CN115813895A - 苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 - Google Patents
苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 Download PDFInfo
- Publication number
- CN115813895A CN115813895A CN202211640143.XA CN202211640143A CN115813895A CN 115813895 A CN115813895 A CN 115813895A CN 202211640143 A CN202211640143 A CN 202211640143A CN 115813895 A CN115813895 A CN 115813895A
- Authority
- CN
- China
- Prior art keywords
- phenylephrine
- medicine
- cells
- application
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用,涉及生物医学技术领域,本申请中通过验证实验PE可能是通过诱导组蛋白H1.3出核而抑制PR20入核,进而保护细胞。本发明的结论可以为ALS/FTD的治疗提供必要的指导意义。PE是抑制PR20等毒性肽的有效药物。
Description
技术领域
本发明涉及生物医学技术领域,尤其涉及苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用。
背景技术
肌萎缩侧索硬化(Amyotrophic Lateral Sclerosis,ALS,也称渐冻症)是一种进行性神经退行性疾病,主要由上、下运动神经元丢失引起,主要症状为肌无力,最终死于呼吸肌衰竭,常在确诊后3-5年内死亡。额颞叶痴呆(Frontotemporal Dementia,FTD)是一类与阿尔茨海默症具有相似之处的痴呆病症,是由额叶和颞叶萎缩引起的,临床以明显的个性、行为、语言表达的改变和认知障碍为特征,是早老性痴呆的第二大病因,约占全部痴呆病人的1/4。
目前治疗ALS/FTD尚无特效药。有试验结果表明,反义寡核苷酸(Antisenseoligonucleotides,ASO)药物可显著减少渐冻症患者患者脊髓液中的二肽重复蛋白(DPR)。在试验过程中,患者的渐冻症功能评分和其他影响指标基本稳定或略有改善,且治疗后没有神经或医学上的不良反应。但ASO药物对已经翻译出的DPR是否有效未知。已有研究者筛选出几种小分子化合物(BIX01294, CP-31398, and propidium iodide)可与重复RNA结合,减少DPR产生,但这些化合物选择性差,影响整个基因组翻译,因而限制了应用。
发明内容
本发明的目的是为了解决现有技术中治疗ALS/FTD尚无特效药的技术问题 。
为了实现上述目的,本发明采用了如下技术方案:
苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用。
本申请还提供了苯肾上腺素在制备抑制PR20及其重复二肽药物中的应用。
优选的,所述苯肾上腺素通过诱导组蛋白H1.3出核而抑制PR20入核。
本申请中合成了连接有FITC的PR20,发现其主要聚集于PANC-1细胞核,杀死PANC-1细胞。而如果提前用phenylephrine(去氧肾上腺素,PE)预处理PANC-1细胞24h后,PR20主要分布于细胞质,细胞得以存活。且用PE处理后,组蛋白H1.3有一部分定位于细胞质,定位于细胞质的组蛋白H1.3可能阻止了PR20进入细胞核。PE可能是治疗ALS/FTD的潜在药物,而增加细胞质组蛋白H1.2表达可能是有效的治疗策略。
附图说明
图1为本发明一实施方式中CCK8检测结果示意图;
图2为本发明一实施方式中PI染色荧光拍照对比图;
图3为本发明一实施方式中荧光显微拍照对比图;
图4为本发明一实施方式中免疫荧光拍照对比图。
具体实施方式
以下结合具体实施例,对本发明作进一步地详细说明。
苯肾上腺素(Phenylephrine, PE)在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用。
所述PE通过诱导组蛋白H1.3出核而抑制PR20入核。
大量研究表明C9ORF72第一个内含子中插入的G4C2六核苷酸重复DNA片段的异常扩增可同时引起ALS和FTD。C9ORF72 内含子中G4C2六核苷酸扩增引起的ALS占家族性渐冻症的40%,占散发性渐冻症的5-10%;C9ORF72内含子中G4C2六核苷酸扩增引起的FTD占家族性额颞叶痴呆的25%,占散发性额颞叶痴呆的4-21%。
G4C2扩增(G4C2)n以不依赖起始密码子AUG的方式翻译出五种二肽重复蛋白(Dipeptide repeat proteins, DPRs),其中以PRn和GRn毒性最大。PRn毒性主要通过进入细胞核实现,入能抑制PRn进入细胞核,即可抑制其毒性。在实验中,常用PR20模拟PRn的毒性作用。
以下结合具体的验证实验对本申请进行验证。
S1:材料准备:
具体的,准备小肽PR20溶液、PE储存液及PI染色液配置:
在一实施方式中,使用小肽PR20粉末溶解于无菌水中,储存浓度为1mM,置于4℃避光保存;phenylephrine储存浓度为10 mg/mL ,置于4℃避光保存;碘化丙啶(PropidiumIodide,PI)用PBS溶解,储存浓度为10mg/ml,置于4℃避光保存。
S2:细胞培养
胰腺癌细胞系PANC-1培养在含有10%胎牛血清和1% Penicillin-StreptomycinSolution的DMEM培养基中,每2-3d进行一次传代。
S3:CCK8检测
将PANC-1细胞种于96孔板,分为control组、PR20组、单纯药物组、PR20+药物组和单纯培养基组。Control组为不加小肽PR20的细胞,单纯培养基组为不含小肽PR20且不含细胞的培养基,PR20组为用小肽PR20处理的细胞,单纯药物组为只用PE处理24h的细胞,PR20+药物组为PE和PR20联合处理的细胞,每组设置4个复孔。PR20处理浓度为1μM处理48h。PE处理浓度100μM,预处理24h。每孔加入10μl CCK-8溶液,在细胞培养箱中孵育1-2h。利用TecanM200酶标仪,选择450nm波长,检测各孔光吸收值。
如图1所示,PR20处理能诱导近70%的细胞死亡,而提前用PE处理后,细胞几乎能完全存活。
S4:PI染色
将PANC-1细胞种于96孔板,分为control组、PR20组、单纯药物组、PR20+药物组和单纯培养基组。Control组为不加小肽PR20的细胞,单纯培养基组为不含小肽PR20且不含细胞的培养基,PR20组为用小肽PR20处理的细胞,单纯药物组为只用PE预处理24h的细胞,PR20+药物组为PE和PR20联合处理的细胞。PR20处理浓度为1μM处理48h。PE处理浓度100μM,预处理24h。用100μg/ml PI给各组细胞染色15min,用荧光显微镜拍照。
如图2所示,PR20能强烈诱导细胞死亡,大量细胞呈现PI的红色荧光,而PE处理后,细胞几乎无死亡情况,从而进一步证明了,PE可保护PR20诱导的细胞死亡。
S5:荧光显微拍照
将PANC-1细胞种于96孔板,分为control组、PR20组、单纯药物组、PR20+药物组和单纯培养基组。Control组为不加小肽PR20的细胞,单纯培养基组为不含小肽PR20且不含细胞的培养基,PR20组为用小肽PR20处理的细胞,单纯药物组为只用PE处理24h的细胞,PR20+药物组为PE和PR20联合处理的细胞。PR20处理浓度为1μM处理48h。PE处理浓度100μM,预处理24h。用荧光显微镜拍照。
如图3所示,荧光显微镜拍照显示:PR20(1μM)处理48h主要在PANC-1细胞核聚集,进而引起细胞死亡,而用PE(100μM)预处理24h后再加入PR20,其主要分布于细胞质。这一结果表明,PE可保护PR20诱导的细胞死亡。
S6:免疫荧光拍照
将PANC-1细胞种于24孔板圆玻片,分为control组、PR20组、药物组。Control组为不加小肽PR20的细胞,PR20组为用小肽PR20处理的细胞,药物组为只用PE处理24h的细胞。PR20处理浓度为1μM处理48h。PE处理浓度100μM,预预处理24h。多聚甲醛固定细胞1h,PBS洗三次;0.2%TritonX-100通透20min,PBS洗三次;2%BSA封闭30min,PBS洗三次;一抗HistoneH1.3 (1:200)孵育过夜,第二天PBS洗三次;Alexa Fluor 594(1:500)孵育2h,PBS洗三次;Hoechst(1:1000)染色15min,PBS洗三次,封片,激光共聚焦显微镜拍照。
如图4所示,PE处理PANC-1细胞后,组蛋白H1.3有一部分定位于细胞质,进而抑制PR20入核(图4)。这一结果表明,PE可能是通过诱导组蛋白H1.3出核而抑制PR20入核,进而保护细胞。
综上所述,PE可能是通过诱导组蛋白H1.3出核而抑制PR20入核,进而保护细胞。本发明的结论可以为ALS/FTD的治疗提供必要的指导意义。PE是抑制PR20等毒性肽的有效药物。
Claims (3)
1.苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用。
2.苯肾上腺素在制备抑制PR20及其重复二肽药物中的应用。
3.根据权利要求2所述的应用,其特征在于:所述苯肾上腺素通过诱导组蛋白H1.3出核而抑制PR20入核。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211640143.XA CN115813895A (zh) | 2022-12-20 | 2022-12-20 | 苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211640143.XA CN115813895A (zh) | 2022-12-20 | 2022-12-20 | 苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115813895A true CN115813895A (zh) | 2023-03-21 |
Family
ID=85516993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211640143.XA Pending CN115813895A (zh) | 2022-12-20 | 2022-12-20 | 苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115813895A (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220227717A1 (en) * | 2019-04-23 | 2022-07-21 | The Clevland clinic Foundatio | Allosteric activators of the alpha1a-adrenergic receptor |
-
2022
- 2022-12-20 CN CN202211640143.XA patent/CN115813895A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220227717A1 (en) * | 2019-04-23 | 2022-07-21 | The Clevland clinic Foundatio | Allosteric activators of the alpha1a-adrenergic receptor |
Non-Patent Citations (1)
Title |
---|
刘飞 等: "G蛋白偶联受体激活的单分子研究进展", 《生命科学》, vol. 20, no. 1, pages 53 - 57 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boada et al. | Plasma exchange for Alzheimer's disease Management by Albumin Replacement (AMBAR) trial: Study design and progress | |
Kelly et al. | Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury | |
Maltsev et al. | The role of β-amyloid peptide in neurodegenerative diseases | |
Joshi et al. | Polyphenolic flavonoid (Myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation | |
Decressac et al. | TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity | |
Rafieian-Kopaei et al. | Erythropoietin ameliorates genetamicin-induced renal toxicity: A biochemical and histopathological study | |
Korth et al. | Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease | |
Chen et al. | Metformin Alleviated Aβ‐Induced Apoptosis via the Suppression of JNK MAPK Signaling Pathway in Cultured Hippocampal Neurons | |
Huang et al. | Neuroprotective properties of Panax notoginseng saponins via preventing oxidative stress injury in SAMP8 mice | |
Zhao et al. | Berberine exerts neuroprotective activities against cerebral ischemia/reperfusion injury through up-regulating PPAR-γ to suppress NF-κB-mediated pyroptosis | |
Limbocker et al. | Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic | |
Niu et al. | Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures | |
Zhuang et al. | Nuclear factor‐κB/Bcl‐XL pathway is involved in the protective effect of hydrogen‐rich saline on the brain following experimental subarachnoid hemorrhage in rabbits | |
Song et al. | Stimulation of AMPK prevents diabetes‐induced photoreceptor cell degeneration | |
Cheung et al. | Temporal relationship of autophagy and apoptosis in neurons challenged by low molecular weight β‐amyloid peptide | |
Zhang et al. | Pyruvate alleviates high glucose‐induced endoplasmic reticulum stress and apoptosis in HK‐2 cells | |
Qi et al. | Tanshinone IIA protects lens epithelial cells from H2O 2‐induced injury by upregulation of lncRNA ANRIL | |
Assaye et al. | Chaperone-mediated autophagy and its implications for neurodegeneration and cancer | |
Li et al. | Effect of C-phycocyanin on HDAC3 and miRNA-335 in Alzheimer’s disease | |
Cheng et al. | Autophagy and diabetic encephalopathy: mechanistic insights and potential therapeutic implications | |
US9351946B2 (en) | MTOR-independent activator of TFEB for autophagy enhancement and uses thereof | |
Sun et al. | A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer's disease | |
Pang et al. | The sodium glucose co-transporter 2 inhibitor ertugliflozin for Alzheimer's disease: Inhibition of brain insulin signaling disruption-induced tau hyperphosphorylation | |
CN115813895A (zh) | 苯肾上腺素在制备治疗肌萎缩侧索硬化和额颞叶痴呆药物中的应用 | |
Dai et al. | Scutellarin protects the kidney from ischemia/reperfusion injury by targeting Nrf2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |