CN1158823C - High-speed power-saving coding M-element FSK modulator - Google Patents
High-speed power-saving coding M-element FSK modulator Download PDFInfo
- Publication number
- CN1158823C CN1158823C CNB00130450XA CN00130450A CN1158823C CN 1158823 C CN1158823 C CN 1158823C CN B00130450X A CNB00130450X A CN B00130450XA CN 00130450 A CN00130450 A CN 00130450A CN 1158823 C CN1158823 C CN 1158823C
- Authority
- CN
- China
- Prior art keywords
- frequency
- switch
- signal
- quartz resonator
- speed power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 239000010453 quartz Substances 0.000 claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 230000010355 oscillation Effects 0.000 claims abstract description 20
- 239000003990 capacitor Substances 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims description 6
- 230000009191 jumping Effects 0.000 claims 2
- 230000009471 action Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及频移键(frequency shift keying,FSK)调变器,特别涉及适合电路集成化的高速节电式编码化M元FSK调变器。The invention relates to a frequency shift keying (frequency shift keying, FSK) modulator, in particular to a high-speed power-saving coded M-element FSK modulator suitable for circuit integration.
背景技术Background technique
无线通信技术的快速发展及半导体的持续进步,使得无线通信技术更广泛地用在生活的各个角落。除了熟悉的无线电话(cordless phone),大哥大(cellular phone),呼叫器(pager),汽车防盗器(car alarm)等之外,各式各样的无线电产品正以前所未有的速度扩散至人类日常生活之中。这种持续性的发展趋势,使得无线电产品除了轻、薄、短、小之外,必须以非常低的成本来实现下列几项的电路功能:(1)低功率消耗、(2)高功率的传输功率、(3)高灵敏度的接收能力、(4)抗干扰能力。满足上述条件,不仅能实现高品质的无线电传输,还能延长电池寿命,符合环保要求。据此,发明人采用已知的M元FSK(M元frequency shift keying)调变技术,设计出新型的M元FSK调变器,利用FSK先天的抗干扰能力,完成低成本,高速切换变化频率,并具高效率(DC-to-RF output power)的M元FSK调变器。The rapid development of wireless communication technology and the continuous progress of semiconductors make wireless communication technology more widely used in every corner of life. In addition to the familiar cordless phone, cellular phone, pager, car alarm, etc., all kinds of wireless products are spreading to human daily life at an unprecedented speed. in life. This continuous development trend makes radio products not only light, thin, short, and small, but also must realize the following circuit functions at a very low cost: (1) low power consumption, (2) high power Transmission power, (3) high-sensitivity receiving capability, (4) anti-jamming capability. Satisfying the above conditions can not only achieve high-quality radio transmission, but also prolong battery life and meet environmental protection requirements. Accordingly, the inventor adopts the known M-element FSK (M-element frequency shift keying) modulation technology to design a new type of M-element FSK modulator, and utilizes the innate anti-interference ability of FSK to complete low-cost, high-speed switching and changing frequency , and M-element FSK modulator with high efficiency (DC-to-RF output power).
已知且常用的FSK调变技术可归纳成下列几种方式:锁相环回路(phase-locked-loop,PLL)电子技术、微波电磁感应技术、数字直接合成器(Direct digital synthesis,DDS)、以及电子方式控制共振腔(resonator)的技术。The known and commonly used FSK modulation technology can be summarized into the following methods: phase-locked-loop (phase-locked-loop, PLL) electronic technology, microwave electromagnetic induction technology, digital direct synthesizer (Direct digital synthesis, DDS), And electronic control of the resonator (resonator) technology.
锁相环回路电子技术的原理是利用其回路中的压控振荡器的输出信号,经若干分频电路后,用相位比较器(phase comparator)和一个极稳定的信号源比较相位差。此相位比较器的输出信号经低通滤波器做适当的处理后,产生一个缓慢变化而近似于直流的信号去控制压控振荡器的输出频率。藉此负回路电路的动作,压控振荡器得以由分频器的设定而调整压控振荡器的频率。这种数字式的设定可利用输入的电子码产生FSK跳频信号。这种利用PLL产生的FSK信号的最大缺点是其跳频的速率受到PLL回路的滤波器的时间常数的限制。例如,若FSK信号的频道间距(channel spacing)为200KHz,为了要能正确且精准地调变出FSK信号,一个典型的PLL回路时间常数大约需要0.5ms,使FSK信号能变化(跳频)至所指定的频率。如此大幅地限制FSK跳频速率,而此时典型的回路带宽(loop bandwidth)为16.5KHz,远大于FSK的数据速率(data rate)。所以,此时的PLL能够正确且精准地调变出FSK信号。但在此情形下的数据速率相当慢,无法充分利用200KHz的频率间距,故频道的使用率大幅地下降。The principle of phase-locked loop electronic technology is to use the output signal of the voltage-controlled oscillator in the loop to compare the phase difference with a phase comparator (phase comparator) and a very stable signal source after passing through several frequency division circuits. The output signal of the phase comparator is properly processed by a low-pass filter to generate a slowly changing signal close to direct current to control the output frequency of the voltage-controlled oscillator. With the action of the negative loop circuit, the voltage controlled oscillator can adjust the frequency of the voltage controlled oscillator according to the setting of the frequency divider. This digital setting can use the input electronic code to generate FSK frequency hopping signal. The biggest disadvantage of this kind of FSK signal generated by PLL is that its frequency hopping rate is limited by the time constant of the filter of the PLL loop. For example, if the channel spacing of the FSK signal is 200KHz, in order to correctly and accurately modulate the FSK signal, a typical PLL loop time constant needs about 0.5ms, so that the FSK signal can change (frequency hop) to the specified frequency. This greatly limits the FSK frequency hopping rate, and at this time the typical loop bandwidth (loop bandwidth) is 16.5KHz, which is much greater than the data rate (data rate) of FSK. Therefore, the PLL at this time can correctly and accurately modulate the FSK signal. However, the data rate in this case is quite slow, and the frequency spacing of 200KHz cannot be fully utilized, so the utilization rate of the channel is greatly reduced.
其次,微波电磁感应技术则是利用PIN二极管(diode)或变容二极管(varactor diode),藉开关动作或电容变化的方式,通过电磁感应,将阻抗变化转换至振荡电路,进而调节该振荡器的振荡条件,使得频率因此随控制PIN二极管或变容二极管的信号而变动。这种方式的优点在于可切换频率(Δf)相对于fo的比例(Δf/fo)可以很小,且切换速率很快。其缺点是电磁电路不易做到电路集成化,因为尺寸和工作频率的波长接近,因此面积较大,往往需要混合(Hybrid)MIC来实施。除了利用压控的变容二极管外,用PIN二极管的开关动作来控制共振腔频率的方式亦被广泛地应用。当PIN二极管的开关动作导通(不导通)时可接上(不接上)共振腔中的部分电感或电容值,进而改变振荡器的输出频率。然而利用PIN二极管的开关电路仍需消耗额外的DC电流来达到导通状态,同时PIN二极管的形式不适合导入当今常见的IC形式如CMOS、双极型(bipolar)、或GaAs FET。Secondly, microwave electromagnetic induction technology uses PIN diodes (diodes) or varactor diodes (varactor diodes), through switching action or capacitance changes, through electromagnetic induction, the impedance change is converted to the oscillator circuit, and then the oscillation of the oscillator is adjusted. Oscillating conditions such that the frequency therefore varies with the signal controlling the PIN diode or varactor. The advantage of this approach is that the ratio of the switchable frequency (Δf) to fo (Δf/fo) can be small, and the switching rate is very fast. The disadvantage is that the electromagnetic circuit is not easy to achieve circuit integration, because the size and the wavelength of the operating frequency are close, so the area is relatively large, and a hybrid (Hybrid) MIC is often required for implementation. In addition to using voltage-controlled varactor diodes, the method of using the switching action of PIN diodes to control the frequency of the resonant cavity is also widely used. When the switching action of the PIN diode is turned on (non-conducted), part of the inductance or capacitance in the resonant cavity can be connected (not connected), thereby changing the output frequency of the oscillator. However, switching circuits using PIN diodes still need to consume extra DC current to achieve the on-state, and the form of PIN diodes is not suitable for importing into today's common IC forms such as CMOS, bipolar, or GaAs FET.
再者,数字直接合成器是利用数字IC的方式,将数字累进器(digitalaccumulator)工作在高速的时序信号环境下(high-speed clockedcondition),同时把欲产生的输出信号波形,如正弦波(sine wave)或任何复合信号(composite signal)的相位数据存入ROM内。以正弦波输出为例,数字累进器依所指定的频率,把合适的数字码输出至数字-模拟转换器(DAC)的输入端,产生所希望的模拟波形,并经由anti-aliasing filter滤掉。这种数字IC所合成的M元FSK信号需要利用VLSI技术,因此消耗的功率通常很大,在功率消耗必须受限的情况下,它即失去了优势。Furthermore, the digital direct synthesizer uses a digital IC to operate a digital accumulator (digital accumulator) in a high-speed clocked condition, and at the same time converts the output signal waveform to be generated, such as a sine wave (sine wave) wave) or any composite signal (composite signal) phase data stored in ROM. Taking the sine wave output as an example, the digital accumulator outputs the appropriate digital code to the input terminal of the digital-to-analog converter (DAC) according to the specified frequency, generates the desired analog waveform, and filters it out through the anti-aliasing filter . The M-element FSK signal synthesized by this digital IC needs to use VLSI technology, so the power consumed is usually very large, and it loses its advantages when the power consumption must be limited.
最后,电子方式控制共振腔的技术可将一个振荡器简化成如图5所示的电路。振荡器中能提供放大信号的部分是以一个负阻抗(-R)来表示,而执行调振的部分仍利用一个并联的Rr-Cr-Lr电路来代表调振的并联式共振腔。其中Rr代表共振腔的损耗,Rr愈大代表损耗愈低。因此,Rr>|-R|才能启动振荡。改变Lr及Cr的数值即可改变振荡器频率。图5的共振腔并不限并联方式,亦可用串联方式来形成共振腔。此时的启动振荡条件为Rr<|-R|。常用的直接调整频率方式是利用变容二极管,改变电容值Cr进而调整频率。然而利用变容二极管调变FSK信号,其跳频的幅度Δf往往受到变容二极管可变电容值大小的变化而受到极大的限制,因为fo随着√(LrCr)成反比,Cr是共振腔的等效电容值。由于共振频率和等效电容值Cr的平方根成反比,所以需要较大的电容变化量才能进行大幅的跳频动作,完成M元FSK的跳频功能。第二个缺点即变化量较大的变容二极管,不仅需要不同的偏压(通常高出振荡器的偏压很多),而且价格较高且不易实现电路集成化。另外变容二极管在集成电路中,Q值较低,因此损耗较大。名称为“FSK振荡器的集成电路实施”的美国专利6,078,226中披露了M元FSK的IC电路,如图6所示。该电路利用电源切换FSK振荡器,并利用开关改变SAW共振器的电抗值来达到高速切换动作。然而,此电路共用一个SAW共振器,而用不同开关的组合来改变电抗值来实现M元FSK的动作。但这种方式的调变范围已被SAW共振器大幅度地限制住,因此跳频的距离(Δf)不能过大,限制了数据速率。Finally, the technique of electronically controlling the resonant cavity reduces an oscillator to the circuit shown in Figure 5. The part of the oscillator that can provide an amplified signal is represented by a negative impedance (-R), while the part that performs vibration modulation still uses a parallel Rr-Cr-Lr circuit to represent a parallel resonant cavity for vibration modulation. Among them, Rr represents the loss of the resonant cavity, and the larger the Rr, the lower the loss. Therefore, Rr>|-R| can start the oscillation. Changing the value of Lr and Cr can change the oscillator frequency. The resonant cavities in FIG. 5 are not limited to the parallel connection, and the resonant cavities can also be formed in series. The starting oscillation condition at this time is Rr<|-R|. A common way to directly adjust the frequency is to use a varactor diode to change the capacitance Cr to adjust the frequency. However, using a varactor diode to modulate the FSK signal, its frequency hopping amplitude Δf is often greatly limited by the change of the variable capacitance value of the varactor diode, because fo is inversely proportional to √(LrCr), and Cr is a resonant cavity equivalent capacitance value. Since the resonant frequency is inversely proportional to the square root of the equivalent capacitance value Cr, a large capacitance change is required to perform a large frequency hopping action and complete the frequency hopping function of the M-element FSK. The second disadvantage is that varactor diodes with large variations not only require different bias voltages (usually much higher than that of the oscillator), but also are expensive and difficult to realize circuit integration. In addition, the varactor diode has a low Q value in the integrated circuit, so the loss is relatively large. An IC circuit for M-ary FSK is disclosed in US Patent 6,078,226 entitled "Integrated Circuit Implementation of FSK Oscillator", as shown in FIG. 6 . The circuit uses the power supply to switch the FSK oscillator, and uses the switch to change the reactance value of the SAW resonator to achieve high-speed switching action. However, this circuit shares a SAW resonator, and a combination of different switches is used to change the reactance value to realize the action of M element FSK. However, the modulation range of this method has been greatly limited by the SAW resonator, so the frequency hopping distance (Δf) cannot be too large, which limits the data rate.
发明内容Contents of the invention
鉴于上述问题,本发明的目的是提供一种高速节电式编码化M元FSK调变器。In view of the above problems, the object of the present invention is to provide a high-speed power-saving coded M-element FSK modulator.
本发明提供一种高速节电式编码化M元FSK调变器,其中M为频移键调变器所要跳动的频率个数,该FSK调变器包含一编码单元,可根据(N-1)位控制信号产生M/2个格雷码信号,还接收一使能信号,该编码单元在该使能信号不动作时,输出0信号,其中M=2N,N为正整数,M为正偶数;以及M/2个开关式振荡电路。而每个开关式振荡电路分别包含一具有第一端与第二端的复合式石英谐振器;一由格雷码信号控制的第一开关,其一端连接于复合式石英谐振器的第一端,另一端经由一等效负电阻电路接地;一由一串行数据控制第二开关,其一端连接于复合式石英谐振器的第二端,另一端接地;以及一电容器,其一端连接于复合式石英谐振器的第二端,而另一端接地。The present invention provides a kind of high-speed power-saving coded M-element FSK modulator, wherein M is the number of frequencies to be jumped by the frequency shift key modulator, and the FSK modulator includes a coding unit, which can be obtained according to (N-1 ) bit control signal produces M/2 Gray code signals, and also receives an enable signal, and the encoding unit outputs a 0 signal when the enable signal is not in action, wherein M=2 N , N is a positive integer, and M is a positive an even number; and M/2 switching oscillator circuits. And each switching oscillation circuit comprises a composite quartz resonator with a first end and a second end respectively; a first switch controlled by a Gray code signal, one end of which is connected to the first end of the composite quartz resonator, and the other One end is grounded through an equivalent negative resistance circuit; a second switch is controlled by a serial data, one end of which is connected to the second end of the composite quartz resonator, and the other end is grounded; and a capacitor, one end of which is connected to the composite quartz the second end of the resonator, while the other end is grounded.
利用控制信号控制M/2个开关式振荡电路中一个振荡电路动作,并由串行数据跳动该动作的振荡电路的频率,而实现M元的频率跳动。The control signal is used to control the operation of one of the M/2 switch-type oscillating circuits, and the frequency of the operating oscillating circuit is jumped by the serial data, so as to realize the frequency hopping of M elements.
附图说明Description of drawings
图1为本发明高速节电式编码化M元FSK调变器的电路框图;Fig. 1 is the block circuit diagram of the M-element FSK modulator of high-speed power-saving coding of the present invention;
图2为图1的开关式振荡电路的电路图的一个例子;Fig. 2 is an example of the circuit diagram of the switch mode oscillation circuit of Fig. 1;
图3为使能信号与振荡信号的关系图;FIG. 3 is a relation diagram between an enabling signal and an oscillating signal;
图4为复合式石英谐振器的几种典型方案;Figure 4 shows several typical schemes of composite quartz resonators;
图5为已知振荡器简化的电路;和Figure 5 is a simplified circuit of a known oscillator; and
图6为已知M元FSK振荡器的集成电路实施例子。FIG. 6 is an example of an integrated circuit implementation of a known M-ary FSK oscillator.
具体实施方式Detailed ways
图1为本发明高速节电式编码化M元FSK调变器100的系统框图。该调变器100包含一编码单元200、以及M/2个开关式振荡电路700。编码单元200接收N-1个编码信号,并输出M/2位的所谓格雷码(Graycode)210。而开关式振荡电路700接收串行数据220(Serial Data)以及编码单元200的格雷码210。本实施例中,M为FSK调变器100所要跳动的频率,且M=2N,其中N为正整数。FIG. 1 is a system block diagram of a high-speed power-saving coded M-
如图1所示,开关式振荡电路700包含一复合式石英谐振器400、控制该谐振器400动作的第一开关500、控制该谐振器400共振频率的第二开关300、调整该谐振器400共振频率的电容器310、以及连接于第一开关500的等效负电阻电路600。因此,每个开关式振荡电路700的第一开关500连接于一位的格雷码210,并由格雷码210控制是否动作。由于格雷码210的输出中仅有一位为1,因此,M/2个开关式振荡电路700中,同一时间亦仅有一个能启动。再者,第二开关300由串行数据220所控制。该串行数据220为一系列的0与1信号,使得第二开关300根据该串行数据220进行导通与断路变化。因此,复合式石英谐振器400的串接电容会随着第二开关300的导通与断路改变,进而改变复合式石英谐振器400的共振频率。由于每个开关式振荡电路700可提供两个不同的共振频率,因此M/2个开关式共振荡电路700共可提供M个频率。As shown in FIG. 1, the switch
除了串行数据220及N-1个编码信号外,编码单元220还具有一使能信号输入。当使能信号为“1”(logic high)时,编码单元200正常产生格雷码210,藉以控制M个跳频信号;当使能信号为“0”(logic low)时,编码单元200输出全部设定为“0”,因此,所有开关式振荡电路700处于休止状态。当不需进行无线传输时,使能信号可设为“0”。此时,M元FSK处于休止状态,且不消耗任何能量。In addition to the
当欲产生八个频率组合时,需设定M=8,此时N=2,编码单元200具有两个输入控制信号,且有四个组合来控制四个开关式振荡电路700。因为格雷码210输出之故,同一时间只有一个开关式振荡电路700在动作,其余皆处于关闭状态。每一个开关式振荡电路又接受串行数据220的控制产生二个频率,因此共有八个频率组合。When it is desired to generate eight frequency combinations, it is necessary to set M=8, at this time N=2, the
图1所示的开关式振荡电路700可利用CMOS(互补金属氧化物半导体)和双极性晶体管的混成或集成电路形式来实现。图2示出了开关式振荡电路700的一个实施例的电路图。该振荡电路700只用二晶体管来做极低功率损耗的信号切换及振荡器切换的动作原理。The switching
如图2所示,开关式振荡电路700式利用晶体管303扮演图1的开关300的角色。当串行数据220为“0”(接地电压或低于NMOS的Vth)时,晶体管303无法正向偏压,故晶体管303的集电极及发射极(漏极及源极)间形成非常高的阻抗,亦即断路状态。于是复合式石英谐振器401的一端经串联电容402接地,形成第一共振频率。As shown in FIG. 2 , the switched
而当串行数据220为“1”时(一般是3V电压),此信号经电阻301及电容302所形成的低通滤波器接至晶体管303的基极(或NMOS的栅极),藉以导通晶体管303的集电极及发射极(或NMOS的漏极及源极端)。且由于复合式共振腔采用石英晶体,它不能导通DC电流,只能允许通过极小的AC电流。于是晶体管303只要有非常小的基极电流,即可让晶体管303进入饱和(saturation)区域。如果晶体管303是NMOS时,数字“1”的高压大于Vth即已足够让NMOS进入导通状态。此时晶体管303几乎不消耗任何能量即进入导通状态,其集电极至发射极(NMOS的漏极至源极)通常只有2至3Ω或更小。因此复合式石英谐振器401的左端只看到几乎短路的阻抗,电容402被短路了。于是复合式石英谐振器401的一端直接接地,形成第二共振频率。And when the
亦即,复合式石英谐振器401和晶体管603、电容601、602及电阻604、501所形成的colpitz振荡器会因为串行数据的高低决定了振荡器的两个不同的频率。即一个由复合式石英谐振器401串联电容402所形成的第一共振频率及另一个由复合式石英谐振器401所定义的另一个共振频率。That is to say, the colpitz oscillator formed by the
再者,图2的晶体管603不仅做振荡器用,同时也扮演开关的角色。当编码单元200的格雷码210接至电阻501左端为数字信号“1”时,通常3V左右,晶体管603得到适当偏压,其偏压工作点由电阻501及电阻605决定。此时晶体管603形成振荡器用,且振荡信号经由电容605输出。若格雷码210的信号为“0”时,则晶体管603的基极及发射极间无正向偏压,故晶体管603为不导通状态,使得晶体管603的集电极及发射极间形成非常高的阻抗,形同开关电路的断路状态。此时振荡器无法工作,而形成休止状态并且几乎不消耗功率。晶体管603导通或不导通,只靠非常小的晶体管603的基极电流经电阻501就可控制。因此,其开关动作相当快速。Furthermore, the
借助于精密的模拟技术,采用Agilent ADS软件及其晶体管(NPN_2N2222A)数据库的精密模型,图3显示使能信号从0至3V跳动,且其上升时间及下降时间皆为10μsec时,其间的串行数据220为5kbps,由图2的晶体管603所形成的振荡器,其启动振荡时间及关闭振荡时间的模拟数据约为5μsec左右,比数字信号的上升时间及下降时间还小。因此启动及关闭振荡器的时间由使能信号上升时间及下降时间决定,此时间远比PLL等电路快速。With the help of sophisticated simulation technology, using Agilent ADS software and the sophisticated model of its transistor (NPN_2N2222A) database, Figure 3 shows that when the enable signal jumps from 0 to 3V, and its rise time and fall time are both 10μsec, the serial The
图4示出了图2的复合式石英谐振器401的几种典型设计方案。此复合式石英谐振器401是以石英谐振器(图4(a))为基础,并可串联单一电感(图4(b))或串联单一电容(图4(c))或串联电感及电容(图4(d))来改变FSK信号调变深度。FIG. 4 shows several typical designs of the
本发明提出一种高效率(节电)的高数据率M-FSK跳频设计。此新型设计让晶体管同时做振荡器及高速开关切换的两项动作,并将此开关式振荡器置于一个编码式的电路架构内(此编码器可采用格雷码编码器,利用格雷码一次只改变一位(bit)的特性来每次只高速启动一组外接的复合式石英振荡器(Composite Crystal Oscillator)),形成一个全部由晶体管组成的M元FSK调变器,适合电路集成化。特别适合对节电有特别要求的无线电数字传输系统。譬如卫星通信或需要电池的高效率无线通信设备。The invention proposes a high-efficiency (power-saving) high data rate M-FSK frequency hopping design. This new design allows the transistor to perform two actions of the oscillator and high-speed switching at the same time, and the switch oscillator is placed in a coded circuit structure (the coder can use a Gray code coder, using the Gray code to only Change the characteristics of one bit to start a group of external composite crystal oscillators (Composite Crystal Oscillator) at high speed each time to form an M-element FSK modulator composed entirely of transistors, which is suitable for circuit integration. It is especially suitable for radio digital transmission systems that have special requirements for power saving. Examples include satellite communications or high-efficiency wireless communication devices that require batteries.
以上虽以较佳实施例说明本发明瞬间式模拟-数字转换器的结构,但并不因此限制本发明的范围,只要不脱离本发明的精神,本领域普通技术人员可进行各种变形或变更。Although the structure of the instantaneous analog-to-digital converter of the present invention is described above with a preferred embodiment, it does not limit the scope of the present invention. As long as it does not depart from the spirit of the present invention, those of ordinary skill in the art can make various modifications or changes. .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB00130450XA CN1158823C (en) | 2000-10-13 | 2000-10-13 | High-speed power-saving coding M-element FSK modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB00130450XA CN1158823C (en) | 2000-10-13 | 2000-10-13 | High-speed power-saving coding M-element FSK modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1348256A CN1348256A (en) | 2002-05-08 |
CN1158823C true CN1158823C (en) | 2004-07-21 |
Family
ID=4594189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB00130450XA Ceased CN1158823C (en) | 2000-10-13 | 2000-10-13 | High-speed power-saving coding M-element FSK modulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1158823C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6557086B2 (en) * | 2015-07-31 | 2019-08-07 | ファナック株式会社 | Control device with rotary switch |
-
2000
- 2000-10-13 CN CNB00130450XA patent/CN1158823C/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
CN1348256A (en) | 2002-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6658748B1 (en) | Digitally-controlled L-C oscillator | |
Shi et al. | 28.3 a 606μW mm-scale bluetooth low-energy transmitter using co-designed 3.5× 3.5 mm 2 loop antenna and transformer-boost power oscillator | |
AU2003258398A1 (en) | Method and device for injection locking of voltage controlled oscillators using direct digital tuning | |
US7683681B2 (en) | Injection-locked frequency divider embedded an active inductor | |
US20080238495A1 (en) | Frequency synthesizer and wireless communication device utilizing the same | |
CN1068157C (en) | High-power low-noise voltage-controlled oscillator | |
US6861913B1 (en) | Voltage-controlled oscillator with LC resonant circuit | |
EP1225689A3 (en) | Oscillation circuit with voltage-controlled oscillators | |
US6897796B2 (en) | Sigma-delta converter arrangement | |
US20090322436A1 (en) | Voltage-controlled oscillator | |
CN100566198C (en) | The method and the radiofrequency launcher circuit that are used for modulated RF transmitter circuit output voltage | |
US7388446B2 (en) | Directly modulated CMOS VCO | |
CN1158823C (en) | High-speed power-saving coding M-element FSK modulator | |
GB2318696A (en) | Radio transmitter package with combined power and modulation I/P pin | |
JP3533569B2 (en) | FSK modulator | |
CN1604460A (en) | Device for Realizing Rough Frequency Adjustment of RF Voltage Controlled Oscillator | |
CN1085905C (en) | Voltage controlled oscillator circuit capable of changing over between oscillation frequency bands | |
Cho et al. | A 6.5 GHz CMOS FSK modulator for wireless sensor applications | |
Tang et al. | A 75.3 pJ/b ultra-low power MEMS-based FSK transmitter in ISM-915 MHz band for pico-IoT applications | |
EP1162728A4 (en) | VOLTAGE CONTROLLED OSCILLATOR THAT GENERATES SEVERAL FREQUENCY BANDS | |
US10911078B1 (en) | Millimeter-scale bluetooth low energy transmitter with dual purpose loop antenna | |
CN221428878U (en) | Voltage controlled oscillator | |
US5418503A (en) | Compensation of transient frequency drift in oscillator circuits | |
CN1614874A (en) | Voltage controlled oscillator for reducing gain surge | |
Chen et al. | A 2-V 2.3/4.6-GHz dual-band frequency synthesizer in 0.35-/spl mu/m digital CMOS process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C35 | Partial or whole invalidation of patent or utility model | ||
IW01 | Full invalidation of patent right |
Decision date of declaring invalidation: 20061226 Decision number of declaring invalidation: 9142 |