CN115850017A - Preparation method and system of efficient chloromethane - Google Patents
Preparation method and system of efficient chloromethane Download PDFInfo
- Publication number
- CN115850017A CN115850017A CN202211528679.2A CN202211528679A CN115850017A CN 115850017 A CN115850017 A CN 115850017A CN 202211528679 A CN202211528679 A CN 202211528679A CN 115850017 A CN115850017 A CN 115850017A
- Authority
- CN
- China
- Prior art keywords
- reaction
- methyl chloride
- gas
- temperature
- stage reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 title claims abstract description 156
- 238000002360 preparation method Methods 0.000 title 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 134
- 238000006243 chemical reaction Methods 0.000 claims abstract description 133
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 126
- 239000007789 gas Substances 0.000 claims abstract description 80
- 238000005406 washing Methods 0.000 claims abstract description 59
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims abstract description 37
- 229920000180 alkyd Polymers 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000002253 acid Substances 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 229940050176 methyl chloride Drugs 0.000 claims description 71
- 238000009833 condensation Methods 0.000 claims description 37
- 230000005494 condensation Effects 0.000 claims description 37
- 239000011552 falling film Substances 0.000 claims description 22
- 238000003786 synthesis reaction Methods 0.000 claims description 21
- 239000006096 absorbing agent Substances 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000001308 synthesis method Methods 0.000 claims description 4
- 239000002250 absorbent Substances 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims description 2
- 238000004065 wastewater treatment Methods 0.000 claims description 2
- 230000001476 alcoholic effect Effects 0.000 claims 3
- 238000004140 cleaning Methods 0.000 claims 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 abstract description 18
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 abstract description 7
- 230000002194 synthesizing effect Effects 0.000 abstract description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 4
- 239000000460 chlorine Substances 0.000 abstract description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052801 chlorine Inorganic materials 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 11
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 235000005074 zinc chloride Nutrition 0.000 description 5
- 239000011592 zinc chloride Substances 0.000 description 5
- 238000005660 chlorination reaction Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000010517 secondary reaction Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XOOGZRUBTYCLHG-UHFFFAOYSA-N tetramethyllead Chemical compound C[Pb](C)(C)C XOOGZRUBTYCLHG-UHFFFAOYSA-N 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供了一种氯甲烷合成方法,包括甲醇与氯化氢气体混合在催化剂作用下进行一级反应的步骤,以及在引入盐酸情况下,进行的二段反应步骤,对二段反应后得到的混合气体进行洗涤的步骤,以及对洗涤后的气体进行气液分离的步骤。通过引入盐酸,降低了循环泵介质的温度,为循环泵长时间运转创造了良好的工况;设置二段反应有效提高氯化氢的利用效率,并减少了二甲醚的含量;洗涤步骤中进行的反向洗涤降低了二段反应后得到的氯甲烷中氯化氢的含量,提高了系统氯的利用效率;分离步骤得到的含醇酸一部分送回洗涤步骤,一部分送回分离步骤,被循环使用,进一步降低了氯离子的损失。
The invention provides a method for synthesizing methyl chloride, comprising the step of mixing methanol and hydrogen chloride gas to perform a primary reaction under the action of a catalyst, and the second-stage reaction step under the condition of introducing hydrochloric acid, and the mixed reaction obtained after the second-stage reaction The step of washing the gas, and the step of separating the gas and liquid after washing. By introducing hydrochloric acid, the temperature of the circulating pump medium is reduced, creating a good working condition for the long-term operation of the circulating pump; setting up the second-stage reaction can effectively improve the utilization efficiency of hydrogen chloride and reduce the content of dimethyl ether; Reverse washing reduces the content of hydrogen chloride in the chloromethane obtained after the second-stage reaction, and improves the utilization efficiency of system chlorine; part of the alkyd-containing acid obtained in the separation step is sent back to the washing step, and a part is sent back to the separation step for recycling. Reduced loss of chloride ions.
Description
技术领域technical field
本发明涉及氯甲烷制备方法,尤其是有机硅行业配套氯甲烷高效制备方法。The invention relates to a method for preparing methyl chloride, in particular to a method for efficiently preparing methyl chloride for the organosilicon industry.
背景技术Background technique
氯甲烷又名甲基氯,为无色易液化的气体,是一种重要的化工原料,多用于生产甲基氯硅烷、四甲基铅、甲基纤维素等,也可用于生产季铵化合物、农药等,在异丁橡胶生产中用作溶剂。Chloromethane, also known as methyl chloride, is a colorless and easily liquefied gas. It is an important chemical raw material. It is mostly used in the production of methylchlorosilane, tetramethyl lead, methyl cellulose, etc., and can also be used in the production of quaternary ammonium compounds. , pesticides, etc., are used as solvents in the production of isobutyl rubber.
现有生产氯甲烷的方法一般有甲烷氯化法、甲醇氯化法、光氯化法、氧氯化法等;其中甲醇氯化法是目前使用较为广泛的一种方法,该法是将甲醇利用蒸汽加热汽化后,通入到反应釜中和氯化氢在氯化锌为触媒的条件下一同反应,生成氯甲烷。Existing methods for producing methyl chloride generally include methane chlorination, methanol chlorination, light chlorination, oxychlorination, etc.; wherein methanol chlorination is a method that is currently used more widely, and the method is to convert methanol After heating and vaporizing with steam, it is passed into the reaction kettle and reacts with hydrogen chloride under the condition of zinc chloride as a catalyst to generate methyl chloride.
甲醇液相催化法合成氯甲烷发生的化学反应主要反应包括:The main chemical reactions in the synthesis of methyl chloride by methanol liquid-phase catalytic method include:
CH3OH+HCl=CH3Cl+H2O(主反应,在催化剂加热的条件下)CH 3 OH+HCl=CH 3 Cl+H 2 O (main reaction, under the condition of catalyst heating)
CH3OH+CH3OH=CH3OCH3+H2O(副反应)CH 3 OH+CH 3 OH=CH 3 OCH 3 +H 2 O (side reaction)
这种方法的优点是工艺流程简单,但是存在如下问题:The advantage of this method is that the technological process is simple, but there are the following problems:
1)在反应过程中,因氯化氢的单程转化率在86%左右,对这一部分未完全转化的甲醇和氯化氢,大多数在水洗塔中被吸收,形成含醇的酸(以下简称“含醇酸”)。含醇酸目前通行的做法是采用蒸馏的方法回收酸中的醇,然后再把醇循环使用。处理能耗较大,较为困难。1) During the reaction process, because the one-way conversion rate of hydrogen chloride is about 86%, most of the incompletely converted methanol and hydrogen chloride are absorbed in the water washing tower to form alcohol-containing acid (hereinafter referred to as "alkyd-containing acid") "). The current practice of alkyd-containing acid is to recover the alcohol in the acid by distillation, and then recycle the alcohol. The processing consumes a lot of energy and is relatively difficult.
2)反应釜出口二甲醚含量在6000~7000ppm,造成干燥塔的处理二甲醚的硫酸使用量大及原料甲醇损失过大。2) The content of dimethyl ether at the outlet of the reactor is 6000-7000ppm, resulting in a large amount of sulfuric acid used in the treatment of dimethyl ether in the drying tower and excessive loss of raw material methanol.
CN 109320395 A提供了一种串并联式氯甲烷合成的方法,其虽然通过两级或多级串联反应釜并通过调整甲醇与氯化氢的配比,提高原料的利用率;但是二级反应中由于有一级反应釜的氯甲烷的混合,导致二级反应效率不高;且二级采用甲醇过量,期望将氯化氢气体尽可能利用,这样会导致二甲醚产生量大,后续氯甲烷净化装置物耗高。CN 109320395 A provides a method for synthesizing methyl chloride in series and parallel, although it uses two or more stages of reaction kettles in series and adjusts the ratio of methanol and hydrogen chloride to improve the utilization rate of raw materials; but in the secondary reaction, due to a The mixing of methyl chloride in the first-stage reaction tank leads to low efficiency of the second-stage reaction; and the second-stage uses methanol in excess, and it is expected to utilize hydrogen chloride gas as much as possible, which will lead to a large amount of dimethyl ether production and high material consumption of the subsequent methyl chloride purification device.
CN209010413U描述一种串联加压的氯甲烷合成工艺,即两级氯甲烷反应,在一级与二级之间通过压缩粗氯甲烷,以达到二级反应温度与压力,但是在现实的生产情况中,因一级反应温度为140℃~160℃,且粗氯甲烷中夹带大量的水蒸汽和氯化氢气体,其压缩机使用工况极其恶劣,压缩机的选型非常困难。CN209010413U describes a kind of tandem pressurized methyl chloride synthesis process, i.e. two-stage methyl chloride reaction, between the first and second stages by compressing crude methyl chloride to reach the secondary reaction temperature and pressure, but in actual production conditions , because the primary reaction temperature is 140°C to 160°C, and a large amount of water vapor and hydrogen chloride gas are entrained in the crude methyl chloride, the operating conditions of the compressor are extremely harsh, and the selection of the compressor is very difficult.
CN214361086U描述一种利用文丘里系统提高甲醇与氯化氢混合效率,以提高氯化氢单程转化率的装置;但是由于氯甲烷的合成会导致气、液两相流的存在,导致其管路振动、气蚀等问题,系统的稳定性及产能受一定的影响。CN214361086U describes a kind of utilizing Venturi system to improve methanol and hydrogen chloride mixing efficiency, to improve the device of hydrogen chloride single-pass conversion rate; But because the synthesis of methyl chloride can cause the existence of gas, liquid two-phase flow, cause its pipeline vibration, cavitation etc. problems, the stability and production capacity of the system will be affected to a certain extent.
发明内容Contents of the invention
本发明涉及一种氯甲烷合成方法及其合成系统,可以有效提高氯化氢及甲醇转化率,降低副产物二甲醚的产生量。The invention relates to a method for synthesizing methyl chloride and a synthesis system thereof, which can effectively increase the conversion rate of hydrogen chloride and methanol, and reduce the production amount of by-product dimethyl ether.
本发明涉及一种氯甲烷合成方法,包括:甲醇与氯化氢气体混合,在催化剂作用下,进行氯甲烷合成反应,在所述反应中加入盐酸,生成的混合气体进行后续降温冷凝处理。The invention relates to a method for synthesizing methyl chloride, comprising: mixing methanol and hydrogen chloride gas, performing a synthesis reaction of methyl chloride under the action of a catalyst, adding hydrochloric acid to the reaction, and performing subsequent cooling and condensation treatment on the resulting mixed gas.
根据本发明,所述催化剂是甲醇和氯化氢气体反应合成氯甲烷中所用的常规催化剂,包括但不限于氯化锌、氯化铵和有机胺等。在本发明的一些实施方式中,所述催化剂是氯化锌溶液,例如浓度为45%-75%的氯化锌溶液。在本发明的一个实施方式中,所述催化剂是65%氯化锌溶液。According to the present invention, the catalyst is a conventional catalyst used in the reaction of methanol and hydrogen chloride gas to synthesize methyl chloride, including but not limited to zinc chloride, ammonium chloride and organic amines. In some embodiments of the present invention, the catalyst is a zinc chloride solution, such as a zinc chloride solution with a concentration of 45%-75%. In one embodiment of the invention, the catalyst is a 65% zinc chloride solution.
根据本发明,所述甲醇相比氯化氢气体可以是过量的,或者氯化氢气体相比甲醇是过量的。在本发明的一些实施方式中,优选甲醇与氯化氢的摩尔比为2:1~0.5:1。According to the invention, said methanol may be in excess over hydrogen chloride gas, or hydrogen chloride gas may be in excess over methanol. In some embodiments of the present invention, the preferred molar ratio of methanol to hydrogen chloride is 2:1˜0.5:1.
根据本发明,所述盐酸可以是新鲜的盐酸,也可以是有机硅单体水解工艺产生的低浓度盐酸。从经济性角度出发,优选为有机硅单体水解产生的低浓度盐酸,不仅可以解决有机硅单体水解产生的低浓度盐酸的处理问题,还可以提高甲醇与氯化氢气体生产的有效率。According to the present invention, the hydrochloric acid may be fresh hydrochloric acid, or low-concentration hydrochloric acid produced by the hydrolysis process of organosilicon monomer. From an economic point of view, low-concentration hydrochloric acid produced by the hydrolysis of organosilicon monomer is preferred, which can not only solve the problem of low-concentration hydrochloric acid produced by hydrolysis of organosilicon monomer, but also improve the efficiency of methanol and hydrogen chloride gas production.
根据本发明,所述盐酸的浓度为0.1%~31%(例如1%、5%、10%、15%、20%、25%、26%、27%、28%、29%、30%等),温度为0℃~60℃(例如1℃、5℃、6℃、7℃、8℃、9℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、50℃、55℃、60℃等),优选,盐酸的浓度为5%~15%,温度为10℃~40℃。According to the present invention, the concentration of said hydrochloric acid is 0.1%~31% (such as 1%, 5%, 10%, 15%, 20%, 25%, 26%, 27%, 28%, 29%, 30% etc. ), the temperature is 0°C to 60°C (such as 1°C, 5°C, 6°C, 7°C, 8°C, 9°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 55°C, 60°C, etc.), preferably, the concentration of hydrochloric acid is 5% to 15%, The temperature is 10°C to 40°C.
在本发明的一个实施方案中,所述盐酸在甲醇与氯化氢气体进行反应时就加入。In one embodiment of the present invention, the hydrochloric acid is added when methanol is reacted with hydrogen chloride gas.
在本发明的另一个实施方案中,在甲醇与氯化氢气体反应后形成的液体中加入所述盐酸,并将盐酸和该液体的混合液与甲醇和氯化氢气体反应生成的混合气体再进行反应,在本发明中将前一步的甲醇与氯化氢气体反应称为一级反应,将后一步的混合液与混合气体的反应称为二段反应。优选,该液体与盐酸的体积比为10:1至1:10;例如9:1、8:1、7:1、6:1、5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9等,更优选为3:1至1:1。In another embodiment of the present invention, the hydrochloric acid is added to the liquid formed after the reaction of methanol and hydrogen chloride gas, and the mixed solution of hydrochloric acid and the liquid is reacted with the mixed gas generated by the reaction of methanol and hydrogen chloride gas. In the present invention, the reaction of methanol and hydrogen chloride gas in the previous step is called a first-stage reaction, and the reaction of the mixed liquid and mixed gas in the latter step is called a second-stage reaction. Preferably, the volume ratio of the liquid to hydrochloric acid is 10:1 to 1:10; for example 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 , 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, etc., more preferably 3:1 to 1:1.
通过在甲醇与氯化氢气体混合,在催化剂作用下,进行氯甲烷合成反应中加入盐酸,可以充分利用甲醇和氯化氢气体的反应热,并通过加入的盐酸调控整个反应的温度平衡和水平衡,提高甲醇利用率以及氯化氢转化率,降低二甲醚的产生。By mixing methanol with hydrogen chloride gas and adding hydrochloric acid in the synthesis reaction of methyl chloride under the action of a catalyst, the reaction heat of methanol and hydrogen chloride gas can be fully utilized, and the temperature balance and water balance of the entire reaction can be regulated by the added hydrochloric acid to increase methanol production. Utilization rate and hydrogen chloride conversion rate reduce the production of dimethyl ether.
在本发明的一个优选实施方式中,所述氯甲烷合成方法,包括:In a preferred embodiment of the present invention, the methyl chloride synthesis method includes:
S1、氯甲烷一级反应步骤:甲醇与氯化氢气体混合,在催化剂作用下,进行一级反应,反应后形成的混合气体进入二段反应步骤中;S1, primary reaction step of methyl chloride: methanol and hydrogen chloride gas are mixed, under the action of a catalyst, a primary reaction is carried out, and the mixed gas formed after the reaction enters the secondary reaction step;
S2、氯甲烷二段反应步骤:S1步骤反应后形成的液体与盐酸混合,得到的混合液进入二段反应步骤中,对S1步骤反应后形成的混合气体进行洗涤,同时进行二级反应,二段反应所得混合气体进入后续降温冷凝处理。S2, the second-stage reaction step of methyl chloride: the liquid formed after the reaction of the S1 step is mixed with hydrochloric acid, and the obtained mixed solution enters the second-stage reaction step, and the mixed gas formed after the reaction of the S1 step is washed, and the second-stage reaction is carried out at the same time. The mixed gas obtained from the stage reaction enters the subsequent cooling and condensation treatment.
根据本发明,S1步骤中的甲醇相对于氯化氢是过量的。According to the invention, methanol in step S1 is in excess relative to hydrogen chloride.
根据本发明,S1步骤中,一级反应的温度为130℃~170℃,压力为0.5barg~2barg,优选,温度为140℃~160℃,压力为1.0barg~1.5barg。According to the present invention, in step S1, the temperature of the primary reaction is 130°C-170°C, the pressure is 0.5barg-2barg, preferably, the temperature is 140°C-160°C, and the pressure is 1.0barg-1.5barg.
根据本发明,S2步骤中,盐酸的浓度为0.1%~31%,温度为0℃~60℃,优选,盐酸的浓度为5%~15%,温度为10℃~40℃。According to the present invention, in step S2, the concentration of hydrochloric acid is 0.1%-31%, the temperature is 0°C-60°C, preferably, the concentration of hydrochloric acid is 5%-15%, and the temperature is 10°C-40°C.
根据本发明,S2步骤中,S1反应后形成的液体与盐酸的体积比为10:1至1:10;优选为3:1至1:1。According to the present invention, in step S2, the volume ratio of the liquid formed after the reaction of S1 to hydrochloric acid is 10:1 to 1:10; preferably 3:1 to 1:1.
根据本发明,S2步骤中,二段反应的温度为100℃~160℃,压力为0.5barg~2barg,优选温度为130℃~145℃,压力为1.0barg~1.5barg。According to the present invention, in step S2, the temperature of the second stage reaction is 100°C-160°C, the pressure is 0.5barg-2barg, preferably the temperature is 130°C-145°C, and the pressure is 1.0barg-1.5barg.
优选,S1步骤反应后形成的液体与盐酸混合后得到的混合液被加热后,优选被加热至140℃~170℃,优选145℃~155℃后,再进入S2二段反应步骤。在本发明的一个实施方式中,所述加热使用预热器。在本发明的一个实施方式中,使用预热器加热所述混合液,预热器出口温度为140℃~170℃,优选为145℃~155℃。Preferably, after the liquid formed after the reaction in step S1 is mixed with hydrochloric acid, the mixed solution is heated, preferably to 140°C-170°C, preferably 145°C-155°C, and then enters the second-stage reaction step S2. In one embodiment of the invention, said heating uses a preheater. In one embodiment of the present invention, a preheater is used to heat the mixed liquid, and the outlet temperature of the preheater is 140°C-170°C, preferably 145°C-155°C.
在本发明更优选的实施方式中,所述氯甲烷合成方法包括,在S2步骤后对二段反应所得混合气体进行洗涤的步骤S3,洗涤后的气体进入降温冷凝处理。In a more preferred embodiment of the present invention, the method for synthesizing methyl chloride includes a step S3 of washing the mixed gas obtained in the second-stage reaction after the step S2, and the washed gas enters cooling and condensation treatment.
根据本发明,步骤S3在洗涤装置中进行,洗涤温度为80℃~130℃,压力为0.5barg~2barg,优选温度为105℃~120℃,压力为0.8barg~1.3barg。在本发明的一些实施方式中,将洗涤装置的顶部温度控制在100~120℃,优选控制在105~115℃。According to the present invention, step S3 is carried out in a washing device, the washing temperature is 80°C-130°C, the pressure is 0.5barg-2barg, preferably the temperature is 105°C-120°C, and the pressure is 0.8barg-1.3barg. In some embodiments of the present invention, the temperature at the top of the washing device is controlled at 100-120°C, preferably at 105-115°C.
根据本发明,优选S3步骤中使用的洗涤液为经过后续降温冷凝处理分离得到的含醇酸。According to the present invention, it is preferable that the washing liquid used in the S3 step is the alkyd-containing acid separated by subsequent cooling and condensation treatment.
根据本发明,优选S3步骤使用的洗涤液在洗涤S2步骤的产生的混合气体后,回流至S2步骤的反应中,或回流至S2步骤的反应中和S1步骤的反应中内,以进一步促进回流的洗涤液中氯化氢的利用。According to the present invention, it is preferred that the washing liquid used in the S3 step is refluxed into the reaction of the S2 step after washing the mixed gas produced in the S2 step, or refluxed into the reaction of the S2 step and the reaction of the S1 step to further promote the reflux The utilization of hydrogen chloride in the washing liquid.
根据本发明,所述降温冷凝处理是分离出氯甲烷气体和含醇酸。降温冷凝处理进行的温度为40℃~90℃,压力为0.5barg~2barg,优选温度为50℃~75℃,压力为0.6barg~1.0barg。在本发明的一个优选实施方式中,采用顺序连接的降膜吸收器和冷凝缓冲装置完成氯甲烷合成气的降温冷凝处理,其中冷凝缓冲装置的进料温度控制在30~80℃,优选控制在45~65℃。According to the present invention, the cooling and condensation treatment is to separate the methyl chloride gas and the alkyd-containing acid. The cooling and condensation treatment is carried out at a temperature of 40°C-90°C and a pressure of 0.5barg-2barg, preferably at a temperature of 50°C-75°C and a pressure of 0.6barg-1.0barg. In a preferred embodiment of the present invention, the falling film absorber and condensation buffer device connected in sequence are used to complete the cooling and condensation treatment of methyl chloride synthesis gas, wherein the feed temperature of the condensation buffer device is controlled at 30-80 °C, preferably controlled at 45~65℃.
根据本发明,分离出的氯甲烷气体进入后续工艺。According to the present invention, the separated methyl chloride gas enters the subsequent process.
在本发明的一个实施方式中,分离出的含醇酸一部分或全部返回S3步骤,作为洗涤液使用。In one embodiment of the present invention, part or all of the separated alkyd-containing acid is returned to step S3 and used as a washing solution.
在本发明的一个实施方式中,分离出的含醇酸一部分或全部返回所述降膜吸收器,作为吸收剂使用。通过降膜吸收器,再次回收S3步骤洗涤后的混合气体中的氯化氢,进一步降低氯化氢的损失,并对所述混合气体降温,将混合气体中的水份及甲醇冷凝分离出来。In one embodiment of the present invention, part or all of the separated alkyd-containing acid is returned to the falling film absorber to be used as an absorbent. The hydrogen chloride in the mixed gas washed in step S3 is recovered again through the falling film absorber to further reduce the loss of hydrogen chloride, and the temperature of the mixed gas is lowered to condense and separate the water and methanol in the mixed gas.
本发明还提供一种用于本发明所述氯甲烷合成方法的氯甲烷合成装置,包括,氯甲烷反应釜,二段反应塔,反应循环泵和降温冷凝装置。The present invention also provides a methyl chloride synthesis device used in the method for synthesizing methyl chloride in the present invention, comprising a methyl chloride reaction kettle, a second-stage reaction tower, a reaction circulation pump and a cooling and condensing device.
所述二段反应塔位于氯甲烷反应釜上部,二段反应塔顶部设有出气口,所述出气口通过管线连接降温冷凝装置。所述反应循环泵连接氯甲烷反应釜的底部和二段反应塔的上部。氯甲烷反应釜底部和反应循环泵的连接管线上,在反应循环泵之前接入盐酸输送管线。The second-stage reaction tower is located at the upper part of the methyl chloride reaction kettle, and the top of the second-stage reaction tower is provided with a gas outlet, and the gas outlet is connected to a cooling and condensing device through a pipeline. The reaction circulation pump is connected to the bottom of the methyl chloride reaction kettle and the upper part of the second-stage reaction tower. On the connecting pipeline between the bottom of the methyl chloride reactor and the reaction circulation pump, the hydrochloric acid delivery pipeline is connected before the reaction circulation pump.
根据本发明,所述氯甲烷合成装置还包括预热装置。所述预热装置位于反应循环泵与二段反应塔连接管线上。According to the present invention, the methyl chloride synthesis device further includes a preheating device. The preheating device is located on the connecting pipeline between the reaction circulation pump and the second-stage reaction tower.
根据本发明,所述氯甲烷合成装置还包括洗涤塔。所述洗涤塔位于二段反应塔出气口和降温冷凝装置的连接管线上。所述二段反应塔出气口通过管线连接洗涤塔的底部;所述洗涤塔顶部设有出气口,所述出气口通过管线连接降温冷凝装置。According to the present invention, the methyl chloride synthesis device further includes a washing tower. The washing tower is located on the connecting pipeline between the gas outlet of the second-stage reaction tower and the cooling and condensing device. The gas outlet of the second-stage reaction tower is connected to the bottom of the washing tower through a pipeline; the top of the washing tower is provided with a gas outlet, and the gas outlet is connected to a cooling and condensing device through a pipeline.
根据本发明,所述降温冷凝装置包括顺序连接的降膜吸收器和冷凝缓冲罐。所述降膜吸收器的进料口端与二段反应塔的出气口或洗涤塔的出气口连接,降膜吸收器的出料口端与冷凝缓冲罐连接。冷凝缓冲罐的顶部设有出气口,将氯甲烷气体排出。According to the present invention, the cooling and condensing device includes a falling film absorber and a condensation buffer tank connected in sequence. The feed port of the falling film absorber is connected to the gas outlet of the second-stage reaction tower or the gas outlet of the washing tower, and the discharge port of the falling film absorber is connected to the condensation buffer tank. The top of the condensation buffer tank is provided with a gas outlet to discharge the methyl chloride gas.
根据本发明,所述氯甲烷合成装置进一步包括冷凝液输送泵。所述冷凝液输送泵通过管线连接至冷凝缓冲罐的出口。在本发明的一个实施方式中,从冷凝液输送泵的出口连接出三条管线,一条管线连接至洗涤塔的上部,一条管线连接至降膜蒸发器的进料口端,一条管线连接废水处理系统。According to the present invention, the methyl chloride synthesis unit further includes a condensate delivery pump. The condensate delivery pump is connected to the outlet of the condensate buffer tank through a pipeline. In one embodiment of the present invention, three pipelines are connected from the outlet of the condensate delivery pump, one pipeline is connected to the upper part of the washing tower, one pipeline is connected to the feed port of the falling film evaporator, and one pipeline is connected to the waste water treatment system .
根据本发明,所述二段反应塔、洗涤塔可以采用本领域已知的任何类型塔,如筛板塔、填料塔、浮阀塔、泡罩塔等等。所述预热器、降膜吸收器及冷凝缓冲罐可以选用本领域已知的具有相应功能和作用的任何类型的设备。According to the present invention, the second-stage reaction tower and washing tower can adopt any type of tower known in the art, such as sieve tray tower, packed tower, valve tower, bubble cap tower and the like. The preheater, falling film absorber and condensation buffer tank can be any type of equipment known in the art with corresponding functions and effects.
术语解释:Explanation of terms:
Barg:全称Bar gauge,g表示gauge。Barg: full name Bar gauge, g means gauge.
含醇的酸:或称为含醇酸,含醇盐酸,在本发明中通常指代含甲醇的盐酸溶液。Alcohol-containing acid: or called alkyd-containing acid, alcohol-containing hydrochloric acid, generally refers to methanol-containing hydrochloric acid solution in the present invention.
相对于现有技术,本发明取得了以下有益效果:Compared with the prior art, the present invention has achieved the following beneficial effects:
1、通过引入盐酸充分利用甲醇和氯化氢反应的反应热,平衡反应体系的水和温度,并且可以降低了循环泵介质的温度,为循环泵长时间运转创造了良好的工况;1. By introducing hydrochloric acid to make full use of the reaction heat of methanol and hydrogen chloride reaction, balance the water and temperature of the reaction system, and reduce the temperature of the circulation pump medium, creating a good working condition for the circulation pump to run for a long time;
2、进一步设置二段反应可以有效提高氯化氢的利用效率,并减少二甲醚的产生;2. Further setting up the second-stage reaction can effectively improve the utilization efficiency of hydrogen chloride and reduce the production of dimethyl ether;
3、进一步增加洗涤步骤,通过洗涤步骤中进行的反向洗涤降低了二段反应后得到的氯甲烷中氯化氢的含量,提高了系统氯的利用效率;并可以通过洗涤液回流回二段反应步骤进一步降低催化剂的损失;3. Further increase the washing step, the reverse washing carried out in the washing step reduces the content of hydrogen chloride in the methyl chloride obtained after the second stage reaction, improves the utilization efficiency of system chlorine; and can return to the second stage reaction step by washing liquid Further reduce the loss of catalyst;
4、进一步循环利用冷凝后得到的含醇酸,将其一部分送回洗涤塔,一部分送回降膜吸收器,使含醇酸中的氯离子浓度进一步降低,最大限度降低氯离子的损失。4. Further recycle the alkyd-containing acid obtained after condensation, send part of it back to the washing tower, and partly send it back to the falling film absorber, so as to further reduce the concentration of chloride ions in the alkyd-containing acid and minimize the loss of chloride ions.
附图说明Description of drawings
图1:本发明优选实施方式的工艺流程图,其中:Fig. 1: the process flow chart of preferred embodiment of the present invention, wherein:
1.氯甲烷反应釜,2.二段反应塔,3.洗涤塔,4.预热器,5.降膜吸收器,6.冷凝缓冲罐,7.反应循环泵,8.冷凝液输送泵;A:甲醇,B:氯化氢气体,C:盐酸,D:氯甲烷,F:含醇酸;E-1:含醇酸;E-2:含醇酸。1. Chloromethane reaction kettle, 2. Second-stage reaction tower, 3. Washing tower, 4. Preheater, 5. Falling film absorber, 6. Condensation buffer tank, 7. Reaction circulation pump, 8. Condensate delivery pump ; A: methanol, B: hydrogen chloride gas, C: hydrochloric acid, D: methyl chloride, F: containing alkyd; E-1: containing alkyd; E-2: containing alkyd.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,也属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application are clearly and completely described below. Obviously, the described embodiments are part of the embodiments of the present application, not all Example. The embodiments based on the present application also belong to the protection scope of the present application.
氯化氢气体B与甲醇A混合,进入氯甲烷反应釜1中进行S1步骤的氯甲烷一级反应。氯甲烷反应釜1釜顶与二段反应塔2连接,S1步骤反应得到的混合气体通过氯甲烷反应釜1釜顶进入二段反应塔2中。盐酸C与氯甲烷反应釜1釜底排出的液体混合,经过反应循环泵7输送至预热器4中加热后,进入二段反应塔2,对进入二段反应塔2中的、来自于氯甲烷反应釜1釜顶的混合气体进行反向洗涤,并同时进行二段反应,所述步骤为S2步骤。二段反应后得到的混合气体,经过二段反应塔2塔顶的出气口进入洗涤塔3中再次洗涤,所述洗涤为S3洗涤步骤。经过洗涤塔3洗涤后的氯甲烷气体进入降膜吸收器5降温和冷凝后,进入冷凝缓冲罐6进行气液分离。分离出的气态氯甲烷D进入后序工艺;冷凝缓冲罐6底部出料为含醇酸,通过冷凝液输送泵8进行输送,其中一股含醇酸E-1进入降膜吸收器5,作为吸收液再次利用;一股含醇酸E-2从洗涤塔3上部进入洗涤塔3,作为步骤S3洗涤氯甲烷气体的洗涤液体再次利用;一股含醇酸F从系统中排出。Hydrogen chloride gas B is mixed with methanol A, and enters into the
实施实例1:Implementation example 1:
氯化氢气体B以2.6t/h与甲醇A 2.4t/h混合,持续加入氯甲烷反应釜1中进行反应,反应釜温度控制在145℃~150℃,压力控制在1.2barg~1.4barg,40℃的15%液态盐酸C1.0t/h与氯甲烷反应釜1釜底排出的溶液2.0t/h混合,温度控制在82℃~87℃,经过反应循环泵7输送至预热器4中,加热至150℃后,进入二段反应塔2,对进入二段反应塔2中的、来自于氯甲烷反应釜1釜顶的出口气体进行反向洗涤,二段反应塔的温度控制在135℃~140℃;经过洗涤的氯甲烷气体进入洗涤塔3中再次洗涤,洗涤塔3顶部的出口温度控制在110℃~115℃,压力0.8barg~0.9barg,经过洗涤塔3洗涤后的氯甲烷气体进入降膜吸收器5降温至55℃~60℃,进入冷凝缓冲罐6进行气液分离,分离出的氯甲烷D进入后序工艺;冷凝缓冲罐6底部出料为含醇酸,通过冷凝液输送泵8进行输送,其中一股含醇酸E-1进入降膜吸收器5;一股含醇酸E-2从洗涤塔3上部进入洗涤塔3,作为洗涤氯甲烷气体的洗涤液体;一股含醇酸F为2.15t/h从系统中排出。Hydrogen chloride gas B is mixed with methanol A at 2.4t/h at 2.6t/h, and is continuously added to the
经检测分析冷凝缓冲罐6出口的氯甲烷,其二甲醚含量在100ppm以下,氯化氢未检出;冷凝缓冲罐6底部排出的含醇酸F中,酸的浓度在1%以下;甲醇及氯化氢的转化率达到98%以上。After detecting and analyzing the methyl chloride at the outlet of condensation buffer tank 6, its dimethyl ether content is below 100ppm, and hydrogen chloride is not detected; in the alkyd-containing F discharged from the bottom of condensation buffer tank 6, the acid concentration is below 1%; methanol and hydrogen chloride The conversion rate reaches more than 98%.
实施实例2:Implementation example 2:
氯化氢气体B以5.6t/h与甲醇A 5.0t/h混合,持续加入氯甲烷反应釜1中进行反应,反应釜温度控制在145℃~150℃,压力控制在1.2barg~1.4barg,40℃的15%液态盐酸C 0.8t/h与氯甲烷反应釜1釜底排出的溶液1.6t/h混合,温度控制在82℃~87℃,经过反应循环泵7输送至预热器4中,加热至150℃后,进入二段反应塔2,二段反应塔的温度控制在135℃~140℃,对进入二段反应塔2中的、来自于氯甲烷反应釜1釜顶的出口气体进行反向洗涤;经过洗涤的氯甲烷气体进入洗涤塔3中再次洗涤,洗涤塔3顶部的出口温度控制在110℃~115℃,压力0.8barg~0.9barg,经过洗涤塔3洗涤后的氯甲烷气体进入降膜吸收器5降温至55℃~60℃,进入冷凝缓冲罐6进行气液分离,分离出的氯甲烷D进入后序工艺;冷凝缓冲罐6底部出料为含醇酸,通过冷凝液输送泵8进行输送,其中一股含醇酸E-1进入降膜吸收器5,一股含醇酸E-2进入洗涤塔3,一股含醇酸F为3.5t/h从系统中排出。Hydrogen chloride gas B is mixed with methanol A at 5.0t/h at 5.6t/h, and continuously added to the
经检测分析冷凝缓冲罐6出口的氯甲烷,其二甲醚含量在100ppm以下,氯化氢未检出;冷凝缓冲罐6底部排出的含醇酸F中,酸的浓度在1%以下;甲醇及氯化氢的转化率达到98%以上。After detecting and analyzing the methyl chloride at the outlet of condensation buffer tank 6, its dimethyl ether content is below 100ppm, and hydrogen chloride is not detected; in the alkyd-containing F discharged from the bottom of condensation buffer tank 6, the acid concentration is below 1%; methanol and hydrogen chloride The conversion rate reaches more than 98%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211528679.2A CN115850017B (en) | 2022-11-30 | 2022-11-30 | A method and system for preparing high-efficiency methyl chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211528679.2A CN115850017B (en) | 2022-11-30 | 2022-11-30 | A method and system for preparing high-efficiency methyl chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115850017A true CN115850017A (en) | 2023-03-28 |
CN115850017B CN115850017B (en) | 2024-11-12 |
Family
ID=85668841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211528679.2A Active CN115850017B (en) | 2022-11-30 | 2022-11-30 | A method and system for preparing high-efficiency methyl chloride |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115850017B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983180A (en) * | 1973-10-06 | 1976-09-28 | Shinetsu Chemical Company | Process for preparing methyl chloride |
CN101134708A (en) * | 2007-10-12 | 2008-03-05 | 山东东岳氟硅材料有限公司 | Production technique of high-purity methane chloride |
CN109574790A (en) * | 2019-01-16 | 2019-04-05 | 杭州东日节能技术有限公司 | Chloromethanes is synthesized without by-product hydrochloric acid technique and its equipment |
CN111606776A (en) * | 2019-02-26 | 2020-09-01 | 四川晨光工程设计院有限公司 | Clean production process for synthesizing methane chloride by liquid-phase catalyst-free synthesis |
CN113896613A (en) * | 2021-10-29 | 2022-01-07 | 新疆晶硕新材料有限公司 | Method and device for synthesizing chloromethane |
-
2022
- 2022-11-30 CN CN202211528679.2A patent/CN115850017B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983180A (en) * | 1973-10-06 | 1976-09-28 | Shinetsu Chemical Company | Process for preparing methyl chloride |
CN101134708A (en) * | 2007-10-12 | 2008-03-05 | 山东东岳氟硅材料有限公司 | Production technique of high-purity methane chloride |
CN109574790A (en) * | 2019-01-16 | 2019-04-05 | 杭州东日节能技术有限公司 | Chloromethanes is synthesized without by-product hydrochloric acid technique and its equipment |
CN111606776A (en) * | 2019-02-26 | 2020-09-01 | 四川晨光工程设计院有限公司 | Clean production process for synthesizing methane chloride by liquid-phase catalyst-free synthesis |
CN113896613A (en) * | 2021-10-29 | 2022-01-07 | 新疆晶硕新材料有限公司 | Method and device for synthesizing chloromethane |
Also Published As
Publication number | Publication date |
---|---|
CN115850017B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101166715B (en) | Apparatus for urea synthesis and method of improving the same | |
HUE026209T2 (en) | Improved ethylene oxide recovery process | |
CN115745794B (en) | Ethylene-method vinyl acetate production process and equipment | |
WO2022155779A1 (en) | Preparation process for epichlorohydrin | |
CN109081767A (en) | A kind of the synthesis rectification technique and its equipment of monochloro methane | |
CN109503312A (en) | A kind of technique of the by-product hydrogen chloride continuous production chloroethanes using chlorobenzene production | |
CN111330412A (en) | System and process for absorbing and purifying byproduct hydrogen chloride gas in chlorination workshop section to form acid | |
CN101166714A (en) | Apparatus for urea synthesis | |
CN115916745A (en) | Thermal stripping urea plant and process | |
US8158823B2 (en) | Method for the modernization of a urea production plant | |
RU2043336C1 (en) | Method of synthesis of urea from ammonia and carbon dioxide | |
CZ290462B6 (en) | Process for preparing 1,2-dichloroethane by direct chlorination and apparatus for making the same | |
CN1296351C (en) | Installation and process for preparation of urea | |
CN115722147A (en) | Low-energy-consumption chloromethane synthesis system | |
CN115850017A (en) | Preparation method and system of efficient chloromethane | |
JP4721311B2 (en) | Process for producing 2,3-dichloro-1-propanol and epichlorohydrin | |
CN113620250B (en) | Bromine-containing waste gas recovery method | |
RU2721699C2 (en) | Method for production of urea with high-temperature stripping | |
CN107935888A (en) | A kind of method for preparing 3 aminopropionitriles at supercritical conditions | |
CN101357880A (en) | A process and system for preparing dichloropropanol by self-catalyzed reaction of glycerin and hydrogen chloride | |
CN218834066U (en) | Novel separation system for acrylic acid device | |
JP2023514990A (en) | Process and plant for synthesizing urea | |
CN220861410U (en) | Methyl chloride synthesis system without byproduct hydrochloric acid | |
CN112876371A (en) | Method for simultaneously producing bis (dimethylaminoethyl) ether and tetramethylethylenediamine | |
CN118161957A (en) | Dimethylamine recycling system and method in DMAC recovery and purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |