CN115855341A - Optical deep-sea touch sensor and installation method and sensing detection method thereof - Google Patents
Optical deep-sea touch sensor and installation method and sensing detection method thereof Download PDFInfo
- Publication number
- CN115855341A CN115855341A CN202211513726.6A CN202211513726A CN115855341A CN 115855341 A CN115855341 A CN 115855341A CN 202211513726 A CN202211513726 A CN 202211513726A CN 115855341 A CN115855341 A CN 115855341A
- Authority
- CN
- China
- Prior art keywords
- semi
- pressure
- flexible film
- tactile
- sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000003287 optical effect Effects 0.000 title claims abstract description 19
- 238000009434 installation Methods 0.000 title claims abstract description 17
- 239000011521 glass Substances 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 238000007789 sealing Methods 0.000 claims abstract description 15
- 238000002366 time-of-flight method Methods 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 239000003086 colorant Substances 0.000 claims description 6
- 230000008447 perception Effects 0.000 claims description 6
- 230000002706 hydrostatic effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 230000035515 penetration Effects 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
技术领域technical field
本发明涉及深海检测传感技术,特别涉及一种光学式深海触觉传感器及其安装方法与传感检测方法。The invention relates to deep-sea detection and sensing technology, in particular to an optical deep-sea tactile sensor, an installation method and a sensing and detection method thereof.
背景技术Background technique
深海机器人对海洋工程意义重大,然而深海机器人操作仍然具有挑战性。由于先进的声纳技术不能用于近场,目前水下机器人的主流控制反馈为视觉反馈。因此,在能见度低、高度非结构化的深海环境中,机器人的精细操作能力受到较大限制。Deep-sea robots are of great significance to ocean engineering, but deep-sea robot operations are still challenging. Since advanced sonar technology cannot be used in the near field, the mainstream control feedback of underwater robots is visual feedback. Therefore, in the low-visibility and highly unstructured deep-sea environment, the fine manipulation ability of the robot is greatly limited.
赋予深海机器人触觉感知有助于提高机器人操作的精确性与顺应性。一般来说,触觉传感器能够提供关于物体形状、接触力的分布信息,通过基于感知-执行循环的控制体系可以让机器人对触觉信息做出反应,及时调节接触力以实现最佳操作。Endowing deep-sea robots with tactile perception can help improve the precision and compliance of robot operations. Generally speaking, tactile sensors can provide information about the shape of objects and the distribution of contact force. Through the control system based on perception-execution cycle, the robot can respond to the tactile information and adjust the contact force in time to achieve the best operation.
由于深海环境的复杂性,许多陆地环境下使用的触觉传感器难以在深海环境中应用。目前水下触觉传感器在精度、分辨率等方面远不及陆地环境下使用的触觉传感器。即便如此,大多数水下触觉传感器也仅能够在离岸较近的浅海使用,且传感器在水下面临短路风险,深海高压也对传感器的结构强度提出了更高的要求。Due to the complexity of the deep-sea environment, many tactile sensors used in terrestrial environments are difficult to apply in the deep-sea environment. At present, underwater tactile sensors are far inferior to tactile sensors used in terrestrial environments in terms of accuracy and resolution. Even so, most underwater tactile sensors can only be used in shallow seas close to the shore, and the sensors face the risk of short circuit underwater, and the deep-sea high pressure also puts forward higher requirements on the structural strength of the sensor.
发明内容Contents of the invention
本发明的目的是提供一种光学式深海触觉传感器及其安装方法与传感检测方法,具有良好的密封特性,能适应深海高压下的接触变形能力,实现深海高压下的触觉感知。The purpose of the present invention is to provide an optical deep-sea tactile sensor and its installation method and sensing detection method, which have good sealing characteristics, can adapt to the contact deformation ability under high pressure in deep sea, and realize tactile perception under high pressure in deep sea.
本发明的上述技术目的是通过以下技术方案得以实现的:Above-mentioned technical purpose of the present invention is achieved through the following technical solutions:
一种光学式深海触觉传感器,包括有触觉感知模块、O型圈、元件贮存舱;An optical deep-sea tactile sensor, including a tactile sensing module, an O-ring, and a component storage compartment;
所述触觉感知模块包括有半椭球壳型柔性薄膜、套设于半椭球壳型柔性薄膜的限位环、密封连接于半椭球壳型柔性薄膜的玻璃视窗;所述半椭球壳型柔性薄膜与玻璃视窗之间填充有抵消外部静水压强的液体;The tactile sensing module includes a semi-ellipsoid shell-shaped flexible film, a limit ring sleeved on the semi-ellipsoid shell-shaped flexible film, and a glass window sealed and connected to the semi-ellipsoid shell-shaped flexible film; the semi-ellipsoid shell A liquid that offsets the external hydrostatic pressure is filled between the type flexible film and the glass window;
所述元件贮存舱包括有通过限位环固定连接于触觉感知模块的耐压外壳、安装于耐压外壳内的检测元件、安装于所述耐压外壳的端口以支撑于玻璃视窗的支撑件;The component storage compartment includes a pressure-resistant shell fixedly connected to the tactile sensing module through a limiting ring, a detection element installed in the pressure-resistant shell, and a support member installed on the port of the pressure-resistant shell to support the glass window;
所述耐压外壳的端口于所述支撑件的外周设置有供所述O型圈卡嵌进行密封的沟槽。The port of the pressure-resistant shell is provided with a groove on the outer periphery of the support member for the O-ring to fit and seal.
作为优选,所述半椭球壳型柔性薄膜包括有一体连接的半椭球薄膜及安装环,所述安装环的内侧壁周向环设有供玻璃视窗进行密封抵接的半球形凸起。Preferably, the semi-ellipsoid shell-shaped flexible film includes a semi-ellipsoid film integrally connected with a mounting ring, and the inner wall of the mounting ring is provided with a hemispherical protrusion for sealing contact with the glass window.
作为优选,所述安装环的边缘向外周向延伸有凸台,所述凸台上开设有若干限位孔;As a preference, the edge of the installation ring has a boss extending outward in the circumferential direction, and a plurality of limiting holes are opened on the boss;
所述限位环的端部突出有穿设卡嵌于限位孔的限位块;The end of the limit ring is protruded with a limit block inserted into the limit hole;
所述耐压外壳的端口外周设置有供限位块装配的卡槽,所述卡槽与限位块上连通开设有供螺钉穿设进行固定安装的螺纹孔。The outer periphery of the port of the pressure-resistant housing is provided with a slot for assembly of the limit block, and the slot communicates with the limit block to provide a threaded hole for screw penetration for fixed installation.
作为优选,所述检测元件包括有摄像头,所述支撑件的表面开设有供摄像头穿设检测的通孔。Preferably, the detection element includes a camera, and the surface of the support member is provided with a through hole for the camera to pass through for detection.
作为优选,所述耐压外壳的后侧安装有连接于舱内检测元件的水下连接器。Preferably, an underwater connector connected to the detection element in the cabin is installed on the rear side of the pressure-resistant housing.
一种基于光学式深海触觉传感器的传感检测方法,其特征是,包括有以下步骤:A sensing detection method based on an optical deep-sea tactile sensor is characterized in that it includes the following steps:
将触觉传感器装配于深海机器人,通过半椭球壳型柔性薄膜模拟指肚感知外界接触信息,当有外力施加于半椭球壳型柔性薄膜上时产生接触变形;The tactile sensor is assembled on the deep-sea robot, and the external contact information is sensed by simulating the finger pad through the semi-ellipsoidal flexible film. When an external force is applied to the semi-ellipsoidal flexible film, contact deformation occurs;
摄像头通过玻璃视窗获取半椭球壳型柔性薄膜内的三维信息;The camera obtains the three-dimensional information in the semi-ellipsoidal flexible film through the glass window;
通过水下连接器传输信号,以进行信号分析并处理,完成触觉传感检测。Signals are transmitted through underwater connectors for signal analysis and processing to complete tactile sensing detection.
作为优选,获取半椭球壳型柔性薄膜内的三维信息具体为:Preferably, the three-dimensional information obtained in the semi-ellipsoidal flexible film is specifically:
通过光度立体法重建触觉变形场的空间三维信息,硬件部分采用普通摄像头(32)及不同颜色的RGB光源(35),或The spatial three-dimensional information of the tactile deformation field is reconstructed by the photometric stereo method, and the hardware part adopts an ordinary camera (32) and RGB light sources (35) of different colors, or
通过立体视觉方法重建触觉变形场的空间三维信息,包括双目立体视觉法、结构光法、TOF法中任一种,相应的,传感器内置摄像头(32)分别对应为双目相机、结构相机、TOF相机。The spatial three-dimensional information of the tactile deformation field is reconstructed by a stereo vision method, including any one of the binocular stereo vision method, the structured light method, and the TOF method. Correspondingly, the built-in cameras (32) of the sensor correspond to binocular cameras, structural cameras, TOF camera.
一种应用于深海触觉传感器的安装方法,其特征是,包括有以下步骤:An installation method applied to a deep-sea tactile sensor is characterized in that it includes the following steps:
通过触觉感知模块的限位环对半椭球壳型柔性薄膜上进行限位安装;Through the limit ring of the tactile sensing module, the semi-ellipsoidal flexible film is limited and installed;
将限位安装后的半椭球壳型柔性薄膜端口朝上竖直浸没于装有填充液体的容器中;Submerge the semi-ellipsoidal flexible film port facing upwards vertically in a container filled with liquid after limit installation;
将玻璃视窗沿竖直方向推入半椭球壳型柔性薄膜的端口,完成玻璃视窗在半椭球壳型柔性薄膜上的密封固定;Push the glass window vertically into the port of the semi-ellipsoidal flexible film to complete the sealing and fixing of the glass window on the semi-ellipsoidal flexible film;
将检测元件放置于元件贮存舱的耐压外壳中,并在耐压外壳的端口处安装支撑件;Place the detection element in the pressure-resistant shell of the element storage compartment, and install a support at the port of the pressure-resistant shell;
将O型圈放置于耐压外壳的沟槽内;Place the O-ring in the groove of the pressure-resistant housing;
通过抽真空设备对元件贮存舱内进行抽真空,同时将装配后的触觉感知模块安装于支撑件的一侧,通过内外压差吸附后组装固定;Vacuumize the component storage compartment through vacuum equipment, and at the same time install the assembled tactile sensing module on one side of the support, and assemble and fix it after being absorbed by the internal and external pressure difference;
水下连接器进行密封,通过拆卸水下连接器恢复元件贮存舱内部气压,进行部件拆卸。The underwater connector is sealed, and the internal air pressure of the component storage compartment is restored by disassembling the underwater connector to disassemble the components.
综上所述,本发明具有以下有益效果:In summary, the present invention has the following beneficial effects:
通过触觉感知模块的半椭球壳型柔性薄膜、限位环及玻璃视窗,在半椭球壳型柔性薄膜与玻璃视窗之间填充液体能实现液压补偿平衡,进而使得触觉感知模块不再对环境压强具有敏感性,能在深海环境拥有良好的接触变形能力,实现深海环境下的触觉感知;触觉感知模块、O型圈和元件贮存舱的限位及固定连接,能实现传感器整体的良好密封,整体安装建议且结构简单,能在水下、深海具有很大应用潜力。Through the semi-ellipsoidal flexible film of the tactile sensing module, the limit ring and the glass window, filling the liquid between the semi-ellipsoidal flexible film and the glass window can realize the hydraulic compensation balance, so that the tactile sensing module is no longer harmful to the environment. The pressure is sensitive, and it can have good contact deformation ability in the deep sea environment, realizing the tactile perception in the deep sea environment; the limit and fixed connection of the tactile sensing module, O-ring and component storage compartment can realize the good sealing of the sensor as a whole, The overall installation is recommended and the structure is simple, and it has great application potential in underwater and deep sea.
附图说明Description of drawings
图1为光学式深海触觉传感器的整体结构示意图;1 is a schematic diagram of the overall structure of an optical deep-sea tactile sensor;
图2为触觉感知模块各部件的爆炸结构示意图;Figure 2 is a schematic diagram of the exploded structure of each component of the tactile sensing module;
图3为半椭球壳型柔性薄膜与限位环的爆炸结构示意图;Fig. 3 is a schematic diagram of the explosive structure of the semi-ellipsoidal shell type flexible membrane and the limit ring;
图4为触觉感知模块的装配剖视图;Fig. 4 is the sectional view of the assembly of the tactile sensing module;
图5为触觉感知模块的原理图;Fig. 5 is the schematic diagram of the tactile perception module;
图6为元件贮存舱的结构示意图;Fig. 6 is a structural schematic diagram of a component storage compartment;
图7为传感器的摄像头观测示意图。Figure 7 is a schematic diagram of camera observation of the sensor.
图中:1、触觉感知模块;11、玻璃视窗;12、半椭球壳型柔性薄膜;121、限位孔;122、半圆形凸起;13、限位环;131、限位块;132、限位环螺纹孔;2、O型圈;3、元件贮存舱;31、水下连接器;32、摄像头;33、耐压外壳;331、耐压外壳螺纹孔;332、卡槽;333、沟槽;34、支撑件;35、光源。In the figure: 1. Tactile sensing module; 11. Glass window; 12. Semi-ellipsoid shell-shaped flexible film; 121. Limiting hole; 122. Semicircular protrusion; 13. Limiting ring; 131. Limiting block; 132. Threaded hole of limit ring; 2. O-ring; 3. Component storage compartment; 31. Underwater connector; 32. Camera; 33. Pressure-resistant shell; 331. Threaded hole of pressure-resistant shell; 332. Card slot; 333, groove; 34, support piece; 35, light source.
具体实施方式Detailed ways
以下结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
根据一个或多个实施例,公开了一种光学式深海触觉传感器,如图1所示,包括有触觉感知模块1、O型圈2、元件贮存舱3。According to one or more embodiments, an optical deep-sea tactile sensor is disclosed. As shown in FIG. 1 , it includes a
如图2所示,触觉感知模块1包括有半椭球壳型柔性薄膜12、限位环13、玻璃视窗11,所有部件组装后可形成一半椭球型弹性体。如图3及图4所示,限位环13套设于半椭球壳型柔性薄膜12、玻璃视窗11密封连接于半椭球壳型柔性薄膜12内侧,玻璃视窗11与半椭球壳型柔性薄膜12之间形成有密闭空间,其中填充有液体,能抵消外部静水压强,触觉传感器安装在深海机器人上进行深海检测的时候,通过半椭球壳型柔性薄膜12模拟指肚感知外界接触信息,当有外力施加于半椭球壳型柔性薄膜12上时产生接触变形,在此基础上,将接触变形信息转化为一种可供计算机理解的电信号或光信号即可实现触觉传感。通过在柔性薄膜内部区域充入液体实现液压补偿平衡,水-膜复合弹性体不再对环境压强具有敏感性,进而使水-膜复合弹性体在全海深有几近相同的接触变形能力。触觉感知模块1利用液体流动性产生接触变形,即实现了压力补偿使传感器可直接测量相对压力,又利用了其不可压缩性确保触觉感知模块1在高压下仍具备接触变形能力。多数陆地环境使用的触觉传感器难以在水下测量相对压力,而现有的水下触觉传感器则难以保障弹性体在高压下的接触变形能力。As shown in FIG. 2 , the
半椭球壳型柔性薄膜12包括有一体连接的半椭球薄膜及安装环。安装环的内侧壁周向环设有半球形凸起122,玻璃视窗11的外周密封抵接在半球形凸起122上,实现玻璃视窗11与半椭球壳型柔性薄膜12之间的密封。安装环的边缘向外周向延伸有凸台,凸台上开设有若干限位孔121。限位环13的端部突出有穿设卡嵌于限位孔121的限位块131,限位环13套设于半椭球壳型柔性薄膜12的时候,通过限位块131穿设限位孔121的设置,对半椭球壳型柔性薄膜12进行限位。The semi-ellipsoid shell-shaped
触觉感知模块1深海环境下感知原理如图5所示,为便于表述,将触觉感知模块1简化为底部封口、内部充有液体的半球形薄膜,如图5(1)所示。在静水压强PH作用下,内部液体压强与环境压强抵消。因此,若不考虑柔性薄膜的厚度变化,可以认为在不同深度下感知模块总能在相同形状。当一个物体被按压在柔性薄膜表面时,膜会产生变形,呈现出物体表面形状,如图5(2)所示。由于柔性薄膜的变形仅取决于按压物体形状,因此触觉感知模块1在全海深有几近相同的接触变形能力,这是常压环境使用的触觉传感器所不具备的特性。The sensing principle of the
如图6所示,元件贮存舱3包括有耐压外壳33、支撑于玻璃视窗11的支撑件34,在元件贮存舱3的耐压外壳33内安装检测元件,支撑件34固定安装在耐压外壳33的端口,在耐压外壳33与玻璃视窗11之间进行支撑安装,支撑件34优选由金属材料制成,使玻璃视窗11在深海压力下的最大主应力大幅下降,大幅提高装置的耐压能力。耐压外壳33的端口在支撑件34的外周设置有供O型圈2卡嵌进行密封的沟槽333,通过O型圈2在元件贮存舱3和触觉感知模块1之间进行密封支撑,避免液体泄漏导致短路风险。As shown in Figure 6, the
在耐压外壳33的端口外周侧壁上间隔设置有若干卡槽332,卡槽332与限位环13上的限位块131相对应匹配,通过卡槽332和限位块131的结合,实现周向的限位,在卡槽332和限位块131上连通开设有螺纹孔,分别为设置在限位环13上的限位环螺纹孔132及设置在耐压外壳33的卡槽332上的耐压外壳螺纹孔331,通过螺钉的穿设,实现轴向上固定,进而实现触觉感知模块1与元件贮存舱3的固定连接。On the port peripheral side wall of the pressure-
检测元件包括有摄像头32,在支撑件34的表面上开设有连通于耐压外壳33内的通孔,摄像头32通过通孔进行安装以对触觉感知模块1一侧进行图像的拍摄和采集。The detection element includes a
在耐压外壳33的外壳后侧还连接有水下连接器31,通过水下连接器31连接至元件贮存舱3内的检测元件,进行信号的传输。水下连接器31的外侧壁与耐压外壳33之间密封连接。在耐压外壳33上水下连接器31可作为耐压外壳的密封堵头,通过水下连接器31的拆装,可完成元件贮存舱3和触觉感知模块1之间的抽真空使元件贮存舱3处于高负压状态,以方便安装及拆卸。通过抽真空安装,玻璃视窗11不再需要通过螺栓等连接件固定在元件贮存舱3上,大大提高结构紧凑性。在深海中,巨大的内外压差可以提供足够的预紧力,使O型圈2产生足够的挤压密封避免海水进入到元件贮存舱3内部。An
如图6所示,可通过基于光度立体视觉的触觉变形信息转化方法,硬件部分以单个普通摄像头32及三组不同颜色的RGB光源35。在RGB光源35照射下,相机可观测到半椭球壳型柔性薄膜12内表面丰富的色彩与阴影信息,利用内表面的反射图像可重建出触觉变形场的空间三维信息。具体为,半椭球壳型柔性薄膜12内表面的空间位置为待求未知量,因其涉及x、y、z三个维度,故待求未知量同样为三组。基于一定的物理模型,如朗博反射模型、有向光源35模型等,可建立柔性薄膜内表面反射光强R与薄膜内表面空间位置(x,y,z)的函数关系,即R=f(x,y,z),其中反射光强R可通过相机拍摄直接获取。由于照明光源35为RGB三种颜色,根据不同颜色的反射情况建立三组方程。未知数为(x,y,z)数量与方程数量相等,因此可以求解得到薄膜三维信息。As shown in FIG. 6 , the transformation method of tactile deformation information based on photometric stereo vision can be used, and the hardware part consists of a single
还可基于立体视觉法进行立体重建,可采用双目立体视觉法、结构光法、TOF法中的一种,也可为其他立体重建法。采用双目立体视觉法,其内置摄像头32为双目相机;采用结构光法则内置结构相机,采用TOF法则内置TOF相机,以对触觉感知模块1一侧因为接触变形后产生的图像变化进行拍摄后的重建。Stereoscopic reconstruction can also be performed based on the stereoscopic vision method, and one of the binocular stereoscopic vision method, the structured light method, and the TOF method can be used, or other stereoscopic reconstruction methods can be used. The binocular stereo vision method is adopted, and the built-in
为表述清楚,现举一实例:For clarity, here is an example:
如图7所示,所用的内置相机可为130°广角鱼眼镜头,镜头与玻璃视窗11的间距为5mm,玻璃视窗11自身厚度为20mm。考虑传感器内部光线折射,取玻璃视窗11折射率n1=1.5,水的折射率n2=1.33,空气折射率n3=1。在折射作用下,摄像头32视角由130°降至86°,如图7虚线包围区域所示。考虑到该传感器在绝大多数任务中只有中心区域会产生变形场,尽管摄像头32视角因折射原因减小,该视场区域已经能够覆盖绝大多数工况。有限元结果表明,在10MPa压力下所述传感器玻璃视窗11最大主应力的最大值由52.1MPa下降至6.89MPa,降低87%。这一设计使得传感器在万米海深下条件下仍能承受环境压力。As shown in Figure 7, the built-in camera used can be a 130° wide-angle fisheye lens, the distance between the lens and the
根据一个或多个实施例,公开了一种光学式深海触觉传感器的传感检测方法,包括有以下步骤:According to one or more embodiments, a sensing detection method of an optical deep-sea tactile sensor is disclosed, including the following steps:
将触觉传感器装配于深海机器人,通过半椭球壳型柔性薄膜12模拟指肚感知外界接触信息,当有外力施加于半椭球壳型柔性薄膜12上时产生接触变形;The tactile sensor is assembled on the deep-sea robot, and the semi-ellipsoid shell-shaped
摄像头32通过玻璃视窗11获取半椭球壳型柔性薄膜12内的三维信息;The
通过水下连接器31传输信号,以进行信号分析并处理,完成触觉传感检测。Signals are transmitted through the
具体的,获取半椭球壳型柔性薄膜12内的三维信息可为:Specifically, the acquisition of the three-dimensional information in the semi-ellipsoidal
通过检测元件在支撑件34上安装三组不同颜色的RGB光源35,照射半椭球壳型柔性薄膜12;Three groups of RGB
摄像头32采集获取半椭球壳型柔性薄膜12内表面的色彩和阴影信息;The
通过内表面反射图像重建触觉变形场的空间三维信息。Reconstruction of spatial three-dimensional information of tactile deformation field from internal surface reflection images.
具体的,获取半椭球壳型柔性薄膜12内的三维信息也可为:内置的摄像头32为双目相机采用双目立体视觉法或结构光相机采用结构光法或TOF相机采用TOF法,基于立体视觉法进行立体重建。Specifically, the acquisition of the three-dimensional information in the semi-ellipsoidal
根据一个或多个实施例,公开了一种光学式深海触觉传感器的安装方法,包括有以下步骤:According to one or more embodiments, a method for installing an optical deep-sea tactile sensor is disclosed, including the following steps:
通过触觉感知模块1的限位环13对半椭球壳型柔性薄膜12上进行限位安装;Through the
将限位安装后的半椭球壳型柔性薄膜12端口朝上竖直浸没于装有填充液体的容器中;Submerge the semi-ellipsoidal
将玻璃视窗11沿竖直方向推入半椭球壳型柔性薄膜12的端口,完成玻璃视窗11在半椭球壳型柔性薄膜12上的密封固定;Push the
将检测元件放置于元件贮存舱3的耐压外壳33中,并在耐压外壳33的端口处安装支撑件34;Place the detection element in the pressure-
将O型圈2放置于耐压外壳33的沟槽333内;Place the O-
通过抽真空设备对元件贮存舱3内进行抽真空,同时将装配后的触觉感知模块1安装于支撑件34的一侧,通过内外压差吸附后组装固定;Vacuumize the
水下连接器31进行密封,通过拆卸水下连接器31恢复元件贮存舱3内部气压,进行部件拆卸。The
通过上述安装方法,能避免在薄膜内部充入液体时产生气泡以及在结构紧凑的设计要求下保障内部液体密封性。Through the above-mentioned installation method, it is possible to avoid the generation of air bubbles when the film is filled with liquid and to ensure the tightness of the internal liquid under the design requirements of a compact structure.
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。This specific embodiment is only an explanation of the present invention, and it is not a limitation of the present invention. Those skilled in the art can make modifications to this embodiment without creative contribution as required after reading this specification, but as long as they are within the rights of the present invention All claims are protected by patent law.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211513726.6A CN115855341A (en) | 2022-11-29 | 2022-11-29 | Optical deep-sea touch sensor and installation method and sensing detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211513726.6A CN115855341A (en) | 2022-11-29 | 2022-11-29 | Optical deep-sea touch sensor and installation method and sensing detection method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115855341A true CN115855341A (en) | 2023-03-28 |
Family
ID=85667925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211513726.6A Pending CN115855341A (en) | 2022-11-29 | 2022-11-29 | Optical deep-sea touch sensor and installation method and sensing detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115855341A (en) |
-
2022
- 2022-11-29 CN CN202211513726.6A patent/CN115855341A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10336420B2 (en) | Single-joint underwater robot fish | |
KR102799794B1 (en) | Electronic device including a microphone module | |
CN109556654A (en) | For the power of detection object and the deformable sensor and method of posture | |
Oleari et al. | An underwater stereo vision system: From design to deployment and dataset acquisition | |
CN206043729U (en) | Electronic product touch screen high sensitivity contactor control device in environment under water | |
JPWO2014171513A1 (en) | Underwater video camera housing | |
US10302410B2 (en) | Pressure-balanced seismic sensor package | |
US20230384178A1 (en) | Sensor Module Having an Intermediate Pedestal on Which One or More Die Are Mounted | |
US20050262221A1 (en) | Portable data acquisition system | |
CN113784022A (en) | Underwater camera device and underwater robot | |
CN115855341A (en) | Optical deep-sea touch sensor and installation method and sensing detection method thereof | |
CN210660420U (en) | A simple underwater detector | |
CN113759343A (en) | Small-size laser rangefinder under water equipment based on point laser | |
CN110728745A (en) | A 3D reconstruction method of underwater binocular stereo vision based on multi-layer refraction image model | |
CN104112624B (en) | By the sensing switch and method of deep activation | |
CN212752950U (en) | Waterproof and compression-resistant control panel of underwater display equipment | |
CN113037379A (en) | Big wide angle wireless optical communication subassembly under water based on fisheye lens | |
CN110780308B (en) | 3D point cloud data acquisition system and method in turbid water environment | |
US12321085B2 (en) | Submersible camera for underwater vehicles | |
CN207976584U (en) | Undersea ranging device | |
CN217240770U (en) | A multi-waterproof structure of an underwater robot camera module | |
CN102252744B (en) | A real-time calibration device for co-vibration vector hydrophone | |
CN212521767U (en) | Silica gel sensor and sensing device | |
CN116359926A (en) | A full-depth three-dimensional forward-looking sonar | |
CN212628104U (en) | Binocular stereoscopic vision camera for deep sea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |