CN115838481A - A kind of preparation method and application of Zr-based metal organic framework UiO-66 - Google Patents
A kind of preparation method and application of Zr-based metal organic framework UiO-66 Download PDFInfo
- Publication number
- CN115838481A CN115838481A CN202310120083.7A CN202310120083A CN115838481A CN 115838481 A CN115838481 A CN 115838481A CN 202310120083 A CN202310120083 A CN 202310120083A CN 115838481 A CN115838481 A CN 115838481A
- Authority
- CN
- China
- Prior art keywords
- organic framework
- acid
- based metal
- preparation
- multidimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013207 UiO-66 Substances 0.000 title claims abstract description 25
- 239000013096 zirconium-based metal-organic framework Substances 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims abstract description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 12
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims abstract description 10
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 231100000719 pollutant Toxicity 0.000 claims abstract description 8
- BJMBNXMMZRCLFY-UHFFFAOYSA-N [N].[N].CN(C)C=O Chemical compound [N].[N].CN(C)C=O BJMBNXMMZRCLFY-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000002244 precipitate Substances 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 240000000530 Alcea rosea Species 0.000 claims abstract 2
- 235000017334 Alcea rosea Nutrition 0.000 claims abstract 2
- 235000017303 Althaea rosea Nutrition 0.000 claims abstract 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract 2
- 230000003213 activating effect Effects 0.000 claims abstract 2
- 238000004140 cleaning Methods 0.000 claims abstract 2
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 6
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 4
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 claims description 4
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 150000002762 monocarboxylic acid derivatives Chemical group 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 25
- 238000001179 sorption measurement Methods 0.000 abstract description 18
- 239000012621 metal-organic framework Substances 0.000 abstract description 15
- 239000011148 porous material Substances 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 230000008929 regeneration Effects 0.000 abstract description 3
- 238000011069 regeneration method Methods 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000002860 competitive effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- QCAWEPFNJXQPAN-UHFFFAOYSA-N methoxyfenozide Chemical compound COC1=CC=CC(C(=O)NN(C(=O)C=2C=C(C)C=C(C)C=2)C(C)(C)C)=C1C QCAWEPFNJXQPAN-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 239000000273 veterinary drug Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
技术领域technical field
本发明涉及金属有机骨架材料技术领域,尤其涉及一种Zr基金属有机骨架UiO-66的制备方法及应用。The invention relates to the technical field of metal organic framework materials, in particular to a preparation method and application of a Zr-based metal organic framework UiO-66.
背景技术Background technique
PPCPs是一类种类繁多,数量庞大的环境新兴污染物,包括药物,化妆品,兽药,杀菌剂,消毒剂,农药等等。由于其在环境中存在浓度很低,随着检测技术的发展,1980s首次在环境中检测出PPCPs的存在。许多研究表明,PPCPs已广泛存在于江河湖泊,世界上多条著名河流中都检测出了PPCPs的存在。已有研究报道,PPCPs具有潜在风险,慢性毒性,生物累积性,长期积累会造成不容忽视的恶果。而传统去除手段无法有效去除PPCPs,因此寻找一种合适的材料,实现环境低浓度高风险PPCPs的特异性吸附和降解是近年来研究的热点。研究已知,优良的吸附材料应该满足具有高比表面积和丰富的活性位点等特点,MOFs正好具备这样的优势。PPCPs are a class of emerging environmental pollutants with a wide variety and a large number, including drugs, cosmetics, veterinary drugs, fungicides, disinfectants, pesticides and so on. Due to its low concentration in the environment, with the development of detection technology, the presence of PPCPs was first detected in the environment in the 1980s. Many studies have shown that PPCPs have widely existed in rivers and lakes, and the existence of PPCPs has been detected in many famous rivers in the world. Studies have reported that PPCPs have potential risks, chronic toxicity, bioaccumulation, and long-term accumulation will cause serious consequences that cannot be ignored. However, traditional removal methods cannot effectively remove PPCPs. Therefore, finding a suitable material to achieve specific adsorption and degradation of low-concentration and high-risk PPCPs in the environment has become a research hotspot in recent years. It is known from research that an excellent adsorption material should satisfy the characteristics of high specific surface area and abundant active sites, and MOFs just have such advantages.
金属有机骨架(MOFs)是一种晶体多孔材料,具有广泛的应用前景。MOF的孔隙大小和形状可以通过改变无机单元或有机配体来调节,这种可控的调节使得MOF引起了广泛关注。MOFs在气体和蒸气的吸附、分离和储存领域有重要的应用,近年来也有越来越多的研究着眼于MOF去除水体中的污染物,如重金属离子、苯、染料等。Metal-organic frameworks (MOFs) are crystalline porous materials with promising applications. The pore size and shape of MOFs can be tuned by changing the inorganic units or organic ligands, and this controllable adjustment makes MOFs attract extensive attention. MOFs have important applications in the fields of adsorption, separation and storage of gases and vapors. In recent years, more and more researches have focused on MOFs to remove pollutants in water, such as heavy metal ions, benzene, dyes, etc.
Zr-MOF是众多MOF中有着卓越稳定性的一类,它拥有高比表面积和孔隙率,暴露的活性位点,结构明确方便做改性,且具有光催化潜能,因此在去除水体新兴污染物方面有着巨大的应用前景。Zr-MOF is a class with excellent stability among many MOFs. It has high specific surface area and porosity, exposed active sites, clear structure and convenient modification, and has photocatalytic potential. Therefore, it is used in the removal of emerging pollutants in water It has great application prospects.
介孔区的MOF与PPCPs的分子尺寸更相匹配,而易合成,稳定性高,结构明确,具有高比表面积和孔隙率的UiO-66为介孔区Zr-MOF,因此UiO-66在吸附去除PPCPs的效果上还有很大可提升的空间。The MOF in the mesoporous region is more compatible with the molecular size of PPCPs, and it is easy to synthesize, has high stability, and has a clear structure. UiO-66 with high specific surface area and porosity is a Zr-MOF in the mesoporous region, so UiO-66 is in the adsorption There is still much room for improvement in the effect of removing PPCPs.
发明内容Contents of the invention
为了解决上述至少一个技术问题,本发明提出一种Zr基金属有机骨架UiO-66的制备方法及应用,通过将多维调节剂加入到金属有机骨架材料合成的前驱体中,在氮氮二甲基甲酰胺溶液中均匀混合,通过溶剂热法,得到了具有连续可调控缺陷结构的金属有机骨架材料。本发明利用暴露的金属活性位点和扩展至介孔区的孔径,能够有效对水体中的负电低浓度高危险新兴污染物实现高效特异性吸附,且循环性好,易再生,稳定性强。In order to solve at least one of the above-mentioned technical problems, the present invention proposes a preparation method and application of a Zr-based metal-organic framework UiO-66. By adding a multidimensional regulator to the precursor synthesized by the metal-organic framework material, nitrogen nitrogen dimethyl The metal-organic framework materials with continuously adjustable defect structures were obtained by uniform mixing in formamide solution and by solvothermal method. The invention utilizes the exposed metal active sites and the pore diameter extended to the mesoporous region, can effectively achieve high-efficiency and specific adsorption on negatively charged, low-concentration, high-dangerous emerging pollutants in water bodies, and has good circulation, easy regeneration, and strong stability.
为实现上述目的,本发明一方面提供一种Zr基金属有机骨架UiO-66的制备方法,包括以下原料:四氯化锆、对苯二甲酸和多维调节剂,其摩尔比例配比为1/x/35,其中x=0.3,0.5,0.8,1.0,其制备方法包括以下步骤:包括以下步骤:In order to achieve the above object, the present invention provides a method for preparing Zr-based metal-organic framework UiO-66, which includes the following raw materials: zirconium tetrachloride, terephthalic acid and multidimensional regulator, and its molar ratio is 1/ x/35, wherein x=0.3,0.5,0.8,1.0, its preparation method comprises the following steps: comprising the following steps:
S1,将四氯化锆,对苯二甲酸(BDC),以及氮氮二甲基甲酰胺与不同量的多维调节剂加入100 mL蜀牛瓶中均匀混合,超声直至固体全部溶解;S1, add zirconium tetrachloride, terephthalic acid (BDC), and nitrogen-nitrogen dimethylformamide and different amounts of multidimensional regulators into a 100 mL Shu Niu bottle and mix evenly, sonicate until the solids are completely dissolved;
S2,在120 ℃的烘箱中反应48 h,离心收集沉淀;S2, react in an oven at 120 °C for 48 h, and collect the precipitate by centrifugation;
S3,用氮氮二甲基甲酰胺清洗三次,甲醇置换三次,溶解未反应原料,并置换低沸点溶剂;S3, washing with nitrogen nitrogen dimethylformamide three times, replacing with methanol three times, dissolving unreacted raw materials, and replacing low boiling point solvent;
S4,250 ℃真空下加热活化12 h。S4, activated by heating under vacuum at 250 °C for 12 h.
优选的,所述S1中四氯化锆与对苯二甲酸的配位数非饱和配位。Preferably, the coordination numbers of zirconium tetrachloride and terephthalic acid in S1 are unsaturated coordination.
优选的,所述x=0.3。Preferably, said x=0.3.
优选的,所述多维调节剂为单边羧酸。Preferably, the multidimensional regulator is a unilateral carboxylic acid.
优选的,所述单边羧酸为乙酸,正戊酸,正辛酸,正十二烷酸,正十四烷酸,正十七烷酸中的一种。Preferably, the unilateral carboxylic acid is one of acetic acid, n-pentanoic acid, n-octanoic acid, n-dodecanoic acid, n-tetradecanoic acid and n-heptadecanoic acid.
本发明的第二方面在于提供Zr基金属有机骨架UiO-66在去除水体新兴污染物上的应用。The second aspect of the present invention is to provide the application of Zr-based metal-organic framework UiO-66 in removing emerging pollutants in water bodies.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过将多维调节剂加入到金属有机骨架材料合成的前驱体中,在氮氮二甲基甲酰胺溶液中均匀混合,通过溶剂热法,得到了具有连续可调控缺陷结构的金属有机骨架材料。本发明利用暴露的金属活性位点和扩展至介孔区的孔径,能够有效对水体中的负电低浓度高危险新兴污染物实现高效特异性吸附,且循环性好,易再生,稳定性强。In the present invention, the metal-organic framework material with a continuously adjustable defect structure is obtained by adding the multi-dimensional regulator to the precursor synthesized by the metal-organic framework material, uniformly mixing it in the nitrogen-nitrogen dimethylformamide solution, and using the solvothermal method . The invention utilizes the exposed metal active sites and the pore diameter extended to the mesoporous region, can effectively achieve high-efficiency and specific adsorption on negatively charged, low-concentration, high-dangerous emerging pollutants in water bodies, and has good circulation, easy regeneration, and strong stability.
通过引入不同尺寸的单边羧酸调节剂,并再合成中设计了调节剂和BDC的弱,中,强三种竞争配位环境,在可程序升降温的烘箱中反应48小时,实现了对Zr-MOF的孔径范围,比表面积等性质的连续调控,从而优化了Zr-MOF对PPCPs的吸附效果。By introducing unilateral carboxylic acid modulators of different sizes, and designing the weak, medium and strong three competitive coordination environments of the modulator and BDC in the resynthesis, and reacting in a programmable heating and cooling oven for 48 hours, the realization of the The continuous regulation of Zr-MOF's pore size range, specific surface area and other properties optimizes the adsorption effect of Zr-MOF on PPCPs.
随着调节剂尺寸的增大,材料的孔径分布呈现增大的趋势,且材料对布洛芬药物分子的吸附速率有明显的提升,说明该策略确实改善了Zr-MOF对新兴污染物的吸附效果。As the size of the modulator increases, the pore size distribution of the material shows an increasing trend, and the adsorption rate of the material to ibuprofen drug molecules is significantly improved, indicating that this strategy has indeed improved the adsorption of emerging pollutants by Zr-MOF Effect.
附图说明Description of drawings
图1-4为本发明实施例1中不同调节剂参与合成的UiO-66材料的X射线粉末衍射图谱。1-4 are X-ray powder diffraction patterns of UiO-66 materials synthesized with different modulators in Example 1 of the present invention.
图5-10为本发明实施例1中不同调节剂参与合成的UiO-66材料的氮气吸附脱附测试曲线与孔径分布图。5-10 are the nitrogen adsorption and desorption test curves and pore size distribution diagrams of UiO-66 materials synthesized with different regulators in Example 1 of the present invention.
图11-12为本发明实施例1中的扫描电子显微镜图。11-12 are scanning electron micrographs in Example 1 of the present invention.
图13为本发明实施例1中不同调节剂参与合成的UiO-66材料的热重图。Fig. 13 is a thermogravimetric diagram of UiO-66 material synthesized with different modulators in Example 1 of the present invention.
图14为本发明实施例1中不同调节剂参与合成的UiO-66材料的元素分析。Fig. 14 is the elemental analysis of the UiO-66 material synthesized by different modulators in Example 1 of the present invention.
图15-16为本发明实施例1中不同调节剂参与合成的UiO-66材料的以IBU为模型化合物分子的吸附动力学数据图。15-16 are graphs of adsorption kinetics data of UiO-66 materials synthesized by different modulators in Example 1 of the present invention, using IBU as a model compound molecule.
实施方式Implementation
为了使本领域技术人员能够更好的理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,很显然,所描述的实施例仅仅是本发明中的一部分实施例,而非本发明的全部实施例。In order to enable those skilled in the art to better understand the technical solutions in the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, but not all of the embodiments of the present invention.
请参照图1-16,本发明具体实施方式中采用的部分仪器信息如下:Please refer to Fig. 1-16, the part instrument information that adopts in the embodiment of the present invention is as follows:
红外光谱仪,型号:Bruker Foucus D8;厂商:德国Bruker公司;Infrared spectrometer, model: Bruker Focus D8; manufacturer: Bruker, Germany;
X射线粉末衍射仪,型号:MiniFlex 600 diffractometer,厂商:日本Rigaku公司;X-ray powder diffractometer, model: MiniFlex 600 diffractometer, manufacturer: Japan Rigaku Company;
扫面电子显微镜,型号:JEM-2010,厂商:日本日立公司;Scanning electron microscope, model: JEM-2010, manufacturer: Hitachi, Japan;
元素分析仪,型号:VARIO EL-III,厂商:德国Elementar Analysensysteme GmbH公司;Elemental analyzer, model: VARIO EL-III, manufacturer: German Elementar Analysensysteme GmbH company;
氮气吸附与孔径分析仪,型号:Prodigy 7,厂商:Leeman公司;Nitrogen adsorption and pore size analyzer, model: Prodigy 7, manufacturer: Leeman Company;
热重热差综合热分析仪,型号:TG-DTA 6200,厂商:日本日立精工;Thermogravimetric thermal differential comprehensive thermal analyzer, model: TG-DTA 6200, manufacturer: Hitachi Seiko;
高效液相色谱仪,型号:LC-20,厂商:岛津。High performance liquid chromatography, model: LC-20, manufacturer: Shimadzu.
实施例1Example 1
本实施例提供了一种Zr基金属有机骨架UiO-66的制备方法及应用,This example provides a preparation method and application of a Zr-based metal-organic framework UiO-66,
具体的,其制备方法包括如下步骤,将四氯化锆0.16 g,对苯二甲酸(BDC)0.034g、0.057 g、0.091 g、0.114 g,40 mL氮氮二甲基甲酰胺与不同量的调节剂加入100 mL蜀牛瓶中,超声20 min直至固体全部溶解。于120 ℃的烘箱中反应48 h,离心收集沉淀,用氮氮二甲基甲酰胺清洗三次,甲醇置换三次,从而溶解未反应原料,并置换低沸点溶剂,250 ℃真空下加热活化12 h。Specifically, its preparation method includes the following steps: 0.16 g of zirconium tetrachloride, 0.034 g, 0.057 g, 0.091 g, 0.114 g of terephthalic acid (BDC), 40 mL of nitrogen nitrogen dimethylformamide and different amounts of The regulator was added to a 100 mL Shu Niu bottle, and ultrasonicated for 20 min until all the solids were dissolved. React in an oven at 120 °C for 48 h, collect the precipitate by centrifugation, wash with nitrogen nitrogen dimethylformamide three times, and replace with methanol three times to dissolve unreacted raw materials, and replace the low boiling point solvent, and activate by heating at 250 °C under vacuum for 12 h.
调节剂的用量,如表所示:The dosage of regulator, as shown in the table:
实验例1Experimental example 1
图1-4为本发明实施例1中不同调节剂参与合成的UiO-66材料的X射线粉末衍射图谱,与模拟图谱能够完全对应,证明UiO-66材料的成功合成。Figures 1-4 are the X-ray powder diffraction patterns of the UiO-66 material synthesized by different regulators in Example 1 of the present invention, which can completely correspond to the simulated pattern, proving the successful synthesis of the UiO-66 material.
图5-10为本发明实施例1中不同调节剂参与合成的UiO-66材料的氮气吸附脱附测试曲线与孔径分布图,随着调节剂尺寸的增大,比表面积总体呈现出先增大后平稳的规律。孔径分布始终呈现增大趋势。Figures 5-10 are the nitrogen adsorption and desorption test curves and pore size distribution diagrams of UiO-66 materials synthesized by different modifiers in Example 1 of the present invention. As the size of the modifier increases, the specific surface area generally increases first and then steady law. The pore size distribution always showed an increasing trend.
图11-12为本发明实施例1中的扫描电子显微镜图,可发现在同一种调节剂条件下,材料的尺寸随着竞争配位环境的增强,有变小的趋势。在强竞争配位环境下,随着调节剂尺寸的变大,材料的尺寸也在逐渐变小。Figures 11-12 are scanning electron microscope images of Example 1 of the present invention. It can be found that under the same regulator condition, the size of the material tends to become smaller as the competitive coordination environment increases. In a strongly competitive coordination environment, the size of the material gradually decreases as the size of the modulator increases.
图13为本发明实施例1中不同调节剂参与合成的UiO-66材料的热重图,可以看出同种调节剂,随着竞争配位环境的增强热稳定性有所下降,不同种调节剂随着尺寸的增加,热稳定性有所下降。Figure 13 is the thermogravimetric diagram of the UiO-66 material synthesized by different regulators in Example 1 of the present invention. It can be seen that the thermal stability of the same regulator decreases with the enhancement of the competitive coordination environment, and the different regulators As the size of the agent increases, the thermal stability decreases.
图14为本发明实施例1中不同调节剂参与合成的UiO-66材料的元素分析,可以看出C元素的梯度减少。Figure 14 is the elemental analysis of the UiO-66 material synthesized with different regulators in Example 1 of the present invention, it can be seen that the gradient of C element decreases.
图15-16为本发明实施例1中不同调节剂参与合成的UiO-66材料的以IBU为模型化合物分子的吸附动力学数据图,评价本发明的吸附性能。乙酸组,随着调节剂竞争环境的增强,吸附速率有增加的趋势。戊酸,辛酸,月桂酸组也呈现出相同的规律。月桂酸组的动力学常数较乙酸组提高了13.33—28.33倍。在相同竞争配位的环境下,随着调节剂尺寸的增加,吸附速率有明显提升,月桂酸组的速率常数是乙酸组的22倍。Figures 15-16 are the adsorption kinetics data graphs of the UiO-66 material synthesized by different regulators in Example 1 of the present invention, using IBU as the model compound molecule, to evaluate the adsorption performance of the present invention. For the acetic acid group, the adsorption rate tended to increase with the strengthening of the regulator competition environment. The valeric acid, caprylic acid, and lauric acid groups also showed the same pattern. The kinetic constants of the lauric acid group were 13.33-28.33 times higher than those of the acetic acid group. Under the same competitive coordination environment, with the increase of the regulator size, the adsorption rate was significantly improved, and the rate constant of the lauric acid group was 22 times that of the acetic acid group.
以上所述是本发明实施例的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进、润饰也应视为本申请的保护范围。The above is the specific implementation of the embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made. These improvements and modifications It should also be regarded as the protection scope of the present application.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310120083.7A CN115838481A (en) | 2023-02-16 | 2023-02-16 | A kind of preparation method and application of Zr-based metal organic framework UiO-66 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310120083.7A CN115838481A (en) | 2023-02-16 | 2023-02-16 | A kind of preparation method and application of Zr-based metal organic framework UiO-66 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115838481A true CN115838481A (en) | 2023-03-24 |
Family
ID=85579747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310120083.7A Pending CN115838481A (en) | 2023-02-16 | 2023-02-16 | A kind of preparation method and application of Zr-based metal organic framework UiO-66 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115838481A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108066773A (en) * | 2017-12-22 | 2018-05-25 | 华东理工大学 | The preparation method and thus obtained nano material of a kind of adjustable mesoporous metal organic backbone nano material of grain size |
CN108084453A (en) * | 2018-01-10 | 2018-05-29 | 蚌埠学院 | The aperture expanding method of UiO-66 metal-organic framework materials and application |
CN108114699A (en) * | 2017-12-22 | 2018-06-05 | 华东理工大学 | The preparation method and thus obtained nano material of a kind of adjustable multi-stage porous metal organic framework nano material in aperture and its application |
CN109400890A (en) * | 2017-08-18 | 2019-03-01 | 中国石化扬子石油化工有限公司 | A kind of preparation method of multi-stage porous metal-organic framework materials |
CN110256683A (en) * | 2019-04-19 | 2019-09-20 | 武汉理工大学 | Preparation method and application of a kind of hierarchical porous metal organic framework material |
CN112646192A (en) * | 2020-12-17 | 2021-04-13 | 东华大学 | Method for preparing hierarchical porous metal-organic framework compound by template method and application |
-
2023
- 2023-02-16 CN CN202310120083.7A patent/CN115838481A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109400890A (en) * | 2017-08-18 | 2019-03-01 | 中国石化扬子石油化工有限公司 | A kind of preparation method of multi-stage porous metal-organic framework materials |
CN108066773A (en) * | 2017-12-22 | 2018-05-25 | 华东理工大学 | The preparation method and thus obtained nano material of a kind of adjustable mesoporous metal organic backbone nano material of grain size |
CN108114699A (en) * | 2017-12-22 | 2018-06-05 | 华东理工大学 | The preparation method and thus obtained nano material of a kind of adjustable multi-stage porous metal organic framework nano material in aperture and its application |
CN108084453A (en) * | 2018-01-10 | 2018-05-29 | 蚌埠学院 | The aperture expanding method of UiO-66 metal-organic framework materials and application |
CN110256683A (en) * | 2019-04-19 | 2019-09-20 | 武汉理工大学 | Preparation method and application of a kind of hierarchical porous metal organic framework material |
CN112646192A (en) * | 2020-12-17 | 2021-04-13 | 东华大学 | Method for preparing hierarchical porous metal-organic framework compound by template method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Sorption of methyl orange from aqueous solution by protonated amine modified hydrochar | |
CN112679731A (en) | Covalent organic framework material containing sulfonic acid group and preparation and application thereof | |
CN110548487B (en) | A kind of hydrothermal carbon-based composite material, its preparation and application | |
CN106669612A (en) | An aluminum-based metal-organic framework@graphene oxide composite material and its preparation method and application | |
Lu et al. | Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate | |
CN112023899A (en) | Preparation method of hydrophilic flexible porous boron affinity imprinted hydrogel adsorbent | |
Azhar et al. | Porous multifunctional fluoropolymer composite foams prepared via humic acid modified Fe3O4 nanoparticles stabilized Pickering high internal phase emulsion using cationic fluorosurfactant as co-stabilizer | |
Peng et al. | Thermoresponsive MXene composite system with high adsorption capacity for quick and simple removal of toxic metal ions from aqueous environment | |
CN114588885A (en) | Preparation method and application of cobalt-doped iron-based metal organic framework material | |
CN113583252A (en) | Microporous metal organic framework Cu (Qc)2Preparation method of (1) | |
Zhai et al. | Tuning surface functionalizations of UiO-66 towards high adsorption capacity and selectivity eliminations for heavy metal ions | |
AU2020273237B2 (en) | A polymer coated metal-organic framework | |
CN101347842A (en) | One-step aqueous synthesis of star-shaped polymer-stabilized gold nanoparticles | |
Liu et al. | Efficient removal of diclofenac sodium from aqueous environments by magnetic ionic covalent organic frameworks based on polydopamine: Adsorption performance and mechanism study | |
CN115819832A (en) | Preparation method and forming process of Zr-based metal organic framework UiO-66 | |
CN115838481A (en) | A kind of preparation method and application of Zr-based metal organic framework UiO-66 | |
CN107511134B (en) | Mesoporous Zr-based coordination polymer and preparation and application thereof | |
CN112250877B (en) | A kind of hierarchical porous ZIF-67 material and its synthesis method | |
CN118994625A (en) | Preparation method and application of metal covalent organic framework composite material | |
CN111484040B (en) | A kind of preparation method of hierarchical pore Prussian blue analog in ionic liquid system | |
Li et al. | HKUST-1 in-situ loaded ultrastable covalently crosslinked agarose aerogel with solvothermal for highly efficient removal of methylene blue | |
CN115011127A (en) | Preparation and application of biomass-based MOFs @ ppy composite film material | |
CN113877543A (en) | Chiral metal organic framework functionalized composite material and preparation method and application thereof | |
CN108623721A (en) | A kind of preparation method of Pinoresinol diglucoside molecular engram microsphere | |
Chen et al. | Metal framework functionalized with nitro groups and chitosan composite adsorption of Congo red |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230324 |