CN115861710B - Method and device for identifying wood tree species based on multi-source feature fusion - Google Patents

Method and device for identifying wood tree species based on multi-source feature fusion Download PDF

Info

Publication number
CN115861710B
CN115861710B CN202211667095.3A CN202211667095A CN115861710B CN 115861710 B CN115861710 B CN 115861710B CN 202211667095 A CN202211667095 A CN 202211667095A CN 115861710 B CN115861710 B CN 115861710B
Authority
CN
China
Prior art keywords
wood
samples
section
sample
dna sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211667095.3A
Other languages
Chinese (zh)
Other versions
CN115861710A (en
Inventor
何拓
刘守佳
殷亚方
郑昌
焦立超
郭娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Wood Industry of Chinese Academy of Forestry
Original Assignee
Research Institute of Wood Industry of Chinese Academy of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Wood Industry of Chinese Academy of Forestry filed Critical Research Institute of Wood Industry of Chinese Academy of Forestry
Priority to CN202211667095.3A priority Critical patent/CN115861710B/en
Publication of CN115861710A publication Critical patent/CN115861710A/en
Application granted granted Critical
Publication of CN115861710B publication Critical patent/CN115861710B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于多源特征融合的木材树种鉴定方法和装置,属于木材鉴定技术领域。本发明同时利用木材的构造特征、遗传特征和化学特征进行树种鉴定,涵盖了木材的多种类型的树种信息,解决了现有木材鉴定缺乏可靠的特征参考数据集、依赖单一特征进行树种鉴定结果不可靠、不适用于复杂应用场景等问题,实现了木材“种”水平的准确鉴定,一方面提高了识别精度,另一方面提高了识别结果的稳定性和可应用性。

The invention discloses a wood species identification method and device based on multi-source feature fusion, and belongs to the technical field of wood identification. The invention simultaneously utilizes the structural characteristics, genetic characteristics and chemical characteristics of wood for tree species identification, covers various types of tree species information of wood, and solves the problem of existing wood identification that lacks reliable feature reference data sets and relies on a single feature for tree species identification results. Unreliable and unsuitable for complex application scenarios, it achieves accurate identification of wood at the "species" level. On the one hand, it improves the identification accuracy, and on the other hand, it improves the stability and applicability of the identification results.

Description

基于多源特征融合的木材树种鉴定方法和装置Timber species identification method and device based on multi-source feature fusion

技术领域Technical field

本发明涉及木材鉴定技术领域,特别是指一种基于多源特征融合的木材树种鉴定方法和装置。The present invention relates to the technical field of wood identification, and in particular, to a wood species identification method and device based on multi-source feature fusion.

背景技术Background technique

木材鉴定是将待测样品与包含完整树木分类学及采集信息的木材标本进行比对,基于木材树种间的差异性给出待测样品的树种名称。传统的木材鉴定技术通过人眼在宏观与微观尺度对待测样品的构造特征进行观察,主要是依靠鉴定人员的专业知识与鉴定经验,鉴定结果受到人的主观因素影响较大,并且传统的木材鉴定技术多数情况下只能鉴定木材到“属”或者“类”,无法得到“种”水平的鉴定结果。Wood identification is to compare the sample to be tested with wood specimens containing complete tree taxonomy and collection information, and give the species name of the sample to be tested based on the differences between wood species. Traditional wood identification technology uses the human eye to observe the structural characteristics of the sample to be tested at the macro and micro scales. It mainly relies on the professional knowledge and identification experience of the appraiser. The identification results are greatly affected by human subjective factors, and traditional wood identification In most cases, technology can only identify wood to "genus" or "category" and cannot obtain identification results at the "species" level.

为了实现木材“种”水平的准确鉴定,近些年发展了基于计算机技术的木材识别新技术,但是尽管目前已有一些新技术用于解决木材树种鉴定问题,但由于木材存在一定程度的种内变异性,现有的木材鉴定新技术都是基于解剖、遗传、化学等单一特征给出树种鉴定结果,鉴定结果可信度不高。而且在不同复杂应用场景下,受各种条件所限,部分特征难以获取,往往导致依靠该无法获取的单一特征进行的树种鉴定难以实现。In order to achieve accurate identification of wood at the "species" level, new technologies for wood identification based on computer technology have been developed in recent years. However, although there are some new technologies used to solve the problem of wood species identification, due to the certain degree of intra-species variation in wood, Variability, existing new wood identification technologies all provide tree species identification results based on single characteristics such as anatomy, genetics, chemistry, etc., and the credibility of the identification results is not high. Moreover, in different complex application scenarios, due to various conditions, some features are difficult to obtain, which often makes tree species identification based on this unobtainable single feature difficult to achieve.

发明内容Contents of the invention

为解决现有技术的缺陷,本发明提供一种基于多源特征融合的木材树种鉴定方法和装置,实现了木材“种”水平的准确鉴定,一方面提高了识别精度,另一方面提高了识别结果的稳定性和可应用性。In order to solve the shortcomings of the existing technology, the present invention provides a method and device for identifying wood species based on multi-source feature fusion, which achieves accurate identification of wood at the "species" level. On the one hand, it improves the identification accuracy, and on the other hand, it improves the identification accuracy. Stability and applicability of results.

本发明提供技术方案如下:The technical solutions provided by the present invention are as follows:

一种基于多源特征融合的木材树种鉴定方法,所述方法包括:A wood species identification method based on multi-source feature fusion, the method includes:

建立木材分类特征参考数据集,并划分为训练集和测试集;其中,所述木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本;Establish a wood classification feature reference data set and divide it into a training set and a test set; wherein the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples;

构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练;Construct a deep learning model, and use the training set to train the deep learning model;

通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征;The key features of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples are respectively extracted through the deep learning model using an independent learning method;

将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化;Fusion of key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, using the test set to verify the fusion results, and adjusting and optimizing the deep learning model;

获取待鉴定木材样品的木材切面图像、木材DNA序列和/或木材化学指纹图谱,将所述木材切面图像、木材DNA序列和/或木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称。Obtain the wood section image, wood DNA sequence and/or wood chemical fingerprint of the wood sample to be identified, input the wood section image, wood DNA sequence and/or wood chemical fingerprint map into the deep learning model to obtain the wood sample to be identified The name of the tree species.

进一步的,所述建立木材分类特征参考数据集,并划分为训练集和测试集,包括:Further, a wood classification feature reference data set is established and divided into a training set and a test set, including:

获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到所述木材切面图像样本;Obtaining structural images of wood cross sections, radial sections and chord sections collected from wood specimens, and performing data enhancement processing to obtain the wood section image samples;

获取从所述木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列,得到所述木材DNA序列样本;Obtain the DNA extracted from the wood specimen, conduct amplification, sequencing and DNA barcode evaluation, screen out effective DNA barcode sequences, and obtain the wood DNA sequence sample;

获取采用质谱仪对所述木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到所述木材化学指纹图谱样本;Obtain the mass spectrometry data collected by scanning the surface of the wood specimen using a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample;

对所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立所述木材分类特征参考数据集;Perform data cleaning on the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a reference data set of wood classification characteristics;

采用k折交叉验证的方法,将所述木材分类特征参考数据集按8:2的比例划分为所述训练集和测试集。Using the k-fold cross-validation method, the wood classification feature reference data set was divided into the training set and the test set at a ratio of 8:2.

进一步的,所述构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练,包括:Further, constructing a deep learning model and using the training set to train the deep learning model includes:

构建基于卷积神经网络的深度学习模型,所述深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层;Construct a deep learning model based on a convolutional neural network. The deep learning model includes three convolutional neural networks in parallel. Each convolutional neural network includes an input layer, a convolutional layer, an attention mechanism layer, a pooling layer, and Fully connected layer;

将所述训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入所述深度学习模型的三个卷积神经网络进行训练,在所述卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类。The wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set are respectively input into the three convolutional neural networks of the deep learning model for training. In the convolution layer, attention mechanism layer and The pooling layer performs feature extraction, and the fully connected layer performs feature classification.

进一步的,所述通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征,包括:Further, the key features of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples were respectively extracted through the deep learning model using an autonomous learning method, including:

分别提取所述木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到所述木材切面图像样本的关键特征矩阵;Extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images respectively, and perform matrix representation to obtain a key feature matrix of the wood section image sample;

将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到所述木材DNA序列样本的关键特征矩阵;The base sequences of the screened effective DNA barcode sequences are represented in a matrix using the k-mer algorithm to obtain the key feature matrix of the wood DNA sequence sample;

基于所述木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到所述木材化学指纹图谱样本的关键特征矩阵。Based on the wood chemical fingerprint sample, the structure and content information of the wood characteristic compounds are obtained, and the molecular weight of each characteristic compound is expressed in a matrix to obtain the key feature matrix of the wood chemical fingerprint sample.

进一步的,所述木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像,所述数据增强处理包括图像旋转、图像缩放、图像镜像和/或图像裁剪;Further, the wood cross-section, radial section and chord section structure images all include macro-structure images and micro-structure images, and the data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping;

获取木材特征化合物时,采用遍历荷质比数据的方式对所述木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出所述特征化合物。When obtaining the characteristic compounds of wood, the wood chemical fingerprint sample is subjected to peak alignment processing by traversing the charge-to-mass ratio data, and the characteristic compounds are retrieved by comparing the charge-to-mass ratio.

进一步的,所述木材解剖构造特征信息包括从所述木材横切面构造图像上提取的横切面特征信息、从所述木材径切面构造图像上提取的径切面特征信息和从所述木材弦切面构造图像上提取的弦切面特征信息;Further, the wood anatomical structure feature information includes cross-section feature information extracted from the wood cross-section structure image, radial section feature information extracted from the wood radial section structure image, and radial section feature information extracted from the wood chord section structure image. Chord section feature information extracted from the image;

所述横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征,所述径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征,所述弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征。The cross-section characteristic information includes pore frequency characteristics, pore diameter characteristics and/or axial parenchyma frequency characteristics, and the radial section characteristic information includes wood ray cell type characteristics and/or duct-ray pit type characteristics. , the chord section feature information includes wood ray width features, wood ray height features and/or wood ray frequency features.

进一步的,所述将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化,包括:Further, the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples were fused, and the test set was used to verify the fusion results, and the deep learning model was tested. Adjustments and optimizations include:

将所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理;Normalize the key feature matrices of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples;

将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵;Fusion matrix of key feature matrices of the normalized wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample to obtain a fusion matrix;

基于所述融合矩阵输出鉴定结果,利用所述测试集对所述深度学习模型进行测试和调参,根据所述鉴定结果对所述深度学习模型各参数进行调整优化,使得所述深度学习模型的分类精度达到99%以上。Based on the fusion matrix, the identification result is output, the test set is used to test and adjust parameters of the deep learning model, and each parameter of the deep learning model is adjusted and optimized according to the identification result, so that the deep learning model The classification accuracy reaches more than 99%.

其中,将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,包括:Among them, the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples are fused, including:

将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到所述融合矩阵;Superpose the eigenvalues with the same number of rows and columns in the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix;

或者;or;

将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到所述融合矩阵。The key feature matrix of the normalized wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample is subjected to a matrix splicing operation to obtain the fusion matrix.

进一步的,所述获取待鉴定木材样品的木材切面图像、木材DNA序列和/或木材化学指纹图谱,将所述木材切面图像、木材DNA序列和/或木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称,包括:Further, the step of obtaining the wood section image, wood DNA sequence and/or wood chemical fingerprint of the wood sample to be identified, and inputting the wood section image, wood DNA sequence and/or wood chemical fingerprint into the deep learning model, Obtain the tree species name of the wood sample to be identified, including:

根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的一种或多种;According to the actual application scenario and the data availability of the wood sample to be identified, obtain one or more of the wood cross-section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified;

将获取的待鉴定木材样品的一种或多种所述木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,输出待鉴定木材样品的树种名称。One or more of the obtained wood section images, wood DNA sequences and wood chemical fingerprints of the wood sample to be identified are input into the deep learning model, and the tree species name of the wood sample to be identified is output.

一种基于多源特征融合的木材树种鉴定装置,所述装置包括:A wood species identification device based on multi-source feature fusion, the device includes:

数据集建立模块,用于建立木材分类特征参考数据集,并划分为训练集和测试集;其中,所述木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本;A data set creation module is used to establish a wood classification feature reference data set and divide it into a training set and a test set; wherein the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples. ;

模型构建模块,用于构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练;A model building module, used to build a deep learning model and use the training set to train the deep learning model;

特征提取模块,用于通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征;A feature extraction module, configured to extract key features of the wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample through the deep learning model using an independent learning method;

模型优化模块,用于将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化;The model optimization module is used to fuse the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, use the test set to verify the fusion results, and verify the deep learning model Make adjustments and optimizations;

树种鉴定模块,用于获取待鉴定木材样品的木材切面图像、木材DNA序列和/或木材化学指纹图谱,将所述木材切面图像、木材DNA序列和/或木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称。The tree species identification module is used to obtain the wood section image, wood DNA sequence and/or wood chemical fingerprint of the wood sample to be identified, and input the wood section image, wood DNA sequence and/or wood chemical fingerprint into the deep learning model. , get the name of the tree species of the wood sample to be identified.

进一步的,所述数据集建立模块包括:Further, the data set creation module includes:

木材切面图像获取单元,用于获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到所述木材切面图像样本;A wood section image acquisition unit is used to obtain the wood cross section, radial section and chord section structural images collected from the wood specimen, and perform data enhancement processing to obtain the wood section image sample;

木材DNA序列获取单元,用于获取从所述木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列,得到所述木材DNA序列样本;A wood DNA sequence acquisition unit is used to obtain DNA extracted from the wood specimen, perform amplification, sequencing and DNA barcode evaluation, screen out effective DNA barcode sequences, and obtain the wood DNA sequence sample;

木材化学指纹图谱获取单元,用于获取采用质谱仪对所述木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到所述木材化学指纹图谱样本;A wood chemical fingerprint acquisition unit is used to obtain mass spectrometry data collected by scanning the surface of the wood specimen using a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample;

数据清洗单元,用于对所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立所述木材分类特征参考数据集;A data cleaning unit, used to perform data cleaning on the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a reference data set for the wood classification characteristics;

数据集划分单元,用于采用k折交叉验证的方法,将所述木材分类特征参考数据集按8:2的比例划分为所述训练集和测试集。A data set dividing unit is used to divide the wood classification feature reference data set into the training set and the test set in a ratio of 8:2 using a k-fold cross-validation method.

进一步的,所述模型构建模块包括:Further, the model building modules include:

模型构建单元,用于构建基于卷积神经网络的深度学习模型,所述深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层;A model building unit used to build a deep learning model based on a convolutional neural network. The deep learning model includes three convolutional neural networks in parallel. Each convolutional neural network includes an input layer, a convolutional layer, and an attention mechanism. layer, pooling layer and fully connected layer;

模型训练单元,用于将所述训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入所述深度学习模型的三个卷积神经网络进行训练,在所述卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类。The model training unit is used to input the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set into three convolutional neural networks of the deep learning model for training. In the convolution layer , the attention mechanism layer and the pooling layer are used for feature extraction, and the fully connected layer is used for feature classification.

进一步的,所述特征提取模块包括:Further, the feature extraction module includes:

第一提取单元,用于分别提取所述木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到所述木材切面图像样本的关键特征矩阵;The first extraction unit is used to respectively extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images, and perform matrix representation to obtain a key feature matrix of the wood section image sample;

第二提取单元,用于将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到所述木材DNA序列样本的关键特征矩阵;The second extraction unit is used to matrix-represent the base sequences of the screened effective DNA barcode sequences using the k-mer algorithm to obtain the key feature matrix of the wood DNA sequence sample;

第三提取单元,用于基于所述木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到所述木材化学指纹图谱样本的关键特征矩阵。The third extraction unit is used to obtain the structure and content information of wood characteristic compounds based on the wood chemical fingerprint sample, and perform a matrix representation of the molecular weight of each characteristic compound to obtain the key feature matrix of the wood chemical fingerprint sample. .

进一步的,所述木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像,所述数据增强处理包括图像旋转、图像缩放、图像镜像和/或图像裁剪;Further, the wood cross-section, radial section and chord section structure images all include macro-structure images and micro-structure images, and the data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping;

获取木材特征化合物时,采用遍历荷质比数据的方式对所述木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出所述特征化合物。When obtaining the characteristic compounds of wood, the wood chemical fingerprint sample is subjected to peak alignment processing by traversing the charge-to-mass ratio data, and the characteristic compounds are retrieved by comparing the charge-to-mass ratio.

进一步的,所述木材解剖构造特征信息包括从所述木材横切面构造图像上提取的横切面特征信息、从所述木材径切面构造图像上提取的径切面特征信息和从所述木材弦切面构造图像上提取的弦切面特征信息;Further, the wood anatomical structure feature information includes cross-section feature information extracted from the wood cross-section structure image, radial section feature information extracted from the wood radial section structure image, and radial section feature information extracted from the wood chord section structure image. Chord section feature information extracted from the image;

所述横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征,所述径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征,所述弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征。The cross-section characteristic information includes pore frequency characteristics, pore diameter characteristics and/or axial parenchyma frequency characteristics, and the radial section characteristic information includes wood ray cell type characteristics and/or duct-ray pit type characteristics. , the chord section feature information includes wood ray width features, wood ray height features and/or wood ray frequency features.

进一步的,所述模型优化模块包括:Further, the model optimization module includes:

归一化单元,用于将所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理;A normalization unit, used to normalize the key feature matrices of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples;

特征融合单元,用于将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵;A feature fusion unit is used to fuse the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix;

模型优化单元,用于基于所述融合矩阵输出鉴定结果,利用所述测试集对所述深度学习模型进行测试和调参,根据所述鉴定结果对所述深度学习模型各参数进行调整优化,使得所述深度学习模型的分类精度达到99%以上。A model optimization unit, configured to output identification results based on the fusion matrix, use the test set to test and adjust parameters of the deep learning model, and adjust and optimize each parameter of the deep learning model according to the identification results, so that The classification accuracy of the deep learning model reaches more than 99%.

进一步的,所述特征融合单元用于:Further, the feature fusion unit is used for:

将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到所述融合矩阵;Superpose the eigenvalues with the same number of rows and columns in the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix;

或者;or;

将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到所述融合矩阵。The key feature matrix of the normalized wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample is subjected to a matrix splicing operation to obtain the fusion matrix.

进一步的,所述树种鉴定模块包括:Further, the tree species identification module includes:

数据获取单元,用于根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的一种或多种;The data acquisition unit is used to obtain one or more of the wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified based on the actual application scenario and the data availability of the wood sample to be identified;

树种鉴定单元,用于将获取的待鉴定木材样品的一种或多种所述木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,输出待鉴定木材样品的树种名称。The tree species identification unit is used to input one or more of the obtained wood section images, wood DNA sequences and wood chemical fingerprints of the wood sample to be identified into the deep learning model, and output the tree species name of the wood sample to be identified.

本发明具有以下有益效果:The invention has the following beneficial effects:

本发明通过采集木材标本的构造特征、遗传特征和化学特征等生物信息,建立木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的木材分类特征参考数据集;构建深度学习模型,融合木材解剖学、遗传学及化学分类特征数据信息,以木材分类特征参考数据集中的三种类型数据为训练集,通过自主学习的方法提取三种数据类型中的关键特征,训练得到能够自主鉴定木材树种的深度学习模型。在此基础上,即可将待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的任意一种或多种类型的组合输入训练好的深度学习模型中,进行树种鉴定,模型自动给出待鉴定样品的树种名称。This invention collects biological information such as structural characteristics, genetic characteristics, and chemical characteristics of wood specimens to establish a wood classification feature reference data set of wood section image samples, wood DNA sequence samples, and wood chemical fingerprint samples; builds a deep learning model, and integrates wood Anatomy, genetics and chemical classification feature data information, using three types of data in the wood classification feature reference data set as the training set, extract the key features in the three data types through independent learning methods, and train to be able to independently identify wood tree species deep learning model. On this basis, any one or more combinations of the wood cross-section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified can be input into the trained deep learning model to perform tree species identification. The model The tree species name of the sample to be identified is automatically given.

本发明同时利用木材的构造特征、遗传特征和化学特征进行树种鉴定,涵盖了木材的多种类型的树种信息,解决了现有木材鉴定缺乏可靠的特征参考数据集、依赖单一特征进行树种鉴定结果不可靠、不适用于复杂应用场景等问题,实现了木材“种”水平的准确鉴定,一方面提高了识别精度,另一方面提高了识别结果的稳定性和可应用性。The invention simultaneously utilizes the structural characteristics, genetic characteristics and chemical characteristics of wood for tree species identification, covers various types of tree species information of wood, and solves the problem of existing wood identification that lacks reliable feature reference data sets and relies on a single feature for tree species identification results. Unreliable and unsuitable for complex application scenarios, it achieves accurate identification of wood at the "species" level. On the one hand, it improves the identification accuracy, and on the other hand, it improves the stability and applicability of the identification results.

附图说明Description of the drawings

图1为本发明的基于多源特征融合的木材树种鉴定方法的流程图;Figure 1 is a flow chart of the wood species identification method based on multi-source feature fusion of the present invention;

图2为本发明的基于多源特征融合的木材树种鉴定装置的示意图。Figure 2 is a schematic diagram of the wood species identification device based on multi-source feature fusion of the present invention.

具体实施方式Detailed ways

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings and specific embodiments. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations. Therefore, the following detailed description of the embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without any creative work fall within the scope of protection of the present invention.

本发明实施例提供一种基于多源特征融合的木材树种鉴定方法,如图1所示,该方法包括:Embodiments of the present invention provide a wood species identification method based on multi-source feature fusion. As shown in Figure 1, the method includes:

S100:建立木材分类特征参考数据集,并划分为训练集和测试集;其中,木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本。S100: Establish a wood classification feature reference data set and divide it into a training set and a test set; the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples.

本步骤以木材标本为建库样品,建立包含一系列木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的木材分类特征参考数据集,木材分类特征参考数据集中的三类样本数据均来自于准确定名的木材标本,具有准确的树种标记。This step uses wood specimens as database construction samples to establish a wood classification feature reference data set that contains a series of wood section image samples, wood DNA sequence samples, and wood chemical fingerprint samples. The three types of sample data in the wood classification feature reference data set are all from Accurately named wood specimens with accurate species markings.

S200:构建深度学习模型,并采用训练集对深度学习模型进行训练。S200: Build a deep learning model and use the training set to train the deep learning model.

深度学习模型可以是基于卷积神经网络并具有注意力机制层的模型,通过训练集训练深度学习模型。The deep learning model can be a model based on a convolutional neural network and has an attention mechanism layer, and the deep learning model is trained through a training set.

S300:通过深度学习模型以自主学习的方法分别提取木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征。S300: Use the deep learning model to extract key features of wood cut image samples, wood DNA sequence samples and wood chemical fingerprint samples using independent learning methods.

木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征分别为木材构造特征、木材遗传特征和木材化学特征。The key features of wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples are wood structural characteristics, wood genetic characteristics and wood chemical characteristics respectively.

S400:将提取的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用测试集对融合的结果进行验证,对深度学习模型进行调整优化。S400: Fusion of the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, using the test set to verify the fusion results, and adjust and optimize the deep learning model.

关键特征可以以矩阵化的形式表示,进行融合时也可以以矩阵的形式进行融合,利用测试集进行验证,得到能够自主鉴定木材树种的深度学习模型。The key features can be expressed in a matrix form, and can also be fused in a matrix form. The test set can be used for verification to obtain a deep learning model that can independently identify wood species.

S500:获取待鉴定木材样品的木材切面图像、木材DNA序列和/或木材化学指纹图谱,将木材切面图像、木材DNA序列和/或木材化学指纹图谱输入深度学习模型,得到待鉴定木材样品的树种名称。S500: Obtain the wood section image, wood DNA sequence and/or wood chemical fingerprint of the wood sample to be identified, input the wood section image, wood DNA sequence and/or wood chemical fingerprint map into the deep learning model to obtain the tree species of the wood sample to be identified. name.

深度学习模型训练且优化完毕后,即可基于该深度学习模型鉴定树种名称,对于一个待鉴定木材样品,可以根据情况获取其木材切面图像、木材DNA序列和木材化学指纹图谱中的一种或多种,输入该深度学习模型中,即可自动输出待鉴定木材样品的树种名称。After the deep learning model is trained and optimized, the name of the tree species can be identified based on the deep learning model. For a wood sample to be identified, one or more of the wood cross-section image, wood DNA sequence, and wood chemical fingerprint can be obtained according to the situation. species, input into the deep learning model, and the tree species name of the wood sample to be identified can be automatically output.

现有技术未建立起可靠的多源分类特征融合参考数据集,无法整合木材全面完整的分类特征信息,鉴定结果可信度不高,不适用于多元化的复杂应用场景。The existing technology has not established a reliable reference data set for multi-source classification feature fusion, and cannot integrate comprehensive and complete classification feature information of wood. The credibility of the identification results is not high, and it is not suitable for diversified and complex application scenarios.

本发明通过采集木材标本的构造特征、遗传特征和化学特征等生物信息,建立木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的木材分类特征参考数据集;构建深度学习模型,融合木材解剖学、遗传学及化学分类特征数据信息,以木材分类特征参考数据集中的三种类型数据为训练集,通过自主学习的方法提取三种数据类型中的关键特征,训练得到能够自主鉴定木材树种的深度学习模型。在此基础上,即可将待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的任意一种或多种类型的组合输入训练好的深度学习模型中,进行树种鉴定,模型自动给出待鉴定样品的树种名称。This invention collects biological information such as structural characteristics, genetic characteristics, and chemical characteristics of wood specimens to establish a wood classification feature reference data set of wood section image samples, wood DNA sequence samples, and wood chemical fingerprint samples; builds a deep learning model, and integrates wood Anatomy, genetics and chemical classification feature data information, using three types of data in the wood classification feature reference data set as the training set, extract the key features in the three data types through independent learning methods, and train to be able to independently identify wood tree species deep learning model. On this basis, any one or more combinations of the wood cross-section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified can be input into the trained deep learning model to perform tree species identification. The model The tree species name of the sample to be identified is automatically given.

本发明同时利用木材的构造特征、遗传特征和化学特征进行树种鉴定,涵盖了木材的多种类型的树种信息,解决了现有木材鉴定缺乏可靠的特征参考数据集、依赖单一特征进行树种鉴定结果不可靠、不适用于复杂应用场景等问题,实现了木材“种”水平的准确鉴定,一方面提高了识别精度,另一方面提高了识别结果的稳定性和可应用性。The invention simultaneously utilizes the structural characteristics, genetic characteristics and chemical characteristics of wood for tree species identification, covers various types of tree species information of wood, and solves the problem of existing wood identification that lacks reliable feature reference data sets and relies on a single feature for tree species identification results. Unreliable and unsuitable for complex application scenarios, it achieves accurate identification of wood at the "species" level. On the one hand, it improves the identification accuracy, and on the other hand, it improves the stability and applicability of the identification results.

作为本发明实施例的一种改进,前述的S100包括:As an improvement of the embodiment of the present invention, the aforementioned S100 includes:

S110:获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到木材切面图像样本。S110: Obtain the wood cross-section, radial section and chord section structure images collected from the wood specimens, and perform data enhancement processing to obtain wood section image samples.

示例性的,可以采用iWood木材图像采集装置从木材标本上采集横、径、弦三切面的构造图像,或者采用光学显微镜从木材标本上采集横、径、弦三切面的构造图像,获取的木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像。For example, the iWood wood image acquisition device can be used to collect structural images of transverse, radial, and chordal sections from wood specimens, or an optical microscope can be used to collect structural images of transverse, radial, and chordal sections from wood specimens. The obtained wood The cross-section, radial section and chordal section structural images all include macro-structural images and micro-structural images.

数据增强处理包括对图像进行图像旋转、图像缩放、图像镜像和/或图像裁剪操作,从而得到更多图像信息,丰富木材分类特征参考数据集的样本多样性。Data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping operations to obtain more image information and enrich the sample diversity of the wood classification feature reference data set.

S120:获取从木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列(即DNA碱基序列),得到木材DNA序列样本。S120: Obtain the DNA extracted from the wood specimen, conduct amplification, sequencing and DNA barcode evaluation, screen out the effective DNA barcode sequence (i.e. DNA base sequence), and obtain the wood DNA sequence sample.

S130:获取采用质谱仪对木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到木材化学指纹图谱样本。S130: Obtain the mass spectrum data collected by scanning the surface of the wood specimen with a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample.

质谱仪可以采用高分辨率质谱仪,例如实时直接分析-傅里叶变换离子回旋共振质谱仪(DART-FTICR-MS)。归一化处理的方法可以是对齐处理,也可以是其他处理方式。The mass spectrometer can use a high-resolution mass spectrometer, such as direct analysis in real time-Fourier transform ion cyclotron resonance mass spectrometer (DART-FTICR-MS). The method of normalization processing can be alignment processing or other processing methods.

S140:对木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立木材分类特征参考数据集。S140: Perform data cleaning on wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a wood classification feature reference data set.

S150:采用k折交叉验证的方法,将木材分类特征参考数据集按8:2的比例划分为训练集和测试集。S150: Using the k-fold cross-validation method, the wood classification feature reference data set is divided into a training set and a test set in a ratio of 8:2.

k折交叉验证先将参考数据集随机划分为k个大小相同的互斥子集,每次随机的选择k-1份作为训练集,剩下的1份作为测试集,进行一轮训练。当这一轮训练完成后,重新随机选择k-1份作为训练集,剩下的1份作为测试集,进行一轮训练。若干轮训练之后,选择损失函数评估最优的模型和参数。K-fold cross-validation first randomly divides the reference data set into k mutually exclusive subsets of the same size. Each time, k-1 parts are randomly selected as the training set, and the remaining 1 part is used as the test set for a round of training. After this round of training is completed, k-1 parts are randomly selected as the training set, and the remaining 1 part is used as the test set for a round of training. After several rounds of training, a loss function is selected to evaluate the optimal model and parameters.

进一步的,所述S200可以包括:Further, the S200 may include:

S210:构建基于卷积神经网络的深度学习模型,深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层。S210: Construct a deep learning model based on a convolutional neural network. The deep learning model includes three parallel convolutional neural networks. Each convolutional neural network includes an input layer, a convolutional layer, an attention mechanism layer, a pooling layer, and Fully connected layer.

三个并行的卷积神经网络分别为基于图像、遗传信息和化学指纹图谱的卷积神经网络。The three parallel convolutional neural networks are based on images, genetic information and chemical fingerprints.

S220:将训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入深度学习模型的三个卷积神经网络进行训练,在卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类。S220: Input the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set into the three convolutional neural networks of the deep learning model for training, and perform the training on the convolution layer, attention mechanism layer and pooling layer. Feature extraction, feature classification is performed through the fully connected layer.

作为一种优选,前述的S300包括:As a preference, the aforementioned S300 includes:

S310:分别提取木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到木材切面图像样本的关键特征矩阵。S310: Extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images respectively, and perform matrix representation to obtain the key feature matrix of the wood section image sample.

木材切面图像样本的关键特征是对木材解剖构造特征信息的矩阵化表示,即为木材构造特征矩阵,也可称为木材图像特征。木材解剖构造特征信息的获取方法包括:The key feature of the wood section image sample is the matrix representation of the wood anatomical structure feature information, which is the wood structure feature matrix, which can also be called the wood image feature. Methods for obtaining information on wood anatomy characteristics include:

1、从木材横切面构造图像上提取横切面特征信息,该横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征等。1. Extract cross-section feature information from the wood cross-section structure image. The cross-section feature information includes tube hole frequency characteristics, tube hole diameter characteristics, and/or axial parenchyma frequency characteristics, etc.

2、从木材径切面构造图像上提取径切面特征信息,该径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征等。2. Extract radial section feature information from the wood radial section structure image. The radial section feature information includes wood ray cell type characteristics and/or vessel-ray pit characteristics, etc.

3、从木材弦切面构造图像上提取弦切面特征信息,该弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征等。3. Extract chord section feature information from the wood chord section structure image. The chord section feature information includes wood ray width features, wood ray height features, and/or wood ray frequency features.

S320:将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到木材DNA序列样本的关键特征矩阵。S320: Use the k-mer algorithm to matrix-represent the base sequences of the screened effective DNA barcode sequences to obtain the key feature matrix of the wood DNA sequence sample.

木材DNA序列样本的关键特征矩阵即为木材遗传特征。The key feature matrix of wood DNA sequence samples is the wood genetic characteristics.

S330:基于木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到木材化学指纹图谱样本的关键特征矩阵。S330: Based on the wood chemical fingerprint sample, obtain the structure and content information of the wood characteristic compounds, express the molecular weight of each characteristic compound in a matrix, and obtain the key feature matrix of the wood chemical fingerprint sample.

木材化学指纹图谱样本的关键特征矩阵即为木材化学特征,是对木材特征化合物的矩阵化表示。获取木材特征化合物时,可以采用遍历荷质比数据的方式对木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出特征化合物。The key feature matrix of the wood chemical fingerprint sample is the wood chemical characteristics, which is a matrix representation of the wood characteristic compounds. When obtaining the characteristic compounds of wood, you can perform peak alignment processing on the wood chemical fingerprint sample by traversing the charge-to-mass ratio data, and retrieve the characteristic compounds by comparing the charge-to-mass ratio.

作为本发明实施例的另一种改进,前述的S400包括:As another improvement of the embodiment of the present invention, the aforementioned S400 includes:

S410:将木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理。S410: Normalize the key feature matrices of wood section image samples, wood DNA sequence samples, and wood chemical fingerprint samples.

归一化处理使得三种数据类型的矩阵具有相同维度格式,并保留各自的重要特征。The normalization process makes the matrices of the three data types have the same dimensional format and retains their respective important characteristics.

S420:将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵。S420: Fusion of key feature matrices of normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix.

融合的方式可以为线性加权融合或矩阵拼接融合,最终得到一种木材分类特征融合矩阵,其中:The fusion method can be linear weighted fusion or matrix splicing fusion, and finally a wood classification feature fusion matrix is obtained, where:

线性加权融合包括:将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到融合矩阵。Linear weighted fusion includes: superimposing the eigenvalues with the same number of rows and columns in the key feature matrices of normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix.

矩阵拼接融合包括:将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到融合矩阵。Matrix splicing and fusion includes: performing a matrix splicing operation on the key feature matrices of normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix.

示例性的,可以利用tf.concat函数将统一维度后的三种数据类型的矩阵进行矩阵拼接,得到融合矩阵。For example, the tf.concat function can be used to concatenate the matrices of the three data types with unified dimensions to obtain a fusion matrix.

S430:基于融合矩阵在深度学习模型的全连接层输出鉴定结果,利用测试集对深度学习模型进行测试和调参,根据鉴定结果对深度学习模型各参数进行调整优化,使得深度学习模型的分类精度达到99%以上。S430: Output the identification results in the fully connected layer of the deep learning model based on the fusion matrix, use the test set to test and adjust parameters of the deep learning model, and adjust and optimize the parameters of the deep learning model based on the identification results to improve the classification accuracy of the deep learning model. Reaching more than 99%.

上述训练过程执行完毕后,前述的S500可以包括:After the above training process is completed, the aforementioned S500 can include:

S510:根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的一种或多种。S510: According to the actual application scenario and the data availability of the wood sample to be identified, obtain one or more of the wood cross-section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified.

S520:将获取的待鉴定木材样品的一种或多种木材切面图像、木材DNA序列和木材化学指纹图谱输入深度学习模型,输出待鉴定木材样品的树种名称。S520: Input one or more wood section images, wood DNA sequences and wood chemical fingerprints of the wood sample to be identified into the deep learning model, and output the tree species name of the wood sample to be identified.

本发明实施例还提供一种基于多源特征融合的木材树种鉴定装置,如图2所示,该装置包括:An embodiment of the present invention also provides a wood species identification device based on multi-source feature fusion. As shown in Figure 2, the device includes:

数据集建立模块1,用于建立木材分类特征参考数据集,并划分为训练集和测试集;其中,木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本。Data set establishment module 1 is used to establish a wood classification feature reference data set and divide it into a training set and a test set; among them, the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples.

模型构建模块2,用于构建深度学习模型,并采用训练集对深度学习模型进行训练。Model building module 2 is used to build a deep learning model and use the training set to train the deep learning model.

特征提取模块3,用于通过深度学习模型以自主学习的方法分别提取木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征。Feature extraction module 3 is used to extract key features of wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples using a deep learning model using an independent learning method.

模型优化模块4,用于将提取的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用测试集对融合的结果进行验证,对深度学习模型进行调整优化。Model optimization module 4 is used to fuse the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, use the test set to verify the fusion results, and adjust and optimize the deep learning model.

树种鉴定模块5,用于获取待鉴定木材样品的木材切面图像、木材DNA序列和/或木材化学指纹图谱,将木材切面图像、木材DNA序列和/或木材化学指纹图谱输入深度学习模型,得到待鉴定木材样品的树种名称。The tree species identification module 5 is used to obtain the wood section image, wood DNA sequence and/or wood chemical fingerprint of the wood sample to be identified, and input the wood section image, wood DNA sequence and/or wood chemical fingerprint to the deep learning model to obtain the wood sample to be identified. Identify the species name of the wood sample.

本发明同时利用木材的构造特征、遗传特征和化学特征进行树种鉴定,涵盖了木材的多种类型的树种信息,解决了现有木材鉴定缺乏可靠的特征参考数据集、依赖单一特征进行树种鉴定结果不可靠、不适用于复杂应用场景等问题,实现了木材“种”水平的准确鉴定,一方面提高了识别精度,另一方面提高了识别结果的稳定性和可应用性。The invention simultaneously utilizes the structural characteristics, genetic characteristics and chemical characteristics of wood for tree species identification, covers various types of tree species information of wood, and solves the problem of existing wood identification that lacks reliable feature reference data sets and relies on a single feature for tree species identification results. Unreliable and unsuitable for complex application scenarios, it achieves accurate identification of wood at the "species" level. On the one hand, it improves the identification accuracy, and on the other hand, it improves the stability and applicability of the identification results.

作为本发明实施例的一种改进,所述的数据集建立模块包括:As an improvement to the embodiment of the present invention, the data set creation module includes:

木材切面图像获取单元,用于获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到木材切面图像样本。The wood section image acquisition unit is used to obtain the wood cross section, radial section and chord section structural images collected from the wood specimen, and perform data enhancement processing to obtain the wood section image sample.

其中,木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像,数据增强处理包括图像旋转、图像缩放、图像镜像和/或图像裁剪;Among them, the structural images of wood cross sections, radial sections and chord sections all include macro structural images and micro structural images, and data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping;

木材DNA序列获取单元,用于获取从木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列,得到木材DNA序列样本。The wood DNA sequence acquisition unit is used to obtain DNA extracted from wood specimens, conduct amplification, sequencing and DNA barcode evaluation, screen out effective DNA barcode sequences, and obtain wood DNA sequence samples.

木材化学指纹图谱获取单元,用于获取采用质谱仪对木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到木材化学指纹图谱样本。The wood chemical fingerprint acquisition unit is used to obtain the mass spectrum data collected by scanning the surface of the wood specimen with a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample.

数据清洗单元,用于对木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立木材分类特征参考数据集。The data cleaning unit is used to clean the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a wood classification feature reference data set.

数据集划分单元,用于采用k折交叉验证的方法,将木材分类特征参考数据集按8:2的比例划分为训练集和测试集。The data set division unit is used to divide the wood classification feature reference data set into a training set and a test set in a ratio of 8:2 using the k-fold cross-validation method.

进一步的,所述的模型构建模块包括:Further, the model building modules include:

模型构建单元,用于构建基于卷积神经网络的深度学习模型,深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层。The model building unit is used to build a deep learning model based on a convolutional neural network. The deep learning model includes three parallel convolutional neural networks. Each convolutional neural network includes an input layer, a convolutional layer, an attention mechanism layer, Pooling layer and fully connected layer.

模型训练单元,用于将训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入深度学习模型的三个卷积神经网络进行训练,在卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类。The model training unit is used to input the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set into the three convolutional neural networks of the deep learning model for training. In the convolution layer, attention mechanism layer and The pooling layer performs feature extraction, and the fully connected layer performs feature classification.

作为一种优选,所述的特征提取模块包括:As a preference, the feature extraction module includes:

第一提取单元,用于分别提取木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到木材切面图像样本的关键特征矩阵。The first extraction unit is used to respectively extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images, and perform matrix representation to obtain the key feature matrix of the wood section image sample.

其中,木材解剖构造特征信息包括从木材横切面构造图像上提取的横切面特征信息、从木材径切面构造图像上提取的径切面特征信息和从木材弦切面构造图像上提取的弦切面特征信息。Among them, the wood anatomical structure feature information includes cross-section feature information extracted from the wood cross-section structure image, radial section feature information extracted from the wood radial section structure image, and chord section feature information extracted from the wood chord section structure image.

横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征,径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征,弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征。The cross-section feature information includes pore frequency features, pore diameter features and/or axial parenchyma frequency features, the radial section feature information includes wood ray cell type features and/or duct-ray pit type features, and chord section features. The information includes a wood ray width characteristic, a wood ray height characteristic, and/or a wood ray frequency characteristic.

第二提取单元,用于将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到木材DNA序列样本的关键特征矩阵。The second extraction unit is used to matrix-represent the base sequences of the screened effective DNA barcode sequences using the k-mer algorithm to obtain the key feature matrix of the wood DNA sequence sample.

第三提取单元,用于基于木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到木材化学指纹图谱样本的关键特征矩阵。The third extraction unit is used to obtain the structure and content information of wood characteristic compounds based on the wood chemical fingerprint sample, and express the molecular weight of each characteristic compound in a matrix to obtain the key feature matrix of the wood chemical fingerprint sample.

其中,可以采用遍历荷质比数据的方式对木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出特征化合物。Among them, peak alignment processing can be performed on wood chemical fingerprint samples by traversing charge-to-mass ratio data, and characteristic compounds can be retrieved by comparing charge-to-mass ratios.

作为本发明实施例的另一种改进,所述的模型优化模块包括:As another improvement of the embodiment of the present invention, the model optimization module includes:

归一化单元,用于将木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理。The normalization unit is used to normalize the key feature matrices of wood section image samples, wood DNA sequence samples, and wood chemical fingerprint samples.

特征融合单元,用于将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵。The feature fusion unit is used to fuse the key feature matrices of normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix.

其中,关键特征矩阵融合的操作可以为:Among them, the operation of key feature matrix fusion can be:

将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到融合矩阵;The fusion matrix is obtained by superimposing the eigenvalues with the same number of rows and columns in the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples;

或者;or;

将归一化处理后的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到融合矩阵。The key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples are subjected to a matrix splicing operation to obtain a fusion matrix.

模型优化单元,用于基于融合矩阵输出鉴定结果,利用测试集对深度学习模型进行测试和调参,根据鉴定结果对深度学习模型各参数进行调整优化,使得深度学习模型的分类精度达到99%以上。The model optimization unit is used to output the identification results based on the fusion matrix, use the test set to test and adjust the parameters of the deep learning model, and adjust and optimize the parameters of the deep learning model based on the identification results, so that the classification accuracy of the deep learning model reaches more than 99%. .

上述训练过程执行完毕后,前述的树种鉴定模块包括:After the above training process is completed, the aforementioned tree species identification module includes:

数据获取单元,用于根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱中的一种或多种。The data acquisition unit is used to obtain one or more of the wood cross-section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified based on the actual application scenario and the data availability of the wood sample to be identified.

树种鉴定单元,用于将获取的待鉴定木材样品的一种或多种木材切面图像、木材DNA序列和木材化学指纹图谱输入深度学习模型,输出待鉴定木材样品的树种名称。The tree species identification unit is used to input one or more wood section images, wood DNA sequences and wood chemical fingerprints of the wood sample to be identified into the deep learning model, and output the tree species name of the wood sample to be identified.

上述实施例所提供的装置,其实现原理及产生的技术效果和前述方法的实施例一一对应,为简要描述,该装置的实施例部分未提及之处,可参考前述方法的实施例中相应内容。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,该装置描述的模块和单元的具体工作过程,均可以参考前述方法的实施例中的对应过程,在此不再赘述。The implementation principles and technical effects of the device provided by the above embodiments correspond to those of the foregoing method embodiments. For the sake of brief description, for parts not mentioned in the embodiments of the device, please refer to the foregoing method embodiments. Corresponding content. Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the modules and units described in the device can be referred to the corresponding processes in the embodiments of the foregoing method, and will not be described again here.

本发明提供的上述实施例所述的基于多源特征融合的木材树种鉴定方法可以通过计算机程序实现业务逻辑并记录在存储介质上,所述的存储介质可以计算机读取并执行,实现本说明书方法实施例所描述方案的效果。因此,本发明实施例还提供用于木材树种鉴定的计算机可读存储介质,包括用于存储处理器可执行指令的存储器,所述指令被处理器执行时实现包括前述实施例的基于多源特征融合的木材树种鉴定方法的步骤。The wood species identification method based on multi-source feature fusion described in the above embodiments provided by the present invention can implement business logic through a computer program and record it on a storage medium. The storage medium can be read and executed by a computer to implement the method in this specification. The effect of the solution described in the embodiment. Therefore, embodiments of the present invention also provide a computer-readable storage medium for wood species identification, including a memory for storing processor-executable instructions. When the instructions are executed by the processor, the multi-source feature-based method including the foregoing embodiments is implemented. Steps of a fused wood species identification method.

所述存储介质可以包括用于存储信息的物理装置,通常是将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。所述存储介质有可以包括:利用电能方式存储信息的装置如,各式存储器,如RAM、ROM等;利用磁能方式存储信息的装置如,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的装置如,CD或DVD。当然,还有其他方式的可读存储介质,例如量子存储器、石墨烯存储器等等。The storage medium may include a physical device for storing information. The information is usually digitized and then stored in electronic, magnetic, or optical media. The storage medium may include: devices that use electrical energy to store information, such as various memories, such as RAM, ROM, etc.; devices that use magnetic energy to store information, such as hard disks, floppy disks, magnetic tapes, magnetic core memories, magnetic bubble memories, USB flash drive; a device that uses optical means to store information, such as a CD or DVD. Of course, there are other ways of readable storage media, such as quantum memory, graphene memory, and so on.

上述所述的存储介质根据方法实施例的描述还可以包括其他的实施方式,本实施例的实现原理及产生的技术效果和前述方法实施例相同,具体可以参照相关方法实施例的描述,在此不作一一赘述。The storage medium described above may also include other implementation modes according to the description of the method embodiment. The implementation principle and technical effects of this embodiment are the same as those of the aforementioned method embodiment. For details, please refer to the description of the relevant method embodiment. Here I won’t go into details one by one.

本发明实施例还提供一种用于木材树种鉴定的设备,所述的设备可以为单独的计算机,也可以包括使用了本说明书的一个或多个所述方法或一个或多个实施例装置的实际操作装置等。所述木材树种鉴定的设备可以包括至少一个处理器以及存储计算机可执行指令的存储器,处理器执行所述指令时实现上述任意一个或者多个所述基于多源特征融合的木材树种鉴定方法的步骤。Embodiments of the present invention also provide a device for identifying wood species. The device may be a separate computer, or may include a device using one or more of the methods or one or more embodiments of this specification. Practical operating devices, etc. The device for identifying wood species may include at least one processor and a memory that stores computer-executable instructions. When the processor executes the instructions, it implements any one or more of the steps of the wood species identification method based on multi-source feature fusion. .

上述所述的设备根据方法实施例的描述还可以包括其他的实施方式,本实施例的实现原理及产生的技术效果和前述方法实施例相同,具体可以参照相关方法实施例的描述,在此不作一一赘述。The above-mentioned equipment may also include other implementation modes according to the description of the method embodiments. The implementation principle and technical effects produced by this embodiment are the same as those of the aforementioned method embodiments. For details, please refer to the description of the relevant method embodiments, which will not be discussed here. Let’s go over them one by one.

最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。Finally, it should be noted that the above-mentioned embodiments are only specific implementations of the present invention and are used to illustrate the technical solutions of the present invention rather than to limit them. The protection scope of the present invention is not limited thereto. Although refer to the foregoing The embodiments illustrate the present invention in detail. Those of ordinary skill in the art should understand that any person familiar with the technical field can still modify the technical solutions recorded in the foregoing embodiments within the technical scope disclosed by the present invention. It is possible to easily think of changes or equivalent substitutions of some of the technical features; however, these modifications, changes or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention. All are covered by the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.

Claims (2)

1.一种基于多源特征融合的木材树种鉴定方法,其特征在于,所述方法包括:1. A wood species identification method based on multi-source feature fusion, characterized in that the method includes: 建立木材分类特征参考数据集,并划分为训练集和测试集;其中,所述木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本;Establish a wood classification feature reference data set and divide it into a training set and a test set; wherein the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples; 构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练;Construct a deep learning model, and use the training set to train the deep learning model; 通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征;The key features of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples are respectively extracted through the deep learning model using an independent learning method; 将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化;Fusion of key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, using the test set to verify the fusion results, and adjusting and optimizing the deep learning model; 获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱,将所述木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称;Obtain the wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified, input the wood section image, wood DNA sequence and wood chemical fingerprint to the deep learning model to obtain the tree species name of the wood sample to be identified; 所述建立木材分类特征参考数据集,并划分为训练集和测试集,包括:The wood classification feature reference data set is established and divided into a training set and a test set, including: 获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到所述木材切面图像样本;Obtaining structural images of wood cross sections, radial sections and chord sections collected from wood specimens, and performing data enhancement processing to obtain the wood section image samples; 获取从所述木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列,得到所述木材DNA序列样本;Obtain the DNA extracted from the wood specimen, conduct amplification, sequencing and DNA barcode evaluation, screen out effective DNA barcode sequences, and obtain the wood DNA sequence sample; 获取采用质谱仪对所述木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到所述木材化学指纹图谱样本;Obtain the mass spectrometry data collected by scanning the surface of the wood specimen using a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample; 对所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立所述木材分类特征参考数据集;Perform data cleaning on the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a reference data set of wood classification characteristics; 采用k折交叉验证的方法,将所述木材分类特征参考数据集按8:2的比例划分为所述训练集和测试集;Using the k-fold cross-validation method, the wood classification feature reference data set is divided into the training set and the test set at a ratio of 8:2; 所述通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征,包括:The key features of the wood cross-section image sample, wood DNA sequence sample and wood chemical fingerprint sample were respectively extracted through the deep learning model using an independent learning method, including: 分别提取所述木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到所述木材切面图像样本的关键特征矩阵;Extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images respectively, and perform matrix representation to obtain a key feature matrix of the wood section image sample; 将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到所述木材DNA序列样本的关键特征矩阵;The base sequences of the screened effective DNA barcode sequences are represented in a matrix using the k-mer algorithm to obtain the key feature matrix of the wood DNA sequence sample; 基于所述木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到所述木材化学指纹图谱样本的关键特征矩阵;Based on the wood chemical fingerprint sample, obtain the structure and content information of the wood characteristic compounds, and perform a matrix representation of the molecular weight of each characteristic compound to obtain the key feature matrix of the wood chemical fingerprint sample; 所述将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化,包括:fusing the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, using the test set to verify the fusion results, and adjusting and optimizing the deep learning model, include: 将所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理;Normalize the key feature matrices of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples; 将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵;Fusion matrix of key feature matrices of the normalized wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample to obtain a fusion matrix; 基于所述融合矩阵输出鉴定结果,利用所述测试集对所述深度学习模型进行测试和调参,根据所述鉴定结果对所述深度学习模型各参数进行调整优化,使得所述深度学习模型的分类精度达到99%以上;Based on the fusion matrix, the identification result is output, the test set is used to test and adjust parameters of the deep learning model, and each parameter of the deep learning model is adjusted and optimized according to the identification result, so that the deep learning model The classification accuracy reaches more than 99%; 所述构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练,包括:Constructing a deep learning model and using the training set to train the deep learning model includes: 构建基于卷积神经网络的深度学习模型,所述深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层;Construct a deep learning model based on a convolutional neural network. The deep learning model includes three convolutional neural networks in parallel. Each convolutional neural network includes an input layer, a convolutional layer, an attention mechanism layer, a pooling layer, and Fully connected layer; 将所述训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入所述深度学习模型的三个卷积神经网络进行训练,在所述卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类;The wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set are respectively input into the three convolutional neural networks of the deep learning model for training. In the convolution layer, attention mechanism layer and The pooling layer performs feature extraction, and the fully connected layer performs feature classification; 所述木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像,所述数据增强处理包括图像旋转、图像缩放、图像镜像和/或图像裁剪;The wood cross-section, radial section and chord section structure images all include macro-structure images and micro-structure images, and the data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping; 获取木材特征化合物时,采用遍历荷质比数据的方式对所述木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出所述特征化合物;When obtaining wood characteristic compounds, perform peak alignment processing on the wood chemical fingerprint sample by traversing the charge-to-mass ratio data, and retrieve the characteristic compounds by comparing the charge-to-mass ratio; 所述木材解剖构造特征信息包括从所述木材横切面构造图像上提取的横切面特征信息、从所述木材径切面构造图像上提取的径切面特征信息和从所述木材弦切面构造图像上提取的弦切面特征信息;The wood anatomical structure feature information includes cross-section feature information extracted from the wood cross-section structure image, radial section feature information extracted from the wood radial section structure image, and radial section feature information extracted from the wood chord section structure image. Chord section feature information; 所述横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征,所述径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征,所述弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征;The cross-section characteristic information includes pore frequency characteristics, pore diameter characteristics and/or axial parenchyma frequency characteristics, and the radial section characteristic information includes wood ray cell type characteristics and/or duct-ray pit type characteristics. , the chord section characteristic information includes wood ray width characteristics, wood ray height characteristics and/or wood ray frequency characteristics; 所述将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,包括:The fusion of key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples includes: 将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到所述融合矩阵;Superpose the eigenvalues with the same number of rows and columns in the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix; 或者;or; 将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到所述融合矩阵;Perform a matrix splicing operation on the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix; 所述获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱,将所述木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称,包括:The wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified are obtained, and the wood section image, wood DNA sequence and wood chemical fingerprint are input into the deep learning model to obtain the tree species of the wood sample to be identified. Name, including: 根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱;According to the actual application scenario and the data availability of the wood sample to be identified, the wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified are obtained; 将获取的待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,输出待鉴定木材样品的树种名称。The obtained wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified are input into the deep learning model, and the tree species name of the wood sample to be identified is output. 2.一种基于多源特征融合的木材树种鉴定装置,其特征在于,所述装置包括:2. A wood species identification device based on multi-source feature fusion, characterized in that the device includes: 数据集建立模块,用于建立木材分类特征参考数据集,并划分为训练集和测试集;其中,所述木材分类特征参考数据集包括木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本;A data set creation module is used to establish a wood classification feature reference data set and divide it into a training set and a test set; wherein the wood classification feature reference data set includes wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples. ; 模型构建模块,用于构建深度学习模型,并采用所述训练集对所述深度学习模型进行训练;A model building module, used to build a deep learning model and use the training set to train the deep learning model; 特征提取模块,用于通过所述深度学习模型以自主学习的方法分别提取所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征;A feature extraction module, configured to extract key features of the wood section image sample, wood DNA sequence sample and wood chemical fingerprint sample through the deep learning model using an independent learning method; 模型优化模块,用于将提取的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征进行融合,利用所述测试集对融合的结果进行验证,对所述深度学习模型进行调整优化;The model optimization module is used to fuse the key features of the extracted wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, use the test set to verify the fusion results, and verify the deep learning model Make adjustments and optimizations; 树种鉴定模块,用于获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱,将所述木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,得到待鉴定木材样品的树种名称;The tree species identification module is used to obtain the wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified, and input the wood section image, wood DNA sequence and wood chemical fingerprint to the deep learning model to obtain the wood sample to be identified. The species name of the wood sample; 所述数据集建立模块包括:The data set creation module includes: 木材切面图像获取单元,用于获取从木材标本上采集的木材横切面、径切面和弦切面构造图像,并进行数据增强处理,得到所述木材切面图像样本;A wood section image acquisition unit is used to obtain the wood cross section, radial section and chord section structural images collected from the wood specimen, and perform data enhancement processing to obtain the wood section image sample; 木材DNA序列获取单元,用于获取从所述木材标本提取的DNA,并进行扩增、测序和DNA条形码评价,筛选出有效DNA条形码序列,得到所述木材DNA序列样本;A wood DNA sequence acquisition unit is used to obtain DNA extracted from the wood specimen, perform amplification, sequencing and DNA barcode evaluation, screen out effective DNA barcode sequences, and obtain the wood DNA sequence sample; 木材化学指纹图谱获取单元,用于获取采用质谱仪对所述木材标本表面进行扫描采集的质谱数据,并进行归一化处理,得到所述木材化学指纹图谱样本;A wood chemical fingerprint acquisition unit is used to obtain mass spectrometry data collected by scanning the surface of the wood specimen using a mass spectrometer, and perform normalization processing to obtain the wood chemical fingerprint sample; 数据清洗单元,用于对所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本进行数据清洗,去除异常值,建立所述木材分类特征参考数据集;A data cleaning unit, used to perform data cleaning on the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples, remove outliers, and establish a reference data set for the wood classification characteristics; 数据集划分单元,用于采用k折交叉验证的方法,将所述木材分类特征参考数据集按8:2的比例划分为所述训练集和测试集;A data set dividing unit is used to divide the wood classification feature reference data set into the training set and the test set in a ratio of 8:2 using a k-fold cross-validation method; 所述特征提取模块包括:The feature extraction module includes: 第一提取单元,用于分别提取所述木材横切面、径切面和弦切面构造图像包含的木材解剖构造特征信息,并进行矩阵化表示,得到所述木材切面图像样本的关键特征矩阵;The first extraction unit is used to respectively extract the wood anatomical structure feature information contained in the wood cross-section, radial section and chord section structural images, and perform matrix representation to obtain a key feature matrix of the wood section image sample; 第二提取单元,用于将筛选出的有效DNA条形码序列的碱基序列采用k-mer算法进行矩阵化表示,得到所述木材DNA序列样本的关键特征矩阵;The second extraction unit is used to matrix-represent the base sequences of the screened effective DNA barcode sequences using the k-mer algorithm to obtain the key feature matrix of the wood DNA sequence sample; 第三提取单元,用于基于所述木材化学指纹图谱样本,获取木材特征化合物的结构与含量信息,将每个特征化合物的分子量进行矩阵化表示,得到所述木材化学指纹图谱样本的关键特征矩阵;The third extraction unit is used to obtain the structure and content information of wood characteristic compounds based on the wood chemical fingerprint sample, and perform matrix representation of the molecular weight of each characteristic compound to obtain the key feature matrix of the wood chemical fingerprint sample. ; 所述模型优化模块包括:The model optimization module includes: 归一化单元,用于将所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行归一化处理;A normalization unit, used to normalize the key feature matrices of the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples; 特征融合单元,用于将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行融合,得到融合矩阵;A feature fusion unit is used to fuse the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain a fusion matrix; 模型优化单元,用于基于所述融合矩阵输出鉴定结果,利用所述测试集对所述深度学习模型进行测试和调参,根据所述鉴定结果对所述深度学习模型各参数进行调整优化,使得所述深度学习模型的分类精度达到99%以上;A model optimization unit, configured to output identification results based on the fusion matrix, use the test set to test and adjust parameters of the deep learning model, and adjust and optimize each parameter of the deep learning model according to the identification results, so that The classification accuracy of the deep learning model reaches more than 99%; 所述模型构建模块包括:The model building blocks include: 模型构建单元,用于构建基于卷积神经网络的深度学习模型,所述深度学习模型包括并行的三个卷积神经网络,每个卷积神经网络均包括输入层、卷积层、注意力机制层、池化层和全连接层;A model building unit used to build a deep learning model based on a convolutional neural network. The deep learning model includes three convolutional neural networks in parallel. Each convolutional neural network includes an input layer, a convolutional layer, and an attention mechanism. layer, pooling layer and fully connected layer; 模型训练单元,用于将所述训练集的木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本分别输入所述深度学习模型的三个卷积神经网络进行训练,在所述卷积层、注意力机制层和池化层进行特征提取,通过所述全连接层进行特征分类;The model training unit is used to input the wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples of the training set into three convolutional neural networks of the deep learning model for training. In the convolution layer , the attention mechanism layer and the pooling layer perform feature extraction, and the fully connected layer performs feature classification; 所述木材横切面、径切面和弦切面构造图像均包括宏观构造图像和微观构造图像,所述数据增强处理包括图像旋转、图像缩放、图像镜像和/或图像裁剪;The wood cross-section, radial section and chord section structure images all include macro-structure images and micro-structure images, and the data enhancement processing includes image rotation, image scaling, image mirroring and/or image cropping; 获取木材特征化合物时,采用遍历荷质比数据的方式对所述木材化学指纹图谱样本进行峰对齐处理,通过比较荷质比检索出所述特征化合物;When obtaining wood characteristic compounds, perform peak alignment processing on the wood chemical fingerprint sample by traversing the charge-to-mass ratio data, and retrieve the characteristic compounds by comparing the charge-to-mass ratio; 所述木材解剖构造特征信息包括从所述木材横切面构造图像上提取的横切面特征信息、从所述木材径切面构造图像上提取的径切面特征信息和从所述木材弦切面构造图像上提取的弦切面特征信息;The wood anatomical structure feature information includes cross-section feature information extracted from the wood cross-section structure image, radial section feature information extracted from the wood radial section structure image, and radial section feature information extracted from the wood chord section structure image. Chord section feature information; 所述横切面特征信息包括管孔频率特征、管孔直径特征和/或轴向薄壁组织频率特征,所述径切面特征信息包括木射线细胞类型特征和/或导管-射线间纹孔式特征,所述弦切面特征信息包括木射线宽度特征、木射线高度特征和/或木射线频率特征;The cross-section characteristic information includes pore frequency characteristics, pore diameter characteristics and/or axial parenchyma frequency characteristics, and the radial section characteristic information includes wood ray cell type characteristics and/or duct-ray pit type characteristics. , the chord section characteristic information includes wood ray width characteristics, wood ray height characteristics and/or wood ray frequency characteristics; 所述特征融合单元用于:The feature fusion unit is used for: 将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵中行数与列数均相同的特征值进行叠加,得到所述融合矩阵;Superpose the eigenvalues with the same number of rows and columns in the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix; 或者;or; 将归一化处理后的所述木材切面图像样本、木材DNA序列样本和木材化学指纹图谱样本的关键特征矩阵进行矩阵拼接操作,得到所述融合矩阵;Perform a matrix splicing operation on the key feature matrices of the normalized wood section image samples, wood DNA sequence samples and wood chemical fingerprint samples to obtain the fusion matrix; 所述树种鉴定模块包括:The tree species identification module includes: 数据获取单元,用于根据实际应用场景与待鉴定木材样品的数据可获取情况,获取待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱;The data acquisition unit is used to obtain the wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified based on the actual application scenario and the data availability of the wood sample to be identified; 树种鉴定单元,用于将获取的待鉴定木材样品的木材切面图像、木材DNA序列和木材化学指纹图谱输入所述深度学习模型,输出待鉴定木材样品的树种名称。The tree species identification unit is used to input the obtained wood section image, wood DNA sequence and wood chemical fingerprint of the wood sample to be identified into the deep learning model, and output the tree species name of the wood sample to be identified.
CN202211667095.3A 2022-12-22 2022-12-22 Method and device for identifying wood tree species based on multi-source feature fusion Active CN115861710B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211667095.3A CN115861710B (en) 2022-12-22 2022-12-22 Method and device for identifying wood tree species based on multi-source feature fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211667095.3A CN115861710B (en) 2022-12-22 2022-12-22 Method and device for identifying wood tree species based on multi-source feature fusion

Publications (2)

Publication Number Publication Date
CN115861710A CN115861710A (en) 2023-03-28
CN115861710B true CN115861710B (en) 2023-10-27

Family

ID=85654444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211667095.3A Active CN115861710B (en) 2022-12-22 2022-12-22 Method and device for identifying wood tree species based on multi-source feature fusion

Country Status (1)

Country Link
CN (1) CN115861710B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000040A2 (en) * 2001-06-25 2003-01-03 Pulp And Paper Research Institute Of Canada A nucleic acid-based method for tree phenotype prediction: dna markers for fibre and wood quality properties
CN114186625A (en) * 2021-12-09 2022-03-15 中国林业科学研究院木材工业研究所 Wood identification method and system based on image feature fusion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000040A2 (en) * 2001-06-25 2003-01-03 Pulp And Paper Research Institute Of Canada A nucleic acid-based method for tree phenotype prediction: dna markers for fibre and wood quality properties
CN114186625A (en) * 2021-12-09 2022-03-15 中国林业科学研究院木材工业研究所 Wood identification method and system based on image feature fusion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"基于深度强化学习的木材缺陷图像识别及分割模型研究";张旭中等;《电子测量技术》(第17期);第86-92页 *
"木材树种计算机视觉识别技术发展与应用";何拓等;《林业工程学》;第 18-27页 *

Also Published As

Publication number Publication date
CN115861710A (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN111210869B (en) Protein refrigeration electron microscope structure analysis model training method and analysis method
CN114496099B (en) Cell function annotation method, device, equipment and medium
CN109063713A (en) A kind of timber discrimination method and system based on the study of construction feature picture depth
CN114091603A (en) A spatial transcriptome cell clustering and analysis method
CN108009287A (en) A kind of answer data creation method and relevant apparatus based on conversational system
CN114187530B (en) Remote sensing image change detection method based on neural network structure search
CN118468873A (en) Medical special disease database generation method, device, equipment and medium
CN107918725A (en) A kind of DNA methylation Forecasting Methodology based on machine learning selection optimal characteristics
Fleming et al. Identifying and addressing methodological incongruence in phylogenomics: A review
CN112466399A (en) Method for predicting mutagenicity of chemicals through machine learning algorithm
CN115861710B (en) Method and device for identifying wood tree species based on multi-source feature fusion
CN113160886B (en) Cell type prediction system based on single cell Hi-C data
CN117437976B (en) Disease risk screening method and system based on gene detection
CN109597901A (en) A kind of data analysing method based on biological data
CN116881634B (en) Method, apparatus and storage medium for cleaning nanopore signal data
CN113889274B (en) Method and device for constructing risk prediction model of autism spectrum disorder
CN116959585A (en) Whole-genome prediction method based on deep learning
CN112465838B (en) Ceramic grain image segmentation method, system, storage medium and computer equipment
CN114186625A (en) Wood identification method and system based on image feature fusion
CN115841847B (en) Microorganism information determination and extraction system and method
CN117037895B (en) Model training method and device, electronic equipment and storage medium
JP4463516B2 (en) Similarity search method
CN116451771B (en) Image classification convolutional neural network compression method and core particle device data distribution method
CN118606751B (en) Oil well overflow detection method and device based on ensemble learning of feature fusion
CN116994652B (en) Information prediction method and device based on neural network and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant