CN115832195A - Porous composite foil, positive pole piece, negative pole piece, semi-solid lithium ion battery and preparation method - Google Patents
Porous composite foil, positive pole piece, negative pole piece, semi-solid lithium ion battery and preparation method Download PDFInfo
- Publication number
- CN115832195A CN115832195A CN202211367853.XA CN202211367853A CN115832195A CN 115832195 A CN115832195 A CN 115832195A CN 202211367853 A CN202211367853 A CN 202211367853A CN 115832195 A CN115832195 A CN 115832195A
- Authority
- CN
- China
- Prior art keywords
- layer
- negative electrode
- porous composite
- oxide
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 139
- 239000011888 foil Substances 0.000 title claims abstract description 132
- 239000007787 solid Substances 0.000 title claims abstract description 47
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 76
- 239000006258 conductive agent Substances 0.000 claims abstract description 62
- 239000011248 coating agent Substances 0.000 claims abstract description 39
- 238000000576 coating method Methods 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 229920000642 polymer Polymers 0.000 claims abstract description 25
- 239000002002 slurry Substances 0.000 claims description 74
- 239000011230 binding agent Substances 0.000 claims description 71
- 239000007773 negative electrode material Substances 0.000 claims description 58
- 239000007774 positive electrode material Substances 0.000 claims description 54
- 239000002987 primer (paints) Substances 0.000 claims description 50
- 239000010416 ion conductor Substances 0.000 claims description 42
- -1 polyethylene Polymers 0.000 claims description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 33
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- 239000002904 solvent Substances 0.000 claims description 29
- 239000000843 powder Substances 0.000 claims description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 22
- 239000011889 copper foil Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 21
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 18
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 18
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 18
- 239000004743 Polypropylene Substances 0.000 claims description 17
- 229920001155 polypropylene Polymers 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000005524 ceramic coating Methods 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000004698 Polyethylene Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 13
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 229920000573 polyethylene Polymers 0.000 claims description 13
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 12
- 239000002174 Styrene-butadiene Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000002041 carbon nanotube Substances 0.000 claims description 9
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 9
- 229910021389 graphene Inorganic materials 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 8
- 229920001721 polyimide Polymers 0.000 claims description 8
- 239000004800 polyvinyl chloride Substances 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 6
- 239000002134 carbon nanofiber Substances 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 6
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 6
- 229910002102 lithium manganese oxide Inorganic materials 0.000 claims description 6
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 6
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 claims description 4
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 4
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 4
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- KFSLWBXXFJQRDL-UHFFFAOYSA-N peroxyacetic acid Substances CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 claims description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- FVXHSJCDRRWIRE-UHFFFAOYSA-H P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] Chemical compound P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] FVXHSJCDRRWIRE-UHFFFAOYSA-H 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NRJJZXGPUXHHTC-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] Chemical compound [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] NRJJZXGPUXHHTC-UHFFFAOYSA-N 0.000 claims description 3
- PHDNGVHIVIYFJP-UHFFFAOYSA-N [Zr].[La].[Li] Chemical compound [Zr].[La].[Li] PHDNGVHIVIYFJP-UHFFFAOYSA-N 0.000 claims description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims description 3
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 3
- 229910001593 boehmite Inorganic materials 0.000 claims description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000010406 cathode material Substances 0.000 claims description 3
- 229920006184 cellulose methylcellulose Polymers 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 229910021385 hard carbon Inorganic materials 0.000 claims description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 3
- 239000003273 ketjen black Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- CEMTZIYRXLSOGI-UHFFFAOYSA-N lithium lanthanum(3+) oxygen(2-) titanium(4+) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Ti+4].[La+3] CEMTZIYRXLSOGI-UHFFFAOYSA-N 0.000 claims description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 3
- 239000000347 magnesium hydroxide Substances 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 229910021382 natural graphite Inorganic materials 0.000 claims description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000011056 performance test Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- 229910021384 soft carbon Inorganic materials 0.000 claims description 3
- 239000011115 styrene butadiene Substances 0.000 claims description 3
- 229910003438 thallium oxide Inorganic materials 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 claims description 2
- 239000005279 LLTO - Lithium Lanthanum Titanium Oxide Substances 0.000 claims 3
- 239000008151 electrolyte solution Substances 0.000 claims 1
- TUJBOVNFJNICLL-UHFFFAOYSA-N ethane-1,2-diol;phthalic acid Chemical class OCCO.OC(=O)C1=CC=CC=C1C(O)=O TUJBOVNFJNICLL-UHFFFAOYSA-N 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 13
- 229910052809 inorganic oxide Inorganic materials 0.000 abstract description 5
- 239000011149 active material Substances 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 120
- 229920000139 polyethylene terephthalate Polymers 0.000 description 15
- 239000005020 polyethylene terephthalate Substances 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000006183 anode active material Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
本发明公开了一种多孔复合箔材,包括多孔复合箔材集流体;多孔复合箔材集流体包括一层高分子绝缘层和两层金属导电层;高分子绝缘层的上下两侧分别覆盖地设置有一层所述金属导电层;多孔复合箔材集流体上贯穿设置有多个通孔;多孔复合箔材集流体中的每层所述金属导电层的外侧面,分别涂覆有一层混合底涂层。本发明还提供了一种正极极片、一种负极极片和一种半固态锂离子电池以及制备方法。本发明针对原有复合箔材存在的内阻大的问题,通过在多孔复合箔材的表面引入包含导电剂、无机氧化物固态电解质的、具有良好电子传导和离子传导的混合底涂层,提高活性材料和集流体的粘接附着力,构建完整的离子与电子传输通道,降低电池内阻,提高倍率性能。
The invention discloses a porous composite foil, which comprises a porous composite foil collector; the porous composite foil collector includes a polymer insulating layer and two metal conductive layers; the upper and lower sides of the polymer insulating layer are respectively covered with ground A layer of the metal conductive layer is provided; the porous composite foil current collector is provided with a plurality of through holes; the outer surface of each layer of the metal conductive layer in the porous composite foil current collector is coated with a layer of mixed bottom coating. The invention also provides a positive pole piece, a negative pole piece, a semi-solid lithium ion battery and a preparation method. In view of the problem of large internal resistance existing in the original composite foil, the present invention introduces a mixed primer layer containing a conductive agent and an inorganic oxide solid electrolyte on the surface of the porous composite foil, which has good electron conduction and ion conduction, and improves the The adhesive adhesion between the active material and the current collector builds a complete ion and electron transport channel, reduces the internal resistance of the battery, and improves the rate performance.
Description
技术领域technical field
本发明涉及电池技术领域,特别是涉及一种多孔复合箔材、正极极片、负极极片和半固态锂离子电池及制备方法。The invention relates to the technical field of batteries, in particular to a porous composite foil, a positive pole piece, a negative pole piece, a semi-solid lithium ion battery and a preparation method.
背景技术Background technique
随着电动汽车及规模化储能领域的快速发展对电池安全性、能量密度提出了更高的要求。With the rapid development of electric vehicles and large-scale energy storage, higher requirements are put forward for battery safety and energy density.
在能量密度方面,电池的能量密度决定了电动汽车的续航能力,包括体积能量密度和质量能量密度。正负极材料是锂电池活性储能材料,铝箔、铜箔既是正负极活性材料的载体,又是正负极电子的收集与传导体。电池能量密度的提升,一方面是通过增加正极活性材料单位克容量,另一方面是降低非活性物质的重量,其中箔材的减重,可以进一步提升电池的能量密度。In terms of energy density, the energy density of batteries determines the battery life of electric vehicles, including volumetric energy density and mass energy density. Positive and negative electrode materials are active energy storage materials for lithium batteries. Aluminum foil and copper foil are not only carriers of positive and negative electrode active materials, but also collectors and conductors of positive and negative electrode electrons. The energy density of the battery is improved, on the one hand, by increasing the capacity per gram of the positive active material, and on the other hand, by reducing the weight of the inactive material. The weight reduction of the foil can further increase the energy density of the battery.
在安全性方面,传统的锂离子电池中采用有机液态电解液,因此在发生过充、内部短路等其它异常工作状态时,所产生的大量热量会导致电解液快速汽化,正极材料释氧,进而可能引起电池爆炸和电动汽车起火自燃等安全问题。In terms of safety, traditional lithium-ion batteries use organic liquid electrolytes. Therefore, when overcharge, internal short circuit and other abnormal working conditions occur, a large amount of heat will cause the electrolyte to vaporize rapidly, and the positive electrode material will release oxygen. It may cause safety issues such as battery explosion and electric vehicle fire and spontaneous combustion.
目前,PET(聚对苯二甲酸乙二醇酯)复合铝箔和铜箔具有密度小、厚度薄、抗拉强度较高等特点,加上其具有较好的导电性,是传统锂电池集流体(铝箔和铜箔)的良好替代材料。PET复合箔材在部分金属替换成高分子情况下,能够减轻材料的重量,从而增加电池的能量密度。At present, PET (polyethylene terephthalate) composite aluminum foil and copper foil have the characteristics of low density, thin thickness, high tensile strength, etc., and they have good conductivity, so they are traditional lithium battery current collectors ( A good alternative to aluminum foil and copper foil). PET composite foil can reduce the weight of the material when part of the metal is replaced by polymer, thereby increasing the energy density of the battery.
目前锂电箔材正逐步向极薄化方向发展。锂电箔材厚度越薄,越容易发生撕边、断带、褶皱等问题,对电芯的安全性造成巨大的挑战。PET复合箔材由于具有导电层较薄、基膜不导电等特点,致使其能在锂电池发生内短路时更易被熔断,从而切断短路电流,降低短路时产生的热量,防止热失控现象,提升电池的安全性能。另外,PET复合箔材中金属的用量只有原来纯金属箔的1/3-1/5,如果能够控制制造成本,复合箔的理论成本会低于金属箔,材料的降本空间较大。At present, lithium battery foil is gradually developing towards extremely thinning. The thinner the lithium battery foil, the more prone to problems such as edge tearing, broken tape, and wrinkles, which pose a huge challenge to the safety of the battery cell. Due to the characteristics of thin conductive layer and non-conductive base film, PET composite foil can be more easily fused when an internal short circuit occurs in the lithium battery, thereby cutting off the short circuit current, reducing the heat generated during the short circuit, and preventing thermal runaway. Battery safety performance. In addition, the amount of metal in the PET composite foil is only 1/3-1/5 of the original pure metal foil. If the manufacturing cost can be controlled, the theoretical cost of the composite foil will be lower than that of the metal foil, and there is a large room for material cost reduction.
但是,由于目前复合箔材都是采用“金属层-高分子层-金属层”这种具有“三明治”结构的微米级复合箔材,由于中间采用的是高分子材料层,这种绝缘层使得两侧金属镀层无法实现电子导通,电池中的电流传导受到阻碍,导致电池内阻较大,影响了电池的倍率性能。However, since the current composite foils are all micron-scale composite foils with a "sandwich" structure of "metal layer-polymer layer-metal layer", since the polymer material layer is used in the middle, this insulating layer makes The metal plating on both sides cannot achieve electronic conduction, and the current conduction in the battery is hindered, resulting in a large internal resistance of the battery, which affects the rate performance of the battery.
因此,目前迫切需要开发出一种技术,能够解决以上技术问题。Therefore, there is an urgent need to develop a technology that can solve the above technical problems.
发明内容Contents of the invention
本发明的目的是针对现有技术存在的技术缺陷,提供一种多孔复合箔材、正极极片、负极极片和半固态锂离子电池及制备方法。The object of the present invention is to provide a porous composite foil, positive pole piece, negative pole piece, semi-solid lithium ion battery and a preparation method for the technical defects existing in the prior art.
为此,本发明提供了一种多孔复合箔材,应用于电池极片中,其包括多孔复合箔材集流体;For this reason, the present invention provides a kind of porous composite foil, is applied in the battery pole piece, and it comprises porous composite foil current collector;
多孔复合箔材集流体,包括一层高分子绝缘层和两层金属导电层;Porous composite foil current collector, including a polymer insulating layer and two metal conductive layers;
高分子绝缘层的上下两侧,分别覆盖地设置有一层所述金属导电层;The upper and lower sides of the polymer insulating layer are respectively covered with a layer of the metal conductive layer;
多孔复合箔材集流体上贯穿设置有多个通孔;The porous composite foil current collector is provided with a plurality of through holes;
多孔复合箔材集流体中的每层所述金属导电层的外侧面,分别涂覆有一层混合底涂层。The outer surface of each metal conductive layer in the porous composite foil current collector is coated with a layer of mixed primer layer respectively.
优选地,当多孔复合箔材集流体应用于正极极片中时,两层金属导电层均为铝箔,定义此时的多孔复合箔材集流体为复合多孔铝箔集流体;Preferably, when the porous composite foil current collector is applied to the positive pole piece, the two metal conductive layers are both aluminum foils, and the porous composite foil current collector at this time is defined as a composite porous aluminum foil current collector;
当多孔复合箔材集流体应用于负极极片中时,两层金属导电层均为铜箔,定义此时的多孔复合箔材集流体为复合多孔铜箔集流体。When the porous composite foil current collector is applied to the negative electrode sheet, the two metal conductive layers are both copper foils, and the porous composite foil current collector at this time is defined as a composite porous copper foil current collector.
优选地,高分子绝缘层厚度为2-10μm;Preferably, the thickness of the polymer insulating layer is 2-10 μm;
每层金属导电层的厚度为1-5μm;The thickness of each metal conductive layer is 1-5 μm;
通孔的孔径在0.2-3μm之间;The diameter of the through hole is between 0.2-3 μm;
多孔复合箔材集流体上的孔隙率为10%-40%;The porosity on the porous composite foil current collector is 10%-40%;
每层混合底涂层的厚度为2-10微米。The thickness of each mixed primer layer is 2-10 microns.
优选地,高分子绝缘层的材质,包括聚乙烯、聚丙烯、聚氯乙烯、聚酰亚胺、聚丙烯腈和聚对苯二甲酸乙二醇酯中的任意一种;Preferably, the material of the polymer insulation layer includes any one of polyethylene, polypropylene, polyvinyl chloride, polyimide, polyacrylonitrile and polyethylene terephthalate;
混合底涂层,包括以下以质量百分含量表示的组分:Mixed primer, including the following components expressed in mass percent:
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂;10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder;
对于混合底涂层,导电剂包括炭黑、科琴黑、导电石墨、导电纤维、碳纳米管和石墨烯中的至少一种;For the mixed undercoat, the conductive agent includes at least one of carbon black, Ketjen black, conductive graphite, conductive fibers, carbon nanotubes and graphene;
氧化物固态电解质,包括磷酸钛铝锂、磷酸锗铝锂、锂镧锆氧、锂镧钛氧和锂镧锆铊氧中的至少一种;Oxide solid electrolyte, including at least one of lithium titanium aluminum phosphate, lithium germanium aluminum phosphate, lithium lanthanum zirconium oxide, lithium lanthanum titanium oxide and lithium lanthanum zirconium thallium oxide;
粘结剂,包括聚四氟乙烯、聚偏二氟乙烯、丙烯酸、聚氧化乙烯、羧甲基纤维素纳、丁苯橡胶、羟丙基甲基纤维素、羧基丁苯乳胶和聚乙烯醇中的一种或两种以上的混合物。Binders, including polytetrafluoroethylene, polyvinylidene fluoride, acrylic, polyethylene oxide, sodium carboxymethylcellulose, styrene-butadiene rubber, hydroxypropylmethylcellulose, carboxylated styrene-butadiene latex, and polyvinyl alcohol one or a mixture of two or more.
此外,本发明提供了一种正极极片,包括如前面所述的多孔复合箔材;In addition, the present invention provides a positive electrode sheet, including the porous composite foil as described above;
该多孔复合箔材中每层混合底涂层的外侧,分别涂覆有一层正极物料层;In the porous composite foil, the outer side of each mixed primer layer is coated with a positive electrode material layer;
正极物料层,包括正极活性材料、氧化物固态电解质、导电剂和粘结剂;Positive electrode material layer, including positive electrode active material, oxide solid electrolyte, conductive agent and binder;
正极活性材料、氧化物固态电解质、导电剂和粘结剂的质量比为(84-96):(1-5):(1-5):(2-6);The mass ratio of positive electrode active material, oxide solid electrolyte, conductive agent and binder is (84-96):(1-5):(1-5):(2-6);
对于正极物料层,正极活性材料具体包括钴酸锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂和磷酸锰铁锂中的至少一种;For the positive electrode material layer, the positive electrode active material specifically includes at least one of lithium cobalt oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium iron phosphate, and lithium iron manganese phosphate;
导电剂包括导电炭黑、导电石墨、碳纳米管、碳纳米纤维和石墨烯中的至少一种;The conductive agent includes at least one of conductive carbon black, conductive graphite, carbon nanotubes, carbon nanofibers and graphene;
氧化物固态电解质包括LATP、LAGP、LLZO、LLTO和LLZTO中的至少一种;The oxide solid electrolyte includes at least one of LATP, LAGP, LLZO, LLTO and LLZTO;
粘结剂包括PVDF、SBR、CMC和PTFE中的至少一种。The binder includes at least one of PVDF, SBR, CMC and PTFE.
此外,本发明提供了一种负极极片,包括如前面所述的多孔复合箔材;In addition, the present invention provides a negative electrode sheet, comprising the porous composite foil as described above;
该多孔复合箔材中每层混合底涂层的外侧,分别涂覆有一层负极物料层;The outer side of each layer of mixed primer layer in the porous composite foil is respectively coated with a negative electrode material layer;
负极物料层,包括负极活性材料、氧化物固态电解质、导电剂和粘结剂;Negative electrode material layer, including negative electrode active material, oxide solid electrolyte, conductive agent and binder;
负极活性材料、氧化物固态电解质、导电剂和粘结剂的质量比为(83-97):(1-5):(1-5):(1-7);The mass ratio of negative electrode active material, oxide solid electrolyte, conductive agent and binder is (83-97):(1-5):(1-5):(1-7);
其中,对于负极物料层,负极活性材料包括硅单质、氧化亚硅、氧化硅、人造石墨、天然石墨、复合石墨、软碳和硬碳中的一种或多种;Wherein, for the negative electrode material layer, the negative electrode active material includes one or more of simple silicon, silicon oxide, silicon oxide, artificial graphite, natural graphite, composite graphite, soft carbon and hard carbon;
对于负极物料层,导电剂包括导电炭黑、导电石墨、碳纳米管、碳纳米纤维和石墨烯中的至少一种;For the negative electrode material layer, the conductive agent includes at least one of conductive carbon black, conductive graphite, carbon nanotubes, carbon nanofibers and graphene;
对于负极物料层,氧化物固态电解质包括LATP、LAGP、LLZO、LLTO和LLZTO中的至少一种;For the negative electrode material layer, the oxide solid electrolyte includes at least one of LATP, LAGP, LLZO, LLTO and LLZTO;
对于负极物料层,粘结剂包括SBR、PAA和PTFE中的任意一种。For the negative electrode material layer, the binder includes any one of SBR, PAA and PTFE.
另外,本发明还提供了一种半固态锂离子电池,其包括电池极组;In addition, the present invention also provides a semi-solid lithium ion battery, which includes a battery pole group;
电池极组包括如前面所述的正极极片、离子导体隔膜和如前面所述的负极极片;The battery pole group includes the positive pole piece as described above, the ion conductor separator and the negative pole piece as described above;
离子导体隔膜,位于正极极片和负极极片之间的位置;An ion conductor diaphragm, located between the positive pole piece and the negative pole piece;
电池极组内注入有电解液;Electrolyte is injected into the battery pole group;
离子导体隔膜,包括基膜、第一涂层和第二涂层;an ion-conducting membrane comprising a base membrane, a first coating, and a second coating;
第一涂层和第二涂层,分别位于基膜靠近正极极片一侧的表面和基膜靠近负极一侧的表面;The first coating and the second coating are respectively located on the surface of the base film near the positive pole piece side and the surface of the base film near the negative electrode side;
基膜,包括聚乙烯基膜、聚乙烯无纺布基膜、聚丙烯基膜、聚丙烯无纺布基膜、聚丙烯复合基膜、聚酰亚胺基膜、聚酰亚胺无纺布基膜、聚四氟乙烯基膜、聚四氟乙烯无纺布基膜、聚氯乙烯基膜和聚氯乙烯无纺布基膜中的任意一种;Base film, including polyethylene base film, polyethylene non-woven base film, polypropylene base film, polypropylene non-woven base film, polypropylene composite base film, polyimide base film, polyimide non-woven Any one of base film, polytetrafluoroethylene base film, polytetrafluoroethylene non-woven base film, polyvinyl chloride base film and polyvinyl chloride non-woven base film;
第一涂层为陶瓷涂层,陶瓷涂层包括陶瓷粉体和丙烯酸酯体系的水性乳液粘结剂;The first coating is a ceramic coating, and the ceramic coating includes a water-based emulsion binder of a ceramic powder and an acrylate system;
在陶瓷涂层中,陶瓷粉体所占的质量百分比为90%-99%,粘结剂所占的质量百分比为1%-10%;In the ceramic coating, the mass percentage of the ceramic powder is 90%-99%, and the mass percentage of the binder is 1%-10%;
该陶瓷涂层采用的陶瓷粉体包括氧化铝、氧化锆、勃姆石、氢氧化镁、硫酸钡、氧化硅、氮化铝、氧化镁、二氧化钛、氧化钇和氧化铈中的至少一种;The ceramic powder used in the ceramic coating includes at least one of alumina, zirconia, boehmite, magnesium hydroxide, barium sulfate, silicon oxide, aluminum nitride, magnesium oxide, titanium dioxide, yttrium oxide and cerium oxide;
第二涂层为快离子导体涂层,快离子导体涂层包括快离子导体粉体和丙烯酸类的水性乳液粘结剂;The second coating is a fast ion conductor coating, and the fast ion conductor coating includes a fast ion conductor powder and an acrylic water-based emulsion binder;
在快离子导体涂层中,快离子导体粉体所占的质量百分比为90%-99%,粘结剂所占的质量百分比为1%-10%;In the fast ion conductor coating, the mass percentage of the fast ion conductor powder is 90%-99%, and the mass percentage of the binder is 1%-10%;
该快离子导体涂层采用的快离子导体粉体包括LATP粉体或者LLTO粉体。The fast ion conductor powder used in the fast ion conductor coating includes LATP powder or LLTO powder.
另外,本发明还提供了一种如前面所述的正极极片的制备方法,包括以下步骤:In addition, the present invention also provides a method for preparing the positive electrode sheet as described above, comprising the following steps:
第一步,制备具有混合底涂层的正极极片的多孔复合箔材:将导电剂、氧化物固态电解质和粘结剂按照预设的质量百分比混合并搅拌均匀,再将其溶于溶剂NMP中进行分散,获得混合底涂层浆料,并通过调节添加溶剂的量,调节混合底涂层浆料的固含量为10-30%或者浆料粘度为1000-4000cp,然后,再分别在如前所述的复合多孔铝箔集流体上下两侧涂覆一层混合底涂层浆料,在80℃-120℃温度条件下进行烘干,烘干后得到带有混合底涂层的正极极片的多孔复合箔材,即复合多孔铝箔;The first step is to prepare a porous composite foil of a positive electrode sheet with a mixed undercoat layer: mix the conductive agent, oxide solid electrolyte and binder according to the preset mass percentage and stir evenly, and then dissolve it in the solvent NMP disperse in to obtain the mixed primer slurry, and by adjusting the amount of added solvent, the solid content of the mixed primer slurry is adjusted to be 10-30% or the viscosity of the slurry is 1000-4000cp, and then, respectively, in such as The aforementioned composite porous aluminum foil current collector is coated with a layer of mixed undercoat slurry on both sides, and dried at a temperature of 80°C-120°C. After drying, a positive electrode sheet with a mixed undercoat is obtained. Porous composite foil, namely composite porous aluminum foil;
在第一步中,导电剂、氧化物固态电解质和粘结剂之间的预设质量百分比具体如下:In the first step, the preset mass percentage among conductive agent, oxide solid electrolyte and binder is as follows:
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂,也就是混合底涂层浆料的溶质所包括的各个组分的质量百分比;10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder, that is, the mass percentage of each component included in the solute of the mixed primer slurry;
第二步,制备正极物质浆料:将正极活性材料、氧化物固态电解质、导电剂和粘结剂按照预设的质量比混合并搅拌均匀,再将其溶于溶剂NMP中进行分散,获得正极物质浆料,并通过调节添加溶剂的量,调节正极物质浆料的固含量为60-75%或者浆料粘度为6000-8000cp;The second step is to prepare the positive electrode material slurry: mix the positive electrode active material, oxide solid electrolyte, conductive agent and binder according to the preset mass ratio and stir evenly, and then dissolve it in the solvent NMP for dispersion to obtain the positive electrode Material slurry, and by adjusting the amount of solvent added, the solid content of the positive electrode material slurry is adjusted to 60-75% or the viscosity of the slurry is 6000-8000cp;
在第二步中,具体实现上,正极活性材料、氧化物固态电解质、导电剂和粘结剂之间的质量比为(84-96):(1-5):(1-5):(2-6);In the second step, in specific realization, the mass ratio between positive electrode active material, oxide solid electrolyte, conductive agent and binder is (84-96):(1-5):(1-5):( 2-6);
第三步,将第二步获得的正极物质浆料,分别涂覆一层在第一步获得的复合多孔铝箔的上下两侧,在80℃-120℃的温度条件下进行烘干,在烘干后进行碾压,得到碾压后的正极极片,然后将碾压后的正极极片裁切至规定的尺寸,最终获得成品正极极片。In the third step, the cathode material slurry obtained in the second step is respectively coated on the upper and lower sides of the composite porous aluminum foil obtained in the first step, and dried at a temperature of 80°C-120°C. After drying, rolling is carried out to obtain the rolled positive electrode sheet, and then the rolled positive electrode sheet is cut to the specified size, and finally the finished positive electrode sheet is obtained.
另外,本发明还提供了一种如前面所述的负极极片的制备方法,包括以下步骤:In addition, the present invention also provides a method for preparing the negative electrode sheet as described above, comprising the following steps:
第一步,制备具有混合底涂层的负极极片的多孔复合箔材:将导电剂、氧化物固态电解质和粘结剂按照预设的质量百分比混合并搅拌均匀,再将其溶于溶剂去离子水中进行分散,获得混合底涂层浆料,并通过调节添加溶剂的量,调节混合底涂层浆料的固含量为10-30%或者浆料粘度为1000-4000cp,然后,再分别在如前所述的复合多孔铜箔集流体上下两侧涂覆一层混合底涂层浆料,在80℃-120℃温度条件下进行烘干,烘干后得到带有混合底涂层的负极极片的多孔复合箔材,即复合多孔铝箔;The first step is to prepare a porous composite foil with a negative electrode sheet with a mixed primer layer: mix the conductive agent, oxide solid electrolyte and binder according to the preset mass percentage and stir evenly, and then dissolve it in a solvent to remove Disperse in ionized water to obtain a mixed primer slurry, and adjust the solid content of the mixed primer slurry to 10-30% or the viscosity of the slurry to be 1000-4000cp by adjusting the amount of solvent added, and then, respectively, in As mentioned above, the upper and lower sides of the composite porous copper foil current collector are coated with a layer of mixed undercoat slurry, dried at a temperature of 80°C-120°C, and a negative electrode with a mixed undercoat is obtained after drying. The porous composite foil of the pole piece, that is, the composite porous aluminum foil;
在第一步中,导电剂、氧化物固态电解质和粘结剂之间的预设质量百分比具体如下:In the first step, the preset mass percentage among conductive agent, oxide solid electrolyte and binder is as follows:
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂;10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder;
第二步,制备负极物质浆料:将负极活性材料、氧化物固态电解质、导电剂和粘结剂按照预设的质量比混合并搅拌均匀,再将其溶于溶剂去离子水中进行分散,获得负极物质浆料,并通过调节添加溶剂的量,调节负极物质浆料的固含量为40-50%或者浆料粘度为3000-5000cp;The second step is to prepare the negative electrode material slurry: mix the negative electrode active material, oxide solid electrolyte, conductive agent and binder according to the preset mass ratio and stir evenly, then dissolve it in the solvent deionized water for dispersion, and obtain negative electrode material slurry, and by adjusting the amount of solvent added, the solid content of the negative electrode material slurry is adjusted to 40-50% or the viscosity of the slurry is 3000-5000cp;
在第二步中,具体实现上,负极活性材料、氧化物固态电解质、导电剂和粘结剂之间的质量比为(83-97):(1-5):(1-5):(1-7);In the second step, in specific implementation, the mass ratio between the negative electrode active material, the oxide solid electrolyte, the conductive agent and the binder is (83-97):(1-5):(1-5):( 1-7);
第三步,将第二步获得的负极物质浆料,分别涂覆一层在第一步获得的复合多孔铜箔的上下两侧,在80℃-120℃的温度条件下进行烘干,在烘干后进行碾压,得到碾压后的负极极片,然后将碾压后的负极极片裁切至规定的尺寸,最终获得成品负极极片。In the third step, the negative electrode material slurry obtained in the second step is coated on the upper and lower sides of the composite porous copper foil obtained in the first step, and dried at a temperature of 80°C-120°C. After drying, rolling is carried out to obtain the rolled negative electrode sheet, and then the rolled negative electrode sheet is cut to the specified size, and finally the finished negative electrode sheet is obtained.
此外,本发明还提供了一种半固体锂离子电池的制备方法,包括以下步骤:In addition, the present invention also provides a kind of preparation method of semi-solid lithium ion battery, comprises the following steps:
第一步,将如前面所述的正极极片、离子导体隔膜和如前面所述的负极极片依次堆叠组装,然后在封装后注入电解液,制备软包、圆形或方形的、半固态锂离子电池;The first step is to stack and assemble the positive pole piece, the ion conductor separator and the negative pole piece as mentioned above in sequence, and then inject the electrolyte after packaging to prepare a soft package, round or square, semi-solid Lithium Ion Battery;
第二步,将半固态锂离子电池先后经过静置、夹具预充、除气、化成、老化和分容工序,完成电池的制备及基本电性能测试。In the second step, the semi-solid lithium-ion battery is put through the processes of standing, fixture pre-charging, degassing, formation, aging and capacity separation to complete the preparation of the battery and the basic electrical performance test.
由以上本发明提供的技术方案可见,与现有技术相比较,本发明提供了一种多孔复合箔材、正极极片、负极极片和半固态锂离子电池及制备方法,其设计科学,针对原有复合箔材存在的内阻大的问题,通过在多孔复合箔材的表面引入包含导电剂、无机氧化物固态电解质的、具有良好电子传导和离子传导的混合底涂层,提高活性材料和集流体的粘接附着力,构建完整的离子与电子传输通道,提升电子导通和锂离子的迁移效率,抑制电池极化,减少热效应,降低电池内阻,提高倍率性能,具有重大的实践意义。It can be seen from the technical solutions provided by the present invention above that, compared with the prior art, the present invention provides a porous composite foil, positive pole piece, negative pole piece and semi-solid lithium ion battery and its preparation method, which are designed scientifically and aim at The problem of large internal resistance existing in the original composite foil, by introducing a conductive agent, an inorganic oxide solid electrolyte, and a mixed primer layer with good electronic and ion conductivity on the surface of the porous composite foil, the active material and the The adhesive adhesion of the current collector, the construction of a complete ion and electron transmission channel, the improvement of electron conduction and the migration efficiency of lithium ions, the suppression of battery polarization, the reduction of thermal effects, the reduction of battery internal resistance, and the improvement of rate performance have great practical significance. .
此外,在本发明中,通过在正负极多孔复合箔材、正负极材料、正负极物料层及隔膜中都引入固态电解质,固态电解质材料的引入能够有效降低半固态电池体系中液态电解液量,进一步提升高比能电池的安全性能。In addition, in the present invention, by introducing solid electrolytes into the positive and negative electrode porous composite foils, positive and negative electrode materials, positive and negative electrode material layers, and separators, the introduction of solid electrolyte materials can effectively reduce liquid electrolysis in semi-solid battery systems. The liquid volume further improves the safety performance of the high specific energy battery.
附图说明Description of drawings
图1为本发明提供的一种多孔复合箔材,在没有涂覆上混合底涂层时的剖面结构示意图,即是一种多孔复合箔材集流体的剖面结构示意图;Fig. 1 is a kind of porous composite foil material provided by the present invention, the cross-sectional structure schematic diagram when not being coated with mixed primer layer, is the cross-sectional structure schematic diagram of a kind of porous composite foil current collector;
图2为本发明提供的一种多孔复合箔材,在没有涂覆上混合底涂层时的俯视结构示意图,即是一种多孔复合箔材集流体的俯视结构示意图;Fig. 2 is a schematic diagram of the top view structure of a porous composite foil provided by the present invention when it is not coated with a mixed primer layer, that is, a schematic top view structure diagram of a porous composite foil current collector;
图3为本发明提供的一种正极极片的剖面结构示意图;Fig. 3 is a schematic cross-sectional structure diagram of a positive pole piece provided by the present invention;
图4为本发明提供的一种负极极片的剖面结构示意图;Fig. 4 is the schematic cross-sectional structure diagram of a kind of negative pole sheet provided by the present invention;
图5为本发明提供的一种半固体锂离子电池的电池极组的剖面结构示意图。Fig. 5 is a schematic cross-sectional structure diagram of a battery electrode assembly of a semi-solid lithium ion battery provided by the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参见图1、图2,本发明提供了一种多孔复合箔材,应用于电池极片(电池极片包括正极极片和负极极片)中,其包括多孔复合箔材集流体;Referring to Fig. 1, Fig. 2, the present invention provides a kind of porous composite foil, is applied in battery pole piece (battery pole piece comprises positive pole piece and negative pole piece), and it comprises porous composite foil current collector;
多孔复合箔材集流体,包括一层高分子绝缘层102和两层金属导电层101;Porous composite foil current collector, including one layer of
高分子绝缘层102的上下两侧,分别覆盖地设置有一层所述金属导电层101;The upper and lower sides of the
多孔复合箔材集流体上贯穿设置有多个通孔103;The porous composite foil current collector is provided with a plurality of through
需要说明的是,每个通孔103,都垂直贯穿通过一层高分子绝缘层102和高分子绝缘层102两侧的两层金属导电层101。It should be noted that each through
多孔复合箔材集流体中的每层所述金属导电层101的外侧面,分别涂覆有一层混合底涂层104。The outer surface of each metal
在本发明中,具体实现上,高分子绝缘层102的材质,包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚酰亚胺(PI)、聚丙烯腈(PAN)和聚对苯二甲酸乙二醇酯(PET)中的任意一种;In the present invention, in terms of specific implementation, the material of the
在本发明中,具体实现上,高分子绝缘层102厚度为2-10μm;In the present invention, in specific implementation, the
每层金属导电层101的厚度为1-5μm。The thickness of each metal
在本发明中,具体实现上,当多孔复合箔材集流体应用于正极极片中时,两层金属导电层101均为铝箔,定义此时的多孔复合箔材集流体为复合多孔铝箔集流体;In the present invention, in terms of specific implementation, when the porous composite foil current collector is applied to the positive pole piece, the two metal
当多孔复合箔材集流体应用于负极极片中时,两层金属导电层101均为铜箔,定义此时的多孔复合箔材集流体为复合多孔铜箔集流体。When the porous composite foil current collector is applied to the negative electrode sheet, the two metal
在本发明中,金属导电层,复合在高分子绝缘层102的两侧,复合在高分子绝缘层两侧就是涂覆在高分子绝缘层两侧,具体为:采用在高分子绝缘层两侧采用蒸镀、溅射、化学镀等方法,在高分子绝缘层两侧涂覆金属导体层。In the present invention, the metal conductive layer is compounded on both sides of the
在本发明中,具体实现上,通孔103的形状,可以包括圆形、椭圆形、菱形和三角形中的至少一种,可以是其他的多边形。In the present invention, in terms of specific implementation, the shape of the through
在本发明中,具体实现上,通孔103的孔径在0.2-3μm之间;In the present invention, in terms of specific implementation, the diameter of the through
在本发明中,具体实现上,多孔复合箔材集流体上的孔隙率为10%-40%。In the present invention, specifically, the porosity of the porous composite foil current collector is 10%-40%.
在本发明中,具体实现上,通孔103的形成方法,包括扎孔、压孔和激光刻蚀中的任意一种。In the present invention, specifically, the method for forming the through
在本发明中,具体实现上,混合底涂层104,包括以下以质量百分含量表示的组分:In the present invention, specifically, the
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂。10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder.
具体实现上,将制备好的混合底涂层浆料(混合底涂层浆料的溶质是包括导电剂、氧化物固态电解质和粘结剂,当混合底涂层用于制备正极极片时,溶剂使用NMP,当混合底涂层用于制备负极极片时,溶剂使用去离子水;混合底涂层浆料的固含量为10%-30%、浆料粘度为1000-4000cp)涂在多孔复合箔材上。On specific implementation, the prepared mixed undercoat slurry (the solute of the mixed undercoat slurry includes conductive agent, oxide solid electrolyte and binding agent, when the mixed undercoat is used to prepare the positive electrode sheet, The solvent uses NMP, and when the mixed primer is used to prepare the negative electrode sheet, the solvent uses deionized water; the solid content of the mixed primer slurry is 10%-30%, and the viscosity of the slurry is 1000-4000cp) coated on the porous on composite foil.
具体实现上,每层混合底涂层104的厚度为2-10微米;Specifically, the thickness of each layer of
具体实现上,对于混合底涂层104,导电剂包括炭黑、科琴黑、导电石墨、导电纤维、碳纳米管和石墨烯中的至少一种;In specific implementation, for the
氧化物固态电解质,包括磷酸钛铝锂(LATP)、磷酸锗铝锂(LAGP)、锂镧锆氧(LLZO)、锂镧钛氧(LLTO)和锂镧锆铊氧(LLZTO)中的至少一种;Oxide solid electrolyte, including at least one of lithium aluminum titanium phosphate (LATP), lithium aluminum germanium phosphate (LAGP), lithium lanthanum zirconium oxide (LLZO), lithium lanthanum titanium oxide (LLTO) and lithium lanthanum zirconium thallium oxide (LLZTO) kind;
粘结剂,包括聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、丙烯酸(AA)、聚氧化乙烯(PEO)、羧甲基纤维素纳(PTFE)、丁苯橡胶(SBR)、羟丙基甲基纤维素(HPMC)、羧基丁苯乳胶(XSBRL)和聚乙烯醇(PVA)中的一种或两种以上的混合物,即至少一种;Binders, including polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), acrylic (AA), polyethylene oxide (PEO), sodium carboxymethylcellulose (PTFE), styrene-butadiene rubber (SBR) , hydroxypropyl methylcellulose (HPMC), carboxylated styrene-butadiene latex (XSBRL) and polyvinyl alcohol (PVA), or a mixture of two or more, that is, at least one;
参见图3,本发明还提供了一种正极极片,其包括如前所述的多孔复合箔材;Referring to Fig. 3, the present invention also provides a positive electrode sheet, which includes the aforementioned porous composite foil;
该多孔复合箔材中每层混合底涂层104的外侧,分别涂覆有一层正极物料层105(即正极活性物质材料层);The outer side of each layer of
参见图4,本发明还提供了一种负极极片,其包括如前所述的多孔复合箔材;Referring to Fig. 4, the present invention also provides a negative electrode sheet, which includes the aforementioned porous composite foil;
该多孔复合箔材中每层混合底涂层104的外侧,分别涂覆有一层负极物料层205(即负极活性物质材料层);The outer side of each layer of
在本发明中,具体实现上,正极物料层105,包括正极活性材料、氧化物固态电解质、导电剂和粘结剂;In the present invention, specifically, the
正极活性材料、氧化物固态电解质、导电剂和粘结剂的质量比为(84-96):(1-5):(1-5):(2-6);The mass ratio of positive electrode active material, oxide solid electrolyte, conductive agent and binder is (84-96):(1-5):(1-5):(2-6);
其中,对于正极物料层105,正极活性材料具体包括钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰酸锂(NCM)、镍钴铝酸锂(NCA)、磷酸铁锂(LFP)和磷酸锰铁锂(LMFP)中的至少一种;Wherein, for the positive
需要说明的是,正极活性材料指的就是钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰酸锂(NCM)、镍钴铝酸锂(NCA)、磷酸铁锂(LFP)和磷酸锰铁锂(LMFP)中的至少一种,这些材料表面能够包覆有固态电解质(即被位于正极活性材料之外的氧化物固态电解质所包覆),是一种核壳结构的材料,固态电解质是外面的包覆层。It should be noted that the positive electrode active material refers to lithium cobalt oxide (LCO), lithium manganese oxide (LMO), nickel cobalt lithium manganese oxide (NCM), nickel cobalt lithium aluminate (NCA), lithium iron phosphate (LFP) and At least one of lithium manganese iron phosphate (LMFP), the surface of these materials can be coated with a solid electrolyte (that is, coated with an oxide solid electrolyte located outside the positive electrode active material), which is a material with a core-shell structure, The solid electrolyte is the outer coating.
对于正极物料层105,导电剂包括导电炭黑、导电石墨、碳纳米管、碳纳米纤维和石墨烯中的至少一种;For the positive
对于正极物料层105,氧化物固态电解质包括LATP、LAGP、LLZO、LLTO和LLZTO中的至少一种;For the positive
对于正极物料层105,粘结剂包括PVDF、SBR、CMC和PTFE中的至少一种。For the positive
具体实现上,正极物料层105的面密度为10-50mg/cm2。Specifically, the surface density of the positive
在本发明中,具体实现上,负极物料层205,包括负极活性材料、氧化物固态电解质、导电剂和粘结剂;In the present invention, specifically, the
负极活性材料、氧化物固态电解质、导电剂和粘结剂的质量比为(83-97):(1-5):(1-5):(1-7)。The mass ratio of the negative electrode active material, the oxide solid electrolyte, the conductive agent and the binder is (83-97):(1-5):(1-5):(1-7).
其中,对于负极物料层205,负极活性材料包括硅单质、氧化亚硅、氧化硅、人造石墨、天然石墨、复合石墨、软碳和硬碳中的一种或多种;Wherein, for the negative
对于负极物料层205,导电剂包括导电炭黑、导电石墨、碳纳米管、碳纳米纤维和石墨烯中的至少一种;For the negative
对于负极物料层205,氧化物固态电解质包括LATP、LAGP、LLZO、LLTO和LLZTO中的至少一种;For the negative
对于负极物料层205,粘结剂包括SBR、PAA和PTFE中的任意一种。For the negative
具体实现上,负极物料层205的面密度为5-30mg/cm2;Specifically, the surface density of the negative
参见图5,本发明还提供了一种半固态锂离子电池,其包括电池极组;Referring to Fig. 5, the present invention also provides a semi-solid lithium ion battery, which includes a battery pole group;
电池极组包括如前所述的正极极片1、离子导体隔膜3和如前所述的负极极片2;The battery pole group includes the
离子导体隔膜3,位于正极极片1和负极极片2之间的位置;An
电池极组内注入有电解液;即,电解液填充在正极极片1、离子导体隔膜3和负极极片2之间的间隙中;Electrolyte is injected into the battery electrode group; that is, the electrolyte is filled in the gap between the
其中,离子导体隔膜3,包括基膜301、第一涂层302和第二涂层303;Wherein, the
第一涂层和第二涂层,分别位于基膜靠近正极极片一侧的表面和基膜靠近负极一侧的表面,例如图5所示的上侧表面和下侧表面;The first coating and the second coating are respectively located on the surface of the base film near the positive pole piece side and the surface of the base film near the negative electrode side, such as the upper surface and the lower surface shown in Figure 5;
基膜,包括聚乙烯基膜、聚乙烯无纺布基膜、聚丙烯基膜、聚丙烯无纺布基膜、聚丙烯/聚乙烯/聚丙烯(PP/PE/PP)复合基膜、聚酰亚胺(PI)基膜、聚酰亚胺无纺布基膜、聚四氟乙烯基(PTFE)膜、聚四氟乙烯无纺布基膜、聚氯乙烯(PVC)基膜和聚氯乙烯无纺布基膜中的任意一种;Base film, including polyethylene base film, polyethylene non-woven base film, polypropylene base film, polypropylene non-woven base film, polypropylene/polyethylene/polypropylene (PP/PE/PP) composite base film, polypropylene Imide (PI) base film, polyimide non-woven base film, polytetrafluoroethylene (PTFE) film, PTFE non-woven base film, polyvinyl chloride (PVC) base film and polychloride Any one of vinyl non-woven base films;
第一涂层为陶瓷涂层,该陶瓷涂层采用的陶瓷粉体包括氧化铝、氧化锆、勃姆石、氢氧化镁、硫酸钡、氧化硅、氮化铝、氧化镁、二氧化钛、氧化钇和氧化铈中的至少一种(这些材料均是粉体);The first coating is a ceramic coating, and the ceramic powder used in the ceramic coating includes alumina, zirconia, boehmite, magnesium hydroxide, barium sulfate, silicon oxide, aluminum nitride, magnesium oxide, titanium dioxide, yttrium oxide and at least one of cerium oxide (these materials are powders);
具体实现上,陶瓷涂层包括陶瓷粉体和丙烯酸酯体系的水性乳液粘结剂;Specifically, the ceramic coating includes a water-based emulsion binder of ceramic powder and acrylate system;
在陶瓷涂层中,陶瓷粉体所占的质量百分比为90%-99%,粘结剂所占的质量百分比为1%-10%。需要说明的是,陶瓷涂层隔膜是现有电池行业成熟应用的锂电隔膜。In the ceramic coating, the mass percentage of the ceramic powder is 90%-99%, and the mass percentage of the binder is 1%-10%. It should be noted that the ceramic coating diaphragm is a mature lithium battery diaphragm used in the existing battery industry.
具体实现上,陶瓷粉体的颗粒粒径为0.01-2um。In terms of specific implementation, the particle size of the ceramic powder is 0.01-2um.
第二涂层为快离子导体涂层,该快离子导体涂层采用的快离子导体粉体(又叫做固体电解质)包括LATP粉体或者LLTO粉体;The second coating is a fast ion conductor coating, and the fast ion conductor powder (also called solid electrolyte) used in the fast ion conductor coating includes LATP powder or LLTO powder;
具体实现上,快离子导体涂层,包括快离子导体粉体和丙烯酸类的水性乳液粘结剂;In terms of specific implementation, the fast ion conductor coating includes fast ion conductor powder and acrylic water-based emulsion binder;
在快离子导体涂层中,快离子导体粉体所占的质量百分比为90%-99%,粘结剂所占的质量百分比为1%-10%。In the fast ion conductor coating, the mass percentage of the fast ion conductor powder is 90%-99%, and the mass percentage of the binder is 1%-10%.
具体实现上,快离子导体粉体的颗粒粒径为0.01-2um,从而避免因为粒径太大,而影响涂层的密度及粘结效果,同时避免影响离子传输。In terms of specific implementation, the particle size of the fast ion conductor powder is 0.01-2um, so as to avoid affecting the density and bonding effect of the coating due to too large a particle size, and avoid affecting ion transmission at the same time.
在本发明中,具体实现上,陶瓷涂层的厚度为0.1-5μm;In the present invention, specifically, the thickness of the ceramic coating is 0.1-5 μm;
在本发明中,具体实现上,电解液包括锂盐、溶剂和添加剂组成;In the present invention, specifically implemented, the electrolyte includes a lithium salt, a solvent and an additive composition;
其中,所述锂盐,包括六氟磷酸锂(LiPF6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、四氟硼酸锂(LiBF4)、双草酸硼酸锂(LiBOB)、二氟磷酸锂(LiPO2F2)和二氟草酸硼酸锂(LiDFOB)等中的至少一种;Wherein, the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium bisfluorosulfonyl imide (LiFSI), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium tetrafluoroborate (LiBF 4 ), bisoxalic acid boronic acid At least one of lithium (LiBOB), lithium difluorophosphate (LiPO 2 F 2 ) and lithium difluorooxalate borate (LiDFOB);
所述溶剂,包括碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、邻苯二甲酸酯(DMP)、顺丁烯二酸二甲酯(DMM)、乙二醇二甲醚(DME)和四氢呋喃(TH)F中的至少一种;Described solvent comprises propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), phthalate ( At least one of DMP), dimethyl maleate (DMM), ethylene glycol dimethyl ether (DME) and tetrahydrofuran (TH) F;
所述添加剂,包括碳酸亚乙烯酯(VC)、碳酸乙烯亚乙酯(VEC)、氟代碳酸乙烯酯(FEC)、丙磺酸内酯(PS)、丙烯磺酸内酯(PST)、硫酸乙烯酯(DTD)、双氟代碳酸乙烯酯(DFEC)中的至少一种。The additives include vinylene carbonate (VC), ethylene carbonate (VEC), fluoroethylene carbonate (FEC), propane sultone (PS), propene sultone (PST), sulfuric acid At least one of vinyl ester (DTD) and difluoroethylene carbonate (DFEC).
具体实现上,每个半固态电池的电解液注液量为0.5-1.5g/Ah;In terms of specific implementation, the electrolyte injection volume of each semi-solid battery is 0.5-1.5g/Ah;
具体实现上,所述锂盐的摩尔浓度为0.5-2mol/L;Specifically, the molar concentration of the lithium salt is 0.5-2mol/L;
在本发明中,具体实现上,所述半固态电池,是通过叠片工序制备获得的软包半固态电池。In the present invention, in terms of specific implementation, the semi-solid battery is a soft-pack semi-solid battery prepared through a stacking process.
另外,本发明还提供了一种正极极片的制备方法,包括以下步骤:In addition, the present invention also provides a method for preparing a positive pole piece, comprising the following steps:
第一步,制备具有混合底涂层的正极极片的多孔复合箔材:将导电剂、氧化物固态电解质和粘结剂按照预设的质量百分比混合并搅拌均匀,再将其溶于溶剂NMP中进行分散,获得混合底涂层浆料,并通过调节添加溶剂的量,调节混合底涂层浆料的固含量为10-30%或者浆料粘度为1000-4000cp,然后,再分别在如前所述的复合多孔铝箔集流体上下两侧涂覆一层混合底涂层浆料,在80℃-120℃温度条件下进行烘干(放入烘箱中),烘干后得到带有混合底涂层的正极极片的多孔复合箔材,即复合多孔铝箔;The first step is to prepare a porous composite foil of a positive electrode sheet with a mixed undercoat layer: mix the conductive agent, oxide solid electrolyte and binder according to the preset mass percentage and stir evenly, and then dissolve it in the solvent NMP disperse in to obtain the mixed primer slurry, and by adjusting the amount of added solvent, the solid content of the mixed primer slurry is adjusted to be 10-30% or the viscosity of the slurry is 1000-4000cp, and then, respectively, in such as The above-mentioned composite porous aluminum foil current collector is coated with a layer of mixed primer slurry on the upper and lower sides, and dried (in an oven) at a temperature of 80°C-120°C. The porous composite foil of the coated positive pole piece, that is, the composite porous aluminum foil;
在第一步中,具体实现上,导电剂、氧化物固态电解质和粘结剂之间的预设质量百分比具体如下:In the first step, in terms of specific realization, the preset mass percentage among the conductive agent, the oxide solid electrolyte and the binder is as follows:
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂,也就是混合底涂层浆料的溶质所包括的各个组分的质量百分比。10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder, that is, the mass percentage of each component included in the solute of the mixed primer slurry.
第二步,制备正极物质浆料:将正极活性材料、氧化物固态电解质、导电剂和粘结剂按照预设的质量比混合并搅拌均匀,再将其溶于溶剂NMP中进行分散,获得正极物质浆料,并通过调节添加溶剂的量,调节正极物质浆料的固含量为60-75%或者浆料粘度为6000-8000cp;The second step is to prepare the positive electrode material slurry: mix the positive electrode active material, oxide solid electrolyte, conductive agent and binder according to the preset mass ratio and stir evenly, and then dissolve it in the solvent NMP for dispersion to obtain the positive electrode Material slurry, and by adjusting the amount of solvent added, the solid content of the positive electrode material slurry is adjusted to 60-75% or the viscosity of the slurry is 6000-8000cp;
在第二步中,具体实现上,正极活性材料、氧化物固态电解质、导电剂和粘结剂之间的质量比为(84-96):(1-5):(1-5):(2-6)。In the second step, in specific realization, the mass ratio between positive electrode active material, oxide solid electrolyte, conductive agent and binder is (84-96):(1-5):(1-5):( 2-6).
第三步,将第二步获得的正极物质浆料,分别涂覆一层在第一步获得的复合多孔铝箔的上下两侧,在80℃-120℃的温度条件下进行烘干(放入烘箱中),在烘干后进行碾压,得到碾压后的正极极片,然后将碾压后的正极极片裁切至规定的尺寸,最终获得成品正极极片。In the third step, the cathode material slurry obtained in the second step is respectively coated on the upper and lower sides of the composite porous aluminum foil obtained in the first step, and dried at a temperature of 80°C-120°C (put in In the oven), after drying, rolling is carried out to obtain the rolled positive electrode sheet, and then the rolled positive electrode sheet is cut to the specified size, and finally the finished positive electrode sheet is obtained.
此外,本发明还提供了一种负极极片的制备方法,包括以下步骤:In addition, the present invention also provides a method for preparing a negative electrode sheet, comprising the following steps:
第一步,制备具有混合底涂层的负极极片的多孔复合箔材:将导电剂、氧化物固态电解质和粘结剂按照预设的质量百分比混合并搅拌均匀,再将其溶于溶剂去离子水中进行分散,获得混合底涂层浆料,并通过调节添加溶剂的量,调节混合底涂层浆料的固含量为10-30%或者浆料粘度为1000-4000cp,然后,再分别在如前所述的复合多孔铜箔集流体上下两侧涂覆一层混合底涂层浆料,在80℃-120℃温度条件下进行烘干(放入烘箱中),烘干后得到带有混合底涂层的负极极片的多孔复合箔材,即复合多孔铝箔;The first step is to prepare a porous composite foil with a negative electrode sheet with a mixed primer layer: mix the conductive agent, oxide solid electrolyte and binder according to the preset mass percentage and stir evenly, and then dissolve it in a solvent to remove Disperse in ionized water to obtain a mixed primer slurry, and adjust the solid content of the mixed primer slurry to 10-30% or the viscosity of the slurry to be 1000-4000cp by adjusting the amount of solvent added, and then, respectively, in As mentioned above, the upper and lower sides of the composite porous copper foil current collector are coated with a layer of mixed undercoat slurry, and dried (put into an oven) at a temperature of 80°C-120°C, and after drying, the mixture with The porous composite foil of the negative electrode sheet mixed with the primer layer, that is, the composite porous aluminum foil;
在第一步中,具体实现上,导电剂、氧化物固态电解质和粘结剂之间的预设质量百分比具体如下:In the first step, in terms of specific realization, the preset mass percentage among the conductive agent, the oxide solid electrolyte and the binder is as follows:
10%-40%的导电剂、50%-85%的氧化物固态电解质和5%-10%的粘结剂,也就是混合底涂层浆料的溶质所包括的各个组分的质量百分比。10%-40% conductive agent, 50%-85% oxide solid electrolyte and 5%-10% binder, that is, the mass percentage of each component included in the solute of the mixed primer slurry.
第二步,制备负极物质浆料:将负极活性材料、氧化物固态电解质、导电剂和粘结剂按照预设的质量比混合并搅拌均匀,再将其溶于溶剂去离子水中进行分散,获得负极物质浆料,并通过调节添加溶剂的量,调节负极物质浆料的固含量为40-50%或者浆料粘度为3000-5000cp;The second step is to prepare the negative electrode material slurry: mix the negative electrode active material, oxide solid electrolyte, conductive agent and binder according to the preset mass ratio and stir evenly, then dissolve it in the solvent deionized water for dispersion, and obtain negative electrode material slurry, and by adjusting the amount of solvent added, the solid content of the negative electrode material slurry is adjusted to 40-50% or the viscosity of the slurry is 3000-5000cp;
在第二步中,具体实现上,负极活性材料、氧化物固态电解质、导电剂和粘结剂之间的质量比为(83-97):(1-5):(1-5):(1-7)。In the second step, in specific implementation, the mass ratio between the negative electrode active material, the oxide solid electrolyte, the conductive agent and the binder is (83-97):(1-5):(1-5):( 1-7).
第三步,将第二步获得的负极物质浆料,分别涂覆一层在第一步获得的复合多孔铜箔的上下两侧,在80℃-120℃的温度条件下进行烘干(放入烘箱中),在烘干后进行碾压,得到碾压后的负极极片,然后将碾压后的负极极片裁切至规定的尺寸,最终获得成品负极极片。In the third step, the negative electrode material slurry obtained in the second step is respectively coated on the upper and lower sides of the composite porous copper foil obtained in the first step, and dried at a temperature of 80° C.-120° C. into the oven), and rolling after drying to obtain the rolled negative electrode sheet, and then cut the rolled negative electrode sheet to the specified size, and finally obtain the finished negative electrode sheet.
此外,本发明提供了一种半固体锂离子电池的制备方法,包括以下步骤:In addition, the invention provides a method for preparing a semi-solid lithium ion battery, comprising the following steps:
第一步,将前面制备的正极极片、离子导体隔膜和前面制备的负极极片依次堆叠组装(即应用现有的叠片工序组装),然后在封装后(例如通过铝塑膜封装)注入电解液,制备软包、圆形或方形的、半固态锂离子电池;In the first step, the previously prepared positive pole piece, the ion conductor separator and the previously prepared negative pole piece are sequentially stacked and assembled (that is, assembled using the existing stacking process), and then injected after packaging (for example, through aluminum-plastic film packaging) Electrolyte to prepare soft pack, round or square, semi-solid lithium-ion batteries;
第二步,将半固态锂离子电池先后经过常规的(即现有的)静置、夹具预充、degas(除气)、化成、老化和分容等工序,完成电池的制备及基本电性能测试;In the second step, the semi-solid lithium-ion battery undergoes conventional (ie existing) standing, fixture pre-charging, degas (degassing), formation, aging, and capacity separation to complete the preparation of the battery and its basic electrical properties. test;
其中,夹具预充、化成与分容的压力为500~1500kgf,温度为25~45℃,倍率为0.1C~1C。Among them, the pressure of fixture pre-filling, formation and volume separation is 500-1500kgf, the temperature is 25-45°C, and the rate is 0.1C-1C.
需要说明的是,本发明中采用的夹具预充、化成与分容等操作,是锂电行业电池充放电过程中的常规操作,在此不再赘述。It should be noted that the operations of fixture precharging, formation, and capacity separation used in the present invention are routine operations in the charging and discharging process of batteries in the lithium battery industry, and will not be repeated here.
需要说明的是,对于本发明的技术方案,其在多孔复合箔材上引入包含导电剂、无机氧化物固态电解质的、具有良好电子传导和离子传导的混合底涂层,提高正负极浆料与集流体箔材的粘附力,在极片中活物质与集流体箔材之间构建完整的离子与电子传输通道,减少极片的阻抗,提高电池的性能。同时,通过在正负极多孔复合箔材、正负极材料、正负极物料层及隔膜中都引入固态电解质,从而建立良好的离子扩散网络,可有效降低半固态电池中液态电解液量,进一步提升电池的安全性能。It should be noted that, for the technical solution of the present invention, it introduces a conductive agent, an inorganic oxide solid electrolyte, and a mixed undercoat layer with good electronic conduction and ion conduction on the porous composite foil to improve the positive and negative slurry. The adhesion to the current collector foil builds a complete ion and electron transmission channel between the active material in the pole piece and the current collector foil, reduces the impedance of the pole piece, and improves the performance of the battery. At the same time, by introducing solid electrolytes into the positive and negative porous composite foils, positive and negative materials, positive and negative material layers, and separators, a good ion diffusion network can be established, which can effectively reduce the amount of liquid electrolyte in semi-solid batteries. Further improve the safety performance of the battery.
需要说明的是,半固态电池是液态锂离子电池与全固态锂电池的折中方案,单体中固体电解质质量或体积占单体中电解质总质量或总体积之比的一半,相较之下,半固态电池中的固态电解质不可燃、耐高温、无腐蚀、不挥发,液态电解液量大幅度减少,因此当发生损坏、被穿刺时,将有效避免了自燃或者产生爆炸等情况。It should be noted that semi-solid batteries are a compromise between liquid lithium-ion batteries and all-solid lithium batteries. The mass or volume of the solid electrolyte in the monomer accounts for half of the ratio of the total mass or volume of the electrolyte in the monomer. , The solid electrolyte in the semi-solid battery is non-flammable, high temperature resistant, non-corrosive, non-volatile, and the amount of liquid electrolyte is greatly reduced, so when it is damaged or punctured, it will effectively avoid spontaneous combustion or explosion.
为了更加清楚地理解本发明的技术方案,下面通过具体实施例来说明本发明的技术方案。In order to understand the technical solution of the present invention more clearly, the technical solution of the present invention will be described below through specific examples.
实施例Example
一、制备正极极片。1. Preparation of the positive electrode sheet.
首先,将质量百分比为30%的导电炭黑、60%的固态电解质LATP和10%的粘结剂PVDF,加入溶剂NMP中,获得混合底涂层浆料,调整浆料固含量为20%和粘度为3000cp,将制备好混合底涂层浆料涂在厚度为12μm多孔复合铝箔(其中,PET层的厚度为9μm,作为金属导电层的表面铝金属层的厚度为1.5μm,圆形的通孔的孔径为1μm,孔隙率为20%)的孔洞和两侧表面,厚度为3μm,然后在90℃温度下进行烘干,得到带有混合底涂层的复合多孔铝箔;First, 30% conductive carbon black, 60% solid electrolyte LATP and 10% binder PVDF are added in solvent NMP to obtain a mixed primer slurry, and the solid content of the slurry is adjusted to 20% and Viscosity is 3000cp, the prepared mixed primer slurry is coated on a thickness of 12 μm porous composite aluminum foil (wherein, the thickness of the PET layer is 9 μm, and the thickness of the surface aluminum metal layer as the metal conductive layer is 1.5 μm, and the circular through The pore diameter of the hole is 1 μm, the porosity is 20%) and the surface on both sides, the thickness is 3 μm, and then dried at a temperature of 90 ° C to obtain a composite porous aluminum foil with a mixed primer layer;
然后,将质量百分比为90%的正极活性物质(具体采用LATP表面包覆的三元NCM,Ni%=90%)、3%的固态电解质LATP、3%的导电剂Super P和4%的粘结剂PVDF,混合制成正极物质浆料;Then, 90% of the mass percentage of the positive active material (specifically using the ternary NCM coated on the surface of LATP, Ni% = 90%), 3% of the solid electrolyte LATP, 3% of the conductive agent Super P and 4% of the viscose Binder PVDF, mixed to make positive electrode material slurry;
然后,将正极物质浆料涂覆在带有混合底涂层的复合多孔铝箔的正反双面上,正极涂层面密度40mg/cm2,在烘干后进行碾压、分切后,得到正极极片。Then, the positive electrode material slurry is coated on the front and back sides of the composite porous aluminum foil with a mixed primer layer, and the surface density of the positive electrode coating is 40 mg/cm 2 . After drying, rolling and cutting, the obtained Positive pole piece.
如图1和图2,当多孔复合箔材是多孔复合铝箔时,该箔材包括的高分子绝缘层102是PET层,的高分子绝缘层102两侧的金属导电层101是铝金属层(也即铝箔),多孔复合铝箔上设置有多个通孔103;As shown in Figures 1 and 2, when the porous composite foil is a porous composite aluminum foil, the
参见图3所示,正极极片,包括上下两侧分别具有一层混合底涂层104的多孔复合铝箔,每层混合底涂层104的外侧分别涂覆有一层正极物料层105;As shown in FIG. 3, the positive electrode sheet includes a porous composite aluminum foil with a layer of
二、制备负极极片。2. Prepare the negative pole piece.
首先,将质量百分比为30%的导电炭黑、60%的固态电解质LATP、5%的粘结剂SBR和5%的CMC混合均匀,加入去离子水,获得混合底涂层浆料,调整浆料固含量为20%和粘度为2000cp,将制备好混合浆料涂在厚度为6.5μm多孔复合铜箔(其中,PET层厚度4.5μm,作为金属导电层的表面铜金属层的厚度为1μm,圆形的通孔的孔径为1μm,孔隙率为20%)的孔洞及两侧表面,厚度为3μm,然后,在90℃温度下进行烘干,得到带有混合底涂层的复合多孔铜箔;First, mix the conductive carbon black with a mass percentage of 30%, the solid electrolyte LATP of 60%, the binder SBR of 5% and the CMC of 5% and mix evenly, add deionized water to obtain a mixed primer coating slurry, adjust the slurry The solid content of the material is 20% and the viscosity is 2000cp, and the prepared mixed slurry is coated on a porous composite copper foil with a thickness of 6.5 μm (wherein, the thickness of the PET layer is 4.5 μm, and the thickness of the copper metal layer on the surface of the metal conductive layer is 1 μm, The hole diameter of the circular through hole is 1 μm, the porosity is 20%) and the surface on both sides, the thickness is 3 μm, and then dried at a temperature of 90 ° C to obtain a composite porous copper foil with a mixed primer ;
然后,将质量百分比为92%的负极活性物质(具体采用LATP表面包覆的石墨与硅氧的混合物)、3%的固态电解质LATP、2%的导电剂Super P和3%粘结剂PAA,混合制成负极物质浆料;Then, the mass percentage is 92% of the negative electrode active material (specifically using a mixture of graphite and silicon oxygen coated on the surface of LATP), 3% of the solid electrolyte LATP, 2% of the conductive agent Super P and 3% of the binder PAA, Mix to make negative electrode material slurry;
然后,将负极物质浆料涂覆在带有混合底涂层的复合多孔铜箔的正反双面上,正极涂层面密度20mg/cm2,烘干后进行碾压、分切后,得到负极极片。Then, the negative electrode material slurry is coated on the positive and negative sides of the composite porous copper foil with a mixed primer layer, the surface density of the positive electrode coating is 20 mg/cm 2 , after drying, rolling and cutting, the obtained Negative pole piece.
参见图4所示,负极极片,包括上下两侧分别具有一层混合底涂层104的多孔复合铜箔,每层混合底涂层104的外侧分别涂覆有一层负极物料层205。As shown in FIG. 4 , the negative electrode sheet includes a porous composite copper foil with a
三、制备半固体锂离子电池。3. Preparation of semi-solid lithium-ion battery.
首先,将负极极片、离子导体隔膜和正极依次堆叠,通过叠片工序制备软包半固态电池,其中离子导体隔膜厚度16μm,PE基膜厚度12μm,靠近正极侧的表面涂覆有Al2O3的瓷涂层,涂层厚度2μm,靠近负极侧的表面涂覆LATP快离子导体涂层,涂层厚度2μm。First, stack the negative pole piece, the ion conductor separator and the positive electrode in sequence, and prepare a soft package semi-solid battery through the stacking process, in which the thickness of the ion conductor separator is 16 μm, the thickness of the PE base film is 12 μm, and the surface near the positive electrode is coated with Al 2 O 3 , the thickness of the coating is 2 μm, and the surface near the negative electrode side is coated with the LATP fast ion conductor coating, the coating thickness is 2 μm.
然后,通过铝塑膜封装,再以1.5g/Ah的注液系数注入电解液、高温静置、夹具预充、degas(除气)、化成、老化、分容等工序,完成电池制备及基本电性能测试。其中预充、化成与分容的在1000kgf加压、25℃环境温度、0.2C倍率下进行。Then, it is packaged with aluminum-plastic film, and then the electrolyte is injected with a liquid injection coefficient of 1.5g/Ah, the high temperature is left standing, the fixture is pre-filled, degas (degassing), formation, aging, capacity separation and other processes are completed to complete the battery preparation and basic Electrical performance test. Among them, pre-filling, formation and volume separation are carried out under 1000kgf pressurization, 25°C ambient temperature, and 0.2C magnification.
半固体锂离子电池的电芯(即电池极组)的结构示意图如图5所示,包括正极极片1,负极极片2,以及离子导体隔膜3,The schematic diagram of the structure of the cell (i.e. the battery pole group) of the semi-solid lithium ion battery is shown in Figure 5, including the
电池极组包括如前所述的正极极片1、离子导体隔膜3和如前所述的负极极片2;The battery pole group includes the
离子导体隔膜3,位于正极极片1和负极极片2之间的位置;An
电池极组内注入有电解液;即,电解液填充在正极极片1、离子导体隔膜3和负极极片2之间的间隙中;Electrolyte is injected into the battery electrode group; that is, the electrolyte is filled in the gap between the
其中,离子导体隔膜3,包括基膜301、靠近正极侧的表面涂层(即第一涂层302),靠近负极侧的表面涂层(即第二涂层30)。Wherein, the
对比例1。Comparative example 1.
对比例1与实施例基本相同,不同点如下:Comparative example 1 is basically the same as embodiment, and difference is as follows:
1、正极物质浆料直接涂布在12μm厚PET复合铝箔(即复合多孔铝箔)两侧,负极物质浆料直接涂布在6μm厚PET复合铜箔两侧;1. The positive electrode material slurry is directly coated on both sides of the 12 μm thick PET composite aluminum foil (that is, the composite porous aluminum foil), and the negative electrode material slurry is directly coated on both sides of the 6 μm thick PET composite copper foil;
2、电芯以2.0g/Ah的注液系数注入电解液。其余与实施例的制备过程相同。2. The battery cell is injected with electrolyte at an injection coefficient of 2.0g/Ah. The rest are the same as the preparation process of the examples.
对比例2:Comparative example 2:
对比例2与实施例基本相同,不同点如下:Comparative example 2 is basically the same as the embodiment, and the difference is as follows:
1、正极物质浆料直接涂布在12μm厚多孔PET复合铝箔两侧,负极浆料直接涂布在6μm厚多孔PET复合铜箔两侧;1. The positive electrode material slurry is directly coated on both sides of the 12 μm thick porous PET composite aluminum foil, and the negative electrode slurry is directly coated on both sides of the 6 μm thick porous PET composite copper foil;
2、电芯以2.0g/Ah的注液系数注入电解液。其余与实施例的制备过程相同。2. The battery cell is injected with electrolyte at an injection coefficient of 2.0g/Ah. The rest are the same as the preparation process of the examples.
将实施例与两个对比例进行能量密度、内阻及倍率性能对比,对比结果见表1所示。The energy density, internal resistance and rate performance were compared between the embodiment and two comparative examples, and the comparison results are shown in Table 1.
表1:Table 1:
与现有技术相比较,本发明的技术方案,具有以下的有益技术效果:Compared with the prior art, the technical solution of the present invention has the following beneficial technical effects:
1、本发明的使用的多孔复合箔材,可降低集流体在电池中的重量占比,可以有效提升电池能量密度;1. The porous composite foil used in the present invention can reduce the weight ratio of the current collector in the battery, and can effectively increase the energy density of the battery;
2、本发明在多孔复合箔材的孔洞和表面引入包含导电剂、无机氧化物固态电解质的、具有良好电子传导和离子传导的混合底涂层,构建离子与电子快速传输通道,可以抑制电池极化,降低电池内阻,提高倍率性能;2. The present invention introduces a mixed primer layer containing a conductive agent, an inorganic oxide solid electrolyte, and has good electron conduction and ion conduction into the pores and surfaces of the porous composite foil, so as to construct a fast transmission channel for ions and electrons, which can inhibit the battery electrode. , reduce the internal resistance of the battery, and improve the rate performance;
3、本发明通过在正负极多孔复合箔材、正负极活性材料、正负极物料层及隔膜中都引入固态电解质,从而建立良好的离子扩散网络,可有效降低半固态电池中液态电解液量,进一步提升电池的安全性能。3. The present invention introduces solid electrolytes into the positive and negative electrode porous composite foils, positive and negative electrode active materials, positive and negative electrode material layers, and separators, thereby establishing a good ion diffusion network, which can effectively reduce the liquid electrolysis in semi-solid batteries. The liquid volume further improves the safety performance of the battery.
综上所述,与现有技术相比较,本发明提供的一种多孔复合箔材、正极极片、负极极片和半固态锂离子电池及制备方法,其设计科学,针对原有复合箔材存在的内阻大的问题,通过在多孔复合箔材的表面引入包含导电剂、无机氧化物固态电解质的、具有良好电子传导和离子传导的混合底涂层,提高活性材料和集流体的粘接附着力,构建完整的离子与电子传输通道,提升电子导通和锂离子的迁移效率,抑制电池极化,减少热效应,降低电池内阻,提高倍率性能,具有重大的实践意义。In summary, compared with the prior art, the invention provides a porous composite foil, positive pole piece, negative pole piece and semi-solid lithium ion battery and its preparation method, its design is scientific, aiming at the original composite foil The problem of large internal resistance exists. By introducing a mixed primer layer containing a conductive agent and an inorganic oxide solid electrolyte on the surface of the porous composite foil, which has good electronic conductivity and ion conductivity, the adhesion between the active material and the current collector is improved. Adhesion, building a complete ion and electron transport channel, improving electron conduction and lithium ion migration efficiency, suppressing battery polarization, reducing thermal effects, reducing battery internal resistance, and improving rate performance are of great practical significance.
此外,在本发明中,通过在正负极多孔复合箔材、正负极材料、正负极物料层及隔膜中都引入固态电解质,固态电解质材料的引入能够有效降低半固态电池体系中液态电解液量,进一步提升高比能电池的安全性能。In addition, in the present invention, by introducing solid electrolytes into the positive and negative electrode porous composite foils, positive and negative electrode materials, positive and negative electrode material layers, and separators, the introduction of solid electrolyte materials can effectively reduce liquid electrolysis in semi-solid battery systems. The liquid volume further improves the safety performance of the high specific energy battery.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211367853.XA CN115832195B (en) | 2022-11-03 | 2022-11-03 | A porous composite foil, a positive electrode sheet, a negative electrode sheet, a semi-solid lithium ion battery and a preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211367853.XA CN115832195B (en) | 2022-11-03 | 2022-11-03 | A porous composite foil, a positive electrode sheet, a negative electrode sheet, a semi-solid lithium ion battery and a preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115832195A true CN115832195A (en) | 2023-03-21 |
CN115832195B CN115832195B (en) | 2025-02-07 |
Family
ID=85526384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211367853.XA Active CN115832195B (en) | 2022-11-03 | 2022-11-03 | A porous composite foil, a positive electrode sheet, a negative electrode sheet, a semi-solid lithium ion battery and a preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115832195B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116417621A (en) * | 2023-06-12 | 2023-07-11 | 广州方邦电子股份有限公司 | Composite foil material, battery pole piece and battery |
CN116598419A (en) * | 2023-06-29 | 2023-08-15 | 广州方邦电子股份有限公司 | Composite foil material, battery pole piece and electrochemical energy storage device |
CN116722150A (en) * | 2023-07-03 | 2023-09-08 | 广州方邦电子股份有限公司 | A kind of composite foil material and its application |
CN116936813A (en) * | 2023-06-26 | 2023-10-24 | 天津聚元新能源科技有限公司 | Composite foil and lithium ion battery |
CN117012957A (en) * | 2023-10-08 | 2023-11-07 | 深圳市贝特瑞新能源技术研究院有限公司 | Low-temperature-resistant lithium iron phosphate semi-solid battery, positive electrode slurry thereof and preparation method thereof |
CN117352959A (en) * | 2023-12-01 | 2024-01-05 | 宁德时代新能源科技股份有限公司 | Isolation diaphragm, battery and electric equipment |
CN117673248A (en) * | 2023-10-26 | 2024-03-08 | 中国科学院大连化学物理研究所 | Positive electrode and preparation method and application thereof |
CN118431678A (en) * | 2024-04-23 | 2024-08-02 | 上海恩捷新材料科技有限公司 | Separator, preparation method, battery and electricity utilization device |
CN118676373A (en) * | 2024-08-21 | 2024-09-20 | 深圳市豪鹏科技股份有限公司 | Lithium ion battery |
CN119161834A (en) * | 2024-10-17 | 2024-12-20 | 浙江锂威能源科技有限公司 | Polyacrylate binder and its application, electrode sheet and lithium ion battery |
WO2025066565A1 (en) * | 2023-09-27 | 2025-04-03 | 荣耀终端股份有限公司 | Semi-solid-state lithium battery and terminal comprising same |
WO2025112304A1 (en) * | 2023-11-28 | 2025-06-05 | 宁德时代新能源科技股份有限公司 | Composite current collector, electrode sheet, secondary battery and electric device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105633340A (en) * | 2015-12-17 | 2016-06-01 | 佛山市南海区欣源电子有限公司 | Composite pole plate of lithium ion battery and preparation method of composite pole plate |
CN111987373A (en) * | 2020-08-11 | 2020-11-24 | 天津力神电池股份有限公司 | A kind of solid electrolyte coating based on positive electrode protection, positive electrode sheet and preparation method |
CN113745456A (en) * | 2020-05-27 | 2021-12-03 | 北京卫蓝新能源科技有限公司 | Ternary positive pole piece for lithium battery with high safety and high capacity and preparation method and application thereof |
CN114464960A (en) * | 2022-03-14 | 2022-05-10 | 北京卫蓝新能源科技有限公司 | Lithium battery composite diaphragm and preparation method and application thereof |
CN114639868A (en) * | 2022-03-14 | 2022-06-17 | 北京卫蓝新能源科技有限公司 | Negative plate for lithium battery and preparation method and application thereof |
CN115207366A (en) * | 2022-07-14 | 2022-10-18 | 扬州纳力新材料科技有限公司 | Composite current collector and preparation method and application thereof |
-
2022
- 2022-11-03 CN CN202211367853.XA patent/CN115832195B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105633340A (en) * | 2015-12-17 | 2016-06-01 | 佛山市南海区欣源电子有限公司 | Composite pole plate of lithium ion battery and preparation method of composite pole plate |
CN113745456A (en) * | 2020-05-27 | 2021-12-03 | 北京卫蓝新能源科技有限公司 | Ternary positive pole piece for lithium battery with high safety and high capacity and preparation method and application thereof |
CN111987373A (en) * | 2020-08-11 | 2020-11-24 | 天津力神电池股份有限公司 | A kind of solid electrolyte coating based on positive electrode protection, positive electrode sheet and preparation method |
CN114464960A (en) * | 2022-03-14 | 2022-05-10 | 北京卫蓝新能源科技有限公司 | Lithium battery composite diaphragm and preparation method and application thereof |
CN114639868A (en) * | 2022-03-14 | 2022-06-17 | 北京卫蓝新能源科技有限公司 | Negative plate for lithium battery and preparation method and application thereof |
CN115207366A (en) * | 2022-07-14 | 2022-10-18 | 扬州纳力新材料科技有限公司 | Composite current collector and preparation method and application thereof |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116417621A (en) * | 2023-06-12 | 2023-07-11 | 广州方邦电子股份有限公司 | Composite foil material, battery pole piece and battery |
WO2024255160A1 (en) * | 2023-06-12 | 2024-12-19 | 广州方邦电子股份有限公司 | Composite foil, battery pole piece and battery |
CN116417621B (en) * | 2023-06-12 | 2023-09-05 | 广州方邦电子股份有限公司 | Composite foil, battery pole piece and battery |
CN116936813A (en) * | 2023-06-26 | 2023-10-24 | 天津聚元新能源科技有限公司 | Composite foil and lithium ion battery |
CN116598419A (en) * | 2023-06-29 | 2023-08-15 | 广州方邦电子股份有限公司 | Composite foil material, battery pole piece and electrochemical energy storage device |
CN116722150B (en) * | 2023-07-03 | 2024-03-01 | 广州方邦电子股份有限公司 | Composite foil and application thereof |
CN116722150A (en) * | 2023-07-03 | 2023-09-08 | 广州方邦电子股份有限公司 | A kind of composite foil material and its application |
WO2025007495A1 (en) * | 2023-07-03 | 2025-01-09 | 广州方邦电子股份有限公司 | Composite foil and use thereof |
WO2025066565A1 (en) * | 2023-09-27 | 2025-04-03 | 荣耀终端股份有限公司 | Semi-solid-state lithium battery and terminal comprising same |
CN117012957A (en) * | 2023-10-08 | 2023-11-07 | 深圳市贝特瑞新能源技术研究院有限公司 | Low-temperature-resistant lithium iron phosphate semi-solid battery, positive electrode slurry thereof and preparation method thereof |
CN117012957B (en) * | 2023-10-08 | 2024-01-19 | 深圳市贝特瑞新能源技术研究院有限公司 | Low-temperature-resistant lithium iron phosphate semi-solid battery, positive electrode slurry thereof and preparation method thereof |
CN117673248A (en) * | 2023-10-26 | 2024-03-08 | 中国科学院大连化学物理研究所 | Positive electrode and preparation method and application thereof |
CN117673248B (en) * | 2023-10-26 | 2025-06-20 | 中国科学院大连化学物理研究所 | A positive electrode and its preparation method and application |
WO2025112304A1 (en) * | 2023-11-28 | 2025-06-05 | 宁德时代新能源科技股份有限公司 | Composite current collector, electrode sheet, secondary battery and electric device |
CN117352959A (en) * | 2023-12-01 | 2024-01-05 | 宁德时代新能源科技股份有限公司 | Isolation diaphragm, battery and electric equipment |
CN118431678A (en) * | 2024-04-23 | 2024-08-02 | 上海恩捷新材料科技有限公司 | Separator, preparation method, battery and electricity utilization device |
CN118676373A (en) * | 2024-08-21 | 2024-09-20 | 深圳市豪鹏科技股份有限公司 | Lithium ion battery |
CN119161834A (en) * | 2024-10-17 | 2024-12-20 | 浙江锂威能源科技有限公司 | Polyacrylate binder and its application, electrode sheet and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
CN115832195B (en) | 2025-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115832195B (en) | A porous composite foil, a positive electrode sheet, a negative electrode sheet, a semi-solid lithium ion battery and a preparation method thereof | |
WO2020181681A1 (en) | Hybrid solid-liquid electrolyte lithium storage battery | |
CN110581311B (en) | Composite solid electrolyte membrane, preparation method thereof and solid battery | |
WO2022088610A1 (en) | Lithium-ion capacitor, manufacturing method for same, and uses thereof | |
CN111916666B (en) | Negative plate with special-shaped structure and lithium ion battery comprising same | |
CN111525181A (en) | All-solid-state battery with low interface resistance and preparation method thereof | |
CN111430788A (en) | Composite solid electrolyte membrane, preparation method and solid lithium battery | |
CN108232111A (en) | A kind of anode composite pole piece of solid state battery and preparation method thereof | |
WO2022141508A1 (en) | Electrochemical device and electronic device | |
WO2023155604A1 (en) | Composite separator and electrochemical device | |
US20180233727A1 (en) | Separator for a non-aqueous secondary battery and non-aqueous secondary battery | |
CN104916802A (en) | Composite membrane and application thereof | |
CN114982007B (en) | Methods of manufacturing negative electrodes | |
US11811051B2 (en) | Electrochemical cell design with lithium metal anode | |
CN114094039B (en) | Electrode plate and lithium ion battery comprising same | |
CN111834620A (en) | Lithium metal battery positive electrode, lithium metal battery and preparation method thereof | |
CN108615941A (en) | A kind of additive of anti-thermal runaway and its application in secondary lithium metal | |
WO2024032174A1 (en) | Lithium ion battery | |
CN115136357A (en) | Positive pole piece and lithium ion secondary battery comprising same | |
WO2023123205A1 (en) | Separator and preparation method therefor, secondary battery comprising separator, and electric device | |
CN100431216C (en) | Lithium-ion secondary battery | |
CN115172864A (en) | Solid-state battery and preparation method and application thereof | |
WO2024217031A1 (en) | Secondary battery and electric device | |
CN117393839A (en) | Lithium ion battery and preparation method thereof | |
JP2014026946A (en) | Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230518 Address after: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin Applicant after: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd. Applicant after: Tianjin Juyuan New Energy Technology Co.,Ltd. Address before: No.38, South Haitai Road, Binhai high tech Industrial Development Zone, Binhai New Area, Tianjin Applicant before: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd. |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin Applicant after: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd. Applicant after: Tianjin Lishen Juyuan New Energy Technology Co.,Ltd. Address before: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin Applicant before: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd. Country or region before: China Applicant before: Tianjin Juyuan New Energy Technology Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |