CN115863583A - A kind of thermal battery sulfide cathode material and preparation method thereof - Google Patents
A kind of thermal battery sulfide cathode material and preparation method thereof Download PDFInfo
- Publication number
- CN115863583A CN115863583A CN202211613261.1A CN202211613261A CN115863583A CN 115863583 A CN115863583 A CN 115863583A CN 202211613261 A CN202211613261 A CN 202211613261A CN 115863583 A CN115863583 A CN 115863583A
- Authority
- CN
- China
- Prior art keywords
- sulfide
- conductive agent
- temperature
- positive electrode
- thermal battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 239000010406 cathode material Substances 0.000 title claims description 18
- 238000002360 preparation method Methods 0.000 title claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 117
- 239000006258 conductive agent Substances 0.000 claims abstract description 81
- 239000002131 composite material Substances 0.000 claims abstract description 57
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000004020 conductor Substances 0.000 claims abstract description 16
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000007774 positive electrode material Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 15
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 14
- 239000002041 carbon nanotube Substances 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 13
- 239000000725 suspension Substances 0.000 claims description 13
- 239000012298 atmosphere Substances 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000003575 carbonaceous material Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 5
- 238000012805 post-processing Methods 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012267 brine Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 2
- 239000006245 Carbon black Super-P Substances 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 230000002528 anti-freeze Effects 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 239000002134 carbon nanofiber Substances 0.000 claims description 2
- 239000011532 electronic conductor Substances 0.000 claims description 2
- 229910003472 fullerene Inorganic materials 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000003273 ketjen black Substances 0.000 claims description 2
- 239000011133 lead Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 239000002070 nanowire Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 125000000101 thioether group Chemical group 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- 229910052755 nonmetal Inorganic materials 0.000 claims 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 3
- 239000013543 active substance Substances 0.000 claims 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 2
- 150000001450 anions Chemical class 0.000 claims 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 238000012216 screening Methods 0.000 claims 2
- 238000007670 refining Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 6
- 239000010405 anode material Substances 0.000 abstract 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 20
- 239000011149 active material Substances 0.000 description 17
- 208000028659 discharge Diseases 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 230000007774 longterm Effects 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 8
- 229910001453 nickel ion Inorganic materials 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000005496 eutectics Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910001508 alkali metal halide Inorganic materials 0.000 description 4
- 150000008045 alkali metal halides Chemical class 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 229910021404 metallic carbon Inorganic materials 0.000 description 4
- -1 perchloride ion Chemical class 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910013618 LiCl—KCl Inorganic materials 0.000 description 2
- XUKVMZJGMBEQDE-UHFFFAOYSA-N [Co](=S)=S Chemical compound [Co](=S)=S XUKVMZJGMBEQDE-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910000339 iron disulfide Inorganic materials 0.000 description 2
- 238000007614 solvation Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910020361 KCl—LiCl Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HDJLCPMPTBFPCJ-UHFFFAOYSA-N [Mo].[W]=S Chemical compound [Mo].[W]=S HDJLCPMPTBFPCJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- NKHCNALJONDGSY-UHFFFAOYSA-N nickel disulfide Chemical compound [Ni+2].[S-][S-] NKHCNALJONDGSY-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Images
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于化学电源热电池技术领域,具体涉及一种热电池硫化物正极材料及其制备方法。The invention belongs to the technical field of chemical power thermal batteries, and in particular relates to a thermal battery sulfide cathode material and a preparation method thereof.
背景技术Background technique
热电池是一种特种化学电源,以其优异的功率输出性能和长贮存寿命,广泛地应用于航空航天领域。常见的热电池正极材料(如硫化物)在高温下界面电阻大,因此需要添加离子导电剂和电子导电剂用于改善正极界面电阻。随着远程装备的发展,行业中对热电池的性能提出了更高的要求,如初期放电电流小,正极材料初期提供较高的电压,中期空载,后期正极材料具有较高的离子导电性和电子导电性等,因此具有高电导高抗热冲击的正极材料成为热电池的重要发展方向之一。Thermal battery is a kind of special chemical power source, which is widely used in aerospace field because of its excellent power output performance and long storage life. Common thermal battery cathode materials (such as sulfides) have high interface resistance at high temperatures, so it is necessary to add ion-conducting agents and electron-conducting agents to improve the interface resistance of the cathode. With the development of remote equipment, the industry has put forward higher requirements for the performance of thermal batteries, such as the initial discharge current is small, the positive electrode material provides a higher voltage in the early stage, no-load in the middle stage, and the positive electrode material has higher ion conductivity in the later stage and electronic conductivity, etc., therefore, cathode materials with high electrical conductivity and high thermal shock resistance have become one of the important development directions of thermal batteries.
当前的热电池正极材料中主要的活性物质为硫化物,在当前的研究中,由于碱金属离子迁移率高,离子电导率高,非常适用于高功率热电池,所以主要采用活性物质与碱金属卤化物熔盐复合的形式构筑热电池正极材料,例如CN201910205114.2报道了一种氟化物与LiF-NaF-LiCl和LiF-KF-LiCl共晶盐组成的高电位大功率行热电池正极材料。CN201910304122.2报道了一种硫化物与含钾电解质组成的降低自放电程度的复合正极材料;CN201110067556.9报道了一种氯化镍正极与碱金属卤化物共晶盐组成的正极材料;CN201910411142.x报道了钨钼硫化物与碱金属熔盐离子导电剂组成的正极材料。The main active material in the current thermal battery cathode material is sulfide. In the current research, due to the high mobility of alkali metal ions and high ion conductivity, it is very suitable for high-power thermal batteries, so the active material and alkali metal are mainly used. Halide molten salt composites are used to build thermal battery cathode materials. For example, CN201910205114.2 reports a high-potential, high-power thermal battery cathode material composed of fluoride, LiF-NaF-LiCl and LiF-KF-LiCl eutectic salts. CN201910304122.2 reports a composite positive electrode material composed of sulfide and potassium-containing electrolyte that reduces self-discharge; CN201110067556.9 reports a positive electrode material composed of nickel chloride positive electrode and alkali metal halide eutectic salt; CN201910411142. x reported a cathode material composed of tungsten-molybdenum sulfide and an alkali metal molten salt ion conductor.
由于硫化物在高温下会分解产生硫蒸气,导致正极容量损失或放热副反应,严重中会造成电池对热失控,因此在具有硫化物的正极材料中添加一定量的碱金属卤化物熔盐可以降低界面电阻,防止隔膜中的电解质向正极扩散迁移。碱金属卤化物熔盐进行热缓冲能够有效地降低硫化物分解,延长电池的工作时间,同时长时间末端大电流负载热电池也具有放电初期电流小,后期负载电流大的特点。Because sulfide will decompose at high temperature to generate sulfur vapor, resulting in loss of positive electrode capacity or exothermic side reactions, which will cause battery thermal runaway in severe cases, so a certain amount of alkali metal halide molten salt is added to the positive electrode material with sulfide It can reduce the interface resistance and prevent the electrolyte in the separator from diffusing and migrating to the positive electrode. The thermal buffering of alkali metal halide molten salt can effectively reduce the decomposition of sulfide and prolong the working time of the battery. At the same time, the long-term terminal high-current load thermal battery also has the characteristics of small current at the beginning of discharge and large load current at the later stage.
在当前的热电池正极材料中,也因为采用了碱金属熔盐作为离子导电剂,在长时间热电池中,随着放电深度的进行和热电池热量的损耗,正极放电副产物及正极过程会增加电池的内阻,电压低,使电池放电后期不能满足大电流负载要求,导致长时间热电池的综合性能有待提高,因此提供一种能够在放电初期提升电压,又能延长电池工作时间,增加硫化物实际容量输出,还能够降低电池后期内阻,满足电池放电后期大电流负载要求的技术,是热电池技术领域需要重点攻克的技术问题。In the current thermal battery cathode material, because alkali metal molten salt is used as the ion conductive agent, in the long-term thermal battery, with the depth of discharge and the heat loss of the thermal battery, the discharge by-products of the positive electrode and the process of the positive electrode will be Increase the internal resistance of the battery, and the voltage is low, so that the battery cannot meet the high current load requirements in the later stage of discharge, resulting in long-term heat. The actual capacity output of sulfide can also reduce the internal resistance of the battery in the later stage and meet the high current load requirements of the battery in the later stage of discharge. It is a technical problem that needs to be focused on in the field of thermal battery technology.
发明内容Contents of the invention
本发明意在针对现有技术中存在的问题提供一种热电池硫化物正极材料。The present invention aims to provide a thermal battery sulfide positive electrode material aiming at the problems existing in the prior art.
本方案中的一种热电池硫化物正极材料,所述正极材料的组分中包括导电剂和硫化物,所述导电剂为含镍复合导电剂,所述的含镍复合导电剂包括第一类导体和三元全氯的第二类导体,且所述含镍复合导电剂中至少含有的金属元素及摩尔比为Ni:Li:K=m:58.8:41.2,其中m=1~5。A thermal battery sulfide positive electrode material in this solution, the components of the positive electrode material include conductive agent and sulfide, the conductive agent is a nickel-containing composite conductive agent, and the nickel-containing composite conductive agent includes the first A quasi-conductor and a second-type conductor of ternary perchlorine, and the nickel-containing composite conductive agent contains at least metal elements and a molar ratio of Ni:Li:K=m:58.8:41.2, wherein m=1-5.
本方案的工作原理及有益技术效果是:The working principle and beneficial technical effects of this scheme are:
长时间末端大电流负载热电池具有放电初期电流小,后期负载电流大的特点,本发明针对长时间末端大电流负载热电池存在热量高,正极易分解,初期电压低,后期电阻大的特点,开发了一种热电池硫化物正极材料。The thermal battery with long-term terminal high-current load has the characteristics of small initial discharge current and large later-stage load current. This invention aims at the characteristics of high heat, easy decomposition of the positive pole, low initial voltage and large later-stage resistance of the long-term terminal high-current load thermal battery. , developed a thermal battery sulfide cathode material.
本发明的含镍复合导电剂中至少含有金属元素及摩尔比例(Ni:Li:K)为Ni:Li:K=m:58.8:41.2,,m=1~5。当镍元素比例m<1时,与碱金属卤化物电解质性质区别小,对电池后期的大电流负载能力造成影响小。当镍元素的比例m>5时,会增加粘度粘度,当镍元素比例过大时会形成泥状熔体,加入碳质导电剂可能在制备复合导电剂过程中,快速还原产生的金属镍会分层沉降,使复合导电剂不均匀。The nickel-containing composite conductive agent of the present invention contains at least metal elements and the molar ratio (Ni:Li:K) is Ni:Li:K=m:58.8:41.2, m=1-5. When the nickel element ratio m<1, there is little difference in properties from the alkali metal halide electrolyte, and it has little impact on the high current load capacity of the battery in the later stage. When the proportion of nickel element m>5, the viscosity will increase, and when the proportion of nickel element is too large, a muddy melt will be formed. The addition of carbonaceous conductive agent may cause the metal nickel produced by rapid reduction during the preparation of composite conductive agent. Layered settlement makes the composite conductive agent uneven.
1、通过在离子迁移速度快的熔盐体系中引入重金属元素镍,提高熔盐的熔点,降低激活初期加热材料对正极材料的热冲击影响,降低正极活性物质硫化物的分解;其次通过引入重金属元素镍改变材料的粘度,降低离子导电剂的高温流动性,提升与活性物质界面的结合力。1. By introducing the heavy metal element nickel into the molten salt system with fast ion migration speed, the melting point of the molten salt is increased, the thermal impact of the heating material on the positive electrode material at the initial stage of activation is reduced, and the decomposition of the positive active material sulfide is reduced; secondly, by introducing heavy metals The element nickel changes the viscosity of the material, reduces the high-temperature fluidity of the ion-conducting agent, and improves the binding force with the interface of the active material.
2、尤其重要的是,通过利用三元全氯的第二类导体,其中的氯离子对重金属镍离子的高温溶剂化作用,实现金属镍离子的均匀分布,并构建具有单体电压调节功能的含镍溶剂化结合体,因此该正极材料除了具有高离子导电性外,还可以在初期小电流或空载作业提供修正电压,并利用微弱的电化学作用或自放电效应产生高导电金属镍,为电池的后期电化学过程提供高活性的电子导电剂,实现后期大电池负载输出。2. It is especially important to realize the uniform distribution of metal nickel ions by using the second-type conductor of ternary perchlorochloride, in which chloride ions can solvate heavy metal nickel ions at high temperature, and construct a single-unit voltage-regulating function Contains nickel solvation combination, so in addition to high ion conductivity, the positive electrode material can also provide correction voltage in the initial small current or no-load operation, and use weak electrochemical action or self-discharge effect to produce highly conductive metal nickel, Provide a highly active electronic conductive agent for the later electrochemical process of the battery to achieve a large battery load output in the later period.
3、本发明中的含镍复合导电剂具有单体电压提升功能,由于本方案的导电剂中含有金属镍离子,金属镍离子更容易接受电子,因此在电池放电初期,含镍复合导电剂具有提升电压功能,使硫化物单体电压从2V左右提升至2.1~2.6V。同时由于金属镍离子在正极处发生电化学反应,可以为电池后期提供高电子导电性的金属镍,以承载更大的电流密度。3. The nickel-containing composite conductive agent in the present invention has a single voltage boosting function. Since the conductive agent of this solution contains metal nickel ions, metal nickel ions are more likely to accept electrons, so in the initial stage of battery discharge, the nickel-containing composite conductive agent has Boost the voltage function to increase the voltage of the sulfide monomer from about 2V to 2.1-2.6V. At the same time, due to the electrochemical reaction of metal nickel ions at the positive electrode, it can provide metal nickel with high electronic conductivity for the later stage of the battery to carry a greater current density.
进一步,所述硫化物选自FeS2;CoS2;NiS2;FexCoyS2,其中x+y=1;FexCoyNizS2,其中x+y+z=1;WS2;MoS2中的任意一种或多种的组合。Further, the sulfide is selected from FeS 2 ; CoS 2 ; NiS 2 ; F x Co y S 2 , where x+y=1; F x Co y N z S 2 , where x+y+z=1; WS 2 ; any one or more combinations of MoS2 .
进一步,所述硫化物的质量比为50%~95%。优选70%~90%。剩余的成分为复合导电剂,也可以额外添加金属导电剂和碳质导电剂。作为一个优选的方案,活性物质质量比大于95%,材料成型性差,且离子导电率低,电池内阻大,质量一致性差。质量比低于50%,正极材料的容量低,镍离子会长时间干扰电压,不适合长时间末端大电流负载热电池。Further, the mass ratio of the sulfide is 50%-95%. Preferably 70% to 90%. The remaining components are composite conductive agents, and additional metal conductive agents and carbonaceous conductive agents can also be added. As a preferred solution, if the mass ratio of the active material is greater than 95%, the material has poor formability, low ion conductivity, large internal resistance of the battery, and poor quality consistency. If the mass ratio is lower than 50%, the capacity of the positive electrode material is low, and nickel ions will interfere with the voltage for a long time, so it is not suitable for a long-term terminal high-current load thermal battery.
进一步,所述第一类导体为电子导体,包括金属导电剂和非金属碳质导电剂。Further, the first type of conductor is an electronic conductor, including metal conductive agents and non-metallic carbonaceous conductive agents.
进一步,所述非金属碳质和Ni的含量均为含镍复合导电剂总质量的0.01%~5%。其中非金属碳质的含量优选1%~3%。金属镍的具体含量可以通过加入碳质导电剂和还原时间确定。Further, the contents of the non-metallic carbon and Ni are both 0.01%-5% of the total mass of the nickel-containing composite conductive agent. Among them, the content of non-metallic carbon is preferably 1% to 3%. The specific content of metallic nickel can be determined by adding carbonaceous conductive agent and reducing time.
进一步,所述非金属碳质的含量为含镍复合导电剂总质量的1%~3%。Furthermore, the content of the non-metallic carbon is 1%-3% of the total mass of the nickel-containing composite conductive agent.
进一步,所述金属导电剂选自金、银、铂、锰、铁、钴、镍、铜、锌、铅、锡、铟、锑、铋等中的一种或至少两种的组合。优选铁、钴、镍、铜、锌、金、银。金属导体主要是采用高导电性的金属,金属可以是物理添加的,也可以利用碳质导电剂部分还原复合导电剂中的镍离子。例如在制备过程中通过熔盐中加入一定碳材,在高温下,碳还原含镍离子得到金属镍。Further, the metal conductive agent is selected from one or a combination of at least two of gold, silver, platinum, manganese, iron, cobalt, nickel, copper, zinc, lead, tin, indium, antimony, bismuth, etc. Iron, cobalt, nickel, copper, zinc, gold, silver are preferred. Metal conductors are mainly made of highly conductive metals, which can be added physically, or nickel ions in the composite conductive agent can be partially reduced by carbonaceous conductive agents. For example, in the preparation process, a certain carbon material is added to the molten salt, and at high temperature, the carbon reduces nickel-containing ions to obtain metallic nickel.
进一步,所述非金属碳质包括碳纳米管、碳纳米纤维、石墨烯、碳纳米线、科琴黑、导电炭黑Super P、多孔碳、富勒烯或导电石墨中的任意一种或多种的组合。Further, the non-metallic carbon includes any one or more of carbon nanotubes, carbon nanofibers, graphene, carbon nanowires, Ketjen black, conductive carbon black Super P, porous carbon, fullerene or conductive graphite combination of species.
本申请为进一步提高正极材料的综合性能,还提供了一种热电池硫化物正极材料的制备方法,包括以下步骤:In order to further improve the overall performance of the positive electrode material, the present application also provides a method for preparing the thermal battery sulfide positive electrode material, comprising the following steps:
S1、硫化物前处理S1, sulfide pretreatment
将活性物质硫化物在惰性气氛保护下进行分段高温热处理,冷却,筛分过80~200目后备用;Under the protection of an inert atmosphere, the active material sulfide is subjected to staged high-temperature heat treatment, cooled, and sieved through 80-200 meshes for later use;
S2、复合导电剂的制备S2, preparation of composite conductive agent
(1)预处理:将含有Ni2+,Li+,K+阳离子和Cl-阴离子的原材料进行高温真空干燥,转移进干燥气氛中,按阳离子比例称量相应的原材料备用;(1) Pretreatment: vacuum-dry the raw materials containing Ni 2+ , Li + , K + cations and Cl - anions at high temperature, transfer them into a dry atmosphere, and weigh the corresponding raw materials according to the proportion of cations for later use;
(2)熔融焙烧:将不含Ni的原材料混合均匀,转入坩埚中,在其上加入含Ni原材料,转移进高温炉,在375~500℃温度下高温焙烧2~8h,使材料形成均匀透明的熔体;(2) Melting and roasting: Mix the raw materials without Ni evenly, transfer them into a crucible, add Ni-containing raw materials on it, transfer them into a high-temperature furnace, and roast them at a high temperature of 375-500°C for 2-8 hours to make the material form uniformly transparent melt;
(3)复合碳材:将熔体在高温下加入0.01~5%质量比的非金属碳质导电剂,混合均匀形成悬浊液,保温1min~1h;(3) Composite carbon material: add 0.01-5% by mass non-metallic carbonaceous conductive agent to the melt at high temperature, mix evenly to form a suspension, and keep it warm for 1min-1h;
(4)急速冷却:将得到的高温熔体悬浊液倒入特制冷凝容器中铺展开,待冷却后,将冷却后的块状材料粉碎细化,过筛80~200目后得到复合导电剂;(4) Rapid cooling: Pour the obtained high-temperature melt suspension into a special condensation container and spread it out. After cooling, crush and refine the cooled block material, and sieve through 80-200 meshes to obtain a composite conductive agent. ;
S3、高温焙烧:将活性物质硫化物和复合导电剂按比例配粉、混合,所述混合方式可为机械混合、高温熔融后点、线、面、体接触或包覆中的任意一种或至少两种的组合;S3. High-temperature roasting: mix the active material sulfide and the composite conductive agent in proportion, and the mixing method can be any one of mechanical mixing, point, line, surface, body contact or coating after high temperature melting or A combination of at least two;
S4、后处理:S3中混合后的物料进行破碎,筛分过80~200目,得到硫化物正极材料。S4. Post-processing: the mixed materials in S3 are crushed and sieved through 80-200 meshes to obtain sulfide cathode materials.
进一步,所述S1中分段高温热处理的工艺为在采用干燥惰性气体循环置换内部气氛下于80~200℃焙烧4~8h,然后升温至375~500℃高温焙烧2~8h。Further, the staged high-temperature heat treatment process in S1 is calcination at 80-200°C for 4-8 hours under the condition of using dry inert gas circulation to replace the internal atmosphere, and then heating up to 375-500°C for 2-8 hours.
进一步,所述预处理过程中真空干燥温度为60~300℃,干燥时间为1~24h。Further, the vacuum drying temperature in the pretreatment process is 60-300° C., and the drying time is 1-24 hours.
进一步,所述的特制冷凝容器为容器底部带热交换功能的容器,热交换介质包括温度不大于10℃的水,冷冻盐水,冷冻乙二醇以及含有乙二醇的低温防冻液中的任意一种或多种的组合。Further, the special condensation container is a container with a heat exchange function at the bottom of the container, and the heat exchange medium includes any one of water with a temperature not higher than 10°C, frozen brine, frozen ethylene glycol, and low-temperature antifreeze containing ethylene glycol. one or more combinations.
进一步,所述S3中活性物质硫化物与复合导电剂的混合采用混粉机以200~1000r/min的速度进行球磨混合,混合均匀后送入惰性气体保护的高温炉中进行高温焙烧,随炉冷却。Further, the mixing of the active material sulfide and the composite conductive agent in S3 is carried out by ball milling at a speed of 200-1000 r/min by a powder mixer, and after mixing evenly, it is sent to a high-temperature furnace protected by an inert gas for high-temperature roasting. cool down.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明制备热电池硫化物正极材料利用Cl离子对重金属Ni离子的高温溶剂化作用,实现金属镍离子的均匀分布,同时结合采用了液化气体的进行极速冷却实现高温熔盐快速定型,形成均匀含镍离子导电剂。制备的含镍离子导电剂成分均匀,质量可靠性高。1) The present invention prepares thermal battery sulfide positive electrode materials by utilizing the high-temperature solvation of heavy metal Ni ions by Cl ions to achieve uniform distribution of metal nickel ions, and at the same time combines the use of liquefied gas for rapid cooling to achieve rapid shaping of high-temperature molten salts, forming Uniform nickel-containing ion conductive agent. The prepared nickel-containing ion conductive agent has uniform composition and high quality and reliability.
2)由于热电池在高温下工作,物理混合或者高温熔融处理都能让正极与复合导电剂在热电池工作过程中形成紧密结合,高温熔融处理后的点线面体接触或包覆能够加速电池激活,缩短激活时间。2) Since the thermal battery works at high temperature, physical mixing or high-temperature melting treatment can make the positive electrode and the composite conductive agent form a tight bond during the working process of the thermal battery, and the point-line-surface contact or coating after the high-temperature melting treatment can accelerate battery activation. , to shorten the activation time.
3)本发明制备热电池硫化物正极材料的方法无需匹配高精尖端的的设备,工艺流程简明,效率高,成本低,适用于规模化生产。3) The method for preparing the sulfide positive electrode material for thermal batteries does not need to match high-precision sophisticated equipment, the process flow is simple, the efficiency is high, and the cost is low, and it is suitable for large-scale production.
附图说明Description of drawings
图1为本发明一种热电池硫化物正极材料制备方法的工艺流程图;Fig. 1 is the process flow chart of a kind of thermal battery sulfide cathode material preparation method of the present invention;
图2为本发明一种热电池硫化物正极材料的示意图;Fig. 2 is the schematic diagram of a kind of thermal battery sulfide cathode material of the present invention;
图3为实施例1中一种热电池硫化物正极材料的放电曲线。3 is a discharge curve of a thermal battery sulfide positive electrode material in Example 1.
具体实施方式Detailed ways
下面通过具体实施方式进一步详细说明,制备方法结合图1所示:The specific implementation method is further described in detail below, and the preparation method is shown in Figure 1:
实施例1Example 1
1、一种热电池硫化物正极材料制备方法,所述方法包括以下步骤:1. A method for preparing a thermal battery sulfide cathode material, said method comprising the following steps:
S1、硫化物前处理S1, sulfide pretreatment
将活性物质CoS2在氩气气氛保护下进行分段高温热处理,分段高温处理工艺为在采用干燥氩气循环置换内部气氛下于180℃焙烧4h,然后升温至450℃高温焙烧8h,冷却过筛200目后备用。Under the protection of argon atmosphere, the active material CoS 2 is subjected to staged high-temperature heat treatment. The staged high-temperature treatment process is to roast at 180°C for 4 hours under the condition of using dry argon circulation to replace the internal atmosphere, and then raise the temperature to 450°C for 8 hours, and then cool it down. Sieve with 200 mesh for later use.
S2、复合导电剂的制备S2, preparation of composite conductive agent
(1)预处理:将化学成分为Li2NiCl4,LiCl,KCl原材料在180℃进行高温真空干燥8h,转移进干燥气氛中,按阳离子比例称量,金属阳离子摩尔比例(Ni2+:Li+:K+)为2.5:58.8:41.2(即Li2NiCl4,LiCl,KCl原料摩尔比为2.5:53.8:41.2,质量比约为536:2281:3074)。(1) Pretreatment: The raw materials whose chemical composition is Li 2 NiCl 4 , LiCl, KCl are vacuum-dried at 180°C for 8 hours at high temperature, transferred into a dry atmosphere, weighed according to the ratio of cations, and the molar ratio of metal cations (Ni 2+ : Li + : K + ) is 2.5:58.8:41.2 (that is, the molar ratio of Li 2 NiCl 4 , LiCl, and KCl raw materials is 2.5:53.8:41.2, and the mass ratio is about 536:2281:3074).
(2)熔融焙烧:将不含Ni的原材料(LiCl与KCl)混合均匀,转入坩埚中,在其上加入含Ni原材料(Li2NiCl4),转移进高温炉,在450℃温度下高温焙烧8h,使材料形成均匀透明的熔体。(2) Melting and roasting: Mix the Ni-free raw materials (LiCl and KCl) evenly, transfer them into a crucible, add Ni-containing raw materials (Li 2 NiCl 4 ) on it, transfer them into a high-temperature furnace, and heat them at a high temperature of 450°C Baking for 8 hours, the material forms a uniform and transparent melt.
(3)复合碳材:将熔体在高温下加入原材料0.1%质量比的碳纳米管,搅拌混合均匀保持30min,再次加入原材料1%质量比的碳纳米管,快速搅拌形成悬浊液。(3) Composite carbon material: Add 0.1% by mass carbon nanotubes to the melt at high temperature, stir and mix evenly for 30 minutes, add 1% by mass carbon nanotubes again, and stir rapidly to form a suspension.
(4)急速冷却:将得到的高温悬浊液控制在30s内倒入不锈钢盘特制容器并铺展开,不锈钢盘底部带有小于10℃的水循环冷却热交换器,可以极速冷却不锈钢盘中铺展的高温悬浊液熔体,将冷却后块状材料粉碎细化,过筛200目后得到复合导电剂。(4) Rapid cooling: Pour the obtained high-temperature suspension into a special stainless steel plate container within 30 seconds and spread it out. The bottom of the stainless steel plate is equipped with a water circulation cooling heat exchanger less than 10°C, which can cool the spread in the stainless steel plate extremely quickly. The high-temperature suspension melt is crushed and refined after cooling, and the composite conductive agent is obtained after sieving with 200 mesh.
S3、高温焙烧:将活性物质硫化物和复合导电剂按80:20比例配粉,采用混粉机以300r/min的速度进行球磨混合,混合均匀后送入惰性气体保护的高温炉中进行高温焙烧,焙烧温度400℃,焙烧时间4h,随炉冷却。S3. High-temperature roasting: mix the active material sulfide and the composite conductive agent in a ratio of 80:20, and use a powder mixer to perform ball milling at a speed of 300r/min. After mixing evenly, send it to a high-temperature furnace protected by inert gas for high temperature. Roasting, the calcination temperature is 400°C, the calcination time is 4h, and the furnace is cooled.
S4、后处理。将焙烧冷却后的物料进行破碎,筛分过200目,得到硫化物正极材料。S4, post-processing. The calcined and cooled material is crushed and sieved through 200 mesh to obtain the sulfide cathode material.
正极材料由活性物质80%的二硫化钴与20%含镍复合导电剂经过高温熔融结合而成,含镍复合导电剂由第一类导体碳纳米管以及还原镍粉电子导电剂和第二类导体三元(Ni-K-Li)全氯离子导电剂组成(示意图2),且复合导电剂中金属元素摩尔比例(Ni:K:Li)为2.5:58.8:41.2,碳纳米管比例约为1%,还原产生的金属镍约1%。将正极材料应用于长时间末端大电流热电池中,空载电压2.32V,如图3所示。The positive electrode material is made of active material 80% cobalt disulfide and 20% nickel-containing composite conductive agent after high-temperature melting and bonding. The nickel-containing composite conductive agent is composed of the first type of conductor carbon nanotubes and reduced nickel powder. The composition of the conductor ternary (Ni-K-Li) perchloride ion conductive agent (Schematic 2), and the molar ratio of metal elements (Ni:K:Li) in the composite conductive agent is 2.5:58.8:41.2, and the ratio of carbon nanotubes is about 1%, and the metal nickel produced by reduction is about 1%. The positive electrode material is applied to a long-term terminal high-current thermal battery with a no-load voltage of 2.32V, as shown in Figure 3.
本发明还提供了以下实施方式,达到与实施例1基本相同的效果。The present invention also provides the following implementation manners, which achieve basically the same effect as that of Embodiment 1.
实施例2Example 2
一种热电池硫化物正极材料制备方法,所述方法包括以下步骤:A method for preparing a thermal battery sulfide cathode material, the method comprising the following steps:
S1、硫化物前处理S1, sulfide pretreatment
将活性物质FeS2在氩气气氛保护下进行分段高温热处理,分段高温处理工艺为在采用干燥氩气循环置换内部气氛下于180℃焙烧4h,然后升温至450℃高温焙烧8h。冷却过筛200目后备用。The active material FeS 2 was subjected to staged high-temperature heat treatment under the protection of an argon atmosphere. The staged high-temperature treatment process was roasting at 180°C for 4 hours under the condition of using dry argon circulation to replace the internal atmosphere, and then raising the temperature to 450°C for 8 hours. Cool and sieve through 200 mesh for later use.
S2、复合导电剂的制备S2, preparation of composite conductive agent
(1)预处理:将化学成分为NiCl2,LiCl,KCl原材料在180℃进行高温真空干燥8h,转移进干燥气氛中,按阳离子比例称量,金属阳离子摩尔比例(Ni2+:Li+:K+)为2.5:58.8:41.2(即NiCl2,LiCl,KCl原料摩尔比为2.5:58.8:41.2,质量比约为324:2493:3074)。(1) Pretreatment: The chemical composition is NiCl 2 , LiCl, KCl raw materials are dried in high temperature vacuum at 180°C for 8 hours, transferred into a dry atmosphere, weighed according to the ratio of cations, the molar ratio of metal cations (Ni 2+ : Li + : K + ) is 2.5:58.8:41.2 (that is, the molar ratio of NiCl 2 , LiCl, and KCl raw materials is 2.5:58.8:41.2, and the mass ratio is about 324:2493:3074).
(2)熔融焙烧:将不含Ni的原材料(LiCl与KCl)混合均匀,转入坩埚中,在其上加入含Ni原材料(NiCl2),转移进高温炉,在450℃温度下高温焙烧8h,使材料形成均匀透明的熔体。(2) Melting and roasting: Mix the raw materials (LiCl and KCl) without Ni evenly, transfer them into a crucible, add Ni-containing raw materials (NiCl 2 ) on it, transfer them into a high-temperature furnace, and bake them at a high temperature of 450°C for 8h , so that the material forms a uniform and transparent melt.
(3)复合碳材:将熔体在高温下加入1%质量比的碳纳米管,混合均匀形成悬浊液,保温5min。(3) Composite carbon material: Add 1% by mass carbon nanotubes to the melt at high temperature, mix evenly to form a suspension, and keep warm for 5 minutes.
(4)急速冷却:将得到的高温熔体悬浊液立即倒入不锈钢盘特制容器中,不锈钢盘底部带有水和乙二醇为主成分的冷冻液循环冷却的热交换器,可以极速冷却不锈钢盘中铺展的高温悬浊液熔体,将冷却后块状材料粉碎细化,过筛200目后得到复合导电剂。(4) Rapid cooling: Pour the obtained high-temperature melt suspension into a special container made of stainless steel plate immediately. The bottom of the stainless steel plate is equipped with a heat exchanger that circulates and cools the freezing liquid mainly composed of water and ethylene glycol, which can cool down extremely quickly. The high-temperature suspension melt spread in the stainless steel plate is crushed and refined after cooling, and the composite conductive agent is obtained after sieving with 200 mesh.
S3、高温焙烧:将活性物质硫化物和复合导电剂按80:20比例配粉,采用混粉机以300r/min的速度进行球磨混合,混合均匀后送入惰性气体保护的高温炉中进行高温焙烧,随炉冷却。S3. High-temperature roasting: mix the active material sulfide and the composite conductive agent in a ratio of 80:20, and use a powder mixer to perform ball milling at a speed of 300r/min. After mixing evenly, send it to a high-temperature furnace protected by inert gas for high temperature. Roasting, cooling with the furnace.
S4、后处理:将焙烧冷却后的物料进行破碎,筛分过200目,得到硫化物正极材料。S4. Post-processing: crush the calcined and cooled material, and sieve through 200 mesh to obtain the sulfide positive electrode material.
实施例3Example 3
1、一种热电池硫化物正极材料制备方法,所述方法包括以下步骤:1. A method for preparing a thermal battery sulfide cathode material, said method comprising the following steps:
S1、硫化物前处理S1, sulfide pretreatment
将活性物质FeS2和CoS2在氩气气氛保护下分别进行分段高温热处理,分段高温处理工艺为在采用干燥氩气循环置换内部气氛下于180℃焙烧5h,然后升温至440℃高温焙烧12h。冷却过筛200目后备用。The active materials FeS 2 and CoS 2 were respectively subjected to segmental high-temperature heat treatment under the protection of argon atmosphere. The segmental high-temperature treatment process was roasting at 180°C for 5 hours under the condition of using dry argon circulation to replace the internal atmosphere, and then raising the temperature to 440°C for high-temperature roasting 12h. Cool and sieve through 200 mesh for later use.
S2、复合导电剂的制备S2, preparation of composite conductive agent
(1)预处理:将化学成分为NiCl2,LiCl,KCl-LiCl共熔物原材料在180℃进行高温真空干燥8h,转移进干燥气氛中,按阳离子比例称量,金属阳离子摩尔比例(Ni2+:Li+:K+)为2.5:58.8:41.2(即NiCl2,LiCl,LiCl-KCl共熔物原料摩尔比为2.5:17.6:41.2,质量比约为324:746:4820)。(1) Pretreatment: The chemical composition is NiCl 2 , LiCl, and KCl-LiCl eutectic raw materials are dried at 180°C for 8 hours in high temperature vacuum, transferred into a dry atmosphere, weighed according to the proportion of cations, and the molar ratio of metal cations (Ni 2 + : Li + : K + ) is 2.5:58.8:41.2 (that is, the molar ratio of NiCl 2 , LiCl, and LiCl-KCl eutectic materials is 2.5:17.6:41.2, and the mass ratio is about 324:746:4820).
(2)熔融焙烧:将不含Ni的原材料(LiCl与LiCl-KCl共熔物)混合均匀,转入坩埚中,在其上加入含Ni原材料(NiCl2),转移进高温炉,在480℃温度下高温焙烧8h,使材料形成均匀透明的熔体。(2) Melting and roasting: Mix the Ni-free raw material (LiCl and LiCl-KCl eutectic) evenly, transfer it into a crucible, add Ni-containing raw material (NiCl 2 ) on it, transfer it into a high-temperature furnace, and heat it at 480°C Roasting at high temperature for 8 hours at high temperature makes the material form a uniform and transparent melt.
(3)复合碳材:将熔体在高温下加入1%质量比的碳纳米管,混合均匀形成悬浊液,保温2min。(3) Composite carbon material: Add 1% by mass carbon nanotubes to the melt at high temperature, mix evenly to form a suspension, and keep warm for 2 minutes.
(4)急速冷却:将得到的高温熔体悬浊液立即倒入不锈钢盘特制容器中,不锈钢盘底部带有-5℃的冷冻盐水循环冷却的热交换器,可以极速冷却不锈钢盘中铺展的高温悬浊液熔体,将冷却后块状材料粉碎细化,过筛200目后得到复合导电剂。(4) Rapid cooling: Pour the obtained high-temperature melt suspension into a special container made of stainless steel plate immediately. The bottom of the stainless steel plate is equipped with a heat exchanger cooled by -5°C frozen brine circulation, which can cool the spread in the stainless steel plate extremely quickly. The high-temperature suspension melt is crushed and refined after cooling, and the composite conductive agent is obtained after sieving with 200 mesh.
S3、高温焙烧:将活性物质FeS2,CoS2和复合导电剂按40:40:20比例配粉,采用混粉机以300r/min的速度进行球磨混合,混合均匀后送入惰性气体保护的高温炉中进行高温焙烧,随炉冷却。S3. High-temperature roasting: mix the active material FeS 2 , CoS 2 and the composite conductive agent in a ratio of 40:40:20, and use a powder mixer to perform ball milling at a speed of 300r/min. Carry out high-temperature roasting in a high-temperature furnace and cool with the furnace.
S4、后处理:将焙烧冷却后的物料进行破碎,筛分过200目,得到硫化物正极材料。S4. Post-processing: crush the calcined and cooled material, and sieve through 200 mesh to obtain the sulfide positive electrode material.
本方案的正极材料由活性物质40%的二硫化钴、40%的二硫化铁与20%含镍复合导电剂经过高温熔融结合而成,含镍复合导电剂由第一类导体碳纳米管以及还原镍粉电子导电剂和第二类导体三元(Ni-K-Li)全氯离子导电剂组成,且复合导电剂中金属元素摩尔比例(Ni:K:Li)为3:58.8:41.2,碳纳米管比例约为1%,还原产生的金属镍约1%。将正极材料应用于长时间末端大电流热电池中,空载电压2.34V。The positive electrode material of this scheme is made of active material 40% cobalt disulfide, 40% iron disulfide and 20% nickel-containing composite conductive agent through high-temperature melting and bonding. The nickel-containing composite conductive agent is composed of the first type of conductor carbon nanotube and It is composed of reduced nickel powder electronic conductive agent and the second type of conductor ternary (Ni-K-Li) perchloride ion conductive agent, and the molar ratio of metal elements (Ni:K:Li) in the composite conductive agent is 3:58.8:41.2, The proportion of carbon nanotubes is about 1%, and the reduction produces about 1% of metallic nickel. The positive electrode material is applied to a long-term terminal high-current thermal battery, and the no-load voltage is 2.34V.
实施例4Example 4
本方案与实施例1的区别是,本方案中的正极材料由活性物质75%的二硫化镍、18%含镍复合导电剂、2%的银粉和5%的石墨粉经过高温熔融结合而成,含镍复合导电剂由第一类导体碳纳米管以及还原镍粉电子导电剂和第二类导体三元(Ni-K-Li)全氯离子导电剂组成,且复合导电剂中金属元素摩尔比例(Ni:K:Li)为2.5:58.8:41.2,碳纳米管比例约为1%,还原产生的金属镍约1%。将正极材料应用于长时间末端大电流热电池中,空载电压2.30V。The difference between this scheme and Example 1 is that the positive electrode material in this scheme is composed of 75% nickel disulfide active material, 18% nickel-containing composite conductive agent, 2% silver powder and 5% graphite powder through high temperature melting and bonding , the nickel-containing composite conductive agent is composed of the first type of conductive carbon nanotubes and the reduced nickel powder electronic conductive agent and the second type of conductive ternary (Ni-K-Li) perchloride ion conductive agent, and the metal element mole in the composite conductive agent The ratio (Ni:K:Li) is 2.5:58.8:41.2, the ratio of carbon nanotubes is about 1%, and the metal nickel produced by reduction is about 1%. The positive electrode material is applied to a long-term terminal high-current thermal battery, and the no-load voltage is 2.30V.
实施例5Example 5
本方案与实施例1的区别是,本方案中的正极材料由活性物质78%的二硫化铁、20%含镍复合导电剂和2%的银粉经过高温熔融结合而成,含镍复合导电剂由第一类导体碳纳米管以及还原镍粉电子导电剂和第二类导体三元(Ni-K-Li)全氯离子导电剂组成,且复合导电剂中金属元素摩尔比例(Ni:K:Li)为4:58.8:41.2,碳纳米管比例约为1%,还原产生的金属镍约2%。将正极材料应用于长时间末端大电流热电池中,空载电压2.36V。The difference between this scheme and Example 1 is that the positive electrode material in this scheme is made of 78% iron disulfide as the active material, 20% nickel-containing composite conductive agent and 2% silver powder through high-temperature melting and bonding, and the nickel-containing composite conductive agent It is composed of the first type of conductor carbon nanotubes, the reduced nickel powder electronic conductive agent and the second type of conductor ternary (Ni-K-Li) perchloride ion conductive agent, and the molar ratio of metal elements in the composite conductive agent (Ni: K: Li) is 4:58.8:41.2, the proportion of carbon nanotubes is about 1%, and the metal nickel produced by reduction is about 2%. The positive electrode material is applied to a long-term terminal high-current thermal battery, and the no-load voltage is 2.36V.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211613261.1A CN115863583A (en) | 2022-12-15 | 2022-12-15 | A kind of thermal battery sulfide cathode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211613261.1A CN115863583A (en) | 2022-12-15 | 2022-12-15 | A kind of thermal battery sulfide cathode material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115863583A true CN115863583A (en) | 2023-03-28 |
Family
ID=85673168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211613261.1A Pending CN115863583A (en) | 2022-12-15 | 2022-12-15 | A kind of thermal battery sulfide cathode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115863583A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116705973A (en) * | 2023-07-20 | 2023-09-05 | 天津大学 | Sulfide positive electrode material |
-
2022
- 2022-12-15 CN CN202211613261.1A patent/CN115863583A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116705973A (en) * | 2023-07-20 | 2023-09-05 | 天津大学 | Sulfide positive electrode material |
CN116705973B (en) * | 2023-07-20 | 2024-02-09 | 天津大学 | Sulfide positive electrode material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105140485B (en) | A kind of thermal cell composite positive pole and preparation method thereof | |
CN101597776B (en) | Metallurgy method of metal sulfide M1S | |
US20140287302A1 (en) | Anode active material for sodium battery, anode, and sodium battery | |
Zhao et al. | High-efficiency hybrid sulfur cathode based on electroactive niobium tungsten oxide and conductive carbon nanotubes for all-solid-state lithium–sulfur batteries | |
CN110931783B (en) | A lithium sulfide/nano metal cathode composite material and its preparation method and application | |
CN108598410A (en) | A kind of preparation method of lithium-sulfur cell sandwich material | |
CN112490445B (en) | Preparation and application methods of modified lithium composite negative electrode material for improving solid battery interface | |
CN106207085A (en) | A kind of thermal cell method for preparing anode material and the thermal cell utilizing it to prepare | |
CN107123810A (en) | A kind of preparation method and applications based on nickel phosphide skeleton structure composite | |
CN109449393A (en) | Porous vulcanization covalent organic framework of one kind and preparation method thereof and lithium-sulfur cell | |
CN111129534B (en) | A thermal battery based on tungsten-molybdenum sulfide system | |
WO2014170979A1 (en) | Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution | |
Sun et al. | Design of a 3D mixed conducting scaffold toward stable metallic sodium anodes | |
WO2016192540A1 (en) | Method for manufacturing tin-carbon composite negative electrode material for lithium-ion battery | |
CN108539195B (en) | A kind of solid solution type FexCo1-xS2 positive electrode material for thermal battery and preparation method thereof | |
CN110048083A (en) | A kind of preparation method of anode of solid lithium battery | |
CN115863583A (en) | A kind of thermal battery sulfide cathode material and preparation method thereof | |
CN105185968B (en) | A kind of preparation method of lithium ion battery molybdenum oxide/nickel carbon composite negative pole material | |
CN104600259B (en) | Lithium battery negative electrode material with lamellar structure and preparation method of lithium battery negative electrode material | |
Yu et al. | LiI-KI and LAGP electrolytes with a bismuth-tin positive electrode for the development of a liquid lithium battery | |
WO2024192616A1 (en) | Electrode material for extracting lithium from salt lake by means of electrochemical de-intercalation method, and preparation method therefor and use thereof | |
CN106876688B (en) | A kind of lithium ion battery tin-based alloy negative electrode material and preparation method thereof | |
CN115763816B (en) | A multifunctional ion conductive agent for thermal battery and its preparation and application | |
KR20230095380A (en) | Cathode material for sodium metal halide battery and sodium metal halide battery using the same | |
Lin et al. | One-stone, two birds: One step regeneration of discarded copper foil in zinc battery for dendrite-free lithium deposition current collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |