CN115846778A - Discharge electrochemical-grinding sequential circulation combined machining tool electrode and machining method - Google Patents
Discharge electrochemical-grinding sequential circulation combined machining tool electrode and machining method Download PDFInfo
- Publication number
- CN115846778A CN115846778A CN202211579076.5A CN202211579076A CN115846778A CN 115846778 A CN115846778 A CN 115846778A CN 202211579076 A CN202211579076 A CN 202211579076A CN 115846778 A CN115846778 A CN 115846778A
- Authority
- CN
- China
- Prior art keywords
- discharge
- electrochemical
- electrode
- grinding
- tool electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
本发明涉及一种放电电化学‑磨削顺序循环复合加工工具电极及加工方法,属于复合加工领域。本发明提出了放电‑电化学复合协同磨削加工方法,放电‑电化学作用和磨削作用交替作用在工件材料,加工顺序依次为放电电化学粗加工、磨削粗加工、放电电化学精加工、磨削精加工,实现了对工件型面的高效精密加工,避免了因工具电极更换而产生的加工误差,同时将工具电极运动与脉冲电源施加方式、脉冲电源参数耦合,避免了无效功率的输出,提高了能量利用率,有利于获得更高的加工效率。同时,工具电极采用组合式装夹方式,不同电极部分可装卸,电极本体无需更换,降低了加工成本。
The invention relates to a discharge electrochemical-grinding sequence cycle compound processing tool electrode and a processing method, belonging to the field of compound processing. The present invention proposes a discharge-electrochemical compound synergistic grinding processing method, discharge-electrochemical action and grinding action alternately act on the workpiece material, and the processing sequence is sequentially discharge electrochemical rough machining, grinding rough machining, and discharge electrochemical finish machining , Grinding and finishing, realize the efficient and precise machining of the workpiece surface, avoid the machining error caused by the replacement of the tool electrode, and at the same time couple the movement of the tool electrode with the pulse power application method and pulse power parameters to avoid the loss of reactive power The output improves the energy utilization rate, which is beneficial to obtain higher processing efficiency. At the same time, the tool electrode adopts a combined clamping method, different electrode parts can be assembled and disassembled, and the electrode body does not need to be replaced, which reduces the processing cost.
Description
技术领域technical field
本发明涉及一种放电电化学-磨削顺序循环复合加工工具电极及加工方法,属于复合加工领域。The invention relates to a discharge electrochemical-grinding sequential cycle compound processing tool electrode and a processing method, belonging to the field of compound processing.
背景技术Background technique
随着航空航天事业的发展,对于高温合金、钛合金及复合材料等难加工材料航空航天结构件的需求越来越大。比如,中国火星车“祝融号”车身承载结构、机械运动机构、探测器结构等几十种零部件采用了多种不同碳化硅含量的SiCp/,C919飞机的机翼、中央翼、机身蒙皮等都采用钛合金材料制备,F110,F404和F414发动机则选用Hastelloy X镍基高温合金。然而,采用传统的机械切削加工方法加工此类难加工材料时,存在加工效率低、刀具磨损严重、加工表面质量差等缺陷,这限制了难加工材料在航空航天领域的进一步推广和应用。With the development of the aerospace industry, the demand for aerospace structural parts of difficult-to-machine materials such as high-temperature alloys, titanium alloys, and composite materials is increasing. For example, dozens of components such as the Chinese Mars rover "Zhu Rong" body load-bearing structure, mechanical movement mechanism, and detector structure use a variety of SiC p / with different silicon carbide contents, and the wings, central wing, and fuselage of the C919 aircraft The skins, etc. are all made of titanium alloy materials, and the F110, F404 and F414 engines are made of Hastelloy X nickel-based superalloy. However, when such difficult-to-machine materials are processed by traditional mechanical cutting methods, there are defects such as low processing efficiency, severe tool wear, and poor surface quality, which limit the further promotion and application of difficult-to-machine materials in the aerospace field.
放电加工是基于工具电极和工件之间火花放电时产生的电腐蚀现象来蚀除工件材料,具有加工效率高、加工不存在宏观切削力等特点。只有当加工间隙达到数十微米时,加工间隙内才会产生火花放电,而加工过程中会产生大量火花放电产物,大量火花放电产物积聚在加工间隙内,导致间隙内工作液不能迅速恢复到初始介电状态,影响火花放电的稳定进行,降低了放电加工的效率和工件表面质量。EDM is based on the electro-corrosion phenomenon generated during the spark discharge between the tool electrode and the workpiece to etch the workpiece material. It has the characteristics of high processing efficiency and no macroscopic cutting force. Only when the processing gap reaches tens of microns, spark discharge will occur in the processing gap, and a large amount of spark discharge products will be generated during the processing process, and a large amount of spark discharge products will accumulate in the processing gap, resulting in the working fluid in the gap not being able to quickly return to the original state The dielectric state affects the stable progress of spark discharge and reduces the efficiency of electric discharge machining and the surface quality of the workpiece.
电解加工是基于电化学阳极溶解原理,实现对工件材料的成型加工工艺,具有加工表面质量高、表面无残余应力等特点。然而,与放电加工相比,电解加工的材料去除率较低,只能达到数百mm3/min,难以满足大型结构件高效加工的制造要求;与磨削加工相比,电解加工表面存在严重的杂散腐蚀,加工定域性差,不能保证较高的加工精度。Electrolytic machining is based on the principle of electrochemical anodic dissolution to realize the forming process of workpiece materials. It has the characteristics of high surface quality and no residual stress on the surface. However, compared with electrical discharge machining, the material removal rate of electrolytic machining is lower, only up to hundreds of mm 3 /min, which is difficult to meet the manufacturing requirements for efficient machining of large structural parts; compared with grinding, electrolytic machining has serious surface problems. The stray corrosion and poor processing localization cannot guarantee high processing accuracy.
磨削加工是利用砂轮中的微磨粒对工件表面的微切削作用,实现工件材料的去除,磨削加工具有加工精度高,表面质量好等特点。磨削加工是一种精加工工艺,通常作为零件加工的最终阶段,因此磨削加工的加工余量很小,磨削加工的材料去除率很低,不能满足大型结构件高效加工的制造要求。Grinding is to use the micro-abrasive particles in the grinding wheel to micro-cut the surface of the workpiece to remove the material of the workpiece. Grinding has the characteristics of high processing precision and good surface quality. Grinding is a finishing process, which is usually used as the final stage of parts processing. Therefore, the machining allowance of grinding is very small, and the material removal rate of grinding is very low, which cannot meet the manufacturing requirements of efficient machining of large structural parts.
因此,面向航空航天领域迅速发展的难加工材料构件高效精密制造需求,亟需兼顾加工效率和表面质量的创新加工方法。Therefore, in order to meet the rapid development of the aerospace field and meet the high-efficiency and precision manufacturing requirements of difficult-to-machine material components, innovative processing methods that take into account both processing efficiency and surface quality are urgently needed.
发明内容Contents of the invention
为了获得更高的加工效率和更好的表面质量,本发明提出了一种放电电化学-磨削顺序循环复合加工工具电极及加工方法,将工件电极结构、工具电极运动与脉冲电源施加方式耦合,将放电-电化学作用和磨削作用原位组合,达到高效精密的加工效果。In order to obtain higher processing efficiency and better surface quality, the present invention proposes a discharge electrochemical-grinding sequential cycle compound processing tool electrode and processing method, which couples the workpiece electrode structure, tool electrode movement and pulse power application mode , Combining discharge-electrochemical action and grinding action in situ to achieve efficient and precise processing.
一种放电电化学-磨削顺序循环复合加工工具电极,其特征在于:工具电极为内部中空的回转体电极,包括放电-电化学粗加工电极、粗磨削片、放电-电化学精加工电极、精磨削片和工具电极本体,各部分的半径分别为R1、R2、R3、R4和R0,且半径关系分别为R0<R3<R1<R4<R2;放电-电化学粗加工电极、粗磨削片、放电-电化学精加工电极、精磨削片对应圆心角分别为β1、β2、β3和β4,各部分对应圆心角均小于等于90度,且对应圆心角可调。A discharge electrochemical-grinding sequential cycle compound processing tool electrode is characterized in that: the tool electrode is a hollow rotating body electrode, including a discharge-electrochemical roughing electrode, a rough grinding sheet, and a discharge-electrochemical finishing electrode , fine grinding sheet and tool electrode body, the radii of each part are R 1 , R 2 , R 3 , R 4 and R 0 , and the radius relationship is R 0 < R 3 < R 1 < R 4 < R 2 ; The corresponding central angles of discharge-electrochemical roughing electrode, rough grinding sheet, discharge-electrochemical finishing electrode and fine grinding sheet are β 1 , β 2 , β 3 and β 4 respectively, and the corresponding central angles of each part are less than It is equal to 90 degrees, and the corresponding central angle is adjustable.
利用上述工具电极的加工方法,其特征在于包括以下过程:步骤一:工具电极绕轴线旋转一周的周期为T0,在一个周期T0内,放电-电化学粗加工电极、粗磨削片、放电-电化学精加工电极、精磨削片依次交替作用,整个加工过程分为四个阶段,分别是放电-电化学粗加工阶段、粗磨削阶段、放电-电化学精加工阶段、精磨削阶段。在一个周期T0内,放电-电化学粗加工阶段、粗磨削阶段、放电-电化学精加工阶段、精磨削阶段作用时间分别为ta、tb、tc、td。在工具电极运动的前1/2T0周期,脉冲电源发出长脉宽、小幅值的脉冲电压,且脉冲宽度T1_on和脉冲间隔T1_off与工具电极旋转周期T0之间符合表达式T1_on+T1_off≤1/2T0;在工具电极运动的后1/2T0周期,脉冲电源发出短脉宽、大幅值的脉冲电压,且脉冲电压的脉冲宽度T2_on和脉冲间隔T2_off与工具电极旋转周期T0之间符合表达式T2_on+T2_off≤1/2T0,且符合表达式T2_on<T1_on,且长脉宽脉冲电压幅值U1小于短脉宽脉冲电压幅值U2;步骤二:工件接脉冲电源正极,工具电极接脉冲电源负极,同时工具电极按预设旋转方向逆时针高速旋转,且工具电极沿预设进给方向向靠近工件方向进给,工作液由工具电极侧壁出液缝喷出,进入工具电极与工件的加工间隙内;步骤三:在放电-电化学粗加工阶段,工具电极绕轴线旋转1/4转,放电电化学粗加工电极全部进入加工区域,同时,脉冲电源发出多个长脉宽、小幅值的脉冲电压,放电电化学粗加工电极与工件之间产生多次高能量的火花放电和剧烈的电化学溶解反应,加工区域内产生大量加工产物和氢气泡;精磨削片对放电电化学精加工后的表面产生磨削作用,加工区域产生磨削产物,达到修整工件表面的效果;步骤四:在粗磨削阶段,工具电极绕轴线继续旋转1/4转,工具电极中粗磨削片全部旋转进入加工区域,开始对放电电化学粗加工电极加工后的表面产生磨削作用,产生大量磨削产物;同时脉冲电源继续发出长脉宽、小幅值的脉冲电压,放电电化学粗加工电极与工件加工间隙内产生多次高能量的火花放电,大量工件材料被火花放电和电化学溶解作用迅速蚀除;步骤五:在放电-电化学精加工阶段,工具电极绕轴线继续经过1/4转,工具电极中放电-电化学精加工电极全部进入加工区域,同时,脉冲电源发出多个短脉宽、大幅值的脉冲电压,放电-电化学精加工电极与工件之间产生多次低能量的火花放电和较弱的电化学溶解反应,产生少量加工产物和氢气泡;粗磨削片对放电-电化学粗加工后的表面产生磨削作用,加工区域产生大量磨削产物,达到大余量去除工件材料和修整工件表面的效果;步骤六:在精磨削阶段,工具电极绕轴线继续经过1/4转,工具电极中精磨削片全部旋转进入加工区域,开始对放电-电化学精加工电极加工后的工件表面产生磨削作用,达到修整工件表面的作用;同时,脉冲电源继续发出多个短脉宽、大幅值的脉冲电压,放电-电化学粗加工电极与工件加工间隙内产生多次低能量的火花放电,工件材料被低能量的火花放电和电化学溶解作用蚀除;步骤七:随着工具电极的不断进给,不断重复上述步骤三至步骤六,在间断的火花放电作用、电解作用和磨削作用下,实现工件材料的高效精密加工。The processing method using the above-mentioned tool electrode is characterized in that it includes the following process: Step 1: The cycle of the tool electrode rotating one circle around the axis is T 0 , and within one cycle T 0 , discharge-electrochemical rough machining electrodes, rough grinding sheets, The discharge-electrochemical finishing electrode and the fine grinding sheet act alternately in sequence. The whole processing process is divided into four stages, namely, the discharge-electrochemical rough machining stage, the rough grinding stage, the discharge-electrochemical finishing stage, and the fine grinding stage. cutting stage. In one cycle T 0 , the action time of discharge-electrochemical rough machining stage, rough grinding stage, discharge-electrochemical finishing stage and fine grinding stage is t a , t b , t c , t d , respectively. In the first 1/2T 0 period of tool electrode movement, the pulse power supply sends out a pulse voltage with long pulse width and small amplitude, and the pulse width T 1_on and pulse interval T 1_off and the tool electrode rotation period T 0 conform to the expression T 1_on +T 1_off ≤1/2T 0 ; in the last 1/2T 0 cycle of the tool electrode movement, the pulse power supply sends out a pulse voltage with a short pulse width and a large value, and the pulse width T 2_on and pulse interval T 2_off of the pulse voltage are consistent with the tool electrode The rotation period T 0 conforms to the expression T 2_on + T 2_off ≤ 1/2T 0 , and conforms to the expression T 2_on < T 1_on , and the long pulse width pulse voltage amplitude U 1 is smaller than the short pulse width pulse voltage amplitude U 2 ; Step 2: The workpiece is connected to the positive pole of the pulse power supply, and the tool electrode is connected to the negative pole of the pulse power supply. At the same time, the tool electrode rotates counterclockwise at a high speed according to the preset rotation direction, and the tool electrode is fed in the direction close to the workpiece along the preset feed direction, and the working fluid is supplied by the tool. The liquid is sprayed out from the side wall of the electrode and enters the machining gap between the tool electrode and the workpiece; Step 3: In the discharge-electrochemical roughing stage, the tool electrode rotates 1/4 turn around the axis, and the discharge electrochemical roughing electrodes all enter the processing At the same time, the pulse power supply sends out multiple pulse voltages with long pulse width and small amplitude, and multiple high-energy spark discharges and violent electrochemical dissolution reactions are generated between the discharge electrochemical roughing electrode and the workpiece, resulting in A large number of processing products and hydrogen bubbles; the fine grinding sheet has a grinding effect on the surface after discharge electrochemical finishing, and grinding products are produced in the processing area to achieve the effect of trimming the surface of the workpiece; Step 4: In the rough grinding stage, the tool electrode Continue to rotate around the axis for 1/4 turn, all the coarse grinding pieces in the tool electrode rotate into the processing area, and start to grind the surface processed by the discharge electrochemical roughing electrode, producing a large number of grinding products; at the same time, the pulse power continues to emit With long pulse width and small amplitude pulse voltage, multiple high-energy spark discharges are generated in the gap between the discharge electrochemical roughing electrode and the workpiece, and a large number of workpiece materials are rapidly eroded by spark discharge and electrochemical dissolution; step five: in In the discharge-electrochemical finishing stage, the tool electrode continues to go through 1/4 turn around the axis, and all the discharge-electrochemical finishing electrodes in the tool electrode enter the processing area. At the same time, the pulse power supply sends out multiple pulse voltages with short pulse width and large value. , multiple low-energy spark discharges and weak electrochemical dissolution reactions occur between the discharge-electrochemical finishing electrode and the workpiece, resulting in a small amount of processed products and hydrogen bubbles; Grinding occurs on the surface, and a large amount of grinding products are produced in the processing area, so as to achieve the effect of removing workpiece material with a large margin and repairing the surface of the workpiece; Step 6: In the stage of fine grinding, the tool electrode continues to pass 1/4 turn around the axis, and the tool electrode The medium-finishing grinding pieces all rotate into the processing area, and start to grind the surface of the workpiece processed by the discharge-electrochemical finishing electrode to achieve the effect of trimming the surface of the workpiece; at the same time, the pulse power supply continues to send out multiple short pulse widths, large The pulse voltage of the value, discharge-electrochemical roughing electrode and workpiece processing gap produces multiple low-energy spark discharges, and the workpiece material is eroded by low-energy spark discharges and electrochemical dissolution; Step 7: With the tool electrode Continuously feed and repeat the above steps three to six, under the intermittent spark discharge, electrolysis and grinding, the efficient and precise machining of the workpiece material is realized.
相比于单一的电火花加工、电解加工或磨削加工,本发明提出的放电电化学-磨削顺序循环复合加工工具电极及加工方法可使用同一工具下对工件的高效粗加工和精加工,实现了对工件材料的高效精密加工,避免了因更换工具电极而产生的定位误差,提高了工件的加工精度和加工效率。通过调整放电-电化学复合加工粗精加工电极及磨削粗精加工磨头对应圆心角,可以获得不同的加工效果。增大放电-电化学复合加工粗加工电极及粗磨削片对应圆心角可以获得更高的加工效率;增大放电电化学复合加工精加工电极及精磨削片对应圆心角,可以获得更好的表面质量。放电电化学-磨削顺序循环复合加工工具电极包括放电电化学粗加工电极、放电电化学精加工电极、粗磨削片和精磨削片,工具电极本体与各个电极通过螺栓连接,在加工完成后,可将使用过的放电-电化学复合加工电极拆卸更换,有利于实现低成本、高加工效率、高质量的粗精一体化加工。将工具电极运动与脉冲电源施加方式耦合,在不同的加工阶段,脉冲电源发出不同类型的脉冲电压,减少了脉冲电源的功率要求,提高了电源的利用效率,避免了无效能量的输出。Compared with single electric discharge machining, electrolytic machining or grinding, the discharge electrochemical-grinding sequential cycle compound machining tool electrode and machining method proposed by the present invention can use the same tool to efficiently rough and finish the workpiece, The high-efficiency precision machining of the workpiece material is realized, the positioning error caused by the replacement of the tool electrode is avoided, and the machining accuracy and machining efficiency of the workpiece are improved. Different processing effects can be obtained by adjusting the corresponding central angles of the discharge-electrochemical composite machining roughing and finishing electrodes and the grinding roughing and finishing grinding heads. Increase the central angle corresponding to the rough machining electrode and the rough grinding sheet of the discharge-electrochemical composite machining to obtain higher processing efficiency; increase the corresponding central angle of the finishing electrode and the fine grinding sheet of the discharge electrochemical composite machining to obtain better surface quality. Discharge electrochemical-grinding sequential cycle compound processing tool electrode includes discharge electrochemical rough machining electrode, discharge electrochemical finishing electrode, rough grinding sheet and fine grinding sheet. The tool electrode body and each electrode are connected by bolts. Finally, the used discharge-electrochemical composite machining electrode can be disassembled and replaced, which is conducive to the realization of low-cost, high-efficiency, high-quality rough-finish integrated machining. Coupling the movement of the tool electrode with the application of the pulse power supply, in different processing stages, the pulse power supply emits different types of pulse voltages, which reduces the power requirements of the pulse power supply, improves the utilization efficiency of the power supply, and avoids the output of invalid energy.
所述的放电电化学-磨削顺序循环复合加工工具电极及加工方法,其特征在于:工具电极本体材料为不锈钢,放电-电化学粗加工电极和放电-电化学精加工电极为材料为石墨或铜钨合金或紫铜,粗磨削片和精磨削片(13)基体材料为树脂基或陶瓷基材料,且增强相磨粒材料为金刚石、CBN、SiC、Al2O3磨料,粗磨削片中的粗磨料粒度为40#至280#,精磨削片中的细磨粒粒度为400#至1500#;且工件材料为钛合金或高温合金或不锈钢或金属基复合材料。粗磨削片和精磨削片采用不同目数的磨料可以更加高效的实现对加工区域的粗加工、精加工,提高加工效率,改善表面质量。The discharge electrochemical-grinding sequential cycle compound processing tool electrode and processing method are characterized in that: the material of the tool electrode body is stainless steel, the discharge-electrochemical rough machining electrode and the discharge-electrochemical finishing electrode are made of graphite or Copper-tungsten alloy or red copper, rough grinding sheet and fine grinding sheet (13) base material is resin base or ceramic base material, and the abrasive grain material of reinforcement phase is diamond, CBN, SiC, Al 2 O 3 abrasive material, rough grinding The grain size of the coarse abrasive in the chip is 40# to 280#, and the grain size of the fine abrasive in the fine grinding chip is 400# to 1500#; and the workpiece material is titanium alloy or superalloy or stainless steel or metal matrix composite material. The abrasives of different meshes used for the rough grinding sheet and the fine grinding sheet can more efficiently realize the rough machining and finishing machining of the processing area, improve the processing efficiency and improve the surface quality.
所述的放电电化学-磨削顺序循环复合加工工具电极及加工方法,其特征在于:工作液为硝酸钠或氯化钠溶液,且浓度不低于5%。The discharge electrochemical-grinding sequential cycle compound processing tool electrode and processing method are characterized in that: the working fluid is sodium nitrate or sodium chloride solution, and the concentration is not lower than 5%.
采用较高浓度的盐溶液,加工过程中存在大量气泡,并集聚合并形成气膜,从而导致火花放电;同时采用高浓度的盐溶液,有利于提高电解加工电流,提高材料去除率。Using a higher concentration of salt solution, there will be a large number of bubbles in the process of processing, which will aggregate and form a gas film, resulting in spark discharge; at the same time, the use of a high concentration of salt solution will help increase the electrolytic machining current and increase the material removal rate.
所述的放电电化学-磨削顺序循环复合加工工具电极及加工方法,其特征在于:工具电极本体底部区域直径为15-60mm。The discharge electrochemical-grinding sequential cycle compound processing tool electrode and the processing method are characterized in that the diameter of the bottom area of the tool electrode body is 15-60 mm.
所述的放电电化学-磨削顺序循环复合加工工具电极及加工方法,其特征在于:长脉宽、小幅值脉冲电压为10V-40V,脉冲宽度为500us-10ms,短脉宽、大幅值脉冲电压为40V-120V,脉冲宽度为10us-300us。The discharge electrochemical-grinding sequence cycle compound processing tool electrode and processing method are characterized in that: the long pulse width, small amplitude pulse voltage is 10V-40V, the pulse width is 500us-10ms, the short pulse width, large value The pulse voltage is 40V-120V, and the pulse width is 10us-300us.
当放电-电化学复合加工粗加工电极切入加工区域后,脉冲电源发出脉冲电压为10V-40V,脉冲宽度为500us-10ms的脉冲,加工区域内产生多次高能量的火花放电,电化学溶解作用也更强烈,为加工去除材料提供充足的能量输入;当放电电化学复合加工精加工电极切入加工区域后,脉冲电源发出多个脉冲电压为40V-120V,脉冲宽度为10us-300us的脉冲,加工区域内发生多次小能量的火花放电,电化学溶解作用较弱,达到修整粗加工后工件表面质量的效果,同时在火花放电通道的冲击作用下,排除加工区域内粗加工阶段产生的加工产物,有利于提高加工效率。When the discharge-electrochemical composite machining roughing electrode cuts into the processing area, the pulse power supply sends out pulses with a pulse voltage of 10V-40V and a pulse width of 500us-10ms, and multiple high-energy spark discharges are generated in the processing area, and electrochemical dissolution It is also more intense, providing sufficient energy input for processing and removing materials; when the discharge electrochemical composite machining finishing electrode cuts into the processing area, the pulse power supply sends out multiple pulses with a pulse voltage of 40V-120V and a pulse width of 10us-300us. Multiple small-energy spark discharges occur in the area, and the electrochemical dissolution is weak, which achieves the effect of trimming the surface quality of the workpiece after rough machining. At the same time, under the impact of the spark discharge channel, the processing products generated in the rough machining stage in the processing area are eliminated. , which is conducive to improving the processing efficiency.
附图说明Description of drawings
图1为本发明提出的切入式放电-电化学复合协同磨削加工放电-电化学复合粗加工开始位置示意图;Fig. 1 is a schematic diagram of the starting position of the discharge-electrochemical composite rough machining proposed by the present invention;
图2为本发明提出的切入式放电-电化学复合协同磨削加工粗磨削开始位置示意图;Fig. 2 is a schematic diagram of the starting position of the rough grinding of the cut-in discharge-electrochemical composite cooperative grinding process proposed by the present invention;
图3为本发明提出的切入式放电-电化学复合协同磨削加工放电-电化学复合精加工开始位置示意图;Fig. 3 is a schematic diagram of the starting position of the discharge-electrochemical composite finishing process proposed by the present invention;
图4为本发明提出的切入式放电-电化学复合协同磨削加工精磨削开始位置示意图;Fig. 4 is a schematic diagram of the starting position of the fine grinding of the cut-in discharge-electrochemical composite cooperative grinding process proposed by the present invention;
图5为切入式放电-电化学复合协同磨削加工工具电极截面示意图;Fig. 5 is a schematic cross-sectional view of an electrode of a cutting-in discharge-electrochemical composite collaborative grinding tool;
图6为工具电极旋转运动与脉冲施加方式耦合示意图;Fig. 6 is a schematic diagram of the coupling of tool electrode rotational motion and pulse application mode;
图7为切入式放电-电化学复合协同磨削加工工具电极三维示意图;Fig. 7 is a three-dimensional schematic diagram of the electrode of the cutting-in discharge-electrochemical composite grinding tool;
图中标号名称为:1、放电电化学粗加工电极;2、工作液;3、加工产物;4、粗磨粒;5、脉冲电源;6、粗磨削片;7、放电电化学精加工电极;8、磨削产物;9、火花放电;10、工件;11、工具电极本体;12、细磨粒;13、精磨削片;14、旋转方向;15、氢气泡;16、进给方向;17、出液缝。The label names in the figure are: 1. Discharge electrochemical rough machining electrode; 2. Working fluid; 3. Processed product; 4. Coarse abrasive grain; 5. Pulse power supply; Electrode; 8. Grinding product; 9. Spark discharge; 10. Work piece; 11. Tool electrode body; 12. Fine abrasive grain; 13. Fine grinding piece; 14. Rotation direction; 15. Hydrogen bubble; direction; 17, liquid outlet seam.
具体实施方式Detailed ways
下面结合具体附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with specific drawings.
图1是的切入式放电-电化学复合协同磨削加工放电-电化学复合粗加工开始位置示意图。工具电极11按预设旋转方向14逆时针高速旋转,且沿进给方向16恒速进给,放电-电化学粗加工电极1的1/2段旋转进入加工区域,脉冲电源5开始发出多个长脉宽、小幅值的脉冲电压,由于放电-电化学粗加工电极1半径R1大于放电-电化学精加工电极7半径R3,所以放电-电化学粗加工电极1与工件10之间的极间加工间隙小于放电-电化学精加工电极7与工件10之间的加工间隙,因此放电-电化学粗加工电极1与工件10之间的产生的火花放电9能量更大,电化学溶解作用更强;随着工具电极11的进给,精磨削片13对放电-电化学精加工电极7加工后的表面修整,去除表面缺陷层,提高工件10表面质量;Fig. 1 is a schematic diagram of the starting position of the electric discharge-electrochemical composite rough machining of the cut-in type discharge-electrochemical composite cooperative grinding. The
图2是切入式放电-电化学复合协同磨削加工粗磨削开始位置示意图。工具电极11按预设旋转方向14逆时针高速旋转,且沿进给方向16恒速进给,粗磨削片6的1/2段旋转进入加工区域,开始对放电-电化学粗加工电极1加工后的工件10表面修整,去除表面缺陷层;脉冲电源5继续发出多个长脉宽、小幅值的脉冲电压,放电-电化学粗加工电极1与工件10之间产生剧烈的火花放电9和电化学溶解反应,高效蚀除工件材料;Fig. 2 is a schematic diagram of the starting position of the rough grinding in the plunge-cut discharge-electrochemical compound cooperative grinding process. The
图3是切入式放电-电化学复合协同磨削加工放电-电化学复合精加工开始位置示意图。工具电极11按预设旋转方向14逆时针高速旋转,且沿进给方向16恒速进给,放电-电化学精加工电极7的1/2段旋转进入加工区域,脉冲电源5开始发出多个短脉宽、大幅值的脉冲电压,由于放电-电化学精加工电极7半径R3小于放电-电化学粗加工电极1半径R1,所以放电-电化学精加工电极7与工件10之间的极间加工间隙大于放电-电化学粗加工电极1与工件10之间的加工间隙,因此放电-电化学精加工电极7与工件10之间的产生的火花放电9能量更小,电化学溶解作用更弱,仅起到改善表面质量的效果;粗磨削片6中的粗磨粒4与工件10材料接触,去除放电-电化学粗加工电极1加工后的表面缺陷层和基体材料,提高加工效率。Fig. 3 is a schematic diagram of the start position of discharge-electrochemical composite finishing in the plunge-cut discharge-electrochemical composite grinding process. The
图4是切入式放电-电化学复合协同磨削加工精磨削开始位置示意图。工具电极11按预设旋转方向14逆时针高速旋转,且沿进给方向16恒速进给,脉冲电源5继续发出多个短脉宽、大幅值的脉冲电压,放电-电化学精加工电极7与工件10之间产生的火花放电9和电化学溶解反应较弱,改善加工表面质量;精磨削片13的1/2段旋转进入加工区域,开始对放电-电化学精电极7加工后的工件表面修整,提高表面质量;Fig. 4 is a schematic diagram of the starting position of fine grinding in the plunge-cut discharge-electrochemical compound cooperative grinding process. The
图5是切入式放电-电化学复合协同磨削加工工具电极截面示意图。放电-电化学粗加工电极1、放电-电化学精加工电极7、粗磨削片6、精磨削片13和工具电极11本体的半径分别为R1、R3、R2、R4和R0,且各部分半径存在关系R0<R3<R1<R4<R2,半径差为0.1mm-0.5mm不等;放电-电化学粗加工电极1、粗磨削片6、放电-电化学精加工电极7、精磨削片13对应圆心角分别为β1、β2、β3和β4,通过调整各部分对应圆心角,可以控制不同电极或磨削片作用时间,获得不同的加工效果,增大β1和β2可以获得更高的加工效率,增大β3和β4,可以获得更好的表面质量;Fig. 5 is a schematic cross-sectional view of an electrode of a cutting-in electric discharge-electrochemical composite grinding tool. The radii of discharge-
图6是工具电极旋转运动与脉冲施加方式耦合示意图。工具电极11的旋转周期为T0,且ta=tb=tc=td=1/4T0,工具电极11旋转周期为几十毫秒至数百毫秒不等;长脉宽、小幅值脉冲电压的脉冲宽度T1_on和脉冲间隔T1_off与工具电极11旋转周期T0之间符合表达式T1_on+T1_off≤1/2T0,T1_on数值为数毫秒至数十毫秒不等;短脉宽、大幅值脉冲电压的脉冲宽度T2_on和脉冲间隔T2_off与工具电极旋转周期T0之间符合表达式T1_on+T1_off≤1/2T0,且符合表达式T2_on<T1_on,T2_on数值为数微秒至数十微秒不等;长脉宽脉冲电压幅值U1小于短脉宽脉冲电压幅值U2,长脉宽脉冲电压幅值U1为20-70V,且U1幅值小于U2幅值20-70V。Fig. 6 is a schematic diagram of the coupling of tool electrode rotational movement and pulse application. The rotation period of the
图7是切入式放电-电化学复合协同磨削加工工具电极三维示意图。放电-电化学复合协同磨削加工工具电极由放电-电化学粗加工电极1、放电-电化学精加工电极7、粗磨削片6、精磨削片13和工具电极11本体组成,并且各电极通过螺栓连接方式镶嵌在工具电极11本体,工具电极11本体设置有工作液2流道,底部设置有出液缝17。Fig. 7 is a three-dimensional schematic diagram of a tool electrode for cutting-in discharge-electrochemical composite collaborative grinding. The discharge-electrochemical composite collaborative grinding tool electrode is composed of discharge-
本发明提出的切入式放电-电化学复合协同磨削原位高效精密加工方法,拓展了放电-电化学复合加工技术的应用范围,但是以上描述并不能理解为对本发明专利的限制。应该说明的是,在不脱离本发明构思的前提下,还可以做出若干改善,这些均应落入本发明专利的保护。The in-situ high-efficiency precision machining method proposed by the present invention expands the application range of electric discharge-electrochemical composite grinding technology, but the above description cannot be understood as a limitation of the patent of the present invention. It should be noted that, on the premise of not departing from the concept of the present invention, several improvements can be made, and these should fall under the protection of the patent of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211579076.5A CN115846778B (en) | 2022-12-07 | 2022-12-07 | Discharge electrochemical-grinding sequential circulation composite processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211579076.5A CN115846778B (en) | 2022-12-07 | 2022-12-07 | Discharge electrochemical-grinding sequential circulation composite processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115846778A true CN115846778A (en) | 2023-03-28 |
CN115846778B CN115846778B (en) | 2024-09-20 |
Family
ID=85671528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211579076.5A Active CN115846778B (en) | 2022-12-07 | 2022-12-07 | Discharge electrochemical-grinding sequential circulation composite processing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115846778B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119016816A (en) * | 2024-10-29 | 2024-11-26 | 河南工学院 | A multi-channel electric spark-electrolysis composite cutting machining electrode and cutting method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07205006A (en) * | 1993-12-30 | 1995-08-08 | Olympus Optical Co Ltd | Lens grinding method |
RU2207243C2 (en) * | 2001-03-22 | 2003-06-27 | Закрытое акционерное общество "Научно-производственный центр экологии, мониторинга окружающей среды" | Combined abrasive tool and method of part surface machininh |
CN101491882A (en) * | 2008-01-23 | 2009-07-29 | 富士胶片株式会社 | Grinding method, grinding device and electrode therefor |
CN101491880A (en) * | 2008-01-23 | 2009-07-29 | 株式会社迪思科 | Method of grinding wafer |
CN102398193A (en) * | 2010-09-17 | 2012-04-04 | 香港理工大学 | Grinding-assisted electrochemical discharge machining tool and method |
CN206357084U (en) * | 2016-12-30 | 2017-07-28 | 郑州晶润光电技术有限公司 | Bevelling processing combined type ladder emery wheel |
CN109967805A (en) * | 2019-04-08 | 2019-07-05 | 南京航空航天大学 | Electrochemical discharge mechanical milling composite machining tool cathode and using method |
-
2022
- 2022-12-07 CN CN202211579076.5A patent/CN115846778B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07205006A (en) * | 1993-12-30 | 1995-08-08 | Olympus Optical Co Ltd | Lens grinding method |
RU2207243C2 (en) * | 2001-03-22 | 2003-06-27 | Закрытое акционерное общество "Научно-производственный центр экологии, мониторинга окружающей среды" | Combined abrasive tool and method of part surface machininh |
CN101491882A (en) * | 2008-01-23 | 2009-07-29 | 富士胶片株式会社 | Grinding method, grinding device and electrode therefor |
CN101491880A (en) * | 2008-01-23 | 2009-07-29 | 株式会社迪思科 | Method of grinding wafer |
CN102398193A (en) * | 2010-09-17 | 2012-04-04 | 香港理工大学 | Grinding-assisted electrochemical discharge machining tool and method |
CN206357084U (en) * | 2016-12-30 | 2017-07-28 | 郑州晶润光电技术有限公司 | Bevelling processing combined type ladder emery wheel |
CN109967805A (en) * | 2019-04-08 | 2019-07-05 | 南京航空航天大学 | Electrochemical discharge mechanical milling composite machining tool cathode and using method |
Non-Patent Citations (1)
Title |
---|
曲宁松等: "Improving the machined bottom surface in electrochemical mill-grinding by adjusting the electrolyte flow field", JOURNAL OF MATERIALS PROCESSING TECH, 24 September 2019 (2019-09-24), pages 1 - 10 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119016816A (en) * | 2024-10-29 | 2024-11-26 | 河南工学院 | A multi-channel electric spark-electrolysis composite cutting machining electrode and cutting method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115846778B (en) | 2024-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107824918B (en) | System and method for machining integral blisks with auxiliary flushing electrolytic milling | |
CN108188511B (en) | Electrolytic milling and grinding efficient rough and finish machining integrated machining method | |
CN106825805B (en) | Demountable combined-type tool cathode and its electrolytic mill milling method | |
CN107866615B (en) | A kind of compound electrode electrolytically and mechanically grinding and polishing complex machining device and method | |
CN102861956A (en) | Machining method of gravity-free smelting layer air membrane hole of aviation engine turbine blade | |
CN108406018A (en) | Take into account the electrolysis milling machining tool cathode and electrolysis milling method of efficiency and precision | |
US20080277384A1 (en) | Apparatus and method for hybrid machining a workpiece | |
CN111805026B (en) | Electrolytic milling-electrolytic mechanical composite milling integrated processing method | |
CN109909567B (en) | High-efficiency precise electrolytic mechanical combined milling method and device | |
JP2004209639A (en) | Method and device for carrying out near net shape high-speed roughing machining | |
JP2010533601A (en) | Apparatus and method for hybrid processing of thin molded workpiece | |
CN109967805B (en) | Tool cathode for electrochemical discharge mechanical milling composite machining and use method | |
Chakraborty et al. | Applications of optimization techniques for parametric analysis of non-traditional machining processes: a review | |
CN114700568B (en) | Method and device for processing groove structure by combining electric spark and electrolysis of belt electrode | |
CN113333883A (en) | Cutting device and cutting method | |
CN115846778B (en) | Discharge electrochemical-grinding sequential circulation composite processing method | |
CN116586701A (en) | Electrolytic arc composite/electrolytic integrated milling device and method | |
Saxena et al. | Electrochemical Based Hybrid Machining A2-Luo, Xichun | |
CN104625267A (en) | Electrolysis-mechanical micro cutting machining method of fretsaw winding electrode | |
CN110340472A (en) | A microstructure abrasive jet electrochemical machining system and method for metal parts | |
CN110116245B (en) | Hydrogen embrittlement auxiliary ultrasonic processing equipment and method | |
CN101298122A (en) | Method for processing complex surface knife tool | |
CN110695472A (en) | Movable template electrolytic grinding composite machining tool cathode and method | |
Hung et al. | Ultrasonic-assisted electrochemical discharge grinding and broaching for machining quartz square microholes | |
CN115780932B (en) | Electrolytic-grinding precision hole enlarging processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |