CN115832237A - Negative active material, preparation method thereof, negative pole piece, battery and electric equipment - Google Patents
Negative active material, preparation method thereof, negative pole piece, battery and electric equipment Download PDFInfo
- Publication number
- CN115832237A CN115832237A CN202210504950.2A CN202210504950A CN115832237A CN 115832237 A CN115832237 A CN 115832237A CN 202210504950 A CN202210504950 A CN 202210504950A CN 115832237 A CN115832237 A CN 115832237A
- Authority
- CN
- China
- Prior art keywords
- negative electrode
- active material
- electrode active
- silicon
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 110
- 238000002360 preparation method Methods 0.000 title abstract description 20
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 77
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 77
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 74
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 59
- 239000002245 particle Substances 0.000 claims abstract description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 48
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 42
- 239000010703 silicon Substances 0.000 claims description 40
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 239000012495 reaction gas Substances 0.000 claims description 31
- 238000002161 passivation Methods 0.000 claims description 28
- 238000010891 electric arc Methods 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 25
- 125000004432 carbon atom Chemical group C* 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 230000036961 partial effect Effects 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 7
- 229910021389 graphene Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000006183 anode active material Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000006182 cathode active material Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 20
- 239000011871 silicon-based negative electrode active material Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 100
- 230000000052 comparative effect Effects 0.000 description 36
- 239000002131 composite material Substances 0.000 description 31
- 229910052744 lithium Inorganic materials 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 238000009830 intercalation Methods 0.000 description 10
- 230000002687 intercalation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000011258 core-shell material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011866 silicon-based anode active material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请公开了一种负极活性材料及其制备方法、负极极片、电池和用电设备,涉及电池领域。负极活性材料包括:硅核,包覆于硅核的表面的氮化硅层,以及包覆于氮化硅层的表面的碳层,负极活性材料的粒径为纳米级。该负极活性材料利用结构、材料以及粒径的配合,缓解现有硅基负极活性材料的倍率性能差及寿命低的现状,具有优异的循环稳定性能以及倍率性能。
The application discloses a negative electrode active material, a preparation method thereof, a negative electrode sheet, a battery and electrical equipment, and relates to the field of batteries. The negative electrode active material includes: a silicon core, a silicon nitride layer covering the surface of the silicon core, and a carbon layer covering the surface of the silicon nitride layer, and the particle size of the negative electrode active material is nanoscale. The negative electrode active material utilizes the combination of structure, material and particle size to alleviate the current situation of poor rate performance and low lifespan of existing silicon-based negative electrode active materials, and has excellent cycle stability and rate performance.
Description
技术领域technical field
本申请涉及电池领域,具体而言,涉及一种负极活性材料及其制备方法、负极极片、电池和用电设备。The present application relates to the field of batteries, in particular, to a negative electrode active material, a preparation method thereof, a negative electrode sheet, a battery and electrical equipment.
背景技术Background technique
电池作为主要的储能器件已经被广泛应用于便携式电子产品、电动汽车以及电网存储体系中。近年来,随着市场对具有高能量密度、高倍率性能及长循环寿命的电池的需求,负极材料的研究开发尤为重要。硅由于具有较高的比容量和适中的嵌锂电位,成为具有一定竞争力的负极材料,但硅基负极活性材料在实际应用至电池中时,存在倍率性能差及寿命低的问题。As the main energy storage device, batteries have been widely used in portable electronic products, electric vehicles and grid storage systems. In recent years, with the market demand for batteries with high energy density, high rate performance and long cycle life, the research and development of negative electrode materials is particularly important. Silicon has become a competitive anode material due to its high specific capacity and moderate lithium intercalation potential. However, when silicon-based anode active materials are actually applied to batteries, there are problems of poor rate performance and low life.
发明内容Contents of the invention
本申请实施例的目的在于提供一种负极活性材料及其制备方法、负极极片、电池和用电设备,其能够改善硅基负极活性材料的倍率性能差及寿命低的技术问题。The purpose of the embodiments of the present application is to provide a negative electrode active material and its preparation method, negative electrode sheet, battery and electrical equipment, which can improve the technical problems of poor rate performance and low lifespan of silicon-based negative electrode active materials.
第一方面,本申请实施例提供一种负极活性材料,其包括:硅核,包覆于硅核的表面的氮化硅层,以及包覆于氮化硅层的表面的碳层,负极活性材料的粒径为纳米级。In the first aspect, the embodiment of the present application provides a negative electrode active material, which includes: a silicon core, a silicon nitride layer covering the surface of the silicon core, and a carbon layer covering the surface of the silicon nitride layer, the negative electrode active material The particle size of the material is nanoscale.
本申请实施例的技术方案中,利用氮化硅层包覆于硅核的表面,抑制硅在嵌/脱锂过程中的体积膨胀,提高其循环寿命,由于硅和氮化硅导电性能较差,因此通过最外层包覆的碳层,显著提高负极活性材料的导电性,使负极活性材料的电化学性能充分发挥,提高其倍率性能,并且该负极活性材料的粒径为纳米级,相比于微米级的负极活性材料,其锂离子扩散距离更短,比表面积更大,嵌锂位点更多,因此其电化学性能更佳。综上,负极活性材料利用结构、材料以及粒径的配合,缓解现有硅基负极活性材料的倍率性能差及寿命低的现状,具有优异的循环稳定性能以及倍率性能。In the technical solution of the embodiment of the present application, a silicon nitride layer is used to coat the surface of the silicon core to suppress the volume expansion of silicon during the intercalation/delithiation process and improve its cycle life. Due to the poor conductivity of silicon and silicon nitride , so the electrical conductivity of the negative electrode active material is significantly improved through the outermost coating of the carbon layer, so that the electrochemical performance of the negative electrode active material can be fully exerted, and its rate performance can be improved, and the particle size of the negative electrode active material is nanoscale, which is relatively Compared with micron-scale negative electrode active materials, the lithium ion diffusion distance is shorter, the specific surface area is larger, and the lithium intercalation sites are more, so its electrochemical performance is better. In summary, the anode active material utilizes the combination of structure, material, and particle size to alleviate the current situation of poor rate performance and low lifespan of existing silicon-based anode active materials, and has excellent cycle stability and rate performance.
在一些实施例中,负极活性材料的粒径为30nm-90nm。上述粒径范围内的负极活性材料具有比表面积大,嵌锂位点多的优点,可提高负极活性材料的放电比容量,提高其倍率性能。In some embodiments, the particle size of the negative electrode active material is 30nm-90nm. The negative electrode active material within the above particle size range has the advantages of large specific surface area and many lithium intercalation sites, which can increase the discharge specific capacity of the negative electrode active material and improve its rate performance.
在一些实施例中,氮化硅层的厚度为6nm-8nm。上述范围内的氮化硅的厚度合理,可提高氮化硅在嵌锂过程中锂离子的导电性,若氮化硅层过薄,其对硅核脱嵌锂时的体积膨胀限制作用不佳,降低其循环寿命,过厚则影响负极活性材料的嵌锂容量。In some embodiments, the thickness of the silicon nitride layer is 6nm-8nm. The thickness of silicon nitride within the above range is reasonable, which can improve the conductivity of lithium ions in the process of lithium intercalation of silicon nitride. If the silicon nitride layer is too thin, it will not have a good effect on the volume expansion limit when the silicon core deintercalates lithium. , reducing its cycle life, too thick will affect the lithium insertion capacity of the negative active material.
可选地,以硅核与氮化硅层的总重量为100%计,硅核的质量分数为65%-85%。上述范围内硅核含量合理,使负极活性材料不仅具有高比容量,也有利于氮化硅层抑制其膨胀,提高其循环稳定性。Optionally, based on the total weight of the silicon core and the silicon nitride layer as 100%, the mass fraction of the silicon core is 65%-85%. Reasonable silicon core content within the above range makes the negative electrode active material not only have a high specific capacity, but also helps the silicon nitride layer to suppress its expansion and improve its cycle stability.
在一些实施例中,以负极活性材料的总重量为100%计,碳层的质量分数为15%-20%。上述范围内碳层占比合理,能够有效提高负极活性材料的导电性,提高负极活性材料的倍率性能及增强其循环寿命。In some embodiments, based on the total weight of the negative active material as 100%, the mass fraction of the carbon layer is 15%-20%. The proportion of the carbon layer within the above range is reasonable, which can effectively improve the conductivity of the negative electrode active material, improve the rate performance of the negative electrode active material and enhance its cycle life.
可选地,碳层含有石墨碳。Optionally, the carbon layer contains graphitic carbon.
可选地,碳层含有石墨烯。碳层含有石墨烯的设置可进一步提高负极活性材料的导电性。Optionally, the carbon layer contains graphene. The arrangement of the carbon layer containing graphene can further improve the conductivity of the negative electrode active material.
第二方面,本申请提供了一种负极极片,其包括负极集流体及设置于负极集流体上的负极活性物质层,负极活性物质层包括上述实施例中的负极活性材料。In a second aspect, the present application provides a negative electrode sheet, which includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material in the above embodiment.
第三方面,本申请提供了一种电池,其包括上述实施例中的负极极片。In a third aspect, the present application provides a battery, which includes the negative electrode sheet in the above embodiment.
第四方面,本申请提供了一种用电设备,其包括上述实施例中的电池。In a fourth aspect, the present application provides an electric device, which includes the battery in the above embodiment.
第五方面,本申请提供了一种负极活性材料的制备方法,其包括:在具有阴极和阳极的直流电弧反应室内,以硅块作为阳极且在反应气体的气氛下,使阳极和阴极之间发生直流电弧放电,以生成负极活性材料;其中,反应气体能够经直流电弧放电产生的高温转变为等离子体态的氮原子、氢原子以及碳原子。In a fifth aspect, the present application provides a method for preparing a negative electrode active material, which includes: in a direct current arc reaction chamber having a cathode and an anode, using a silicon block as the anode and under a reactive gas atmosphere, making the anode and the cathode A DC arc discharge occurs to generate negative active materials; wherein, the reaction gas can be transformed into nitrogen atoms, hydrogen atoms, and carbon atoms in a plasma state through the high temperature generated by the DC arc discharge.
本申请实施例的技术方案中,利用直流电弧法一步制备粒径纳米级且结构为硅核/氮化硅层/碳层的负极活性材料,该制备方法操作简单且制备效率高,并且采用直流电弧法制备的负极活性材料各层结构致密,氮化硅层原位形成并均匀包覆于硅核,碳层原位形成并均匀包覆于氮化硅层,因此形成的负极活性材料的粒径较为均一,且各层稳定的连接在一起,进一步提高负极活性材料的电化学性能的长效稳定性,使其具有较佳的循环寿命。In the technical solution of the embodiment of the present application, a negative electrode active material with a particle size of nanometer and a structure of silicon core/silicon nitride layer/carbon layer is prepared in one step by using a direct current arc method. The preparation method is simple to operate and has high preparation efficiency. The structure of each layer of the negative electrode active material prepared by the arc method is dense, the silicon nitride layer is formed in situ and uniformly covers the silicon core, and the carbon layer is formed in situ and uniformly covers the silicon nitride layer, so the granularity of the negative electrode active material formed is The diameter is relatively uniform, and each layer is stably connected together, further improving the long-term stability of the electrochemical performance of the negative electrode active material, so that it has a better cycle life.
在一些实施例中,直流电弧的放电电流为10A-200A,电压为5V-30V。利用放电电流和电压的合理选择,使其能够产生稳定的直流电弧,在保证制备负极活性材料的安全性的前提下提高产率。若放电电流和电压过大会造成安全隐患,若放电电流和电压过小,则负极活性材料的产率降低。In some embodiments, the discharge current of the DC arc is 10A-200A, and the voltage is 5V-30V. The reasonable selection of the discharge current and voltage enables it to generate a stable DC arc, and improves the yield under the premise of ensuring the safety of preparing negative electrode active materials. If the discharge current and voltage are too high, it will cause potential safety hazards, and if the discharge current and voltage are too small, the yield of the negative electrode active material will decrease.
可选地,阴极与阳极之间的间距为10mm-25mm。上述间距范围内,可产生稳定的直流电弧,若间距过大,直流电弧会断,无法形成稳定的直流电弧,若间距过小导致阴阳极粘连短路,容易损坏设备并且造成安全隐患。Optionally, the distance between the cathode and the anode is 10mm-25mm. Within the above distance range, a stable DC arc can be generated. If the distance is too large, the DC arc will be broken and a stable DC arc cannot be formed. If the distance is too small, the anode and cathode will be bonded and short circuited, which will easily damage the equipment and cause safety hazards.
可选地,阴极的材质为钨或石墨。上述两种材质不仅耐高温,同时不与等离子气体反应,避免引入杂质。Optionally, the material of the cathode is tungsten or graphite. The above two materials are not only resistant to high temperature, but also do not react with plasma gas to avoid the introduction of impurities.
在一些实施例中,碳原子和氮原子的摩尔比为(1.5:1)-(4.5:1),上述碳原子和氮原子的配比合理,有利于控制形成的碳层及氮化硅层的厚度及含量。In some embodiments, the molar ratio of carbon atoms to nitrogen atoms is (1.5:1)-(4.5:1), and the ratio of the above-mentioned carbon atoms to nitrogen atoms is reasonable, which is conducive to controlling the formation of carbon layers and silicon nitride layers thickness and content.
在一些实施例中,反应气体为甲烷、氮气以及氢气的混合物,上述反应气体的各原料不仅易于在直流电弧产生的高温下离子化,而且易于获得,成本较低,可降低负极活性材料的制备成本。In some embodiments, the reaction gas is a mixture of methane, nitrogen and hydrogen. The raw materials of the above-mentioned reaction gases are not only easy to ionize under the high temperature generated by the direct current arc, but also easy to obtain and low in cost, which can reduce the preparation of negative electrode active materials. cost.
可选地,直流电弧放电前,反应气体的总压力为38kpa-53kpa,甲烷、氮气以及氢气的分压比依次为25:(3-18):10,可选为25:(10-15):10。由于直流电弧反应室的容积有限,且直流电弧放电反应为预先通入反应气体,反应过程中不额外通入反应气体,因此上述总压力范围内,不仅使直流电弧反应室内具有足够的反应气体,而且有利于提高直流电弧放电反应的安全性。此总压力条件下的分压比条件下,可使甲烷和氮气在直流电弧放电时的离子化速率可达到1:1,从而有利于控制获得离子化后的碳原子和氮原子的摩尔比,从而控制形成的碳层及氮化硅层的厚度及含量,并且氢含量合理,有利于促进甲烷、氮气离子化。Optionally, before the DC arc discharge, the total pressure of the reaction gas is 38kpa-53kpa, and the partial pressure ratio of methane, nitrogen and hydrogen is 25:(3-18):10, optionally 25:(10-15) :10. Since the volume of the DC arc reaction chamber is limited, and the DC arc discharge reaction is to feed the reaction gas in advance, no additional reaction gas is introduced during the reaction process, so within the above total pressure range, not only the DC arc reaction chamber has enough reaction gas, And it is beneficial to improve the safety of DC arc discharge reaction. Under the partial pressure ratio under this total pressure condition, the ionization rate of methane and nitrogen can reach 1:1 during DC arc discharge, which is beneficial to control the molar ratio of ionized carbon atoms and nitrogen atoms, Therefore, the thickness and content of the formed carbon layer and silicon nitride layer are controlled, and the hydrogen content is reasonable, which is beneficial to promote the ionization of methane and nitrogen.
在一些实施例中,制备方法还包括:在直流电弧放电反应结束后,冷却3h-5h后,通入钝化气体进行钝化处理,收集附着于直流电弧反应室的内壁的负极活性材料。利用钝化处理以钝化负极活性材料的表面能,便于安全的收集负极活性材料。In some embodiments, the preparation method further includes: after the DC arc discharge reaction is completed, after cooling for 3h-5h, passing passivation gas for passivation treatment, and collecting the negative electrode active material attached to the inner wall of the DC arc reaction chamber. The passivation treatment is used to passivate the surface energy of the negative electrode active material, so as to facilitate safe collection of the negative electrode active material.
可选地,钝化气体为1kPa-2kPa的空气或者氧气,钝化处理的时间为6h-10h。上述钝化处理操作容易且成本低。Optionally, the passivation gas is 1kPa-2kPa air or oxygen, and the passivation treatment time is 6h-10h. The above-mentioned passivation treatment is easy to operate and low in cost.
附图说明Description of drawings
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating the preferred embodiments and are not to be considered as limiting the application. Also, the same reference numerals are used to denote the same components throughout the drawings. In the attached picture:
图1为本申请一些实施例的车辆的结构示意图;FIG. 1 is a schematic structural view of a vehicle in some embodiments of the present application;
图2位本申请一些实施例的电池的分解结构示意图;Fig. 2 is a schematic diagram of an exploded structure of a battery in some embodiments of the present application;
图3为本申请一些实施例的电池单体的分解结构示意图;3 is a schematic diagram of an exploded structure of a battery cell in some embodiments of the present application;
图4为本申请实施例1制得的复合材料的TEM图;Fig. 4 is the TEM figure of the composite material that the
图5为本申请实施例1制得的复合材料的XRD图谱;Fig. 5 is the XRD spectrum of the composite material that the
图6为本申请实施例1制得的复合材料的负极电极的循环性能图;Fig. 6 is the cycle performance figure of the negative electrode electrode of the composite material that the
图7为使用实施例1制得的复合材料的负极电极的库伦效率图;Fig. 7 is the coulombic efficiency diagram of the negative electrode using the composite material that
图8为使用实施例1制得的复合材料的负极电极的倍率性能图。FIG. 8 is a graph of the rate performance of the negative electrode using the composite material prepared in Example 1. FIG.
具体实施方式中的附图标号如下:The reference numerals in the specific embodiment are as follows:
1000-车辆;1000 - vehicle;
100-电池;200-控制器;300-马达;100-battery; 200-controller; 300-motor;
10-箱体;11-第一部分;12-第二部分;10-box; 11-first part; 12-second part;
20-电池单体;21-端盖;21a-电极端子;22-壳体;23-电极组件;23a-极耳。20 - battery cell; 21 - end cap; 21a - electrode terminal; 22 - housing; 23 - electrode assembly; 23a - tab.
具体实施方式Detailed ways
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。Embodiments of the technical solutions of the present application will be described in detail below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present application more clearly, and therefore are only examples, rather than limiting the protection scope of the present application.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the technical field of the application; the terms used herein are only for the purpose of describing specific embodiments, and are not intended to To limit this application; the terms "comprising" and "having" and any variations thereof in the specification and claims of this application and the description of the above drawings are intended to cover a non-exclusive inclusion.
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。In the description of the embodiments of the present application, technical terms such as "first" and "second" are only used to distinguish different objects, and should not be understood as indicating or implying relative importance or implicitly indicating the number, specificity, or specificity of the indicated technical features. Sequence or primary-secondary relationship. In the description of the embodiments of the present application, "plurality" means two or more, unless otherwise specifically defined.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。In the description of the embodiment of the present application, the term "and/or" is only a kind of association relationship describing associated objects, which means that there may be three kinds of relationships, such as A and/or B, which may mean: A exists alone, and A exists at the same time and B, there are three cases of B alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。In the description of the embodiments of the present application, the term "multiple" refers to more than two (including two), similarly, "multiple groups" refers to more than two groups (including two), and "multiple pieces" refers to More than two pieces (including two pieces).
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。In the description of the embodiments of the present application, the technical terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical" "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial", "Radial", "Circumferential", etc. indicate the orientation or positional relationship based on the drawings Orientation or positional relationship is only for the convenience of describing the embodiment of the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as an implementation of the present application. Example limitations.
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。In the description of the embodiments of this application, unless otherwise clearly specified and limited, technical terms such as "installation", "connection", "connection" and "fixation" should be interpreted in a broad sense, for example, it can be a fixed connection or a fixed connection. Disassembled connection, or integration; it can also be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments of the present application according to specific situations.
目前,电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。At present, batteries are not only used in energy storage power systems such as water power, fire power, wind power and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace. field. With the continuous expansion of battery application fields, its market demand is also constantly expanding.
本发明人注意到,现有的使用硅作为负极活性材料的负极电极,存在库伦效率低及循环寿命低的问题,其主要原因在于硅在嵌/脱锂过程中,硅伴随着高达300%的体积变化及不稳定的固体电解质界面膜的形成,从而大大降低了其倍率性能及循环寿命。The inventors have noticed that the existing negative electrode using silicon as the negative active material has the problems of low coulombic efficiency and low cycle life. The main reason is that silicon is accompanied by a 300% The volume change and the formation of unstable solid electrolyte interfacial film greatly reduce its rate performance and cycle life.
为了解决上述问题,发明人尝试对硅进行包覆形成核壳结构,其中氮化硅是一种耐高温、抗氧化的高性能结构陶瓷,可以在常温和高温领域作为优良的半导体材料应用,因此利用氮化硅包覆于硅,利用氮化硅抑制硅的膨胀,并且避免硅直接裸露在外产生的不稳定的固体电解质界面膜,但硅和氮化硅均为半导体材料使得复合材料导电性差,因此进一步采用碳层包覆氮化硅以提高负极活性材料的导电性,使其电化学性能充分发挥,提高库伦效率低及循环寿命。In order to solve the above problems, the inventors tried to coat silicon to form a core-shell structure, in which silicon nitride is a high-performance structural ceramic with high temperature resistance and oxidation resistance, and can be used as an excellent semiconductor material in the field of room temperature and high temperature. Therefore, Use silicon nitride to cover silicon, use silicon nitride to suppress the expansion of silicon, and avoid the unstable solid electrolyte interfacial film caused by direct exposure of silicon, but both silicon and silicon nitride are semiconductor materials, making the composite material poor in conductivity. Therefore, a carbon layer is further used to coat silicon nitride to improve the conductivity of the negative electrode active material, so that its electrochemical performance can be fully exerted, and the low Coulombic efficiency and cycle life can be improved.
但发明人发现,现有的制备上述结构改进后的负极活性材料的制备方法通常是两步法:即先形成包覆于硅核的表面的氮化硅层,然后再形成包覆于氮化硅层的表面的碳层,制备步骤繁琐,且氮化硅的制备难度大,并且制得的上述负极活性材料的粒径为微米级,限制了其电化学性能。However, the inventors found that the existing preparation method for preparing the negative electrode active material with the above-mentioned structure improvement is usually a two-step method: first forming a silicon nitride layer covering the surface of the silicon core, and then forming a silicon nitride layer covering the surface of the silicon core. The preparation steps of the carbon layer on the surface of the silicon layer are cumbersome, and the preparation of silicon nitride is difficult, and the particle size of the prepared negative electrode active material is micron, which limits its electrochemical performance.
因此发明人进一步尝试采用直流电弧法,一步制备粒径为纳米级且结构为硅核/氮化硅层/碳层的负极活性材料,该制备方法操作简单且制备效率高,并且采用直流电弧法制备的负极活性材料各层结构致密且稳定的连接在一起,提高负极活性材料的电化学性能的长效稳定性,形成的负极活性材料的粒径较为均一且为纳米级,提高负极活性材料的循环稳定性以及倍率性能。Therefore, the inventors further tried to adopt the direct current arc method to prepare negative electrode active materials with a nanoscale particle size and a structure of silicon core/silicon nitride layer/carbon layer in one step. This preparation method is simple to operate and has high preparation efficiency, and the direct current arc method is adopted The layers of the prepared negative electrode active material are densely and stably connected together, which improves the long-term stability of the electrochemical performance of the negative electrode active material, and the particle size of the formed negative electrode active material is relatively uniform and nanoscale, which improves the stability of the negative electrode active material. Cycling stability and rate performance.
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池等组成该用电装置的电源系统,这样,有利于提升电池性能的稳定性和电池寿命。The batteries disclosed in the embodiments of the present application can be used, but not limited to, in electric devices such as vehicles, ships or aircrafts. The battery disclosed in this application can be used to form the power supply system of the electric device, which is beneficial to improve the stability of battery performance and battery life.
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。The embodiment of the present application provides an electric device using a battery as a power source. The electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like. Among them, electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc., and spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。In the following embodiments, for the convenience of description, a
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。Please refer to FIG. 1 , which is a schematic structural diagram of a
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。In some embodiments of the present application, the
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。Please refer to FIG. 2 , which is an exploded view of a
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。In the
其中,每个电池单体20可以为一次电池或二次电。特别地,电池单体20是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。Wherein, each
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电极组件23以及其他的功能性部件。Please refer to FIG. 3 , which is a schematic diagram of an exploded structure of a
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子21a等的功能性部件。电极端子21a可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。The
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。The
电极组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳23a。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳23a连接电极端子以形成电流回路。The
根据本申请的一些实施例,本申请提供了一种负极活性材料,其包括:硅核、包覆于硅核的表面的氮化硅层,以及包覆于氮化硅层的表面的碳层,负极活性材料的粒径为纳米级。According to some embodiments of the present application, the present application provides a negative electrode active material, which includes: a silicon core, a silicon nitride layer covering the surface of the silicon core, and a carbon layer covering the surface of the silicon nitride layer , the particle size of the negative electrode active material is nanoscale.
也即是负极活性材料为核壳结构,其中自内向外依次为硅核/氮化硅层/碳层。That is to say, the negative electrode active material has a core-shell structure, wherein silicon core/silicon nitride layer/carbon layer are sequentially arranged from the inside to the outside.
其中,硅核是指材质为纯硅、或材质以硅为主体但含有掺杂元素的颗粒,其中以硅为主体是指硅核中的硅的含量大于掺杂元素的含量。Wherein, the silicon core refers to a particle whose material is pure silicon, or whose material is mainly silicon but contains dopant elements, wherein the silicon core means that the content of silicon in the silicon core is greater than that of the dopant element.
氮化硅层是指材质为纯氮化硅、或材质以氮化硅为主体但含有掺杂元素的包覆层,其中以氮化硅为主体是指氮化硅层中氮化硅的含量大于掺杂元素的含量。The silicon nitride layer refers to the cladding layer whose material is pure silicon nitride, or the material is mainly silicon nitride but contains doping elements, where silicon nitride is the main body refers to the content of silicon nitride in the silicon nitride layer greater than the content of doping elements.
碳层是指材质为纯碳、或材质以碳为主体但含有掺杂元素的包覆层,其中以碳为主体是指碳层中碳的含量大于掺杂元素的含量。The carbon layer refers to a cladding layer whose material is pure carbon, or whose material is mainly carbon but contains doping elements, where carbon is the main body means that the content of carbon in the carbon layer is greater than the content of doping elements.
负极活性材料的粒径为纳米级是指负极活性材料的粒径≤100nm。The particle size of the negative electrode active material is nanoscale means that the particle size of the negative electrode active material is ≤100nm.
本申请实施例的技术方案中,利用氮化硅层包覆于硅核的表面,抑制硅在嵌/脱锂过程中的体积膨胀,提高其电化学循环寿命,由于硅和氮化硅导电性能较差,因此通过最外层包覆的碳层,显著提高负极活性材料的导电性,使负极活性材料的电化学性能充分发挥,并且该负极活性材料的粒径为纳米级,相比于微米级的负极活性材料,其锂离子扩散距离更短,比表面积更大,嵌锂位点更多,因此其电化学性能更佳。综上,负极活性材料利用结构、材料以及粒径的配合,缓解现有硅基负极活性材料的倍率性能差及循环寿命短的现状。In the technical solution of the embodiment of the present application, a silicon nitride layer is used to coat the surface of the silicon core to suppress the volume expansion of silicon during the intercalation/delithiation process and improve its electrochemical cycle life. Due to the conductive properties of silicon and silicon nitride Poor, so through the carbon layer coated on the outermost layer, the conductivity of the negative electrode active material is significantly improved, so that the electrochemical performance of the negative electrode active material can be fully exerted, and the particle size of the negative electrode active material is nanometer, compared to micron The negative electrode active material of the grade has a shorter lithium ion diffusion distance, a larger specific surface area, and more lithium intercalation sites, so its electrochemical performance is better. To sum up, the negative electrode active material utilizes the combination of structure, material and particle size to alleviate the current situation of poor rate performance and short cycle life of existing silicon-based negative electrode active materials.
根据本申请的一些实施例,可选地,负极活性材料的粒径为30nm-90nm。According to some embodiments of the present application, optionally, the particle diameter of the negative electrode active material is 30nm-90nm.
上述粒径范围内的负极活性材料具有比表面积大,嵌锂位点多的优点,因此其电化学性能佳,可提高负极活性材料的库伦效率及循环寿命。The negative electrode active material within the above particle size range has the advantages of large specific surface area and many lithium intercalation sites, so its electrochemical performance is good, and the Coulombic efficiency and cycle life of the negative electrode active material can be improved.
作为示例,负极活性材料的粒径例如包括但不局限于为30nm、40nm、50nm、60nm、70nm、80nm和90nm等中的任意一个值或者任意两个值之间的范围。As an example, the particle size of the negative electrode active material includes, but is not limited to, any one of 30nm, 40nm, 50nm, 60nm, 70nm, 80nm and 90nm, or a range between any two values.
根据本申请的一些实施例,可选地,氮化硅层的厚度为6nm-8nm。According to some embodiments of the present application, optionally, the thickness of the silicon nitride layer is 6nm-8nm.
由于负极活性材料为颗粒状,因此,氮化硅层的厚度是指氮化硅层在负极活性材料径向的厚度。Since the negative electrode active material is granular, the thickness of the silicon nitride layer refers to the thickness of the silicon nitride layer in the radial direction of the negative electrode active material.
上述范围内的氮化硅的厚度合理,可提高氮化硅在嵌锂过程中锂离子的导电性,若氮化硅层过薄,其对硅核脱嵌锂时的体积膨胀限制作用不佳,降低其电化学循环寿命,过厚则影响负极活性材料的嵌锂容量。The thickness of silicon nitride within the above range is reasonable, which can improve the conductivity of lithium ions in the process of lithium intercalation of silicon nitride. If the silicon nitride layer is too thin, it will not have a good effect on the volume expansion limit when the silicon core deintercalates lithium. , reduce its electrochemical cycle life, and if it is too thick, it will affect the lithium intercalation capacity of the negative electrode active material.
作为示例,氮化硅层的厚度例如包括但不局限于为6nm、6.5nm、7nm、7.2nm、7.5nm和8nm等中的任意一个值或者任意两个值之间的范围。As an example, the thickness of the silicon nitride layer includes, but is not limited to, any value among 6nm, 6.5nm, 7nm, 7.2nm, 7.5nm and 8nm, or a range between any two values.
根据本申请的一些实施例,可选地以硅核与氮化硅层的总重量为100%计,硅核的质量分数为65%-85%。According to some embodiments of the present application, optionally, based on the total weight of the silicon core and the silicon nitride layer as 100%, the mass fraction of the silicon core is 65%-85%.
上述范围内硅核含量合理,使负极活性材料具有较佳的比容量,也有利于氮化硅层抑制其膨胀。A reasonable silicon core content within the above range enables the negative electrode active material to have a better specific capacity, and is also beneficial to suppress the expansion of the silicon nitride layer.
作为示例,以硅核与氮化硅层的总重量为100%计,硅核的质量分数为例如包括但不局限于为65%、70%、75%、80%、85%、90%、95%和100%等中的任意一个值或者任意两个值之间的范围。As an example, based on the total weight of the silicon core and the silicon nitride layer as 100%, the mass fraction of the silicon core includes, but is not limited to, 65%, 70%, 75%, 80%, 85%, 90%, Any one of 95% and 100% or a range between any two values.
根据本申请的一些实施例,可选地,以负极活性材料的总重量为100%计,碳层的质量分数为15%-20%。According to some embodiments of the present application, optionally, based on the total weight of the negative electrode active material being 100%, the mass fraction of the carbon layer is 15%-20%.
上述范围内碳层占比合理,能够有效提高负极活性材料的导电性,提高负极活性材料的倍率性能,增强其库伦效率。The proportion of the carbon layer within the above range is reasonable, which can effectively improve the conductivity of the negative electrode active material, improve the rate performance of the negative electrode active material, and enhance its Coulombic efficiency.
作为示例,以负极活性材料的总重量为100%计,碳层的质量分数例如包括但不局限于为15%、16%、17%、18%、19%和20%等中的任意一个值或者任意两个值之间的范围。As an example, based on the total weight of the negative electrode active material as 100%, the mass fraction of the carbon layer includes, but is not limited to, any value in 15%, 16%, 17%, 18%, 19% and 20% etc. Or a range between any two values.
根据本申请的一些实施例,可选地,碳层含有石墨碳,进一步可选地,碳层含有石墨烯。According to some embodiments of the present application, optionally, the carbon layer contains graphitic carbon, and further optionally, the carbon layer contains graphene.
碳层含有石墨烯的设置可进一步提高负极活性材料的导电性。The arrangement of the carbon layer containing graphene can further improve the conductivity of the negative electrode active material.
根据本申请的一些实施例,本申请还提供了一种负极极片,其包括负极集流体及设置于负极集流体上的负极活性物质层,负极活性物质层包括上述任一方案的负极活性材料。According to some embodiments of the present application, the present application also provides a negative electrode sheet, which includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material of any of the above schemes .
根据本申请的一些实施例,本申请还提供了一种电池,其包括以上任一方案的负极极片。According to some embodiments of the present application, the present application also provides a battery, which includes the negative electrode sheet of any one of the above schemes.
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案的电池,并且电池用于为用电装置提供电能。According to some embodiments of the present application, the present application also provides an electric device, including the battery of any one of the above schemes, and the battery is used to provide electric energy for the electric device.
用电装置可以是前述任一应用电池的设备或系统。The electric device may be any of the aforementioned devices or systems using batteries.
根据本申请的一些实施例,本申请提供了一种负极活性材料的制备方法,其包括:在具有阴极和阳极的直流电弧反应室内,以硅块作为阳极且在反应气体的气氛下,使阳极和阴极之间发生直流电弧放电,以生成负极活性材料;其中,反应气体能够经直流电弧放电产生的高温转变为等离子体态的氮原子、氢原子以及碳原子。According to some embodiments of the present application, the present application provides a method for preparing a negative electrode active material, which includes: using a silicon block as an anode in a DC arc reaction chamber having a cathode and an anode, and making the anode A DC arc discharge occurs between the cathode and the cathode to generate negative electrode active materials; wherein, the reaction gas can be transformed into nitrogen atoms, hydrogen atoms and carbon atoms in the plasma state through the high temperature generated by the DC arc discharge.
其中,直流电弧反应是在直流电弧反应器中进行,直流电弧反应器具有冷却系统,用于在直流电弧反应时降低反应室内壁的温度,避免发生安全事故,且便于制得的负极活性材料附着于直流电弧反应室的内壁,直流电弧反应器可直接购买于市面,在此不做限定,直流电弧反应室是指直流电弧反应器进行直流电弧放电的腔体。Among them, the DC arc reaction is carried out in a DC arc reactor, and the DC arc reactor has a cooling system, which is used to reduce the temperature of the inner wall of the reaction chamber during the DC arc reaction, to avoid safety accidents, and to facilitate the adhesion of the prepared negative active material Regarding the inner wall of the DC arc reaction chamber, the DC arc reactor can be directly purchased in the market, and there is no limitation here. The DC arc reaction chamber refers to the cavity where the DC arc reactor performs DC arc discharge.
硅块是指材质为硅、具有一定形状且由非堆积的形式所得的固体,硅块的形状可以为规则或不规则的饼状、片状、块状、棒状等,本领域技术人员可根据实际需求选择,在此不做具体限定。Silicon block refers to a solid material made of silicon, which has a certain shape and is obtained in a non-accumulated form. The shape of silicon block can be regular or irregular cake, sheet, block, rod, etc. Those skilled in the art can according to The actual demand selection is not specifically limited here.
电弧是指阴极和阳极在一定电压下由气态带电粒子,如电子或离子,维持导电的现象。Arcing refers to the phenomenon that the cathode and anode are kept electrically conductive by gaseous charged particles, such as electrons or ions, under a certain voltage.
可以理解的是,以硅块作为阳极,因此实际使用过程中将硅块放置于直流电弧反应室内通电的导电金属座上(例如为铜座),导电金属座与阴极之间能够经电弧形成回路,从而实现以硅块作为阳极。It can be understood that the silicon block is used as the anode, so in actual use, the silicon block is placed on a conductive metal seat (such as a copper seat) that is energized in the DC arc reaction chamber, and a circuit can be formed between the conductive metal seat and the cathode through an arc. , so that the silicon block can be used as the anode.
直流电弧放电反应是指:阴极和阳极之间产生的直流电弧的弧焰产生了达到上千摄氏度的高温,直流电弧的弧焰作为高能态生长物质供给的热源,以弧焰为热源的中心,热源自内到外存在一定的温度梯度,热源自内到外温度逐渐降低,负极活性材料的生长过程在此热源区内完成。具体地,首先,硅块在弧焰内部被蒸发为气态硅原子,反应气体能够经直流电弧放电产生的高温转变为等离子体态的氮原子、氢原子以及碳原子,而硅的形核温度>氮化硅形核温度>碳的形核温度,因此当热源温度降低到硅的熔点(约1414℃),硅纳米粒子开始自发形核长大并随着硅蒸汽等流动到热源温度降低到较低的氮化温度(约1200℃),此时氮化硅开始在硅纳米粒子表面进行异质形核,长成一层氮化硅包覆层,继续流动至远离弧焰的焰心区域,温度继续降低至碳原子形核温度,使碳原子开始在氮化硅表面生长成为碳层,最终形成硅核/氮化硅层/碳层三层核壳结构且尺寸为纳米级的负极活性材料。The DC arc discharge reaction refers to: the arc flame of the DC arc generated between the cathode and the anode generates a high temperature of thousands of degrees Celsius, and the arc flame of the DC arc is used as a heat source for the high-energy state growth material, with the arc flame as the center of the heat source, There is a certain temperature gradient from the inside to the outside of the heat source, and the temperature gradually decreases from the inside to the outside of the heat source, and the growth process of the negative electrode active material is completed in this heat source area. Specifically, first, the silicon block is evaporated into gaseous silicon atoms inside the arc flame, and the reaction gas can be converted into plasma nitrogen atoms, hydrogen atoms, and carbon atoms through the high temperature generated by DC arc discharge, and the nucleation temperature of silicon > nitrogen The nucleation temperature of silicon oxide is greater than the nucleation temperature of carbon, so when the temperature of the heat source is lowered to the melting point of silicon (about 1414°C), silicon nanoparticles begin to nucleate and grow spontaneously, and the temperature of the heat source decreases to a lower level with the flow of silicon vapor, etc. Nitriding temperature (about 1200°C), at this time, silicon nitride begins to undergo heterogeneous nucleation on the surface of silicon nanoparticles, grows into a layer of silicon nitride coating, continues to flow to the flame core area away from the arc flame, and the temperature continues Lower the nucleation temperature of carbon atoms, so that carbon atoms start to grow into carbon layers on the surface of silicon nitride, and finally form a negative electrode active material with a three-layer core-shell structure of silicon core/silicon nitride layer/carbon layer and a nanoscale size.
其中,氢原子用于促进反应气体离子化为等离子体态的氮原子以及碳原子。Among them, the hydrogen atoms are used to promote the ionization of the reactive gas into nitrogen atoms and carbon atoms in plasma state.
等离子体是指:由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质。Plasma refers to an ionized gaseous substance composed of positive and negative ions produced by ionized atoms and atomic groups after some electrons have been deprived.
本申请实施例的技术方案中,利用直流电弧法一步制备粒径为纳米级且结构为硅核/氮化硅层/碳层的负极活性材料,该制备方法操作简单且制备效率高,并且采用直流电弧法制备的负极活性材料各层结构致密,粒度球形度高且粒度分布均匀。In the technical solution of the embodiment of the present application, a negative electrode active material with a particle size of nanoscale and a structure of silicon core/silicon nitride layer/carbon layer is prepared in one step by using a direct current arc method. The preparation method is simple to operate and has high preparation efficiency. Each layer of the negative electrode active material prepared by the direct current arc method has a compact structure, high particle size sphericity and uniform particle size distribution.
氮化硅层可以缓冲硅核在循环过程中体积膨胀产生的应力,其与电解液反应产生氮化锂相,存在于固体电解质界面膜中,可以促进锂离子的传递,碳包覆层可以进一步提高复合材料整体结构的稳定性及电极的大电流充放电能力,利用氮化硅层和碳层的原位引入,可使各层稳定的连接在一起,且包覆更为均匀,粒径更为均一化,因此可进一步提高负极活性材料的电化学性能的长效稳定性,使其具有较佳的循环寿命。The silicon nitride layer can buffer the stress generated by the volume expansion of the silicon core during the cycle. It reacts with the electrolyte to produce a lithium nitride phase, which exists in the solid electrolyte interface film and can promote the transfer of lithium ions. The carbon coating layer can further Improve the stability of the overall structure of the composite material and the high-current charge-discharge capability of the electrode. Using the in-situ introduction of the silicon nitride layer and the carbon layer, the layers can be stably connected together, and the coating is more uniform and the particle size is smaller. For uniformity, the long-term stability of the electrochemical performance of the negative electrode active material can be further improved, so that it has a better cycle life.
可以理解的是,反应气体为碳、氢及氮组成的气态有机化合物或混合物,为了避免引入杂质,可选地,反应气体为仅由碳、氢及氮组成的气态有机化合物或混合物。It can be understood that the reaction gas is a gaseous organic compound or mixture composed of carbon, hydrogen and nitrogen. In order to avoid introducing impurities, the reaction gas is optionally a gaseous organic compound or mixture composed only of carbon, hydrogen and nitrogen.
示例性地,碳原子以及氢原子可由烷烃、炔烃和烯烃中的至少一种提供,出于成本考虑以及便于离子化,碳原子以及氢原子可由C1-4烷烃、C1-4炔烃及C1-4烯烃中的至少一种提供,可选地,碳原子以及氢原子可由C1-4烷烃、C1-2炔烃中的至少一种提供。氢原子还可以由氢气提供。氮原子可以由氮气、氨气中的至少一种提供。Exemplarily, carbon atoms and hydrogen atoms can be provided by at least one of alkanes, alkynes and alkenes. For cost considerations and to facilitate ionization, carbon atoms and hydrogen atoms can be provided by C 1-4 alkanes, C 1-4 alkynes And at least one of C 1-4 alkene provides, alternatively, carbon atoms and hydrogen atoms can be provided by at least one of C 1-4 alkane, C 1-2 alkyne. Hydrogen atoms can also be provided by hydrogen gas. Nitrogen atoms may be provided by at least one of nitrogen gas and ammonia gas.
需要说明的是,当氢原子至少部分由氢气提供时,由于氢气活泼,因此向直流电弧反应室内通入反应气体的过程中,先通入氢气,再通入其他气体。It should be noted that when the hydrogen atoms are at least partly provided by hydrogen gas, since the hydrogen gas is active, the hydrogen gas is first introduced into the DC arc reaction chamber, and then other gases are introduced.
可选地,为了避免杂质干扰,反应气体的原料纯度>99.9%。Optionally, in order to avoid interference from impurities, the raw material purity of the reaction gas is >99.9%.
为了避免杂质干扰,在将反应气体通入直流电弧反应室内之前,可对直流电弧反应室抽真空,例如抽至真空度为10-2-10-5pa。In order to avoid impurity interference, before the reaction gas is introduced into the DC arc reaction chamber, the DC arc reaction chamber can be evacuated, for example, to a vacuum degree of 10 -2 -10 -5 Pa.
其中,阴极和阳极可以横向布置于直流电弧反应室内,为了便于放置硅块,可选地,阴极和阳极竖向布置于直流电弧反应室内,且阴极位于阳极的上方。Wherein, the cathode and the anode can be arranged horizontally in the DC arc reaction chamber. For the convenience of placing the silicon block, optionally, the cathode and the anode are vertically arranged in the DC arc reaction chamber, and the cathode is located above the anode.
为了稳弧,可选地,阴极面向阳极的一端为锥形。In order to stabilize the arc, optionally, the end of the cathode facing the anode is tapered.
在一些实施例中,可选地,直流电弧的放电电流为10A-200A,电压为5V-30V。In some embodiments, optionally, the discharge current of the DC arc is 10A-200A, and the voltage is 5V-30V.
利用放电电流和电压的合理选择,使其能够产生稳定的直流电弧,在保证制备负极活性材料的安全性的前提下提高产率。若放电电流和电压过大会造成安全隐患,若放电电流和电压过小,则负极活性材料的产率降低。The reasonable selection of the discharge current and voltage enables it to generate a stable DC arc, and improves the yield under the premise of ensuring the safety of preparing negative electrode active materials. If the discharge current and voltage are too high, it will cause potential safety hazards, and if the discharge current and voltage are too small, the yield of the negative electrode active material will decrease.
作为示例,直流电弧的放电电流例如包括但不局限于为10A、30A、50A、75A、100A、125A、150A、175A和200A等中的任意一个值或者任意两个值之间的范围。As an example, the discharge current of the DC arc includes, but is not limited to, any one of 10A, 30A, 50A, 75A, 100A, 125A, 150A, 175A, and 200A, or a range between any two values.
作为示例,直流电弧的电压例如包括但不局限于为5V、7V、10V、15V、20V、25V和30V等中的任意一个值或者任意两个值之间的范围。As an example, the voltage of the DC arc includes, but is not limited to, any one of 5V, 7V, 10V, 15V, 20V, 25V, and 30V, or a range between any two values.
在一些实施例中,可选地,阴极与阳极之间的间距为10mm-25mm。In some embodiments, optionally, the distance between the cathode and the anode is 10mm-25mm.
阴极与阳极之间的间距是指阴极和阳极之间的最短距离,也即是当阴极面向阳极的一端为锥面时,阴极与阳极之间的间距是指阴极的尖端与阳极面向该尖端的一端面之间的距离。The distance between the cathode and the anode refers to the shortest distance between the cathode and the anode, that is, when the end of the cathode facing the anode is a tapered surface, the distance between the cathode and the anode refers to the distance between the tip of the cathode and the anode facing the tip. The distance between one end face.
上述间距范围内,可产生稳定的直流电弧,若间距过大,直流电弧会断,无法形成稳定的直流电弧,若间距过小导致阴阳极粘连短路,容易损坏设备并且造成安全隐患。Within the above distance range, a stable DC arc can be generated. If the distance is too large, the DC arc will be broken and a stable DC arc cannot be formed. If the distance is too small, the anode and cathode will be bonded and short circuited, which will easily damage the equipment and cause safety hazards.
可以理解的是,实际使用过程中,阴极与阳极之间的间距可调,从而选择合适的间距进行直流电弧放电反应。It can be understood that, in actual use, the distance between the cathode and the anode can be adjusted, so that an appropriate distance can be selected for DC arc discharge reaction.
作为示例,阴极与阳极之间的间距例如包括但不局限于为10mm、12mm、15mm、18mm、20mm、23mm和25mm等中的任意一个值或者任意两个值之间的范围。As an example, the distance between the cathode and the anode includes, but is not limited to, any one of 10mm, 12mm, 15mm, 18mm, 20mm, 23mm and 25mm, or a range between any two values.
在一些实施例中,可选地,阴极的材质为钨或石墨。In some embodiments, optionally, the material of the cathode is tungsten or graphite.
上述两种材质不仅耐高温,而且不与等离子气体反应,避免引入杂质。The above two materials are not only resistant to high temperature, but also do not react with plasma gas to avoid the introduction of impurities.
在一些实施例中,可选地,碳原子和氮原子的摩尔比为(1.5:1)-(4.5:1)。In some embodiments, optionally, the molar ratio of carbon atoms to nitrogen atoms is (1.5:1)-(4.5:1).
此处的碳原子和氮原子是指反应气体经直流电弧放电产生的高温转变为等离子体态的氮原子以及碳原子。The carbon atoms and nitrogen atoms here refer to the nitrogen atoms and carbon atoms that the reaction gas is transformed into plasma state by the high temperature generated by DC arc discharge.
上述碳原子和氮原子的配比合理,有利于控制形成的碳层及氮化硅层的厚度及含量。由于氢原子的作用为促进反应气体离子化,因此对于其含量在此不做限定。The above-mentioned ratio of carbon atoms and nitrogen atoms is reasonable, which is beneficial to control the thickness and content of the formed carbon layer and silicon nitride layer. Since the role of the hydrogen atoms is to promote the ionization of the reaction gas, the content thereof is not limited here.
作为示例,碳原子和氮原子的摩尔比例如包括但不局限于为1.5:1、2:1、2.5:1、3:1、4:1和4.5:1等中的任意一个值或者任意两个值之间的范围。As an example, the molar ratio of carbon atoms to nitrogen atoms includes, but is not limited to, any one of 1.5:1, 2:1, 2.5:1, 3:1, 4:1, and 4.5:1, or any two of them. range between values.
在一些实施例中,可选地,反应气体为甲烷、氮气以及氢气的混合物。In some embodiments, optionally, the reaction gas is a mixture of methane, nitrogen and hydrogen.
上述反应气体的各原料不仅易于在直流电弧产生的高温下离子化,而且易于获得,成本较低,可降低负极活性材料的制备成本。The raw materials of the above-mentioned reaction gases are not only easy to ionize under the high temperature generated by the direct current arc, but also easy to obtain and low in cost, which can reduce the preparation cost of the negative electrode active material.
在一些实施例中,可选地,直流电弧放电前,反应气体的总压力为38kpa-53kpa,甲烷、氮气以及氢气的分压比依次为25:(3-18):10。In some embodiments, optionally, before DC arc discharge, the total pressure of the reaction gas is 38kPa-53kPa, and the partial pressure ratios of methane, nitrogen and hydrogen are 25:(3-18):10 in sequence.
分压比是指当气体混合物中的某一种组分在相同的温度下占据气体混合物相同的体积时,该组分所形成的压力。The partial pressure ratio refers to the pressure formed by a certain component of a gas mixture when it occupies the same volume of the gas mixture at the same temperature.
由于直流电弧反应室的容积有限,且直流电弧放电反应为预先通入反应气体,反应过程中不额外通入反应气体,因此上述总压力范围内,不仅使直流电弧反应室内具有足够的反应气体,而且有利于提高直流电弧放电反应的安全性。此总压力条件下的分压比条件下,可使甲烷和氮气在直流电弧放电时的离子化速率可达到1:1,从而有利于控制获得离子化后的碳原子和氮原子的摩尔比,从而控制形成的碳层及氮化硅层的厚度及含量,同时氢含量合理,有利于促进甲烷、氮气离子化。作为示例,直流电弧放电前,甲烷、氮气以及氢气的分压比依次例如包括但不局限于为25:3:10、25:5:10、25:10:10、25:12:10、25:13:10、25:15:10、25:16:10、25:17:10和25:18:10等中的任意一个值或者任意两个值之间的范围。Since the volume of the DC arc reaction chamber is limited, and the DC arc discharge reaction is to feed the reaction gas in advance, no additional reaction gas is introduced during the reaction process, so within the above total pressure range, not only the DC arc reaction chamber has enough reaction gas, And it is beneficial to improve the safety of DC arc discharge reaction. Under the partial pressure ratio under this total pressure condition, the ionization rate of methane and nitrogen can reach 1:1 during DC arc discharge, which is beneficial to control the molar ratio of ionized carbon atoms and nitrogen atoms, In this way, the thickness and content of the formed carbon layer and silicon nitride layer are controlled, and the hydrogen content is reasonable, which is conducive to promoting the ionization of methane and nitrogen. As an example, before DC arc discharge, the partial pressure ratios of methane, nitrogen and hydrogen include but are not limited to 25:3:10, 25:5:10, 25:10:10, 25:12:10, 25 Any one of :13:10, 25:15:10, 25:16:10, 25:17:10, and 25:18:10, or the range between any two values.
可选地,直流电弧放电前,甲烷、氮气以及氢气的分压比依次为25:(10-15):10。Optionally, before DC arc discharge, the partial pressure ratios of methane, nitrogen and hydrogen are 25:(10-15):10 in sequence.
作为示例,直流电弧放电前,反应气体的总压力例如包括但不局限为38kpa、40kPa、43kPa、45kPa、47kPa、49kPa、50kPa和53kPa等中的任意一个值或者任意两个值之间的范围。As an example, before DC arc discharge, the total pressure of the reaction gas includes, but is not limited to, any one of 38kPa, 40kPa, 43kPa, 45kPa, 47kPa, 49kPa, 50kPa, and 53kPa, or a range between any two values.
在一些实施例中,可选地,制备方法还包括:在直流电弧放电反应结束后,冷却3h-5h后,通入钝化气体进行钝化处理,收集附着于直流电弧反应室的内壁的负极活性材料。In some embodiments, optionally, the preparation method further includes: after the DC arc discharge reaction is finished, after cooling for 3h-5h, pass passivation gas to perform passivation treatment, and collect the negative electrode attached to the inner wall of the DC arc reaction chamber active material.
利用钝化处理以钝化负极活性材料的表面能,便于安全的收集负极活性材料。The passivation treatment is used to passivate the surface energy of the negative electrode active material, so as to facilitate safe collection of the negative electrode active material.
需要注意的是,冷却过程中水冷系统开启,以降低直流电弧放电反应后获得的产品的温度,降低其活性。It should be noted that the water cooling system is turned on during the cooling process to reduce the temperature of the product obtained after the DC arc discharge reaction and reduce its activity.
在一些实施例中,可选地,钝化气体为1kPa-2kPa的空气或者氧气,钝化处理的时间为6h-10h。In some embodiments, optionally, the passivation gas is air or oxygen at 1kPa-2kPa, and the passivation treatment time is 6h-10h.
上述钝化处理操作容易且成本低,钝化时间过短,存在负极活性材料的表面能依然较大,存在安全隐患。The above-mentioned passivation treatment is easy to operate and low in cost, and the passivation time is too short, and the surface energy of the negative electrode active material is still relatively large, posing potential safety hazards.
作为示例,钝化气体的压力包括但不局限为1kPa、1.2kPa、1.5kPa、1.7kPa和2kPa等中的任意一个值或者任意两个值之间的范围。As an example, the pressure of the passivation gas includes, but is not limited to, any one value among 1 kPa, 1.2 kPa, 1.5 kPa, 1.7 kPa, and 2 kPa, or a range between any two values.
作为示例,钝化处理的时间包括但不局限为6h、8h、9h和10h等中的任意一个值或者任意两个值之间的范围。As an example, the passivation treatment time includes but is not limited to any one of 6h, 8h, 9h and 10h or a range between any two values.
可选地,在钝化处理后,可根据实际的需求对负极活性材料进行筛分,以获得特定粒径的负极活性材料。Optionally, after the passivation treatment, the negative electrode active material can be sieved according to actual needs, so as to obtain the negative electrode active material with a specific particle size.
下面列举了一些具体实施例以更好地对本申请进行说明。Some specific examples are listed below to better illustrate the application.
以下实施例以及对比例中,直流电弧反应器为辽宁沈阳北宇真空科技有限公司生产的NP-450型号。In the following examples and comparative examples, the DC arc reactor is the NP-450 model produced by Liaoning Shenyang Beiyu Vacuum Technology Co., Ltd.
实施例以及对比例Examples and comparative examples
1)取纯度大于99.9%的硅块放置于直流电弧反应器的阳极铜座上作为阳极,阴极位于阳极的上方,阴极面向阳极的一端为锥形,调整阳极和阴极之间的两极间距如表1所示。1) Take a silicon block with a purity greater than 99.9% and place it on the anode copper seat of the DC arc reactor as the anode, the cathode is located above the anode, and the end of the cathode facing the anode is tapered, and the distance between the anode and the cathode is adjusted as shown in the table 1.
2)将反应室抽真空至约10-2Pa,通入如表1所示的反应气体。2) The reaction chamber is evacuated to about 10 -2 Pa, and the reaction gas shown in Table 1 is introduced.
3)开启直流电弧反应器的冷却系统,接通电源并起弧,按照表1所示数据调节各实施例对应的电流和两极间距并稳弧,使生成的负极活性材料沉积于直流电弧反应室的内壁上。3) Turn on the cooling system of the DC arc reactor, turn on the power and start the arc, adjust the current and the distance between the poles corresponding to each embodiment according to the data shown in Table 1 and stabilize the arc, so that the generated negative electrode active material is deposited in the DC arc reaction chamber on the inner wall.
4)对直流电弧反应室内充入钝化气体,经过钝化处理收集粉体,得到具有核壳结构的硅核/氮化硅层/碳层复合材料。4) Fill the DC arc reaction chamber with a passivation gas, collect the powder after passivation treatment, and obtain a silicon core/silicon nitride layer/carbon layer composite material with a core-shell structure.
性能测试:Performance Testing:
(1)各实施例及对比例制得的复合材料分别分散在分散剂乙醇中,超声30分钟后,将样品加入到激光粒度(舟东百特Bettersize 2600)仪内,测试负极活性材料的D50粒径。(1) The composite materials prepared in each embodiment and comparative example were respectively dispersed in the dispersant ethanol, and after ultrasonication for 30 minutes, the sample was added to the laser particle size (Zhoudong Bettersize 2600) instrument, and the D50 of the negative electrode active material was tested particle size.
(2)各实施例及对比例制得的复合材料分别分散在分散剂乙醇中,超声40分钟后形成稀悬浮液,用毛细管取少量悬浮液滴于附有碳膜的铜微栅上,室温下干燥2h后放入透射电镜(Tecnai G2 F30 S-TWIN)样品杆中进行观察,获得各实施例以及对比例制得的复合材料的TEM图,根据TEM图测得氮化硅层的厚度。(2) The composite material that each embodiment and comparative example make are respectively dispersed in the dispersant ethanol, form dilute suspension after ultrasonic 40 minutes, get a small amount of suspension and drip on the copper microgrid that is attached with carbon film with capillary, room temperature After drying for 2 hours, put it into a transmission electron microscope (Tecnai G2 F30 S-TWIN) sample rod for observation, obtain TEM images of the composite materials prepared in each example and comparative example, and measure the thickness of the silicon nitride layer according to the TEM images.
(3)电化学性能测试:(3) Electrochemical performance test:
将各实施例及对比例制备得到的硅/氮化硅层/碳层复合材料分别作为负极活性材料,与导电剂Super P、粘结剂CMC+SBR依次按照质量比8:1:1混合成浆料,涂在铜箔上制备负极电极,80℃下真空干燥12h;接着将通过压片得到的负极膜片在110℃恒温干燥箱中干燥24h,再于80℃下真空干燥12h,并用冲头冲成直径为14mm的极片转入真空手套箱中备用。The silicon/silicon nitride layer/carbon layer composite materials prepared in each embodiment and comparative example were respectively used as the negative electrode active material, and were mixed with the conductive agent Super P and the binder CMC+SBR in sequence according to the mass ratio of 8:1:1 to form The slurry was coated on the copper foil to prepare the negative electrode, and dried in vacuum at 80°C for 12h; then the negative electrode membrane obtained by pressing was dried in a constant temperature drying oven at 110°C for 24h, and then vacuum-dried at 80°C for 12h, and washed with a punch Head-punched into pole pieces with a diameter of 14 mm and transferred to a vacuum glove box for later use.
CR2025型扣式锂离子电池的组装是以金属锂片作正极,以(LiPF6/EC+DEC)作电解液,以上述直径为14mm的极片为负极极片,隔膜采用微孔聚丙烯膜(PP),全部操作均在手套箱中进行;记作扣式锂离子电池。The assembly of the CR2025 button-type lithium-ion battery is to use metal lithium as the positive electrode, use (LiPF6/EC+DEC) as the electrolyte, use the above-mentioned pole piece with a diameter of 14mm as the negative pole piece, and use a microporous polypropylene film ( PP), all operations were carried out in a glove box; recorded as a button-type lithium-ion battery.
2)采用武汉蓝电(LAND 2001A)电化学性能测试仪对实施例和对比例对应制得的扣式锂离子电池进行电化学性能测试,电压范围为0.01-2.00V(vs.Li/Li+),电流密度为0.1C-2C(1C:1000mA/g)。2) The electrochemical performance test was carried out on the button-type lithium-ion batteries prepared in the examples and comparative examples by using the Wuhan Landian (LAND 2001A) electrochemical performance tester, and the voltage range was 0.01-2.00V (vs.Li/Li+) , the current density is 0.1C-2C (1C: 1000mA/g).
测得在0.1C的充放电条件下循环充放电200次后的放电比容量,以及循环200次后的库伦效率。The discharge specific capacity and the Coulombic efficiency after 200 cycles of charging and discharging under the condition of 0.1C charging and discharging were measured.
测得制作的扣式锂离子电池在2C(1C:1000mA/g)下的放电比容量。The discharge specific capacity of the fabricated button lithium ion battery at 2C (1C: 1000mA/g) was measured.
结果如表2所示。The results are shown in Table 2.
表1实施例1-20以及对比例1-9试验参数Table 1 embodiment 1-20 and comparative example 1-9 test parameter
表2测试结果Table 2 Test results
以硅核与氮化硅层的总重量为M,表2中硅核的质量分数是指硅核在M中所占的质量分数。碳层的质量分数是指碳层在复合材料中所占的质量分数。Taking the total weight of the silicon core and the silicon nitride layer as M, the mass fraction of the silicon core in Table 2 refers to the mass fraction of the silicon core in M. The mass fraction of the carbon layer refers to the mass fraction of the carbon layer in the composite material.
对比例1-2及实施例1-3的区别仅在于阴极和阳极之间的间距改变,根据对比例1-2及实施例1-3可以看出间距对于复合材料的D50粒径及氮化硅层的厚度无影响。实施例1-3中的阴极和阳极之间的间距为10mm-25mm,对比例1的间距小于10mm,粉体制备过程中阴、阳极容易粘连;对比例2中的间距大于25mm,粉体制备过程中阴、阳极容易断弧。通过实施例1-3以及对比例1-2对比可知,实施例1-3以及对比例1-2制备的复合材料的D50粒径及氮化硅层的厚度相同的条件下,实施例1-3的复合材料的循环性能、倍率性能优于对比例1-2。The difference between comparative example 1-2 and embodiment 1-3 is only that the spacing between the cathode and the anode changes. According to comparative example 1-2 and embodiment 1-3, it can be seen that the spacing has a great influence on the D50 particle size and nitriding of the composite material. The thickness of the silicon layer has no effect. The distance between the cathode and the anode in Examples 1-3 is 10mm-25mm, the distance in Comparative Example 1 is less than 10mm, and the cathode and anode are easy to stick during the powder preparation process; the distance in Comparative Example 2 is greater than 25mm, and the powder preparation During the process, the cathode and anode are easy to break the arc. Through the comparison of Example 1-3 and Comparative Example 1-2, it can be seen that under the same conditions of the D50 particle diameter and the thickness of the silicon nitride layer of the composite material prepared by Example 1-3 and Comparative Example 1-2, the results of Example 1-3 The cycle performance and rate performance of the composite material of 3 are better than those of Comparative Examples 1-2.
对比例3-4及实施例1、4-6的区别仅在于放电电流的改变。根据对比例3-4及实施例1、4-6可以看出放电电流对于复合材料的D50粒径及氮化硅层的厚度无影响。实施例1、4-6中的放电电流为10A-200A,对比例3的放电电流小于10A,电流过小,电弧不稳定;对比例4中的放电电流大于200A,电流过大,影响安全性。通过实施例1、4-6以及对比例3-4对比可知,实施例1、4-6以及对比例3-4制备的复合材料的D50粒径及氮化硅层的厚度相同的条件下,实施例1、4-6的复合材料的循环性能、倍率性能优于对比例3-4。The only difference between Comparative Examples 3-4 and Examples 1 and 4-6 lies in the change of the discharge current. According to Comparative Examples 3-4 and Examples 1 and 4-6, it can be seen that the discharge current has no effect on the D50 particle size of the composite material and the thickness of the silicon nitride layer. The discharge current in Examples 1 and 4-6 is 10A-200A, the discharge current in Comparative Example 3 is less than 10A, the current is too small, and the arc is unstable; the discharge current in Comparative Example 4 is greater than 200A, and the current is too large, which affects safety . Through the comparison of Example 1, 4-6 and Comparative Example 3-4, it can be seen that under the same conditions of the D50 particle diameter and the thickness of the silicon nitride layer of the composite material prepared by Example 1, 4-6 and Comparative Example 3-4, The cycle performance and rate performance of the composite materials of Examples 1 and 4-6 are better than those of Comparative Examples 3-4.
对比例5-6及实施例1、7-9的区别仅在于电压的改变。根据对比例5-6及实施例1、7-9可以看出电压对于复合材料的D50粒径及氮化硅层的厚度无影响。实施例1、7-9中的电压为5V-30V,对比例5的电压小于5V,电压过小,电弧不稳定;对比例6中的电压大于30V,电压过大,影响安全性。通过实施例1、7-9以及对比例5-6对比可知,实施例1、7-9以及对比例5-6制备的复合材料的D50粒径及氮化硅层的厚度相同的条件下,实施例1、7-9的复合材料的循环性能、倍率性能优于对比例5-6。The difference between Comparative Examples 5-6 and Examples 1 and 7-9 is only the change of voltage. According to Comparative Examples 5-6 and Examples 1 and 7-9, it can be seen that the voltage has no effect on the D50 particle size of the composite material and the thickness of the silicon nitride layer. The voltage in Examples 1 and 7-9 is 5V-30V, the voltage in Comparative Example 5 is less than 5V, the voltage is too small, and the arc is unstable; the voltage in Comparative Example 6 is greater than 30V, the voltage is too large, which affects safety. Through the comparison of Examples 1, 7-9 and Comparative Examples 5-6, it can be seen that under the same conditions of the D50 particle diameter and the thickness of the silicon nitride layer of the composite material prepared by Example 1, 7-9 and Comparative Examples 5-6, The cycle performance and rate performance of the composite materials of Examples 1 and 7-9 are better than those of Comparative Examples 5-6.
对比例7-8及实施例1、10-14的区别仅在于氮气、甲烷及氢气添加量不同。实施例1、10-14中反应气体(氮气、甲烷及氢气)的总添加量为38kpa-53kpa,对比例7和对比例8中反应气体的总添加量在上述范围内,但是,实施例1、10-14中甲烷、氮气的添加量(分压比)之比为25:(3-18),导致离子化时理论上碳原子与氮原子摩尔比为(1.5:1)-(4.5:1),对比例7中甲烷、氮气的添加量(分压比)之比为25:20,从而导致离子化时理论上碳原子与氮原子摩尔比小于1.5:1,导致氮化硅层厚度过大,从而使其循环性能、倍率性能劣于实施例1的电化学性能。对比例8中甲烷、氮气的添加量(分压比)之比为25:2.5,从而导致离子化时理论上碳原子与氮原子摩尔比大于4.5:1,导致氮化硅层厚度过小,抑制硅核膨胀效果不佳,显著影响负极活性材料的循环性能、倍率性能,导致其电化学性能劣于实施例1、10-14的电化学性能。The difference between Comparative Examples 7-8 and Embodiments 1 and 10-14 is only that the amounts of nitrogen, methane and hydrogen added are different. The total addition amount of reaction gas (nitrogen, methane and hydrogen) in
根据实施例1、10-14可以看出,在甲烷、氮气的添加量(分压比)之比为25:(10-15)时,负极活性材料的循环性能、倍率性能更佳,并且氮原子的含量影响粒径的大小。According to Examples 1 and 10-14, it can be seen that when the ratio of the addition amount (partial pressure ratio) of methane and nitrogen is 25:(10-15), the cycle performance and rate performance of the negative electrode active material are better, and nitrogen The atomic content affects the particle size.
对比例9和实施例10的区别仅在于反应气体的总添加量不同,实施例10中反应气体的总添加量为38kpa,对比例9中反应气体的总添加量为19kpa,可以看出由于对比例中反应气体添加量较少,导致其浓度较低,因此负极活性材料的氮化硅层的厚度较小。The difference between comparative example 9 and
根据实施例15和实施例1可知,由于乙炔的离子化速率小于甲烷,因此添加较多乙炔以使其产生离子化的速率与氮气离子化速率匹配即可。根据实施例16和实施例1可知,在氮源的具体原料改变时,只需要调整根据其离子化产生氮原子的速率调节具体原料的量即可。According to Example 15 and Example 1, since the ionization rate of acetylene is lower than that of methane, it is sufficient to add more acetylene to match the ionization rate of nitrogen gas. According to Example 16 and Example 1, when the specific raw material of the nitrogen source is changed, it is only necessary to adjust the amount of the specific raw material according to the rate at which nitrogen atoms are generated by its ionization.
对比实施例16和实施例17可知,碳原子的含量将影响粒径的大小。Comparing Example 16 and Example 17, it can be seen that the content of carbon atoms will affect the particle size.
根据实施例17可知,氢原子可以仅由甲烷分解所得。According to Example 17, hydrogen atoms can be obtained only by decomposing methane.
根据实施例18和实施例1可知,阴极材质的改变会一定程度影响负极活性材料的循环性能、倍率性能。According to Example 18 and Example 1, it can be seen that the change of the cathode material will affect the cycle performance and rate performance of the negative electrode active material to a certain extent.
实施例19与实施例1的区别在于钝化气体不同,根据实施例1和实施例19可知,钝化气体的不同以及钝化时间的不同不会影响粒径和氮化硅厚度,因钝化气体影响负极活性材料的表面能,因此仅轻微影响负极活性材料的循环性能、倍率性能。The difference between Example 19 and Example 1 is that the passivation gas is different. According to Example 1 and Example 19, the difference in passivation gas and passivation time will not affect the particle size and silicon nitride thickness. The gas affects the surface energy of the negative electrode active material, so it only slightly affects the cycle performance and rate performance of the negative electrode active material.
实施例20与实施例1的区别在于钝化时间不同,根据实施例1以及实施例20可知,钝化时间的不同不会影响粒径和氮化硅厚度,但因钝化影响负极活性材料的表面能,因此仅轻微影响负极活性材料的循环性能、倍率性能。The difference between Example 20 and Example 1 is that the passivation time is different. According to Example 1 and Example 20, the difference in passivation time will not affect the particle size and silicon nitride thickness, but the passivation will affect the thickness of the negative electrode active material. Therefore, the surface energy only slightly affects the cycle performance and rate performance of the negative electrode active material.
图4为实施例1制得的复合材料的TEM图,根据图4可以看出,复合材料为三层,氮化硅层厚度约7nm。FIG. 4 is a TEM image of the composite material prepared in Example 1. It can be seen from FIG. 4 that the composite material has three layers, and the thickness of the silicon nitride layer is about 7 nm.
图5为实施例1制得的复合材料的XRD图谱。XRD测量方式为:采用日本岛津公司的X射线衍射仪(XRD-6000),使用铜靶为辐射光源(λ=0.15416nm),电压40kV,电流30mA,扫描速度为4°/min,扫描角度范围20°-80°。Figure 5 is the XRD spectrum of the composite material prepared in Example 1. The XRD measurement method is: adopt X-ray diffractometer (XRD-6000) of Shimadzu Corporation, use copper target as radiation source (λ=0.15416nm), voltage 40kV, current 30mA, scan speed 4°/min,
根据图5可以看出,同时存在硅相、氮化硅相以及碳相的特征峰,并且根据XRD图谱在25°左右的特征峰,说明碳含有石墨碳,进一步可通过与现有的石墨烯的XRD图谱对比可知,此时石墨碳应为石墨烯。According to Figure 5, it can be seen that there are characteristic peaks of silicon phase, silicon nitride phase and carbon phase at the same time, and according to the characteristic peaks of the XRD spectrum at about 25°, it shows that carbon contains graphitic carbon, which can be further combined with existing graphene Comparison of the XRD patterns shows that the graphitic carbon should be graphene at this time.
图6为实施例1制得的复合材料的负极电极在100mA/g电流密度下的循环性能图。图7为实施例1制得的复合材料的负极电极在100mA/g电流密度下的库伦效率图。根据图6以及图7,实施例1制得的复合材料的负极电极在100mA/g电流密度下,200次循环过后,比容量可以保持在1413mAh/g,库伦效率高达99.58%。FIG. 6 is a cycle performance diagram of the negative electrode of the composite material prepared in Example 1 at a current density of 100 mA/g. FIG. 7 is a Coulombic efficiency diagram of the negative electrode of the composite material prepared in Example 1 at a current density of 100 mA/g. According to Figure 6 and Figure 7, the negative electrode of the composite material prepared in Example 1 can maintain a specific capacity of 1413mAh/g after 200 cycles at a current density of 100mA/g, and the Coulombic efficiency is as high as 99.58%.
图8为实施例1制得的复合材料的负极电极的倍率性能图,以上述组装的CR2025型扣式锂离子电池使用武汉蓝电(LAND 2001A)电化学性能测试仪在0.1-2C(1C:1000mA/g)下的放电比容量,获得其在0.1C、0.5C、1C、1.5C、2C(1C:1000mA/g)不同倍率下的循环性能图。从图8中可以看出,复合材料在各个电流密度测试下循环稳定,且复合材料具有良好的倍率性能,当电流密度为2A/g时,放电比容量高893mAh/g。Fig. 8 is the rate performance diagram of the negative electrode electrode of the composite material that
综上,本申请提供的负极活性材料及其制备方法、负极极片、电池和用电设备,其能够改善硅基负极活性材料的倍率性能差及寿命低的技术问题。In summary, the negative electrode active material and its preparation method, negative electrode sheet, battery and electrical equipment provided by the present application can improve the technical problems of poor rate performance and low lifespan of silicon-based negative electrode active materials.
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210504950.2A CN115832237A (en) | 2022-05-10 | 2022-05-10 | Negative active material, preparation method thereof, negative pole piece, battery and electric equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210504950.2A CN115832237A (en) | 2022-05-10 | 2022-05-10 | Negative active material, preparation method thereof, negative pole piece, battery and electric equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115832237A true CN115832237A (en) | 2023-03-21 |
Family
ID=85522584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210504950.2A Pending CN115832237A (en) | 2022-05-10 | 2022-05-10 | Negative active material, preparation method thereof, negative pole piece, battery and electric equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115832237A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116344768A (en) * | 2023-04-10 | 2023-06-27 | 蜂巢能源科技股份有限公司 | A kind of silicon-based negative electrode material and its preparation method and application |
CN116799178A (en) * | 2023-06-19 | 2023-09-22 | 浙江锂宸新材料科技有限公司 | Silicon-carbon negative electrode material, preparation method thereof and lithium ion battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125877A (en) * | 1988-11-02 | 1990-05-14 | Semiconductor Energy Lab Co Ltd | Formation of protective film on solid body |
CN106532010A (en) * | 2016-12-21 | 2017-03-22 | 上海杉杉科技有限公司 | Silicon-silicon nitride-carbon composite material, preparation method and application method thereof |
KR20170130786A (en) * | 2016-05-19 | 2017-11-29 | 숭실대학교산학협력단 | Preparing method for carbon nanofibers composites comprising silicon/ silicon nitride and silicon carbide core-shell composites |
CN107482200A (en) * | 2017-08-09 | 2017-12-15 | 清华大学 | A silicon@silicon nitride@carbon core-shell composite material and its preparation method |
CN108183226A (en) * | 2017-12-30 | 2018-06-19 | 金雪莉 | The production method of submicron order silicon particle/silicon nitride/carbon composite |
US20180226641A1 (en) * | 2016-03-24 | 2018-08-09 | Lg Chem, Ltd. | Negative electrode and method for manufacturing same |
-
2022
- 2022-05-10 CN CN202210504950.2A patent/CN115832237A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125877A (en) * | 1988-11-02 | 1990-05-14 | Semiconductor Energy Lab Co Ltd | Formation of protective film on solid body |
US20180226641A1 (en) * | 2016-03-24 | 2018-08-09 | Lg Chem, Ltd. | Negative electrode and method for manufacturing same |
KR20170130786A (en) * | 2016-05-19 | 2017-11-29 | 숭실대학교산학협력단 | Preparing method for carbon nanofibers composites comprising silicon/ silicon nitride and silicon carbide core-shell composites |
CN106532010A (en) * | 2016-12-21 | 2017-03-22 | 上海杉杉科技有限公司 | Silicon-silicon nitride-carbon composite material, preparation method and application method thereof |
CN107482200A (en) * | 2017-08-09 | 2017-12-15 | 清华大学 | A silicon@silicon nitride@carbon core-shell composite material and its preparation method |
CN108183226A (en) * | 2017-12-30 | 2018-06-19 | 金雪莉 | The production method of submicron order silicon particle/silicon nitride/carbon composite |
Non-Patent Citations (2)
Title |
---|
梁静爽: ""硅基纳米复合材料电弧法合成及其电化学性能"", 《万方数据》, 30 April 2021 (2021-04-30), pages 79 - 104 * |
谢永辉: "等离子体电弧法制备硅化物、锌化物纳米结构的研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》, 15 December 2018 (2018-12-15), pages 020 - 366 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116344768A (en) * | 2023-04-10 | 2023-06-27 | 蜂巢能源科技股份有限公司 | A kind of silicon-based negative electrode material and its preparation method and application |
CN116799178A (en) * | 2023-06-19 | 2023-09-22 | 浙江锂宸新材料科技有限公司 | Silicon-carbon negative electrode material, preparation method thereof and lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries | |
WO2022002057A1 (en) | Silicon-oxygen composite negative electrode material, negative electrode, lithium-ion battery, and preparation methods therefor | |
CN104347857B (en) | Negative electrode of lithium ionic secondary battery and preparation method thereof, cathode pole piece of lithium ion secondary battery and lithium rechargeable battery | |
CN102157731B (en) | Silicon and carbon compound anode material of lithium ion battery and preparation method of silicon and carbon compound anode material | |
CN111048770B (en) | Ternary doped silicon-based composite material, preparation method and application thereof | |
CN107221704B (en) | Electrolyte for lithium secondary battery and lithium-oxygen secondary battery | |
CN111710845A (en) | Silica composite negative electrode material, preparation method thereof and lithium ion battery | |
CN103346304B (en) | Tin-carbon composite material for lithium secondary battery negative electrode and preparation method thereof | |
EP4428947A1 (en) | Multi-layer composite material for secondary lithium-ion battery, preparation method therefor and use thereof | |
CN108923037B (en) | A kind of silicon-rich SiOx-C material and its preparation method and application | |
JP2012523075A (en) | Method for producing carbon composite material | |
CN111009647A (en) | Lithium boron silicon alloy negative electrode active material, negative electrode and its preparation and application for lithium secondary battery | |
CN115832237A (en) | Negative active material, preparation method thereof, negative pole piece, battery and electric equipment | |
WO2022042266A1 (en) | Silicon-oxygen composite negative electrode material, preparation method therefor, and lithium ion battery | |
CN109942001B (en) | Silicon negative electrode material with spherical thorn-shaped structure and preparation method thereof | |
CN113991095B (en) | Negative active material, preparation method thereof, electrode and battery | |
CN110299514B (en) | Core-shell structure silicon-carbon negative electrode material, preparation method and negative electrode plate | |
CN114122360A (en) | High-energy-density quick-charging composite negative electrode material and preparation method thereof | |
CN113725409A (en) | Silicon-based negative electrode material and preparation method thereof | |
CN118198514A (en) | Battery cell, battery and electricity utilization device | |
CN110890540A (en) | A kind of fluorine-containing silicon monoxide negative electrode material and preparation method and application thereof | |
CN115959671A (en) | Porous carbon network modified silicon oxide composite negative electrode material and its preparation and application | |
CN110364706B (en) | A kind of antimony oxide-based negative electrode material with high reversible capacity and preparation method thereof | |
CN114975937A (en) | Cobalt chloride packaged nitrogen-doped carbon hollow cubic nano box composite material and preparation and application thereof | |
CN111769274A (en) | SiOx-C composite fiber felt negative electrode material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |