CN115828109A - Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment - Google Patents
Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment Download PDFInfo
- Publication number
- CN115828109A CN115828109A CN202211474688.8A CN202211474688A CN115828109A CN 115828109 A CN115828109 A CN 115828109A CN 202211474688 A CN202211474688 A CN 202211474688A CN 115828109 A CN115828109 A CN 115828109A
- Authority
- CN
- China
- Prior art keywords
- user
- representation
- users
- social
- alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000009826 distribution Methods 0.000 claims abstract description 12
- 230000007246 mechanism Effects 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims description 29
- 239000013598 vector Substances 0.000 claims description 29
- 238000005457 optimization Methods 0.000 claims description 27
- 238000000605 extraction Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于社交网络虚拟身份关联技术领域,具体涉及一种多模态融合与表示对齐的跨社交网络虚拟身份关联方法及装置。The invention belongs to the technical field of social network virtual identity association, and in particular relates to a cross-social network virtual identity association method and device for multi-modal fusion and representation alignment.
背景技术Background technique
如今,社交网络以其高度的便捷性成为了人们生活中不可或缺的一部分。通常,人们喜欢加入多个社交平台享受不同的服务,如使用微信进行交流,使用微博看新闻或者是打卡。因此,有不少学者致力于社交网络相关的研究,而跨社交网络虚拟身份关联作为其中重要部分,目的是识别出同一自然人在不同平台的社交账号,已经在推荐系统、用户行为分析、信息传播等领域引起了高度重视。Nowadays, social network has become an indispensable part of people's life with its high degree of convenience. Usually, people like to join multiple social platforms to enjoy different services, such as using WeChat to communicate, using Weibo to read news or check in. Therefore, many scholars are committed to research related to social networks, and cross-social network virtual identity association is an important part of it. The purpose is to identify the social accounts of the same natural person on different platforms. and other fields have attracted great attention.
事实上,已经有不少的方法被提出应用在用户身份链接上,现阶段的方法可以分为大三类:基于用户属性的方法、基于用户生成内容的方法以及基于用户社交关系的方法。但这些方法都存在一定的缺陷。对于用户属性,出于隐私的原因,用户有选择地公开个人资料属性,并将一些敏感信息(如年龄或联系方式)保密,甚至可能会伪造或模仿信息,增加了信息的不确定性和模糊性。由于社交网络的丰富性,用户发表的帖子会存在多种多样的形式(文字、图片等),若只使用单一的内容会造成信息损失。基于用户之间的社交关系进行研究,现有方法太过强调结构化的信息,但在社交网络中用户好友的特征对于识别用户也是有很大帮助的,毕竟有时好友的特征可能比用户本身的特征更具独特性,要是把其好友的特征考虑进来,那准确率将大大提高。因此,应该利用多模态的用户信息,而不局限于单一模态信息。另一方面,模态与模态之间刻画用户的置信度是不一样的。有时候用户的文本会比其他模态传达更多的信息,而有时候图片也会起到关键作用。因此,自适应地表征不同的模式是解决该问题的关键。In fact, many methods have been proposed for user identity linking. The current methods can be divided into three categories: methods based on user attributes, methods based on user-generated content, and methods based on user social relations. But these methods all have certain flaws. For user attributes, for privacy reasons, users selectively disclose personal data attributes and keep some sensitive information (such as age or contact information) private, and may even forge or imitate information, increasing the uncertainty and ambiguity of information sex. Due to the richness of social networks, users post in various forms (text, pictures, etc.), and if only a single content is used, it will cause information loss. Based on the social relationship between users, existing methods place too much emphasis on structured information, but the characteristics of users’ friends in social networks are also very helpful for identifying users. After all, sometimes the characteristics of friends may be better than the user’s own. The characteristics are more unique. If the characteristics of his friends are taken into account, the accuracy rate will be greatly improved. Therefore, multi-modal user information should be utilized rather than limited to single-modal information. On the other hand, the confidence level that characterizes the user varies from modality to modality. Sometimes the user's text conveys more information than other modals, and sometimes images play a key role. Therefore, adaptively representing different modalities is the key to solving this problem.
其次,虽然同一用户可能在不同的社交平台发布相似的信息,但由于平台之间数据分布不一致,这些类似的信息也可能存在不同的表征。但现有方法往往直接根据他们的表示进行用户身份链接,而没有考虑他们之间的语义差距。因此,如何使同一用户在不同平台的表示接近是另一大挑战。Secondly, although the same user may publish similar information on different social platforms, due to the inconsistent data distribution between platforms, these similar information may also have different representations. But existing methods often directly link user identities based on their representations, without considering the semantic gap between them. Therefore, how to make the representation of the same user close to each other on different platforms is another big challenge.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法及装置,通过多模态融合与表示对齐的方法解决单一模型不能完整地描述用户问题以及不同社交平台存在分布差异的问题。The main purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, provide a cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment, and solve the problem of single model through multi-modal fusion and representation alignment It is not possible to fully describe the problems of users and the problems of distribution differences among different social platforms.
为了达到上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供了一种基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法,包括下述步骤:In the first aspect, the present invention provides a cross-social network virtual identity association method based on multimodal fusion and representation alignment, including the following steps:
对不同社交网络用户的用户名、用户发表的文本以及用户社交关系进行特征提取,分别得到用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息;Feature extraction is performed on the user names, texts published by users and social relations of users of different social network users, and the characteristic information of user names, text characteristic information published by users and user social relation characteristic information are respectively obtained;
根据所述得到的用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息,利用注意力机制进行多模态融合,得到一个融合多维度特征的第一用户表示;According to the user name feature information obtained, the text feature information published by the user, and the user social relationship feature information, the attention mechanism is used to perform multimodal fusion to obtain a first user representation that combines multi-dimensional features;
将所述的第一用户表示通过表示对齐方法进行用户表示加强处理,最终得到不同平台具有同一分布空间的第二用户表示;performing user representation enhancement processing on the first user representation through a representation alignment method, and finally obtaining second user representations with the same distribution space on different platforms;
计算所述的第二用户表示之间的余弦相似性,得到用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。Calculate the cosine similarity between the second user representations to obtain the similarity score between users, and use the user pair with the highest score as the identity association result.
作为优选的技术方案,所述用户名的特征提取,具体为:As a preferred technical solution, the feature extraction of the user name is specifically:
对于给定用户的用户名,利用字符级Bag-of-Words模型进行特征提取,统计每个用户名中每个字符出现的次数,得到向量将得到的所有用户名向量依次拼接得到用户名计数矩阵由于C0是一个稀疏矩阵,为此使用一个自动编码器将其进行转换,转换的公式的具体为:For the username of a given user, the character-level Bag-of-Words model is used for feature extraction, and the number of occurrences of each character in each username is counted to obtain a vector Concatenate all the obtained username vectors in sequence to obtain a username count matrix Since C0 is a sparse matrix, an autoencoder is used to convert it. The conversion formula is as follows:
其中,We,be为编码器的权重和偏置,Wd,bd为解码器的权重和偏置,C1为解码器用户名向量矩阵,和分别为用户名向量,通过梯度下降不断训练损失函数Lc,得到最优的We和be,最终得到维度为d的用户名嵌入矩阵 Among them, W e , be e are the weights and biases of the encoder, W d , b d are the weights and biases of the decoder, C 1 is the decoder username vector matrix, and They are the username vectors, and the loss function L c is continuously trained through gradient descent to obtain the optimal W e and be e , and finally a username embedding matrix with dimension d
作为优选的技术方案,所述用户发表的文本的特征提取,具体为:As a preferred technical solution, the feature extraction of the text published by the user is specifically:
将用户发表的文本输入到Word2Vec模型中,得到每条文本的嵌入向量,然后将每个用户所发表文本的嵌入向量取平均作为该用户发表文本的表示,将所有用户的文本嵌入向量依次拼接,得到维度为d的文本嵌入矩阵 Input the text published by the user into the Word2Vec model to obtain the embedding vector of each text, and then average the embedding vector of each user’s published text as the representation of the user’s published text, and splice the text embedding vectors of all users in turn, Get the text embedding matrix with dimension d
作为优选的技术方案,所述用户社交关系的特征提取,具体为:As a preferred technical solution, the feature extraction of the user social relationship is specifically:
将由平台N1的n个用户和平台N2的m个用户组成的社交关系得到的n×m邻接矩阵通过DeepWalk模型得到每个用户社交关系的嵌入向量,将所有用户的社交关系嵌入向量依次拼接,得到维度为d的用户社交关系嵌入矩阵 The n×m adjacency matrix obtained from the social relations composed of n users on platform N 1 and m users on platform N 2 is obtained through the DeepWalk model to obtain the embedding vector of each user's social relations, and the social relation embedding vectors of all users are concatenated in sequence , get the user social relationship embedding matrix with dimension d
作为优选的技术方案,所述多模态融合是将得到的三种用户特征信息的嵌入矩阵,利用注意力机制进行多模态融合,为每个模态赋予不同权重以反映不同模态之间的重要性,经过多模态融合后,得到第一用户表示矩阵Zf;计算公式为:As a preferred technical solution, the multimodal fusion is to use the attention mechanism to perform multimodal fusion of the obtained three kinds of user feature information embedding matrices, and assign different weights to each modality to reflect the difference between different modalities. After multi-modal fusion, the first user representation matrix Z f is obtained; the calculation formula is:
其中,αc,αT,αV分别用户名、文本、社交关系嵌入矩阵的权重;f(.)为注意力网络。Among them, α c , α T , and α V are the weights of user name, text, and social relationship embedding matrix respectively; f(.) is the attention network.
作为优选的技术方案,所述表示对齐加强用户表示的具体步骤为:As a preferred technical solution, the specific steps of said representation alignment strengthening user representation are:
首先,将第一用户表示放入一个全连接层,以将两平台的用户表示映射到同一空间当中,得到第二用户表示,所述第二用户表示的计算公式为:First, put the first user representation into a fully connected layer to map the user representations of the two platforms into the same space to obtain the second user representation. The calculation formula of the second user representation is:
其中,Wl,bl分别为全连接层权重和偏置,为平台N多模态融合得到的第一用户表示,Z为第二用户表示;Among them, W l , b l are the weight and bias of the fully connected layer respectively, is the first user representation obtained by multi-modal fusion of platform N, and Z is the second user representation;
其次,为训练本方法中的所有权重和偏置,使用最小化EMD距离作为第一优化目标,所述第一优化目标的计算公式为:Secondly, in order to train all weights and offsets in this method, the minimum EMD distance is used as the first optimization goal, and the calculation formula of the first optimization goal is:
其中,LE为第一优化目标,dij为用户的第二用户表示和用户的第二用户表示的距离,Fij为用户和用户之间的关联概率,表示F范数的平方;Among them, L E is the first optimization objective, d ij is the user The second user of and user The second user of distance, F ij is the user and user The correlation probability between Indicates the square of the F norm;
此外,通过减少用户对之间的表示距离以及Pij和Fij之间的差异,设置第二优化目标以更好地指导学习第二用户表示,所述第二优化目标的计算公式为:In addition, by reducing the representation distance between user pairs and the difference between P ij and F ij , a second optimization objective is set to better guide the learning of the second user representation, the calculation formula of the second optimization objective is:
其中,LR为第二优化目标,np为已关联用户样本对数量,λ1和λ2为超参数,对于已关联用户样本对,真实关联概率Pij=1;Among them, LR is the second optimization objective, n p is the number of associated user sample pairs, λ 1 and λ 2 are hyperparameters, and for associated user sample pairs, the true association probability P ij =1;
实现最终的优化目标L是第一优化目标与第二优化目标之和,即:Realizing the final optimization objective L is the sum of the first optimization objective and the second optimization objective, namely:
L=LE+LR L=L E +L R
最后,通过梯度下降法不断优化L得到最优的权重和偏置,最终根据最优Wl和bl得到第二用户表示Z。Finally, L is continuously optimized by the gradient descent method to obtain the optimal weight and bias, and finally the second user representation Z is obtained according to the optimal W l and b l .
作为优选的技术方案,所述身份关联结果是通过计算第二用户表示之间的余弦相似性,计算公式如下:As a preferred technical solution, the identity association result is calculated by calculating the cosine similarity between the representations of the second users, and the calculation formula is as follows:
其中,为平台N1的用户的第二用户表示和为平台N2的用户的第二用户表示,Sij为用户和用户的余弦相似性。in, For users of platform N 1 A second user representation of and For users of platform N 2 The second user of , S ij is the user and users cosine similarity of .
第二方面,本发明还提供了一种基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统,应用所述的多模态融合与表示对齐的跨社交网络虚拟身份关联方法,包括特征提取模块、多模态融合模块、表示对齐模块以及身份关联模块;In the second aspect, the present invention also provides a cross-social network virtual identity association system based on multi-modal fusion and representation alignment, applying the multi-modal fusion and representation alignment cross-social network virtual identity association method, including features Extraction module, multimodal fusion module, representation alignment module and identity association module;
所述特征提取模块,用于对不同平台的社交网络的用户名、用户发表的文本以及用户社交关系进行特征提取,分别得到用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息;The feature extraction module is used to perform feature extraction on user names of social networks on different platforms, texts published by users, and user social relations, and respectively obtain user name feature information, text feature information published by users, and user social relationship feature information;
所述多模态融合模块,用于根据所述的三种用户特征信息,利用注意力机制进行多模态融合,得到一个融合多维度特征的第一用户表示;The multi-modal fusion module is used to perform multi-modal fusion by using an attention mechanism according to the three kinds of user feature information, and obtain a first user representation that integrates multi-dimensional features;
所述表示对齐模块,用于将所述的第一用户表示通过表示对齐加强用户表示,最终得到不同平台具有同一分布的第二用户表示;The representation alignment module is configured to strengthen the user representation through representation alignment of the first user representation, and finally obtain a second user representation with the same distribution on different platforms;
所述身份关联模块,用于计算所述的第二用户表示之间的余弦相似性,得到用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。The identity association module is used to calculate the cosine similarity between the second user representations, obtain the similarity score between users, and use the user pair with the highest score as the identity association result.
第三方面,本发明还提供了一种电子设备,所述电子设备包括:In a third aspect, the present invention also provides an electronic device, the electronic device comprising:
至少一个处理器;以及,at least one processor; and,
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的计算机程序指令,所述计算机程序指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行所述的基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法。The memory stores computer program instructions executable by the at least one processor, the computer program instructions are executed by the at least one processor, so that the at least one processor can perform the multimodal-based Fusion and representation alignment approach to virtual identity association across social networks.
第四方面,本发明还提供了一种计算机可读存储介质,存储有程序,所述程序被处理器执行时,实现所述的基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法。In the fourth aspect, the present invention also provides a computer-readable storage medium, which stores a program, and when the program is executed by a processor, implements the cross-social network virtual identity association method based on multimodal fusion and representation alignment .
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1.本发明充分挖掘用户名、用户发表内容和社交关系三种模态信息。基于字符级的Bag-of-Words模型提取每个用户名特定构成的特征;从Word2Vec和DeepWalk模型提取文本和社交关系特征,并此基础上,利用注意力机制自动学习特征权重进行多模态融合,一定程度上解决了现有方法使用单一模态信息不能完整地描述用户,或者使用多模态信息却不能完美地融合的问题;1. The present invention fully mines three modal information of user name, user published content and social relationship. Based on the character-level Bag-of-Words model to extract the specific composition features of each user name; extract text and social relationship features from Word2Vec and DeepWalk models, and on this basis, use the attention mechanism to automatically learn feature weights for multi-modal fusion , to a certain extent, it solves the problem that the existing methods cannot fully describe the user using single-modal information, or cannot perfectly integrate multi-modal information;
2.本发明在获得用户表示之后,进一步通过表示对齐加强用户表示,使不同平台属于同一自然人的用户表示尽可能靠近,解决不同社交平台存在数据分布差异问题。2. After the user representation is obtained, the present invention further strengthens the user representation through representation alignment, so that user representations belonging to the same natural person on different platforms are as close as possible, and solve the problem of data distribution differences between different social platforms.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1为本发明实施例基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法框架图;FIG. 1 is a frame diagram of a cross-social network virtual identity association method based on multimodal fusion and representation alignment according to an embodiment of the present invention;
图2为本发明实施例基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统的方框图;FIG. 2 is a block diagram of a cross-social network virtual identity association system based on multimodal fusion and representation alignment according to an embodiment of the present invention;
图3为本发明实施例电子设备的结构图。FIG. 3 is a structural diagram of an electronic device according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to enable those skilled in the art to better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Apparently, the described embodiments are only some of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of this application.
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。Reference in this application to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described in this application can be combined with other embodiments.
多模态融合:多模态融合是指综合来自两个或多个模态的信息以进行预测的过程。在预测的过程中,单个模态通常不能包含产生精确预测结果所需的全部有效信息,多模态融合过程结合了来自两个或多个模态的信息,实现信息补充,拓宽输入数据所包含信息的覆盖范围,提升预测结果的精度,提高预测模型的鲁棒性。Multimodal fusion: Multimodal fusion refers to the process of combining information from two or more modalities to make predictions. In the process of prediction, a single modality usually cannot contain all the effective information required to produce accurate prediction results. The multimodal fusion process combines information from two or more modalities to achieve information supplementation and broaden the input data. The coverage of information improves the accuracy of prediction results and the robustness of prediction models.
请参阅图1,在本申请的一个实施例中提供了一种多模态融合与表示对齐的跨社交网络虚拟身份关联方法,包括下述步骤:Please refer to FIG. 1 , in one embodiment of the present application, a cross-social network virtual identity association method for multi-modal fusion and representation alignment is provided, including the following steps:
S1、对不同社交网络的用户名、用户发表的文本以及用户社交关系进行特征提取,分别得到用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息。S1. Feature extraction is performed on user names, texts published by users, and social relationships of users in different social networks, and feature information of user names, text feature information published by users, and user social relationship feature information are respectively obtained.
S11、所述用户名的特征提取,具体为:S11. Feature extraction of the user name, specifically:
对于给定用户的用户名“abza12”,利用字符级Bag-of-Words模型进行特征提取,统计每个用户名中每个字符出现的次数,得到向量如用户名“abza12”中a:2,b:1,z:1,“1”:1,“2”:1,因此,得到向量将得到的所有用户名向量依次拼接得到用户名计数矩阵由于C0是一个稀疏矩阵,为此使用一个自动编码器将其进行转换,转换的公式的具体为:For the username "abza12" of a given user, the character-level Bag-of-Words model is used for feature extraction, and the number of occurrences of each character in each username is counted to obtain a vector For example, in the user name "abza12", a: 2, b: 1, z: 1, "1": 1, "2": 1, therefore, get the vector Concatenate all the obtained username vectors in sequence to obtain a username count matrix Since C0 is a sparse matrix, an autoencoder is used to convert it. The conversion formula is as follows:
其中,We,be为编码器的权重和偏置,Wd,bd为解码器的权重和偏置,和分别为用户名向量,通过梯度下降不断训练Lc,得到最优的We和be,最终得到维度为d的用户名嵌入矩阵 Among them, W e , be e are the weights and biases of the encoder, W d , b d are the weights and biases of the decoder, and They are the username vectors respectively, and L c is continuously trained through gradient descent to obtain the optimal We and be e , and finally obtain the username embedding matrix with dimension d
S12、所述用户发表的文本的特征提取,具体为:S12. Feature extraction of the text published by the user, specifically:
对于用户发表的文本,如“Today is a sunny day.”,去停用词后将所得的文本输入到Word2Vec模型中,得到每个单词的向量表示,进一步将每条文本的单词向量进行加和得到每条文本的嵌入向量,然后将每个用户发表所有文本的嵌入向量取平均作为该用户发表文本的表示,将所有用户的文本嵌入向量依次拼接,得到维度为d的文本嵌入矩阵 For the text published by the user, such as "Today is a sunny day.", after removing the stop words, input the resulting text into the Word2Vec model to obtain the vector representation of each word, and further add the word vectors of each text Get the embedding vector of each text, and then average the embedding vectors of all the texts published by each user as the representation of the user’s published text, concatenate the text embedding vectors of all users in turn to obtain a text embedding matrix with dimension d
S13、所述用户社交关系的特征提取,具体为:S13. Feature extraction of the user social relationship, specifically:
对于用户社交关系,若平台N1第i用户与平台N2第j用户存在好友关系,则将其邻接矩阵第ij个位置设置为1,由平台N1的n个用户和平台N2的m个用户组成的社交关系得到的n×m邻接矩阵通过DeepWalk模型得到每个用户社交关系的嵌入向量,将所有用户的社交关系嵌入向量依次拼接,得到维度为d的用户社交关系嵌入矩阵 For user social relations, if the i-th user on platform N1 has a friend relationship with the j-th user on platform N2 , the ijth position of the adjacency matrix is set to 1, and the n users on platform N1 and the mth user on platform N2 The n×m adjacency matrix obtained by the social relationship composed of four users is obtained through the DeepWalk model to obtain the embedding vector of each user's social relationship, and the social relationship embedding vectors of all users are sequentially spliced to obtain the user social relationship embedding matrix with dimension d
S2、根据所述的特征信息,利用注意力机制进行多模态融合,得到一个融合多维度特征的第一用户表示。S2. According to the feature information, use the attention mechanism to perform multi-modal fusion to obtain a first user representation that combines multi-dimensional features.
S21、所述多模态融合是将得到的三种用户特征信息的嵌入矩阵;利用注意力机制进行多模态融合,为每个模态赋予不同权重以反映不同模态之间的重要性,经过多模态融合后,得到第一用户表示矩阵Zf;计算公式为:S21. The multimodal fusion is an embedding matrix of the obtained three types of user feature information; the attention mechanism is used to perform multimodal fusion, and different weights are assigned to each modality to reflect the importance between different modalities, After multimodal fusion, the first user representation matrix Z f is obtained; the calculation formula is:
其中,αC,αT,αV分别用户名、文本、社交关系嵌入矩阵的权重;f(.)为注意力网络。Among them, α C , α T , and α V are the weights of user name, text, and social relationship embedding matrix respectively; f(.) is the attention network.
S3、将所述的第一用户表示通过表示对齐加强用户表示,最终得到不同平台具有同一分布的第二用户表示。S3. Strengthen the user representation by aligning the first user representation, and finally obtain a second user representation with the same distribution on different platforms.
S31、首先,将第一用户表示放入一个全连接层,以将两平台的用户表示映射到同一空间当中,得到第二用户表示,所述第二用户表示的计算公式为:S31. First, put the first user representation into a fully connected layer to map the user representations of the two platforms into the same space to obtain the second user representation. The calculation formula of the second user representation is:
其中,Wl,bl分别为全连接层权重和偏置,为平台N多模态融合得到的第一用户表示,Z为第二用户表示。Among them, W l , b l are the weight and bias of the fully connected layer respectively, is the first user representation obtained by multimodal fusion of platform N, and Z is the second user representation.
S32、其次,使用最小化EMD距离作为第一优化目标,所述第一优化目标的计算公式为:S32, secondly, using the minimum EMD distance as the first optimization objective, the calculation formula of the first optimization objective is:
其中,LE为第一优化目标,dij为用户的第二用户表示和用户的第二用户表示的距离,Fij为用户和用户之间的关联概率,表示F范数的平方。Among them, L E is the first optimization objective, d ij is the user The second user of and user The second user of distance, F ij is the user and user The correlation probability between Indicates the square of the F-norm.
S33、本方法通过减少用户对之间的表示距离以及Pij和Fij之间的差异,设置第二优化目标以更好地指导学习第二用户表示,所述第二优化目标的计算公式为:S33. In this method, by reducing the representation distance between pairs of users and the difference between P ij and F ij , a second optimization goal is set to better guide the learning of the second user representation. The calculation formula of the second optimization goal is: :
其中,LR为第二优化目标,np为已关联用户样本对数量,λ1和λ2为超参数,对于已关联用户样本对,真实关联概率Pij=1;Among them, LR is the second optimization objective, n p is the number of associated user sample pairs, λ 1 and λ 2 are hyperparameters, and for associated user sample pairs, the true association probability P ij =1;
实现最终的优化目标L是第一优化目标与第二优化目标之和,即:Realizing the final optimization objective L is the sum of the first optimization objective and the second optimization objective, namely:
L=LE+LR L=L E +L R
最后,通过梯度下降法不断优化L得到最优的权重和偏置,最终根据最优Wl和bl得到第二用户表示Z。Finally, L is continuously optimized by the gradient descent method to obtain the optimal weight and bias, and finally the second user representation Z is obtained according to the optimal W l and b l .
S4、计算所述的第二用户表示之间的余弦相似性,得到用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。S4. Calculate the cosine similarity between the second user representations to obtain a similarity score between users, and use the user pair with the highest score as an identity association result.
S41、计算平台N1与平台N2用户之间的第二用户表示余弦相似性:S41. Computing the second user representation cosine similarity between the platform N 1 and platform N 2 users:
其中,为平台N1的用户的第二用户表示和为平台N2的用户的第二用户表示,Sij为用户和用户的余弦相似性;最终根据用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。in, For users of platform N 1 A second user representation of and For users of platform N 2 The second user of , S ij is the user and user The cosine similarity of ; Finally, according to the similarity score between users, the user pair with the highest score is used as the identity association result.
需要说明的是,对于前述的各方法实施例,为了简便描述,将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。It should be noted that for the foregoing method embodiments, for the sake of simplicity of description, they are expressed as a series of action combinations, but those skilled in the art should know that the present invention is not limited by the described action sequence, because Certain steps may be performed in other orders or simultaneously in accordance with the present invention.
基于与上述实施例中的基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法相同的思想,本发明还提供了基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统,该系统可用于执行上述基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法。为了便于说明,基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统实施例的结构示意图中,仅仅示出了与本发明实施例相关的部分,本领域技术人员可以理解,图示结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Based on the same idea as the cross-social network virtual identity association method based on multimodal fusion and representation alignment in the above-mentioned embodiments, the present invention also provides a cross-social network virtual identity association system based on multimodal fusion and representation alignment. The system can be used to implement the above-mentioned cross-social network virtual identity association method based on multimodal fusion and representation alignment. For the sake of illustration, in the schematic structural diagram of the embodiment of the cross-social network virtual identity association system based on multimodal fusion and representation alignment, only the parts related to the embodiment of the present invention are shown. Those skilled in the art can understand that the illustrated structure The device is not intended to be limited and may include more or fewer components than shown, or combine certain components, or have different arrangements of components.
请参阅图2,在本申请的另一个实施例中,提供了一种基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统100,该系统包括特征提取模块101、多模态融合模块102、表示对齐模块103以及身份关联模块104Please refer to Fig. 2, in another embodiment of the present application, a cross-social network virtual
所述特征提取模块101,用于对不同平台的社交网络的用户名、用户发表的文本以及用户社交关系进行特征提取,分别得到用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息;The
所述多模态融合模块102,用于根据所述的三种用户特征信息,利用注意力机制进行多模态融合,得到一个融合多维度特征的第一用户表示;The
所述表示对齐模块103,用于将所述的第一用户表示通过表示对齐加强用户表示,最终得到不同平台具有同一分布的第二用户表示;The
所身份关联模块104,用于计算所述的第二用户表示之间的余弦相似性,得到用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。The
需要说明的是,本发明的基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统与本发明的基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法一一对应,在上述基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法的实施例阐述的技术特征及其有益效果均适用于基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统实施例中,具体内容可参见本发明方法实施例中的叙述,此处不再赘述,特此声明。It should be noted that the cross-social network virtual identity association system based on multimodal fusion and representation alignment of the present invention corresponds to the cross-social network virtual identity association method based on multimodal fusion and representation alignment of the present invention. The technical features and beneficial effects described in the embodiment of the cross-social network virtual identity association method based on multi-modal fusion and representation alignment are applicable to the embodiment of the cross-social network virtual identity association system based on multi-modal fusion and representation alignment, For specific content, please refer to the description in the method embodiment of the present invention, which will not be repeated here, and is hereby declared.
此外,上述实施例的多模态融合与表示对齐的跨社交网络虚拟身份关联系统的实施方式中,各程序模块的逻辑划分仅是举例说明,实际应用中可以根据需要,例如出于相应硬件的配置要求或者软件的实现的便利考虑,将上述功能分配由不同的程序模块完成,即将所述基于多模态融合与表示对齐的跨社交网络虚拟身份关联系统的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分功能。In addition, in the implementation of the cross-social network virtual identity association system of multi-modal fusion and representation alignment in the above-mentioned embodiment, the logical division of each program module is only an example. Considering the configuration requirements or the convenience of software implementation, the above-mentioned function allocation is completed by different program modules, that is, the internal structure of the cross-social network virtual identity association system based on multi-modal fusion and representation alignment is divided into different program modules, To complete all or part of the functions described above.
请参阅图3,在一个实施例中,提供了一种实现基于多模态融合与表示对齐的跨社交网络虚拟身份关联方法的电子设备,所述电子设备200可以包括第一处理器201、第一存储器202和总线,还可以包括存储在所述第一存储器202中并可在所述第一处理器201上运行的计算机程序,如多模态融合与表示对齐的跨社交网络虚拟身份关联程序203。Referring to FIG. 3 , in one embodiment, an electronic device for implementing a cross-social network virtual identity association method based on multimodal fusion and representation alignment is provided, and the
其中,所述第一存储器202至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、移动硬盘、多媒体卡、卡型存储器(例如:SD或DX存储器等)、磁性存储器、磁盘、光盘等。所述第一存储器202在一些实施例中可以是电子设备200的内部存储单元,例如该电子设备200的移动硬盘。所述第一存储器202在另一些实施例中也可以是电子设备200的外部存储设备,例如电子设备200上配备的插接式移动硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(SecureDigital,SD)卡、闪存卡(Flash Card)等。进一步地,所述第一存储器202还可以既包括电子设备200的内部存储单元也包括外部存储设备。所述第一存储器202不仅可以用于存储安装于电子设备200的应用软件及各类数据,例如多模态融合与表示对齐的跨社交网络虚拟身份关联程序203的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。Wherein, the
所述第一处理器201在一些实施例中可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。所述第一处理器201是所述电子设备的控制核心(Control Unit),利用各种接口和线路连接整个电子设备的各个部件,通过运行或执行存储在所述第一存储器202内的程序或者模块,以及调用存储在所述第一存储器202内的数据,以执行电子设备200的各种功能和处理数据。In some embodiments, the
图3仅示出了具有部件的电子设备,本领域技术人员可以理解的是,图3示出的结构并不构成对所述电子设备200的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。FIG. 3 only shows an electronic device with components. Those skilled in the art can understand that the structure shown in FIG. 3 does not constitute a limitation to the
所述电子设备200中的所述第一存储器202存储的多模态融合与表示对齐的跨社交网络虚拟身份关联程序203是多个指令的组合,在所述第一处理器201中运行时,可以实现:The cross-social network virtual
对不同社交网络的用户名、用户发表的文本以及用户社交关系进行特征提取,分别得到用户名特征信息、用户发表的文本特征信息以及用户社交关系特征信息;Feature extraction is performed on user names, texts published by users, and social relationships of users in different social networks, and feature information of user names, text features published by users, and user social relationship feature information are obtained respectively;
根据所述的特征信息,利用注意力机制进行多模态融合,得到一个融合多维度特征的第一用户表示;Using the attention mechanism to perform multi-modal fusion according to the feature information, to obtain a first user representation that combines multi-dimensional features;
将所述的第一用户表示通过表示对齐加强用户表示,最终得到不同平台具有同一分布的第二用户表示;Strengthening the user representation by aligning the first user representation, and finally obtaining a second user representation with the same distribution on different platforms;
计算所述的第二用户表示之间的余弦相似性,得到用户之间的相似性得分,并将得分最高的用户对作为身份关联结果。Calculate the cosine similarity between the second user representations to obtain the similarity score between users, and use the user pair with the highest score as the identity association result.
进一步地,所述电子设备200集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个非易失性计算机可读取存储介质中。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)。Further, if the integrated modules/units of the
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be realized through computer programs to instruct related hardware, and the programs can be stored in a non-volatile computer-readable storage medium When the program is executed, it may include the processes of the embodiments of the above-mentioned methods. Wherein, any references to memory, storage, database or other media used in the various embodiments provided in the present application may include non-volatile and/or volatile memory. Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211474688.8A CN115828109A (en) | 2022-11-23 | 2022-11-23 | Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211474688.8A CN115828109A (en) | 2022-11-23 | 2022-11-23 | Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115828109A true CN115828109A (en) | 2023-03-21 |
Family
ID=85530641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211474688.8A Pending CN115828109A (en) | 2022-11-23 | 2022-11-23 | Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115828109A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116776193A (en) * | 2023-05-17 | 2023-09-19 | 广州大学 | Method and device for associating virtual identities across social networks based on attention mechanism |
-
2022
- 2022-11-23 CN CN202211474688.8A patent/CN115828109A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116776193A (en) * | 2023-05-17 | 2023-09-19 | 广州大学 | Method and device for associating virtual identities across social networks based on attention mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021114840A1 (en) | Scoring method and apparatus based on semantic analysis, terminal device, and storage medium | |
WO2021051867A1 (en) | Asset information identification method and apparatus, computer device and storage medium | |
WO2023045605A1 (en) | Data processing method and apparatus, computer device, and storage medium | |
WO2021135455A1 (en) | Semantic recall method, apparatus, computer device, and storage medium | |
WO2021204017A1 (en) | Text intent recognition method and apparatus, and related device | |
US20220083745A1 (en) | Method, apparatus and electronic device for determining word representation vector | |
WO2023092719A1 (en) | Information extraction method for medical record data, and terminal device and readable storage medium | |
CN113887237A (en) | Slot position prediction method and device for multi-intention text and computer equipment | |
WO2025055528A1 (en) | Speech processing method and apparatus, and device and storage medium | |
CN113158656A (en) | Ironic content identification method, ironic content identification device, electronic device, and storage medium | |
CN114372157A (en) | Insurance semantic understanding method, device, equipment and medium based on knowledge graph | |
CN111368066B (en) | Method, apparatus and computer readable storage medium for obtaining dialogue abstract | |
CN114637831A (en) | Data query method and related equipment based on semantic analysis | |
CN115828109A (en) | Cross-social network virtual identity association method and device based on multi-modal fusion and representation alignment | |
CN115618043A (en) | Text manipulation graph mutual inspection method and model training method, device, equipment, medium | |
CN117951304B (en) | Text emotion classification method based on syntactic dependency relationship and attention mechanism | |
CN116776193B (en) | Method and device for associating virtual identities across social networks based on attention mechanism | |
CN112486947A (en) | Knowledge base construction method and device, electronic equipment and readable storage medium | |
CN117131873A (en) | Double-encoder pre-training small sample relation extraction method based on contrast learning | |
CN114676694B (en) | Business model generation method, device, equipment, medium and program product | |
CN116894092A (en) | Text processing method, text processing device, electronic equipment and readable storage medium | |
CN116992283A (en) | Language model dynamic update method, device, electronic equipment and storage medium | |
WO2023137903A1 (en) | Reply statement determination method and apparatus based on rough semantics, and electronic device | |
CN116881446A (en) | Semantic classification method, device, equipment and storage medium thereof | |
CN115827847A (en) | Knowledge graph construction method and device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |