CN115819541A - Recombinant spider silk strengthened by cysteine and its preparation method and application - Google Patents

Recombinant spider silk strengthened by cysteine and its preparation method and application Download PDF

Info

Publication number
CN115819541A
CN115819541A CN202111085698.8A CN202111085698A CN115819541A CN 115819541 A CN115819541 A CN 115819541A CN 202111085698 A CN202111085698 A CN 202111085698A CN 115819541 A CN115819541 A CN 115819541A
Authority
CN
China
Prior art keywords
spider silk
recombinant spider
recombinant
preparation
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111085698.8A
Other languages
Chinese (zh)
Inventor
胡金莲
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City University of Hong Kong CityU
Original Assignee
City University of Hong Kong CityU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City University of Hong Kong CityU filed Critical City University of Hong Kong CityU
Priority to CN202111085698.8A priority Critical patent/CN115819541A/en
Publication of CN115819541A publication Critical patent/CN115819541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种半胱氨酸强化的重组蜘蛛丝及其制备方法和应用。重组蜘蛛丝蛋白的氨基酸序列具有SEQ ID NO:6所示的序列。编码该蛋白氨基酸序列的多核苷酸具有如下结构:半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因的5’端连接有N‑结构域、3’端连接有C‑结构域;将其基因插入到pET‑28a质粒载体中获得重组质粒,导入到大肠杆菌中进行表达得到重组蜘蛛丝蛋白。利用该重组蜘蛛丝蛋白通过湿法纺丝制备获得的重组蜘蛛丝具有致密的β‑sheet晶体结构、优异的机械性能和湿强度,为重组蜘蛛丝的产业化应用开拓前景。The invention provides a cysteine-strengthened recombinant spider silk, a preparation method and application thereof. The amino acid sequence of the recombinant spider silk protein has the sequence shown in SEQ ID NO:6. The polynucleotide encoding the amino acid sequence of the protein has the following structure: the 5' end of the parental web spider major ampullate gland silk MaSp2 gene improved by cysteine is connected with an N-domain, and the 3' end is connected with a C-domain; The gene was inserted into the pET‑28a plasmid vector to obtain a recombinant plasmid, which was then introduced into Escherichia coli for expression to obtain a recombinant spider silk protein. The recombinant spider silk prepared by wet spinning using the recombinant spider silk protein has a dense β-sheet crystal structure, excellent mechanical properties and wet strength, which opens up prospects for the industrial application of recombinant spider silk.

Description

半胱氨酸强化的重组蜘蛛丝及其制备方法和应用Recombinant spider silk strengthened by cysteine and its preparation method and application

技术领域technical field

本发明属于生物高分子纤维材料领域,特别涉及一种半胱氨酸强化的重组蜘蛛丝及其制备方法和应用。The invention belongs to the field of biopolymer fiber materials, and in particular relates to a cysteine-enhanced recombinant spider silk and its preparation method and application.

背景技术Background technique

蜘蛛牵引丝即大壶状腺丝展现出高强度和高韧性等优异的力学性能,其力学性能甚至已经优于当前某些人造高性能纤维。其优异的机械性能得益于纤维中精巧的细微结构,其中β-sheet晶体负责具有极高的弹性模量,为蜘蛛丝提供极高的拉伸强度,而无定型的α-helix结构则是蜘蛛丝高韧性和延展性的主要来源。除力学性能外,蜘蛛丝还拥有极佳的生物相容性和生物降解性,这极大地拓展了蜘蛛丝在生物材料领域的应用,因此,蜘蛛丝材料成为当今学术界和工业界的研究热点。Spider traction silk, that is, the major ampullate silk, exhibits excellent mechanical properties such as high strength and high toughness, and its mechanical properties are even better than some current artificial high-performance fibers. Its excellent mechanical properties benefit from the delicate microstructure in the fiber, in which β-sheet crystals are responsible for having a very high elastic modulus, which provides extremely high tensile strength for spider silk, while the amorphous α-helix structure is The main source of high tenacity and ductility of spider silk. In addition to mechanical properties, spider silk also has excellent biocompatibility and biodegradability, which greatly expands the application of spider silk in the field of biomaterials. Therefore, spider silk materials have become a research hotspot in academia and industry today. .

受限于蜘蛛天生好斗,自我保护意识和地域攻击性等天性,无法像收获蚕丝一样通过大规模养殖的方式来大批量收集蜘蛛丝。而且蜘蛛丝腺结构与功能极为复杂,纺丝过程中的丝蛋白分子链的聚集和自组装行为尚未完全清楚。因此,通过基因工程方法在大肠杆菌,酵母菌等生物反应器中表达蜘蛛丝蛋白(Whittall et al.2020),并通过人工纺丝方法制备高性能重组蜘蛛丝(Venkatesan,Chen,and Hu 2019)成为近年来的研究热点。研究者们希望通过氨基酸序列优化,仿生纺丝等方法模拟蜘蛛丝腺内的纺丝原液性能和纺丝环境,并且通过研究蛛丝蛋白分子链的理化性质来探索天然纺丝过程中,蛋白质分子链的聚集和自组装行为,并为后续的优化和模拟提供参考。Oktaviani等人探究了蜘蛛纺丝原液中Random Coil的动力学行为以及β-sheet结构的形成过程(Oktaviani et al.2018);Malay和Saric等人研究了在丝腺内纺丝环境中,N-/C-结构域对蛋白质分子链自组装行为的指导作用(Saric et al.2021;Malay et al.2020)。Restricted by the nature of spiders' aggressiveness, self-protection awareness and regional aggressiveness, it is impossible to collect spider silk in large quantities through large-scale farming like harvesting silk. Moreover, the structure and function of spider silk glands are extremely complex, and the aggregation and self-assembly behavior of silk protein molecular chains in the spinning process has not yet been fully understood. Therefore, spider silk proteins were expressed in bioreactors such as E. coli and yeast by genetic engineering (Whittall et al. 2020), and high-performance recombinant spider silk was prepared by artificial spinning (Venkatesan, Chen, and Hu 2019) become a research hotspot in recent years. The researchers hope to simulate the performance of the spinning stock solution and the spinning environment in the spider silk gland through amino acid sequence optimization and bionic spinning, and to explore the protein molecular chains in the natural spinning process by studying the physical and chemical properties of the spider silk protein molecular chain. Chain aggregation and self-assembly behavior, and provide a reference for subsequent optimization and simulation. Oktaviani et al. explored the dynamic behavior of the Random Coil in the spider spinning solution and the formation process of the β-sheet structure (Oktaviani et al.2018); Malay and Saric et al. studied the spinning environment in the silk gland, N- The /C-domain guides the self-assembly behavior of protein molecular chains (Saric et al.2021; Malay et al.2020).

除上述领域外,在纺织领域,重组蜘蛛丝因其优异的性能仍然具有广阔的应用前景,而且已有公司和研究团队使用重组蜘蛛丝试制纺织品,如德国初创公司AMSilk与Adidas合作的Biofabric跑鞋,The North Face公司与日本Spiber公司联合开发的MoonParka羽绒服等,然而这些产品和面料仍然面临着湿强度低,耐久度差,遇水发生不可逆收缩等问题导致产品成本高昂,质量不达标而延期上市,显然,这些问题严重影响了重组蜘蛛丝在纺织领域的广泛应用。In addition to the above-mentioned fields, in the field of textiles, recombinant spider silk still has broad application prospects due to its excellent performance, and some companies and research teams have used recombinant spider silk to trial-produce textiles, such as the Biofabric running shoes that the German start-up company AMSilk cooperated with Adidas, The MoonParka down jacket jointly developed by The North Face Company and Japan’s Spiber Company, etc. However, these products and fabrics still face problems such as low wet strength, poor durability, and irreversible shrinkage when exposed to water, resulting in high product costs and substandard quality. Obviously, these problems have seriously affected the wide application of recombinant spider silk in the textile field.

发明内容Contents of the invention

针对现有技术中重组蜘蛛丝存在的湿强度低,耐久度差,遇水发生不可逆收缩等问题,本发明的第一目的在于提供一种重组蜘蛛丝蛋白;本发明的第二目的在于提供一种编码该蛋白氨基酸序列的多核苷酸;本发明的第三目的在于提供包含有该多核苷酸DNA序列的重组质粒;本发明的第四目的在于提供转入了该重组质粒的宿主菌;本发明的第五目的在于提供重组蜘蛛丝蛋白的制备方法;本发明的第六目的在于提供重组蜘蛛丝的制备方法;本发明的第七目的在于提供通过重组蜘蛛丝蛋白湿法纺丝获得的重组蜘蛛丝或重组蜘蛛丝的制备方法制备获得的重组蜘蛛丝;本发明的第八目的在于提供该重组蜘蛛丝在生物材料领域、高性能纤维材料领域或纺织材料领域中的应用。本发明通过利用编码半胱氨酸的基因改造育儿网蛛(Euprosthenops australis)大壶状腺丝MaSp2基因,实现在蛋白质分子链间形成更加牢固的二硫键优化纤维中的晶体结构,进而增强纤维的机械性能和防水性能;该重组蜘蛛丝蛋白基因能够在大肠杆菌中高效表达,制得的重组蜘蛛丝纤维形态均匀,机械强度优良,为重组蜘蛛丝的产业化应用开拓前景。Aiming at the problems of low wet strength, poor durability, and irreversible shrinkage when exposed to water in the prior art, the first object of the present invention is to provide a recombinant spider silk protein; the second object of the present invention is to provide a A polynucleotide encoding the amino acid sequence of the protein; the third purpose of the present invention is to provide a recombinant plasmid comprising the polynucleotide DNA sequence; the fourth purpose of the present invention is to provide a host bacterium that has been transformed into the recombinant plasmid; The fifth object of the invention is to provide a method for preparing recombinant spider silk protein; the sixth object of the present invention is to provide a method for preparing recombinant spider silk; the seventh object of the present invention is to provide recombinant spider silk protein obtained by wet spinning The recombinant spider silk prepared by the preparation method of spider silk or recombinant spider silk; the eighth object of the present invention is to provide the application of the recombinant spider silk in the field of biological materials, high-performance fiber materials or textile materials. In the present invention, by using the gene encoding cysteine to transform the MaSp2 gene of the Euprosthenops australis major ampullate silk, a stronger disulfide bond is formed between the protein molecular chains to optimize the crystal structure in the fiber, thereby strengthening the fiber Excellent mechanical properties and waterproof properties; the recombinant spider silk protein gene can be efficiently expressed in Escherichia coli, and the obtained recombinant spider silk fiber has uniform shape and excellent mechanical strength, which opens up prospects for the industrial application of recombinant spider silk.

本发明的目的通过以下技术手段得以实现:The purpose of the present invention is achieved by the following technical means:

第一方面,本发明提供一种重组蜘蛛丝蛋白,该重组蜘蛛丝蛋白的氨基酸序列具有SEQ ID NO:6所示的序列。所述SEQ ID NO:6序列如下:In a first aspect, the present invention provides a recombinant spider silk protein, the amino acid sequence of which has the sequence shown in SEQ ID NO:6. The sequence of SEQ ID NO: 6 is as follows:

SHTTPWTNPGLAENFMNSFMQGLSSMPGFTASQLDDMSTIAQSMVQSIQSLAAQGRTSPNKLQALNMAFASSMAEIAASEEGGGSLSTKTSSIASAMSNAFLQTTGVVNQPFINEITQLVSMFAQAGMNDVSAQGGFGQGAGGNAAACAAAAAACAAAQQGGQGGFGGQGQGGFGPGAGSSAACAAAACAAGQGGQGRGGFGQGVTSGGYGYGTSAAAGAGVAAGSYAGAVNRLSSAEAASRVSSNIAAIASGGASALPSVISNIYSGVVASGVSSNEALIQALLELLSALVHVLSSASIGNVSSVGVDSTLNVVQDSVGQYVGSHTTPWTNPGLAENFMNSFMQGLSSMPGFTASQLDDMSTIAQSMVQSIQSLAAQGRTSPNKLQALNMAFASSMAEIAASEEGGGSLSTKTSSIASAMSNAFLQTTGVVNQPFINEITQLVSMFAQAGMNDVSAQGGFGQGAGGNAAACAAAAAACAAAQQGGQGGFGGQGQGGFGPGAGSSAACAAAACAAGQGGQGRGGFGQGVTSGGYGYGTSAAAGAGVAAGSYAGAVNRLSSAEAASRVSSNIAAIASGGASALPSVISNIYSGVVASGVSSNEALIQALLELLSALVHVLSSASIGNVSSVGVDSTLNVVQDSVGQYVG

第二方面,本发明还提供一种编码重组蜘蛛丝蛋白氨基酸序列的多核苷酸,该多核苷酸具有如下结构:In the second aspect, the present invention also provides a polynucleotide encoding the amino acid sequence of recombinant spider silk protein, the polynucleotide has the following structure:

半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因的5’端连接有N-结构域、3’端连接有C-结构域。The 5' end of the MaSp2 gene of the parental web spider's major ampullate gland silk with improved cysteine is connected with the N-domain and the 3' end is connected with the C-domain.

上述的多核苷酸中,优选地,以育儿网蛛(Euprosthenops australis)大壶状腺丝MaSp2基因为模板进行半胱氨酸改良,所述MaSp2基因具有SEQ ID NO:1所示的DNA序列,共有213个碱基对,所述SEQ ID NO:1序列如下:Among the above-mentioned polynucleotides, preferably, cysteine modification is carried out using the Euprosthenops australis major ampullate silk MaSp2 gene as a template, and the MaSp2 gene has the DNA sequence shown in SEQ ID NO: 1, A total of 213 base pairs, the SEQ ID NO: 1 sequence is as follows:

5’-CAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCCGCTGCAGCAGCCGCCGCAGCAGC AGCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCTGCAGCCGCTGCAGCAGCAGCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCGGTCAAGGT-3’5'- CAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCC GCT GCAGCAGCCGCCGCAGCA GC A GCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCT GCA GCCGCTGCAGCA GCA GCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCG'

上述的多核苷酸中,优选地,所述半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因的DNA序列具有SEQ ID NO:2所示的序列。其是在SEQ ID NO:1序列的聚丙氨酸DNA序列中替换一定量的半胱氨酸基因获得改良后的DNA序列,共213个碱基对,所述SEQ ID NO:2序列如下:Among the above polynucleotides, preferably, the DNA sequence of the cysteine-improved brood spider major ampullate silk MaSp2 gene has the sequence shown in SEQ ID NO:2. It is an improved DNA sequence obtained by substituting a certain amount of cysteine gene in the polyalanine DNA sequence of SEQ ID NO: 1 sequence, with a total of 213 base pairs. The sequence of SEQ ID NO: 2 is as follows:

5’-CAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCCTGTGCAGCAGCCGCCGCAGCATG TGCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCTTGTGCCGCTGCAGCATGTGCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCGGTCAAGGT-3’5'-CAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCC TGT GCAGCAGCCGCCGCAGCA TGT GCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCT TGT GCCGCTGCAGCA TGT GCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCG'

上述的多核苷酸中,优选地,所述N-结构域选自育儿网蛛(Euprosthenopsaustralis)MaSp1基因,所述MaSp1基因的DNA序列具有SEQ ID NO:3所示的序列,共有399个碱基对,所述SEQ ID NO:3序列如下:Among the above polynucleotides, preferably, the N-domain is selected from the Euprosthepsthepsaustralis MaSp1 gene, the DNA sequence of the MaSp1 gene has the sequence shown in SEQ ID NO: 3, with a total of 399 bases Yes, the sequence of SEQ ID NO: 3 is as follows:

5’-TCACACACTACACCATGGACAAACCCAGGACTCGCAGAAAACTTCATGAACAGTTTCATGCAAGGCCTGAGCTCGATGCCAGGTTTCACGGCAAGCCAATTGGATGATATGTCAACCATCGCACAATCCATGGTACAGTCAATACAATCCTTGGCGGCACAAGGCAGGACATCACCGAATAAGCTGCAGGCCCTTAACATGGCTTTTGCATCTTCGATGGCAGAAATCGCGGCATCCGAAGAAGGAGGGGGAAGCCTTTCCACCAAAACTAGCTCTATAGCCAGTGCAATGTCCAACGCGTTTCTGCAAACAACTGGAGTGGTAAACCAACCGTTCATAAATGAAATAACTCAGCTCGTTAGCATGTTTGCTCAAGCAGGTATGAATGATGTCAGTGCT-3’5’-TCACACACTACACCATGGACAAACCCAGGACTCGCAGAAAACTTCATGAACAGTTTCATGCAAGGCCTGAGCTCGATGCCAGGTTTCACGGCAAGCCAATTGGATGATATGTCAACCATCGCACAATCCATGGTACAGTCAATACAATCCTTGGCGGCACAAGGCAGGACATCACCGAATAAGCTGCAGGCCCTTAACATGGCTTTTGCATCTTCGATGGCAGAAATCGCGGCATCCGAAGAAGGAGGGGGAAGCCTTTCCACCAAAACTAGCTCTATAGCCAGTGCAATGTCCAACGCGTTTCTGCAAACAACTGGAGTGGTAAACCAACCGTTCATAAATGAAATAACTCAGCTCGTTAGCATGTTTGCTCAAGCAGGTATGAATGATGTCAGTGCT-3’

上述的多核苷酸中,优选地,所述C-结构域选自大腹园蛛(Araneus ventricosus)MiSp基因,所述MiSp基因的DNA序列具有SEQ ID NO:4所示的序列,共有360个碱基对,所述SEQ ID NO:4序列如下:Among the above polynucleotides, preferably, the C-domain is selected from the MiSp gene of Araneus ventricosus, the DNA sequence of the MiSp gene has the sequence shown in SEQ ID NO: 4, and there are 360 in total In base pairs, the sequence of SEQ ID NO: 4 is as follows:

5’-GTTACATCTGGAGGTTACGGATATGGAACCAGTGCAGCTGCAGGAGCTGGAGTTGCAGCAGGTTCATATGCAGGTGCTGTCAATCGCTTGTCTAGTGCTGAAGCTGCCAGTAGAGTATCCTCTAATATTGCAGCTATTGCATCTGGTGGTGCTTCCGCCCTCCCCAGTGTTATTTCAAATATTTACTCAGGTGTCGTTGCTTCTGGTGTTTCTTCTAATGAAGCTCTGATTCAAGCTCTGTTGGAACTCCTTTCCGCACTTGTTCATGTTTTAAGCAGTGCCTCTATCGGTAATGTTAGCTCAGTAGGAGTAGATAGTACATTGAATGTTGTTCAGGATTCAGTAGGCCAATATGTAGGT-3’5’-GTTACATCTGGAGGTTACGGATATGGAACCAGTGCAGCTGCAGGAGCTGGAGTTGCAGCAGGTTCATATGCAGGTGCTGTCAATCGCTTGTCTAGTGCTGAAGCTGCCAGTAGAGTATCCTCTAATATTGCAGCTATTGCATCTGGTGGTGCTTCCGCCCTCCCCAGTGTTATTTCAAATATTTACTCAGGTGTCGTTGCTTCTGGTGTTTCTTCTAATGAAGCTCTGATTCAAGCTCTGTTGGAACTCCTTTCCGCACTTGTTCATGTTTTAAGCAGTGCCTCTATCGGTAATGTTAGCTCAGTAGGAGTAGATAGTACATTGAATGTTGTTCAGGATTCAGTAGGCCAATATGTAGGT-3’

上述的多核苷酸中,优选地,该多核苷酸的DNA序列具有SEQ ID NO:5所示的序列,即编码该重组蜘蛛丝蛋白氨基酸序列的多核苷酸序列,该多核苷酸(即:目的基因M.NT2RepCT)共有972个碱基对,所述SEQ ID NO:5序列如下:Among the above polynucleotides, preferably, the DNA sequence of the polynucleotide has the sequence shown in SEQ ID NO: 5, that is, the polynucleotide sequence encoding the amino acid sequence of the recombinant spider silk protein, the polynucleotide (ie: The target gene M.NT2RepCT) has a total of 972 base pairs, and the sequence of SEQ ID NO: 5 is as follows:

5’-TCACACACTACACCATGGACAAACCCAGGACTCGCAGAAAACTTCATGAACAGTTTCATGCAAGGCCTGAGCTCGATGCCAGGTTTCACGGCAAGCCAATTGGATGATATGTCAACCATCGCACAATCCATGGTACAGTCAATACAATCCTTGGCGGCACAAGGCAGGACATCACCGAATAAGCTGCAGGCCCTTAACATGGCTTTTGCATCTTCGATGGCAGAAATCGCGGCATCCGAAGAAGGAGGGGGAAGCCTTTCCACCAAAACTAGCTCTATAGCCAGTGCAATGTCCAACGCGTTTCTGCAAACAACTGGAGTGGTAAACCAACCGTTCATAAATGAAATAACTCAGCTCGTTAGCATGTTTGCTCAAGCAGGTATGAATGATGTCAGTGCTCAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCCTGTGCAGCAGCCGCCGCAGCATGTGCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCTTGTGCCGCTGCAGCATGTGCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCGGTCAAGGTGTTACATCTGGAGGTTACGGATATGGAACCAGTGCAGCTGCAGGAGCTGGAGTTGCAGCAGGTTCATATGCAGGTGCTGTCAATCGCTTGTCTAGTGCTGAAGCTGCCAGTAGAGTATCCTCTAATATTGCAGCTATTGCATCTGGTGGTGCTTCCGCCCTCCCCAGTGTTATTTCAAATATTTACTCAGGTGTCGTTGCTTCTGGTGTTTCTTCTAATGAAGCTCTGATTCAAGCTCTGTTGGAACTCCTTTCCGCACTTGTTCATGTTTTAAGCAGTGCCTCTATCGGTAATGTTAGCTCAGTAGGAGTAGATAGTACATTGAATGTTGTTCAGGATTCAGTAGGCCAATATGTAGGT-3’5’-TCACACACTACACCATGGACAAACCCAGGACTCGCAGAAAACTTCATGAACAGTTTCATGCAAGGCCTGAGCTCGATGCCAGGTTTCACGGCAAGCCAATTGGATGATATGTCAACCATCGCACAATCCATGGTACAGTCAATACAATCCTTGGCGGCACAAGGCAGGACATCACCGAATAAGCTGCAGGCCCTTAACATGGCTTTTGCATCTTCGATGGCAGAAATCGCGGCATCCGAAGAAGGAGGGGGAAGCCTTTCCACCAAAACTAGCTCTATAGCCAGTGCAATGTCCAACGCGTTTCTGCAAACAACTGGAGTGGTAAACCAACCGTTCATAAATGAAATAACTCAGCTCGTTAGCATGTTTGCTCAAGCAGGTATGAATGATGTCAGTGCTCAAGGAGGATTTGGTCAAGGTGCTGGAGGTAATGCCGCAGCCTGTGCAGCAGCCGCCGCAGCATGTGCAGCAGCTCAACAAGGTGGTCAAGGTGGTTTTGGAGGACAAGGTCAAGGAGGATTTGGACCTGGAGCAGGAAGTTCTGCAGCTTGTGCCGCTGCAGCATGTGCAGCTGGTCAAGGTGGACAAGGAAGAGGAGGATTCGGTCAAGGTGTTACATCTGGAGGTTACGGATATGGAACCAGTGCAGCTGCAGGAGCTGGAGTTGCAGCAGGTTCATATGCAGGTGCTGTCAATCGCTTGTCTAGTGCTGAAGCTGCCAGTAGAGTATCCTCTAATATTGCAGCTATTGCATCTGGTGGTGCTTCCGCCCTCCCCAGTGTTATTTCAAATATTTACTCAGGTGTCGTTGCTTCTGGTGTTTCTTCTAATGAAGCTCTGATTCAAGCTCTGTTGGAACTCCTTTCCGCACTTGTTCATGTTTTAAGCAGTGCCTCTATCGGTAATGTTAGCTCAGTAGGAGTAGATAGTACATTGAATGTTGTTCAGGATTCAGTAGGCCAATATGTAGGT-3’

第三方面,本发明还提供一种重组质粒,该重组质粒的DNA序列包含上述的多核苷酸的序列。In the third aspect, the present invention also provides a recombinant plasmid, the DNA sequence of which comprises the above-mentioned polynucleotide sequence.

第四方面,本发明还提供一种宿主菌,其是转入了上述的重组质粒。In the fourth aspect, the present invention also provides a host bacterium transformed with the above-mentioned recombinant plasmid.

第五方面,本发明还提供上述的重组蜘蛛丝蛋白的制备方法,其包括以下步骤:In the fifth aspect, the present invention also provides a method for preparing the above-mentioned recombinant spider silk protein, which includes the following steps:

将上述的多核苷酸的DNA序列通过引物扩增获得目的基因,然后将目的基因插入到质粒载体中得到重组质粒,将该重组质粒或上述的重组质粒导入到宿主菌中进行表达获得重组蜘蛛丝蛋白。The above polynucleotide DNA sequence is amplified by primers to obtain the target gene, and then the target gene is inserted into a plasmid vector to obtain a recombinant plasmid, and the recombinant plasmid or the above-mentioned recombinant plasmid is introduced into a host bacterium for expression to obtain recombinant spider silk protein.

上述的制备方法中,优选地,所述引物的上游引物DNA序列具有SEQ ID NO:7所示的序列;所述引物的下游引物的DNA序列具有SEQ ID NO:8所示的序列。In the above preparation method, preferably, the DNA sequence of the upstream primer of the primer has the sequence shown in SEQ ID NO: 7; the DNA sequence of the downstream primer of the primer has the sequence shown in SEQ ID NO: 8.

上游引物的DNA序列(SEQ ID NO:7)为:The DNA sequence (SEQ ID NO: 7) of the upstream primer is:

5’-CGCGGATCCGCGATGTCACACACTACACCATGGACAAACC-3’5'-CGCGGATCCGCGATGTCACACACTACACCATGGACAAACC-3'

下游引物的DNA序列(SEQ ID NO:8)为:The DNA sequence (SEQ ID NO: 8) of the downstream primer is:

5’-CCCAAGCTTGGGACCTACATATTGGCCTACTGAATCCTGA-3’5'-CCCAAGCTTGGGACCTACATATTGGCCTACTGAATCCTGA-3'

上述的重组蜘蛛丝蛋白的制备方法中,优选地,所述质粒载体包括pET-28a质粒,但不限于此。In the above method for preparing recombinant spider silk protein, preferably, the plasmid vector includes pET-28a plasmid, but not limited thereto.

上述的重组蜘蛛丝蛋白的制备方法中,优选地,所述宿主菌包括大肠杆菌,但不限于此。In the above method for preparing recombinant spider silk protein, preferably, the host bacteria include Escherichia coli, but not limited thereto.

第六方面,本发明还提供一种重组蜘蛛丝的制备方法,其包括以下步骤:In the sixth aspect, the present invention also provides a method for preparing recombinant spider silk, which includes the following steps:

将上述的制备方法制备获得的重组蜘蛛丝蛋白进行纯化,离心过滤浓缩得到重组蜘蛛丝纺丝蛋白原液;Purifying the recombinant spider silk protein prepared by the above preparation method, and concentrating by centrifugal filtration to obtain a stock solution of recombinant spider silk spinning protein;

采用湿法纺丝机对重组蜘蛛丝纺丝蛋白原液进行挤出,挤出的纤维在凝固浴中进行固化,接着进行热蒸汽退火和后拉伸处理,室温下干燥得到重组蜘蛛丝。A wet spinning machine is used to extrude the recombinant spider silk spinning protein stock solution, and the extruded fibers are solidified in a coagulation bath, followed by hot steam annealing and post-stretching treatment, and dried at room temperature to obtain the recombinant spider silk.

上述的重组蜘蛛丝的制备方法中,优选地,采用洗脱液对重组蜘蛛丝蛋白进行纯化,所述洗脱液的成分含有:50~80mM的Tris-HCl,pH值为7.5、100~120mM的NaCl、1~1.5mM的EDTA和1~2mM的DTT(二硫苏糖醇);纯化后的重组蜘蛛丝蛋白的质量浓度为2%~3%。In the above method for preparing recombinant spider silk, preferably, the eluent is used to purify the recombinant spider silk protein, and the eluent contains: 50-80 mM Tris-HCl, the pH value is 7.5, 100-120 mM NaCl, 1-1.5mM EDTA and 1-2mM DTT (dithiothreitol); the mass concentration of the purified recombinant spider silk protein is 2%-3%.

上述的重组蜘蛛丝的制备方法中,优选地,采用10000MWCO(截留分子量)离心过滤器浓缩重组蜘蛛丝蛋白溶液,得到的重组蜘蛛丝纺丝原液的质量浓度为20%~25%。In the above method for preparing recombinant spider silk, preferably, the recombinant spider silk protein solution is concentrated with a 10,000 MWCO (molecular weight cut-off) centrifugal filter, and the mass concentration of the obtained recombinant spider silk spinning stock solution is 20%-25%.

上述的重组蜘蛛丝的制备方法中,优选地,所述湿法纺丝机的挤出针头的规格为30G(30G为纺丝针头型号,具体规格为针头内径0.16mm,外径0.19mm);重组蜘蛛丝纺丝蛋白原液的挤出速度为10~30μL/min。In the above method for preparing recombinant spider silk, preferably, the specification of the extrusion needle of the wet spinning machine is 30G (30G is the type of spinning needle, and the specific specification is the inner diameter of the needle is 0.16mm, and the outer diameter is 0.19mm); The extrusion speed of the recombinant spider silk spinning protein stock solution is 10-30 μL/min.

上述的重组蜘蛛丝的制备方法中,优选地,所述凝固浴采用DMSO(二甲基亚砜);采用凝固浴进行固化的时间为1~2h。采用DMSO的作用不仅能够促进蛋白质凝固形成纤维,而且还能够为蛋白质提供弱氧化环境以促进β-sheet层间二硫键的形成。In the above method for preparing recombinant spider silk, preferably, the coagulation bath uses DMSO (dimethyl sulfoxide); the time for solidification by using the coagulation bath is 1-2 hours. The use of DMSO can not only promote protein coagulation to form fibers, but also provide a weak oxidative environment for proteins to promote the formation of disulfide bonds between β-sheet layers.

上述的重组蜘蛛丝的制备方法中,优选地,进行热蒸汽退火工序的热蒸汽温度为80~120℃,退火时间为30~90s。In the above method for preparing recombinant spider silk, preferably, the temperature of the hot steam for the hot steam annealing step is 80-120° C., and the annealing time is 30-90 s.

上述的重组蜘蛛丝的制备方法中,优选地,进行后拉伸处理工序的拉伸速率为1~2mm/s,拉伸比为0.5~0.8。In the above method for preparing recombinant spider silk, preferably, the post-stretching process is performed at a stretching rate of 1-2 mm/s, and a stretching ratio of 0.5-0.8.

第七方面,本发明还提供一种重组蜘蛛丝,所述重组蜘蛛丝具有β-sheet晶体结构(具有致密性);其纤维的直径为50~60μm,纤维的平均断裂应力为30~40MPa,平均裂断伸长率为10%~20%。In the seventh aspect, the present invention also provides a recombinant spider silk, which has a β-sheet crystal structure (compactness); the diameter of its fibers is 50-60 μm, and the average fracture stress of the fibers is 30-40 MPa. The average elongation at break is 10% to 20%.

上述的重组蜘蛛丝中,优选地,所述重组蜘蛛丝是由上述的重组蜘蛛丝蛋白通过湿法纺丝制备获得或由上述的重组蜘蛛丝的制备方法制备获得。In the above recombinant spider silk, preferably, the recombinant spider silk is prepared from the above recombinant spider silk protein by wet spinning or prepared by the above recombinant spider silk preparation method.

重组蜘蛛丝的β-sheet晶体通常为多层聚丙氨酸分子叠加形成,层间通过氢键紧密结合。但在人工模拟纺丝过程中,常因纺丝液浓度低,纺丝流程无法完全模拟等原因造成晶体结构存在缺陷从而进一步引起成丝强度降低。本发明在聚丙氨酸序列中特定位置插入一定量的半胱氨酸,旨在通过凝固浴中形成的二硫键来形成锚定作用以稳定β-sheet晶体,同时,因为半胱氨酸为亲水性氨基酸,可以抑制聚丙氨酸段在水溶液中的自组装行为以提高纺丝液浓度。The β-sheet crystals of recombinant spider silk are usually formed by stacking multiple layers of polyalanine molecules, and the layers are tightly combined by hydrogen bonds. However, in the process of artificially simulating the spinning process, there are often defects in the crystal structure due to the low concentration of the spinning solution and the inability to completely simulate the spinning process, which further leads to a decrease in the strength of the filament. The present invention inserts a certain amount of cysteine at a specific position in the polyalanine sequence, aiming to form an anchoring effect through the disulfide bond formed in the coagulation bath to stabilize the β-sheet crystal. At the same time, because cysteine is Hydrophilic amino acid can inhibit the self-assembly behavior of polyalanine segment in aqueous solution to increase the concentration of spinning solution.

第八方面,本发明还提供上述的重组蜘蛛丝在生物材料领域、纤维材料领域或纺织材料领域中的应用。In an eighth aspect, the present invention also provides the application of the above-mentioned recombinant spider silk in the field of biological materials, fiber materials or textile materials.

本发明的有益效果:Beneficial effects of the present invention:

本发明的重组蜘蛛丝蛋白基因可以在大肠杆菌中高效表达,制备获得的重组蜘蛛丝的纤维具有致密的β-sheet晶体结构、优异的机械性能和湿强度,其纤维的直径为50~60μm,纤维的平均断裂应力能够达到30~40MPa,平均裂断伸长率为10%~20%,为重组蜘蛛丝的产业化应用开拓前景。The recombinant spider silk protein gene of the present invention can be efficiently expressed in Escherichia coli, and the fiber of the prepared recombinant spider silk has a dense β-sheet crystal structure, excellent mechanical properties and wet strength, and the diameter of the fiber is 50-60 μm. The average breaking stress of the fiber can reach 30-40MPa, and the average breaking elongation is 10%-20%, which opens up prospects for the industrial application of the recombinant spider silk.

附图说明Description of drawings

图1为本发明实施例1中制备的重组质粒流程图。Fig. 1 is a flowchart of the recombinant plasmid prepared in Example 1 of the present invention.

图2为本发明实施例1中制备的重组蜘蛛丝纤维表面及其横截面电镜图。Fig. 2 is an electron microscope image of the surface of the recombinant spider silk fiber prepared in Example 1 of the present invention and its cross section.

图3为本发明实施例1中制备的重组蜘蛛丝分子动力学模拟结果图。Fig. 3 is a graph showing molecular dynamics simulation results of recombinant spider silk prepared in Example 1 of the present invention.

具体实施方式Detailed ways

为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。以下实施例中所采用的原料若无特殊说明,均为本领域常规市售获得;所采用的方法若无特殊说明,均为本领域常规方法。In order to have a clearer understanding of the technical features, purposes and beneficial effects of the present invention, the technical solution of the present invention is described in detail below, but it should not be construed as limiting the scope of implementation of the present invention. The raw materials used in the following examples are conventionally commercially available in the art unless otherwise specified; the methods used are conventional methods in the art unless otherwise specified.

实施例1:Example 1:

本实施例提供一种重组蜘蛛丝的制备方法,其包括如下步骤:This embodiment provides a method for preparing recombinant spider silk, which includes the following steps:

1、重组蜘蛛丝蛋白基因的设计(具体设计的序列委托基因合成公司完成):1. The design of the recombinant spider silk protein gene (the specific sequence of the design is entrusted to a gene synthesis company):

(1)以育儿网蛛(Euprosthenops australis)大壶状腺丝MaSp2基因为模板进行半胱氨酸改良,所述育儿网蛛大壶状腺丝MaSp2基因共有213个碱基对,其DNA序列如SEQ IDNO:1所示。(1) Cysteine improvement was carried out using the Euprosthenops australis major ampullate silk MaSp2 gene as a template. The Euprosthenops australis major ampullate silk MaSp2 gene has a total of 213 base pairs, and its DNA sequence is as follows: Shown in SEQ ID NO:1.

(2)在SEQ ID NO:1序列的聚丙氨酸DNA序列中替换一定量的半胱氨酸基因获得半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因,共213个碱基对,其DNA序列如SEQ ID NO:2所示。(2) Substituting a certain amount of cysteine gene in the polyalanine DNA sequence of SEQ ID NO: 1 sequence to obtain cysteine-improved MaSp2 gene of parental web spider major ampullate gland silk, with a total of 213 base pairs , whose DNA sequence is shown in SEQ ID NO:2.

(3)在所述SEQ ID NO:2序列的5’端连接N-结构域、3’端连接C-结构域,获得重组蜘蛛丝蛋白基因。(3) connecting the N-structural domain at the 5' end and the C-structural domain at the 3' end of the sequence of SEQ ID NO: 2 to obtain a recombinant spider silk protein gene.

N-结构域选自育儿网蛛(Euprosthenops australis)的MaSp1基因,共有399个碱基对,其DNA序列如SEQ ID NO:3所示。The N-domain is selected from the MaSp1 gene of Euprosthenops australis, with a total of 399 base pairs, and its DNA sequence is shown in SEQ ID NO:3.

C-结构域选自大腹园蛛(Araneus ventricosus)的MiSp基因,共有360个碱基对,其DNA序列如SEQ ID NO:4所示。The C-domain is selected from the MiSp gene of Araneus ventricosus, with a total of 360 base pairs, and its DNA sequence is shown in SEQ ID NO:4.

最终获得的重组蜘蛛丝蛋白基因(M.NT2RepCT)共有972个碱基对,其DNA序列如SEQ ID NO:5所示。The finally obtained recombinant spider silk protein gene (M.NT2RepCT) has a total of 972 base pairs, and its DNA sequence is shown in SEQ ID NO:5.

2、重组质粒及重组蜘蛛丝蛋白制备:2. Preparation of recombinant plasmid and recombinant spider silk protein:

(1)将SEQ ID NO:5序列通过引物扩增获得目的基因,使用HindIII和BamHI限制性内切酶对pET-28a质粒载体进行消化,制备消化载体,缓冲液为BamHI缓冲液,消化温度为37℃。使用琼脂糖凝胶电泳纯化消化载体和目的基因,并使用分光光度计测定其浓度。向微量离心管中加入一定量的消化载体和目的基因,使其DNA片段数量比例为3:1,加入1μL的BamHI缓冲液(10x),1μL 10mM ATP,1μL DNA连接酶,加无菌水定容至10μL。震荡离心管后将微量离心管置于20℃孵育4h即可获得含目的基因的重组质粒。所述引物的上游引物DNA序列具有SEQ ID NO:7所示的序列;所述引物的下游引物的DNA序列具有SEQ ID NO:8所示的序列;制备该重组质粒流程图如图1所示。(1) The sequence of SEQ ID NO: 5 was amplified by primers to obtain the target gene, and the pET-28a plasmid vector was digested with HindIII and BamHI restriction endonucleases to prepare the digestion vector. The buffer was BamHI buffer, and the digestion temperature was 37°C. Purify the digested vector and gene of interest using agarose gel electrophoresis and measure their concentrations using a spectrophotometer. Add a certain amount of digestion vector and target gene to the microcentrifuge tube, so that the ratio of DNA fragments is 3:1, add 1 μL BamHI buffer (10x), 1 μL 10mM ATP, 1 μL DNA ligase, add sterile water Make up to 10μL. Shake the centrifuge tube and incubate the microcentrifuge tube at 20°C for 4 hours to obtain the recombinant plasmid containing the target gene. The DNA sequence of the upstream primer of the primer has the sequence shown in SEQ ID NO: 7; the DNA sequence of the downstream primer of the primer has the sequence shown in SEQ ID NO: 8; the flow chart of preparing the recombinant plasmid is shown in Figure 1 .

(2)将重组质粒导入到大肠杆菌中进行表达得到重组蜘蛛丝蛋白。具体为:(2) The recombinant plasmid was introduced into Escherichia coli for expression to obtain the recombinant spider silk protein. Specifically:

取100μL大肠杆菌BL21(DE3)感受态细胞于冰上解冻10min,加入2μL重组质粒,再冰浴30min后,42℃热激60s,再冰浴2min。向大肠杆菌中加入37℃预热好的900μL无抗生素的LB液体培养基,在恒温摇床上180rpm,37℃震荡培养45min;取100μL的培养液均匀地涂在浓度为50μg/mL卡那霉素的LB琼脂培养板上,于37℃过夜培养以获得含目的基因的大肠杆菌菌株。Thaw 100 μL Escherichia coli BL21(DE3) competent cells on ice for 10 minutes, add 2 μL of recombinant plasmid, and then ice-bath for 30 minutes, heat shock at 42°C for 60 seconds, and then ice-bath for 2 minutes. Add 900 μL of LB liquid medium preheated at 37°C to Escherichia coli, shake and incubate at 37°C for 45 minutes on a constant temperature shaker at 180 rpm; coli strains containing the gene of interest were obtained by culturing overnight at 37°C on LB agar plates.

3、重组蜘蛛丝的制备:3. Preparation of recombinant spider silk:

(1)对得到的重组蜘蛛丝蛋白进行纯化,纯化过程使用的洗脱液成分含有50mM的Tris-HCl(pH7.5)、100mM的NaCl、1mM的EDTA和1mM的DTT,得到的重组蜘蛛丝蛋白溶液质量浓度为3%;接着使用10000MWCO离心过滤器将蛋白质溶液浓缩至20wt%,制得高浓度的重组蜘蛛丝纺丝蛋白原液。(1) Purify the obtained recombinant spider silk protein, the eluent used in the purification process contains 50mM Tris-HCl (pH7.5), 100mM NaCl, 1mM EDTA and 1mM DTT, the obtained recombinant spider silk The mass concentration of the protein solution is 3%; then the protein solution is concentrated to 20wt% by using a 10000MWCO centrifugal filter to obtain a high-concentration recombinant spider silk spinning protein stock solution.

(2)将重组蜘蛛丝纺丝蛋白原液倒入湿法纺丝机原料槽中,挤出针头规格为30G,挤出速度为10μL/min,凝固浴采用DMSO;重组蜘蛛丝纤维经挤出后在凝固浴中固化1小时,固化后,将纤维从凝固浴中取出,经过80℃热蒸汽退火处理30秒后进入后拉伸步骤,将纤维以1mm/s拉伸速率,0.5倍的拉伸比进行拉伸后在室温下干燥,制备得到重组蜘蛛丝。(2) Pour the recombinant spider silk spinning protein stock solution into the raw material tank of the wet spinning machine, the extrusion needle specification is 30G, the extrusion speed is 10μL/min, and the coagulation bath uses DMSO; the recombinant spider silk fiber is extruded Cured in the coagulation bath for 1 hour. After curing, the fiber was taken out from the coagulation bath, and after 30 seconds of hot steam annealing at 80°C, it entered the post-drawing step. The fiber was stretched at a rate of 1 mm/s and stretched by 0.5 times. After stretching and drying at room temperature, the recombinant spider silk was prepared.

本实施例制备获得的重组蜘蛛丝纤维平均直径为60μm,纤维表面光滑(如图2所示),纤维的平均断裂应力达到30MPa,平均裂断伸长率为10%。The average diameter of the recombinant spider silk fiber prepared in this example is 60 μm, the surface of the fiber is smooth (as shown in FIG. 2 ), the average breaking stress of the fiber reaches 30 MPa, and the average breaking elongation is 10%.

对该重组蜘蛛丝进行了分子动力学模拟,模拟结果如图3所示。黄色部分(即黑白图的深色部分)为优化后的β-sheet晶体部分,灰色部分(即:黑白图RH 0%中的浅色部分)为α-helix,random coil等无定形区结构,青绿色部分(即黑白图RH 25%~100%中的浅色部分)为水分子。由图3可以看出,在湿度环境下,水分子有限入侵无定形区结构,随着湿度的逐渐增大,水分子开始侵入β-sheet晶体结构,但是由于层间二硫键的保护,即使在RH100%的高湿度环境下,β-sheet结构仍可保持大部分的完整。Molecular dynamics simulation was carried out on the recombinant spider silk, and the simulation results are shown in Fig. 3 . The yellow part (that is, the dark part of the black and white picture) is the optimized β-sheet crystal part, and the gray part (that is: the light part in the black and white picture RH 0%) is the amorphous region structure such as α-helix, random coil, etc. The turquoise part (that is, the light-colored part in the black-and-white image RH 25% to 100%) is water molecules. It can be seen from Figure 3 that in a humid environment, water molecules invade the amorphous region structure to a limited extent, and as the humidity gradually increases, water molecules begin to invade the β-sheet crystal structure, but due to the protection of interlayer disulfide bonds, even In the high humidity environment of RH100%, the β-sheet structure can still maintain most of its integrity.

序列表sequence listing

<110> 香港城市大学<110> City University of Hong Kong

<120> 半胱氨酸强化的重组蜘蛛丝及其制备方法和应用<120> Recombinant spider silk strengthened by cysteine and its preparation method and application

<130> GAI21CN4819<130>GAI21CN4819

<160> 8<160> 8

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 213<211> 213

<212> DNA<212>DNA

<213> Euprosthenops australis<213> Euprosthenops australis

<220><220>

<223> MaSp2基因<223> MaSp2 gene

<400> 1<400> 1

caaggaggat ttggtcaagg tgctggaggt aatgccgcag ccgctgcagc agccgccgca 60caaggaggat ttggtcaagg tgctggaggt aatgccgcag ccgctgcagc agccgccgca 60

gcagcagcag cagctcaaca aggtggtcaa ggtggttttg gaggacaagg tcaaggagga 120gcagcagcag cagctcaaca aggtggtcaa ggtggttttg gaggacaagg tcaaggagga 120

tttggacctg gagcaggaag ttctgcagct gcagccgctg cagcagcagc agctggtcaa 180tttggacctg gagcaggaag ttctgcagct gcagccgctg cagcagcagc agctggtcaa 180

ggtggacaag gaagaggagg attcggtcaa ggt 213ggtggacaag gaagaggagg attcggtcaa ggt 213

<210> 2<210> 2

<211> 213<211> 213

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<220><220>

<223> 半胱氨酸改良的MaSp2基因<223> Cysteine modified MaSp2 gene

<400> 2<400> 2

caaggaggat ttggtcaagg tgctggaggt aatgccgcag cctgtgcagc agccgccgca 60caaggaggat ttggtcaagg tgctggaggt aatgccgcag cctgtgcagc agccgccgca 60

gcatgtgcag cagctcaaca aggtggtcaa ggtggttttg gaggacaagg tcaaggagga 120gcatgtgcag cagctcaaca aggtggtcaa ggtggttttg gaggacaagg tcaaggagga 120

tttggacctg gagcaggaag ttctgcagct tgtgccgctg cagcatgtgc agctggtcaa 180tttggacctg gagcaggaag ttctgcagct tgtgccgctg cagcatgtgc agctggtcaa 180

ggtggacaag gaagaggagg attcggtcaa ggt 213ggtggacaag gaagaggagg attcggtcaa ggt 213

<210> 3<210> 3

<211> 399<211> 399

<212> DNA<212>DNA

<213> Euprosthenops australis<213> Euprosthenops australis

<220><220>

<223> MaSp1基因<223> MaSp1 gene

<400> 3<400> 3

tcacacacta caccatggac aaacccagga ctcgcagaaa acttcatgaa cagtttcatg 60tcacacacta caccatggac aaacccagga ctcgcagaaa acttcatgaa cagtttcatg 60

caaggcctga gctcgatgcc aggtttcacg gcaagccaat tggatgatat gtcaaccatc 120caaggcctga gctcgatgcc aggtttcacg gcaagccaat tggatgatat gtcaaccatc 120

gcacaatcca tggtacagtc aatacaatcc ttggcggcac aaggcaggac atcaccgaat 180gcacaatcca tggtacagtc aatacaatcc ttggcggcac aaggcaggac atcaccgaat 180

aagctgcagg cccttaacat ggcttttgca tcttcgatgg cagaaatcgc ggcatccgaa 240aagctgcagg cccttaacat ggcttttgca tcttcgatgg cagaaatcgc ggcatccgaa 240

gaaggagggg gaagcctttc caccaaaact agctctatag ccagtgcaat gtccaacgcg 300gaaggagggg gaagcctttc caccaaaact agctctatag ccagtgcaat gtccaacgcg 300

tttctgcaaa caactggagt ggtaaaccaa ccgttcataa atgaaataac tcagctcgtt 360tttctgcaaa caactggagt ggtaaaccaa ccgttcataa atgaaataac tcagctcgtt 360

agcatgtttg ctcaagcagg tatgaatgat gtcagtgct 399agcatgtttg ctcaagcagg tatgaatgat gtcagtgct 399

<210> 4<210> 4

<211> 360<211> 360

<212> DNA<212>DNA

<213> Araneus ventricosus<213> Araneus ventricosus

<220><220>

<223> MiSp基因<223> MiSp gene

<400> 4<400> 4

gttacatctg gaggttacgg atatggaacc agtgcagctg caggagctgg agttgcagca 60gttacatctg gaggttacgg atatggaacc agtgcagctg caggagctgg agttgcagca 60

ggttcatatg caggtgctgt caatcgcttg tctagtgctg aagctgccag tagagtatcc 120ggttcatatg caggtgctgt caatcgcttg tctagtgctg aagctgccag tagagtatcc 120

tctaatattg cagctattgc atctggtggt gcttccgccc tccccagtgt tatttcaaat 180tctaatattg cagctattgc atctggtggt gcttccgccc tccccagtgttatttcaaat 180

atttactcag gtgtcgttgc ttctggtgtt tcttctaatg aagctctgat tcaagctctg 240atttactcag gtgtcgttgc ttctggtgtt tcttctaatg aagctctgat tcaagctctg 240

ttggaactcc tttccgcact tgttcatgtt ttaagcagtg cctctatcgg taatgttagc 300ttggaactcc tttccgcact tgttcatgtt ttaagcagtg cctctatcgg taatgttagc 300

tcagtaggag tagatagtac attgaatgtt gttcaggatt cagtaggcca atatgtaggt 360tcagtagggag tagtagtac attgaatgtt gttcaggatt cagtaggcca atatgtaggt 360

<210> 5<210> 5

<211> 972<211> 972

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<220><220>

<223> M. NT2RepCT基因<223> M. NT2RepCT gene

<220><220>

<221> CDS<221> CDS

<222> (1)..(972)<222> (1)..(972)

<400> 5<400> 5

tca cac act aca cca tgg aca aac cca gga ctc gca gaa aac ttc atg 48tca cac act aca cca tgg aca aac cca gga ctc gca gaa aac ttc atg 48

Ser His Thr Thr Pro Trp Thr Asn Pro Gly Leu Ala Glu Asn Phe MetSer His Thr Thr Pro Trp Thr Asn Pro Gly Leu Ala Glu Asn Phe Met

1 5 10 151 5 10 15

aac agt ttc atg caa ggc ctg agc tcg atg cca ggt ttc acg gca agc 96aac agt ttc atg caa ggc ctg agc tcg atg cca ggt ttc acg gca agc 96

Asn Ser Phe Met Gln Gly Leu Ser Ser Met Pro Gly Phe Thr Ala SerAsn Ser Phe Met Gln Gly Leu Ser Ser Met Pro Gly Phe Thr Ala Ser

20 25 30 20 25 30

caa ttg gat gat atg tca acc atc gca caa tcc atg gta cag tca ata 144caa ttg gat gat atg tca acc atc gca caa tcc atg gta cag tca ata 144

Gln Leu Asp Asp Met Ser Thr Ile Ala Gln Ser Met Val Gln Ser IleGln Leu Asp Asp Met Ser Thr Ile Ala Gln Ser Met Val Gln Ser Ile

35 40 45 35 40 45

caa tcc ttg gcg gca caa ggc agg aca tca ccg aat aag ctg cag gcc 192caa tcc ttg gcg gca caa ggc agg aca tca ccg aat aag ctg cag gcc 192

Gln Ser Leu Ala Ala Gln Gly Arg Thr Ser Pro Asn Lys Leu Gln AlaGln Ser Leu Ala Ala Gln Gly Arg Thr Ser Pro Asn Lys Leu Gln Ala

50 55 60 50 55 60

ctt aac atg gct ttt gca tct tcg atg gca gaa atc gcg gca tcc gaa 240ctt aac atg gct ttt gca tct tcg atg gca gaa atc gcg gca tcc gaa 240

Leu Asn Met Ala Phe Ala Ser Ser Met Ala Glu Ile Ala Ala Ser GluLeu Asn Met Ala Phe Ala Ser Ser Met Ala Glu Ile Ala Ala Ser Glu

65 70 75 8065 70 75 80

gaa gga ggg gga agc ctt tcc acc aaa act agc tct ata gcc agt gca 288gaa gga ggg gga agc ctt tcc acc aaa act agc tct ata gcc agt gca 288

Glu Gly Gly Gly Ser Leu Ser Thr Lys Thr Ser Ser Ile Ala Ser AlaGlu Gly Gly Gly Ser Leu Ser Thr Lys Thr Ser Ser Ile Ala Ser Ala

85 90 95 85 90 95

atg tcc aac gcg ttt ctg caa aca act gga gtg gta aac caa ccg ttc 336atg tcc aac gcg ttt ctg caa aca act gga gtg gta aac caa ccg ttc 336

Met Ser Asn Ala Phe Leu Gln Thr Thr Gly Val Val Asn Gln Pro PheMet Ser Asn Ala Phe Leu Gln Thr Thr Gly Val Val Val Asn Gln Pro Phe

100 105 110 100 105 110

ata aat gaa ata act cag ctc gtt agc atg ttt gct caa gca ggt atg 384ata aat gaa ata act cag ctc gtt agc atg ttt gct caa gca ggt atg 384

Ile Asn Glu Ile Thr Gln Leu Val Ser Met Phe Ala Gln Ala Gly MetIle Asn Glu Ile Thr Gln Leu Val Ser Met Phe Ala Gln Ala Gly Met

115 120 125 115 120 125

aat gat gtc agt gct caa gga gga ttt ggt caa ggt gct gga ggt aat 432aat gat gtc agt gct caa gga gga ttt ggt caa ggt gct gga ggt aat 432

Asn Asp Val Ser Ala Gln Gly Gly Phe Gly Gln Gly Ala Gly Gly AsnAsn Asp Val Ser Ala Gln Gly Gly Phe Gly Gln Gly Ala Gly Gly Asn

130 135 140 130 135 140

gcc gca gcc tgt gca gca gcc gcc gca gca tgt gca gca gct caa caa 480gcc gca gcc tgt gca gca gcc gcc gca gca tgt gca gca gct caa caa 480

Ala Ala Ala Cys Ala Ala Ala Ala Ala Ala Cys Ala Ala Ala Gln GlnAla Ala Ala Cys Ala Ala Ala Ala Ala Ala Ala Cys Ala Ala Ala Gln Gln

145 150 155 160145 150 155 160

ggt ggt caa ggt ggt ttt gga gga caa ggt caa gga gga ttt gga cct 528ggt ggt caa ggt ggt ttt gga gga caa ggt caa gga gga ttt gga cct 528

Gly Gly Gln Gly Gly Phe Gly Gly Gln Gly Gln Gly Gly Phe Gly ProGly Gly Gln Gly Gly Phe Gly Gly Gln Gly Gln Gly Gly Phe Gly Pro

165 170 175 165 170 175

gga gca gga agt tct gca gct tgt gcc gct gca gca tgt gca gct ggt 576gga gca gga agt tct gca gct tgt gcc gct gca gca tgt gca gct ggt 576

Gly Ala Gly Ser Ser Ala Ala Cys Ala Ala Ala Ala Cys Ala Ala GlyGly Ala Gly Ser Ser Ala Ala Cys Ala Ala Ala Ala Cys Ala Ala Gly

180 185 190 180 185 190

caa ggt gga caa gga aga gga gga ttc ggt caa ggt gtt aca tct gga 624caa ggt gga caa gga aga gga gga ttc ggt caa ggt gtt aca tct gga 624

Gln Gly Gly Gln Gly Arg Gly Gly Phe Gly Gln Gly Val Thr Ser GlyGln Gly Gly Gln Gly Arg Gly Gly Gly Phe Gly Gln Gly Val Thr Ser Gly

195 200 205 195 200 205

ggt tac gga tat gga acc agt gca gct gca gga gct gga gtt gca gca 672ggt tac gga tat gga acc agt gca gct gca gga gct gga gtt gca gca 672

Gly Tyr Gly Tyr Gly Thr Ser Ala Ala Ala Gly Ala Gly Val Ala AlaGly Tyr Gly Tyr Gly Thr Ser Ala Ala Ala Gly Ala Gly Val Ala Ala

210 215 220 210 215 220

ggt tca tat gca ggt gct gtc aat cgc ttg tct agt gct gaa gct gcc 720ggt tca tat gca ggt gct gtc aat cgc ttg tct agt gct gaa gct gcc 720

Gly Ser Tyr Ala Gly Ala Val Asn Arg Leu Ser Ser Ala Glu Ala AlaGly Ser Tyr Ala Gly Ala Val Asn Arg Leu Ser Ser Ala Glu Ala Ala

225 230 235 240225 230 235 240

agt aga gta tcc tct aat att gca gct att gca tct ggt ggt gct tcc 768agt aga gta tcc tct aat att gca gct att gca tct ggt ggt gct tcc 768

Ser Arg Val Ser Ser Asn Ile Ala Ala Ile Ala Ser Gly Gly Ala SerSer Arg Val Ser Ser Asn Ile Ala Ala Ile Ala Ser Gly Gly Ala Ser

245 250 255 245 250 255

gcc ctc ccc agt gtt att tca aat att tac tca ggt gtc gtt gct tct 816gcc ctc ccc agt gtt att tca aat att tac tca ggt gtc gtt gct tct 816

Ala Leu Pro Ser Val Ile Ser Asn Ile Tyr Ser Gly Val Val Ala SerAla Leu Pro Ser Val Ile Ser Asn Ile Tyr Ser Gly Val Val Ala Ser

260 265 270 260 265 270

ggt gtt tct tct aat gaa gct ctg att caa gct ctg ttg gaa ctc ctt 864ggt gtt tct tct aat gaa gct ctg att caa gct ctg ttg gaa ctc ctt 864

Gly Val Ser Ser Asn Glu Ala Leu Ile Gln Ala Leu Leu Glu Leu LeuGly Val Ser Ser Asn Glu Ala Leu Ile Gln Ala Leu Leu Glu Leu Leu

275 280 285 275 280 285

tcc gca ctt gtt cat gtt tta agc agt gcc tct atc ggt aat gtt agc 912tcc gca ctt gtt cat gtt tta agc agt gcc tct atc ggt aat gtt agc 912

Ser Ala Leu Val His Val Leu Ser Ser Ala Ser Ile Gly Asn Val SerSer Ala Leu Val His Val Leu Ser Ser Ser Ala Ser Ile Gly Asn Val Ser

290 295 300 290 295 300

tca gta gga gta gat agt aca ttg aat gtt gtt cag gat tca gta ggc 960tca gta gga gta gat agt aca ttg aat gtt gtt cag gat tca gta ggc 960

Ser Val Gly Val Asp Ser Thr Leu Asn Val Val Gln Asp Ser Val GlySer Val Gly Val Asp Ser Thr Leu Asn Val Val Gln Asp Ser Val Gly

305 310 315 320305 310 315 320

caa tat gta ggt 972caa tat gta ggt 972

Gln Tyr Val GlyGln Tyr Val Gly

<210> 6<210> 6

<211> 324<211> 324

<212> PRT<212> PRT

<213> Artificial Sequence<213> Artificial Sequence

<220><220>

<223> Synthetic Construct<223> Synthetic Construct

<400> 6<400> 6

Ser His Thr Thr Pro Trp Thr Asn Pro Gly Leu Ala Glu Asn Phe MetSer His Thr Thr Pro Trp Thr Asn Pro Gly Leu Ala Glu Asn Phe Met

1 5 10 151 5 10 15

Asn Ser Phe Met Gln Gly Leu Ser Ser Met Pro Gly Phe Thr Ala SerAsn Ser Phe Met Gln Gly Leu Ser Ser Met Pro Gly Phe Thr Ala Ser

20 25 30 20 25 30

Gln Leu Asp Asp Met Ser Thr Ile Ala Gln Ser Met Val Gln Ser IleGln Leu Asp Asp Met Ser Thr Ile Ala Gln Ser Met Val Gln Ser Ile

35 40 45 35 40 45

Gln Ser Leu Ala Ala Gln Gly Arg Thr Ser Pro Asn Lys Leu Gln AlaGln Ser Leu Ala Ala Gln Gly Arg Thr Ser Pro Asn Lys Leu Gln Ala

50 55 60 50 55 60

Leu Asn Met Ala Phe Ala Ser Ser Met Ala Glu Ile Ala Ala Ser GluLeu Asn Met Ala Phe Ala Ser Ser Met Ala Glu Ile Ala Ala Ser Glu

65 70 75 8065 70 75 80

Glu Gly Gly Gly Ser Leu Ser Thr Lys Thr Ser Ser Ile Ala Ser AlaGlu Gly Gly Gly Ser Leu Ser Thr Lys Thr Ser Ser Ile Ala Ser Ala

85 90 95 85 90 95

Met Ser Asn Ala Phe Leu Gln Thr Thr Gly Val Val Asn Gln Pro PheMet Ser Asn Ala Phe Leu Gln Thr Thr Gly Val Val Val Asn Gln Pro Phe

100 105 110 100 105 110

Ile Asn Glu Ile Thr Gln Leu Val Ser Met Phe Ala Gln Ala Gly MetIle Asn Glu Ile Thr Gln Leu Val Ser Met Phe Ala Gln Ala Gly Met

115 120 125 115 120 125

Asn Asp Val Ser Ala Gln Gly Gly Phe Gly Gln Gly Ala Gly Gly AsnAsn Asp Val Ser Ala Gln Gly Gly Phe Gly Gln Gly Ala Gly Gly Asn

130 135 140 130 135 140

Ala Ala Ala Cys Ala Ala Ala Ala Ala Ala Cys Ala Ala Ala Gln GlnAla Ala Ala Cys Ala Ala Ala Ala Ala Ala Ala Cys Ala Ala Ala Gln Gln

145 150 155 160145 150 155 160

Gly Gly Gln Gly Gly Phe Gly Gly Gln Gly Gln Gly Gly Phe Gly ProGly Gly Gln Gly Gly Phe Gly Gly Gln Gly Gln Gly Gly Phe Gly Pro

165 170 175 165 170 175

Gly Ala Gly Ser Ser Ala Ala Cys Ala Ala Ala Ala Cys Ala Ala GlyGly Ala Gly Ser Ser Ala Ala Cys Ala Ala Ala Ala Cys Ala Ala Gly

180 185 190 180 185 190

Gln Gly Gly Gln Gly Arg Gly Gly Phe Gly Gln Gly Val Thr Ser GlyGln Gly Gly Gln Gly Arg Gly Gly Gly Phe Gly Gln Gly Val Thr Ser Gly

195 200 205 195 200 205

Gly Tyr Gly Tyr Gly Thr Ser Ala Ala Ala Gly Ala Gly Val Ala AlaGly Tyr Gly Tyr Gly Thr Ser Ala Ala Ala Gly Ala Gly Val Ala Ala

210 215 220 210 215 220

Gly Ser Tyr Ala Gly Ala Val Asn Arg Leu Ser Ser Ala Glu Ala AlaGly Ser Tyr Ala Gly Ala Val Asn Arg Leu Ser Ser Ala Glu Ala Ala

225 230 235 240225 230 235 240

Ser Arg Val Ser Ser Asn Ile Ala Ala Ile Ala Ser Gly Gly Ala SerSer Arg Val Ser Ser Asn Ile Ala Ala Ile Ala Ser Gly Gly Ala Ser

245 250 255 245 250 255

Ala Leu Pro Ser Val Ile Ser Asn Ile Tyr Ser Gly Val Val Ala SerAla Leu Pro Ser Val Ile Ser Asn Ile Tyr Ser Gly Val Val Ala Ser

260 265 270 260 265 270

Gly Val Ser Ser Asn Glu Ala Leu Ile Gln Ala Leu Leu Glu Leu LeuGly Val Ser Ser Asn Glu Ala Leu Ile Gln Ala Leu Leu Glu Leu Leu

275 280 285 275 280 285

Ser Ala Leu Val His Val Leu Ser Ser Ala Ser Ile Gly Asn Val SerSer Ala Leu Val His Val Leu Ser Ser Ser Ala Ser Ile Gly Asn Val Ser

290 295 300 290 295 300

Ser Val Gly Val Asp Ser Thr Leu Asn Val Val Gln Asp Ser Val GlySer Val Gly Val Asp Ser Thr Leu Asn Val Val Gln Asp Ser Val Gly

305 310 315 320305 310 315 320

Gln Tyr Val GlyGln Tyr Val Gly

<210> 7<210> 7

<211> 40<211> 40

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<220><220>

<223> 引物<223> Primer

<400> 7<400> 7

cgcggatccg cgatgtcaca cactacacca tggacaaacc 40cgcggatccg cgatgtcaca cactacacca tggacaaacc 40

<210> 8<210> 8

<211> 40<211> 40

<212> DNA<212>DNA

<213> Artificial Sequence<213> Artificial Sequence

<220><220>

<223> 引物<223> Primer

<400> 8<400> 8

cccaagcttg ggacctacat attggcctac tgaatcctga 40cccaagcttg ggaccctacat attggcctac tgaatcctga 40

Claims (22)

1.一种重组蜘蛛丝蛋白,该重组蜘蛛丝蛋白的氨基酸序列具有SEQ ID NO:6所示的序列。1. A recombinant spider silk protein, the amino acid sequence of the recombinant spider silk protein has the sequence shown in SEQ ID NO:6. 2.一种编码权利要求1重组蜘蛛丝蛋白氨基酸序列的多核苷酸,该多核苷酸具有如下结构:2. A polynucleotide encoding the amino acid sequence of the recombinant spider silk protein of claim 1, the polynucleotide has the following structure: 半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因的5’端连接有N-结构域、3’端连接有C-结构域。The 5' end of the MaSp2 gene of the parental web spider's major ampullate gland silk with improved cysteine is connected with the N-domain and the 3' end is connected with the C-domain. 3.根据权利要求2所述的多核苷酸,其中,所述半胱氨酸改良的育儿网蛛大壶状腺丝MaSp2基因的DNA序列具有SEQ ID NO:2所示的序列。3. The polynucleotide according to claim 2, wherein the DNA sequence of the cysteine-improved brood web spider's major ampullate silk MaSp2 gene has the sequence shown in SEQ ID NO:2. 4.根据权利要求2所述的多核苷酸,其中,所述N-结构域选自育儿网蛛MaSp1基因,所述MaSp1基因的DNA序列具有SEQ ID NO:3所示的序列。4. The polynucleotide according to claim 2, wherein the N-domain is selected from the MaSp1 gene of the nursery web spider, and the DNA sequence of the MaSp1 gene has the sequence shown in SEQ ID NO:3. 5.根据权利要求2所述的多核苷酸,其中,所述C-结构域选自大腹园蛛MiSp基因,所述MiSp基因的DNA序列具有SEQ ID NO:4所示的序列。5 . The polynucleotide according to claim 2 , wherein the C-domain is selected from the MiSp gene of E. magna, and the DNA sequence of the MiSp gene has the sequence shown in SEQ ID NO:4. 6.根据权利要求2~5任一项所述的多核苷酸,其中,该多核苷酸的DNA序列具有SEQ IDNO:5所示的序列。6. The polynucleotide according to any one of claims 2-5, wherein the DNA sequence of the polynucleotide has the sequence shown in SEQ ID NO:5. 7.一种重组质粒,该重组质粒的DNA序列包含权利要求2~6任一项所述的多核苷酸的序列。7. A recombinant plasmid, the DNA sequence of which comprises the sequence of the polynucleotide according to any one of claims 2-6. 8.一种宿主菌,其转入了权利要求7所述的重组质粒。8. A host bacterium transformed into the recombinant plasmid according to claim 7. 9.权利要求1所述的重组蜘蛛丝蛋白的制备方法,其包括以下步骤:9. The preparation method of recombinant spider silk protein described in claim 1, it comprises the following steps: 将权利要求2~6任一项所述的多核苷酸的DNA序列通过引物扩增获得目的基因,然后将目的基因插入到质粒载体中得到重组质粒,将该重组质粒或权利要求7所述的重组质粒导入到宿主菌中进行表达获得重组蜘蛛丝蛋白。The DNA sequence of the polynucleotide described in any one of claims 2 to 6 is amplified by primers to obtain the target gene, and then the target gene is inserted into a plasmid vector to obtain a recombinant plasmid, and the recombinant plasmid or the polynucleotide described in claim 7 The recombinant plasmid is introduced into the host bacteria for expression to obtain the recombinant spider silk protein. 10.根据权利要求9所述的制备方法,其中,所述引物的上游引物DNA序列具有SEQ IDNO:7所示的序列;所述引物的下游引物的DNA序列具有SEQ ID NO:8所示的序列。10. The preparation method according to claim 9, wherein the upstream primer DNA sequence of the primer has the sequence shown in SEQ ID NO: 7; the DNA sequence of the downstream primer of the primer has the sequence shown in SEQ ID NO: 8 sequence. 11.根据权利要求9所述的制备方法,其中,所述质粒载体包括pET-28a质粒。11. The preparation method according to claim 9, wherein the plasmid vector comprises pET-28a plasmid. 12.根据权利要求9所述的制备方法,其中,所述宿主菌包括大肠杆菌。12. The preparation method according to claim 9, wherein the host bacteria comprise Escherichia coli. 13.一种重组蜘蛛丝的制备方法,其包括以下步骤:13. A method for preparing recombinant spider silk, comprising the following steps: 将权利要求9~12任一项所述的制备方法制备获得的重组蜘蛛丝蛋白进行纯化,离心过滤浓缩得到重组蜘蛛丝纺丝蛋白原液;Purifying the recombinant spider silk protein prepared by the preparation method described in any one of claims 9 to 12, and concentrating by centrifugal filtration to obtain a stock solution of recombinant spider silk spinning protein; 采用湿法纺丝机对重组蜘蛛丝纺丝蛋白原液进行挤出,挤出的纤维在凝固浴中进行固化,接着进行热蒸汽退火和后拉伸处理,室温下干燥得到重组蜘蛛丝。A wet spinning machine is used to extrude the recombinant spider silk spinning protein stock solution, and the extruded fibers are solidified in a coagulation bath, followed by hot steam annealing and post-stretching treatment, and dried at room temperature to obtain the recombinant spider silk. 14.根据权利要求13所述的制备方法,其中,采用洗脱液对重组蜘蛛丝蛋白进行纯化,所述洗脱液的成分含有:50~80mM的Tris-HCl,pH值为7.5、100~120mM的NaCl、1~1.5mM的EDTA和1~2mM的DTT;纯化后的重组蜘蛛丝蛋白的质量浓度为2%~3%。14. The preparation method according to claim 13, wherein the recombinant spider silk protein is purified using an eluent, the composition of the eluent contains: 50-80 mM Tris-HCl, the pH value is 7.5, 100- 120mM NaCl, 1-1.5mM EDTA and 1-2mM DTT; the mass concentration of the purified recombinant spider silk protein is 2%-3%. 15.根据权利要求13所述的制备方法,其中,采用10000MWCO离心过滤器浓缩重组蜘蛛丝蛋白溶液,得到的重组蜘蛛丝纺丝原液的质量浓度为20%~25%。15. The preparation method according to claim 13, wherein the recombinant spider silk protein solution is concentrated by using a 10000MWCO centrifugal filter, and the obtained recombinant spider silk spinning stock solution has a mass concentration of 20%-25%. 16.根据权利要求13所述的制备方法,其中,所述湿法纺丝机的挤出针头的规格为30G;重组蜘蛛丝纺丝蛋白原液的挤出速度为10~30μL/min。16. The preparation method according to claim 13, wherein the specification of the extrusion needle of the wet spinning machine is 30G; the extrusion speed of the recombinant spider silk spinning protein stock solution is 10-30 μL/min. 17.根据权利要求13所述的制备方法,其中,所述凝固浴采用DMSO;采用凝固浴进行固化的时间为1~2h。17. The preparation method according to claim 13, wherein the coagulation bath adopts DMSO; the time for solidification by the coagulation bath is 1-2 hours. 18.根据权利要求13所述的制备方法,其中,进行热蒸汽退火工序的热蒸汽温度为80~120℃,退火时间为30~90s。18. The preparation method according to claim 13, wherein the temperature of the hot steam for the hot steam annealing step is 80-120°C, and the annealing time is 30-90s. 19.根据权利要求13所述的制备方法,其中,进行后拉伸处理工序的拉伸速率为1~2mm/s,拉伸比为0.5~0.8。19. The preparation method according to claim 13, wherein the stretching rate in the post-stretching process is 1-2 mm/s, and the stretching ratio is 0.5-0.8. 20.一种重组蜘蛛丝,所述重组蜘蛛丝具有β-sheet晶体结构;其纤维的直径为50~60μm,纤维的平均断裂应力为30~40MPa,平均裂断伸长率为10%~20%。20. A recombinant spider silk, the recombinant spider silk has a β-sheet crystal structure; the diameter of its fiber is 50-60 μm, the average breaking stress of the fiber is 30-40 MPa, and the average breaking elongation is 10%-20 %. 21.根据权利要求20所述的重组蜘蛛丝,其中,所述重组蜘蛛丝是由权利要求1所述重组蜘蛛丝蛋白通过湿法纺丝制备获得或由权利要求13~19任一项所述的制备方法制备获得。21. The recombinant spider silk according to claim 20, wherein the recombinant spider silk is prepared from the recombinant spider silk protein according to claim 1 by wet spinning or obtained from any one of claims 13-19. prepared by the preparation method. 22.权利要求20或21所述的重组蜘蛛丝在生物材料领域、纤维材料领域或纺织材料领域中的应用。22. The application of the recombinant spider silk according to claim 20 or 21 in the field of biomaterials, fiber materials or textile materials.
CN202111085698.8A 2021-09-16 2021-09-16 Recombinant spider silk strengthened by cysteine and its preparation method and application Pending CN115819541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111085698.8A CN115819541A (en) 2021-09-16 2021-09-16 Recombinant spider silk strengthened by cysteine and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111085698.8A CN115819541A (en) 2021-09-16 2021-09-16 Recombinant spider silk strengthened by cysteine and its preparation method and application

Publications (1)

Publication Number Publication Date
CN115819541A true CN115819541A (en) 2023-03-21

Family

ID=85515724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111085698.8A Pending CN115819541A (en) 2021-09-16 2021-09-16 Recombinant spider silk strengthened by cysteine and its preparation method and application

Country Status (1)

Country Link
CN (1) CN115819541A (en)

Similar Documents

Publication Publication Date Title
Chen et al. The spinning processes for spider silk
EP1919938B1 (en) Modified spider silk proteins
JP5128943B2 (en) Recombinant spider silk protein
US9051453B2 (en) Polypeptide solution, artificial polypeptide fiber production method and polypeptide purification method using same
CA2635660C (en) Spider silk proteins and methods for producing spider silk proteins
JP4990763B2 (en) Spider dragline protein, thread and material containing it, vector encoding it, and method of using spider dragline protein and thread containing the same
US11524984B2 (en) Engineered spider silk proteins and uses thereof
WO2018034111A1 (en) Composite molding composition including fibroin-like protein, and method for producing composite molding composition
WO2013065651A1 (en) Protein solution and production method for protein fiber using same
CN110475917A (en) The contraction method of the artificial fibroin fibre of high convergency and its manufacturing method and artificial fibroin fibre
AU2010286333B2 (en) Processes for producing silk dope
CN109890880A (en) Composite molding composition and preparation method thereof containing fibroin sample protein
Zhu et al. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N-and C-terminal domains
CA2095861C (en) Structural proteins from artificial genes
Wen et al. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials
CN108290935A (en) The composition and method for dragging a spider silk for manufacturing synthesis
US8030024B2 (en) Synthesis of spider dragline and/or flagelliform proteins
CN115819541A (en) Recombinant spider silk strengthened by cysteine and its preparation method and application
Zhang et al. Characteristics of electrospun membranes in different spidroin/PCL ratios
Wang et al. Properties of two spliceoforms of major ampullate spidroin 1 reveal unique functions of N-linker region
CN114685686A (en) Fusion protein and its application in the preparation of biological protein fibers
WO2021066040A1 (en) Fiber for artificial hair and method for producing same
CN107849100A (en) Polar solvent solution and its manufacture method
JP2021055222A (en) Small-diameter fiber with void formed therein
CN110551194B (en) Recombinant spider ootheca silk protein compound and artificial ootheca silk generated by same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination