11-30 超快速预测水或蒸汽管道破口处临界质量流速的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211521897.3A CN115906699B (zh) 2022-11-30 2022-11-30 超快速预测水或蒸汽管道破口处临界质量流速的方法

Publications (2)

Publication Number Publication Date
CN115906699A true CN115906699A (zh) 2023-04-04
CN115906699B CN115906699B (zh) 2023-06-13

Family

ID=86485268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211521897.3A Active CN115906699B (zh) 2022-11-30 2022-11-30 超快速预测水或蒸汽管道破口处临界质量流速的方法

Country Status (1)

Country Link
CN (1) CN115906699B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619433A (en) * 1991-09-17 1997-04-08 General Physics International Engineering Simulation Inc. Real-time analysis of power plant thermohydraulic phenomena
CN103742446A (zh) * 2013-12-31 2014-04-23 江苏大学 一种叶轮偏心放置核主泵气液两相水力设计方法
US20150021094A1 (en) * 2008-04-18 2015-01-22 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
CN104505131A (zh) * 2015-01-19 2015-04-08 中国核动力研究设计院 具有测量两相喷放流量功能的破口模拟系统及其测量方法
US20150134275A1 (en) * 2012-01-06 2015-05-14 Jige Chen Steam flow rate metering device and metering method therefor
CN108197377A (zh) * 2017-12-27 2018-06-22 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 气液两相节流临界流计算方法及装置
CN110485360A (zh) * 2019-07-01 2019-11-22 中国水利水电科学研究院 一种基于虚拟水库溃决过程的山洪流量计算方法
CN111125972A (zh) * 2019-12-26 2020-05-08 西安交通大学 核电厂破口失水事故水力载荷分析方法
CN111680458A (zh) * 2020-06-03 2020-09-18 西安交通大学 一种适用于钠水直流蒸汽发生器的热工水力瞬态计算方法
CN113987696A (zh) * 2021-09-23 2022-01-28 西安交通大学 一种带破口高压气体容器临界流释放过程数值计算方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619433A (en) * 1991-09-17 1997-04-08 General Physics International Engineering Simulation Inc. Real-time analysis of power plant thermohydraulic phenomena
US20150021094A1 (en) * 2008-04-18 2015-01-22 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20150134275A1 (en) * 2012-01-06 2015-05-14 Jige Chen Steam flow rate metering device and metering method therefor
CN103742446A (zh) * 2013-12-31 2014-04-23 江苏大学 一种叶轮偏心放置核主泵气液两相水力设计方法
CN104505131A (zh) * 2015-01-19 2015-04-08 中国核动力研究设计院 具有测量两相喷放流量功能的破口模拟系统及其测量方法
CN108197377A (zh) * 2017-12-27 2018-06-22 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 气液两相节流临界流计算方法及装置
CN110485360A (zh) * 2019-07-01 2019-11-22 中国水利水电科学研究院 一种基于虚拟水库溃决过程的山洪流量计算方法
CN111125972A (zh) * 2019-12-26 2020-05-08 西安交通大学 核电厂破口失水事故水力载荷分析方法
CN111680458A (zh) * 2020-06-03 2020-09-18 西安交通大学 一种适用于钠水直流蒸汽发生器的热工水力瞬态计算方法
CN113987696A (zh) * 2021-09-23 2022-01-28 西安交通大学 一种带破口高压气体容器临界流释放过程数值计算方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIU J 等: "Small-break loss of coolant accident analysis of the integrated pressurized water reactor", 《2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE》, pages 1 - 4 *
WANG C 等: "Transient thermal-hydraulic analysis of thermionic space reactor TOPAZ-II with modified RELAP5", 《 PROGRESS IN NUCLEAR ENERGY》, pages 209 - 224 *
徐亮: "PWR小破口失水事故实时计算建模研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, pages 040 - 26 *
王明军 等: "LBB泄漏率计算与热力学非平衡效应影响评估", 原子能科学技术, no. 08, pages 55 - 60 *
秋穗正 等: "模块式小型核反应堆稳压器波动管破口事故分析研究", 《核动力工程》, pages 113 - 116 *

Also Published As

Publication number Publication date
CN115906699B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Yang et al. New time scale based k-epsilon model for near-wall turbulence
Bailey Metastable flow of saturated water
Wang et al. Optimization design of steam ejector primary nozzle for MED-TVC desalination system
Sharifi et al. An investigation of thermo-compressor design by analysis and experiment: Part 1. Validation of the numerical method
PAXSON et al. An improved numerical model for wave rotor design and analysis
Reinker et al. CLOWT: A multifunctional test facility for the investigation of organic vapor flows
Povey et al. Experimental measurements of gas turbine flow capacity using a novel transient technique
Hakkaki-Fard et al. An experimental study of ejectors supported by CFD
Sun et al. Numerical investigation of nitrogen spontaneous condensation flow in cryogenic nozzles using varying nucleation theories
Hill et al. Fast and accurate inclusion of steam properties in two-and three-dimensional steam turbine flow calculations
CN115906699A (zh) 超快速预测水或蒸汽管道破口处临界质量流速的方法
Tanuma et al. Numerical investigation of steam turbine exhaust diffuser flows and their three dimensional interaction effects on last stage efficiencies
Sharifi et al. Development of a two-fluid model for predicting phase-changing flows inside thermal vapor compressors used in thermal desalination systems
Tanuma et al. Aerodynamic interaction effects from upstream and downstream on the down-flow type exhaust diffuser performance in a low pressure steam turbine
Zheng et al. An assessment of turbulence models for predicting conjugate heat transfer for a tubine vane with internal cooling channels
Megalingam et al. A numerical investigation of the compressible flow in the ejector of a vapour ejector refrigeration system
Mehta et al. A fast algorithm to solve viscous two‐phase flow in an axisymmetric rocket nozzle
Kirillov et al. Fundamentals of the theory of turbines operating on wet steam
Levy et al. Liquid-vapor interactions in a constant-area condensing ejector
Li et al. Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant
Zhang et al. Numerical simulation study on influence of equation of state on internal flow field and performance of s-CO2 compressor
Muhammad et al. Numerical Study Analysis of The Effect of Trailing Edge Thickness of Low-Pressure Steam Turbine Stator on Steam Condensation
Harish et al. Simulation of control of pressure regulating valve in high speed wind tunnels PID control in LabVIEW
Ding et al. Effect of carrier gas pressure on vapor condensation and mass flow-rate in sonic nozzle
Giri Experimental Investigation on Vortex Tube Refrigeration System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant