CN115812165A - 电磁测井工具中的天线校准 - Google Patents

电磁测井工具中的天线校准 Download PDF

Info

Publication number
CN115812165A
CN115812165A CN202180048798.5A CN202180048798A CN115812165A CN 115812165 A CN115812165 A CN 115812165A CN 202180048798 A CN202180048798 A CN 202180048798A CN 115812165 A CN115812165 A CN 115812165A
Authority
CN
China
Prior art keywords
antenna
voltage
test loop
ratio
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180048798.5A
Other languages
English (en)
Inventor
K.H.S.B.谭
Q.何
Q.张
D.张
K.哈姆斯
D.费尔南德斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Publication of CN115812165A publication Critical patent/CN115812165A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • G01V3/28Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种用于校准电磁测量工具的方法包括在电磁测量工具中的第一天线周围部署测试环路,并且电磁耦合测试环路和第一天线,并且测量第一电压。然后,测试环路在电磁测量工具中的第二天线周围部署,并且电磁耦合测试环路和第二天线,并且测量第二电压。计算第一电压与第二电压的比值,该比值可用于相对于第二天线校准第一天线。

Description

电磁测井工具中的天线校准
相关申请的交叉引用
本申请要求2020年6月19日提交的题为“Antenna Calibration”的美国临时申请序列号62/705,271,其全部内容通过引用结合于此。
背景技术
早期的测井工具是在钻井后,通过缆线缆进入井眼的。这种缆线工具的现代版本仍然被广泛使用。然而,钻井孔过程中对信息的需求催生了随钻测量(MWD)工具和随钻测井(LWD)工具。MWD工具通常提供钻井参数信息,例如钻压、扭矩、温度、压力、方向和倾斜度。LWD工具通常提供地层评价测量,如电阻率、孔隙度和核磁共振分布。MWD和LWD工具通常具有与缆线工具相同的部件(例如,发射和接收天线),但是MWD和LWD工具必须被构造为不仅要耐用,还要能在钻井的恶劣环境中工作。
电磁(EM)测井测量通常在钻井作业期间进行。这种技术可用于确定地下地层电阻率,其与地层孔隙度测量一起可用于指示地层中碳氢化合物的存在。此外,方位角敏感的方向电阻率测量通常用于例如产层导向应用中,以提供可据以做出导向决策的信息。
电磁测井工具通常被校准以解决工具结构中的缺陷和由于工具电子设备引起的增益变化。校准的目的是消除和/或补偿这些因素对测量数据的影响。例如,通常采用空气校准方法,其中电磁电阻率工具悬浮在空气中(例如通过起重机),远离任何导电介质。电阻率测量应该产生接近无穷大的电阻率,减去任何偏差,并假设该偏差与系统测量误差相关(例如,与电子器件、硬件或处理方法相关)。测井工具配置的数学模型有时也用于校准程序。
发明内容
公开了一种用于校准电磁测量工具的方法。该方法包括在电磁测量工具中的第一天线周围部署测试环路,并且电磁耦合测试环路和第一天线。当耦合时,在第一天线或测试环路中测量第一电压。然后,测试环路在电磁测量工具中的第二天线周围部署,并且电磁耦合测试环路和第二天线。耦合时在第二天线或测试环路中测量第二电压。计算第一电压与第二电压的比值。该比值可用于相对于第二天线校准第一天线。
提供本概述以介绍将在以下详细描述中进一步描述的一些概念。该概述不旨在标识所要求保护的主题的关键或必要特征,也不旨在用于帮助限制所要求保护的主题的范围。
附图说明
为了更完整地理解所公开的主题及其优点,现在结合附图参考以下描述,在附图中:
图1描绘了钻井系统的示例。
图2A和2B描绘了适用于图1的钻井系统的示例电磁测量工具。
图3描绘了用于校准电磁测量工具中的至少一个天线的一个示例方法实施例的流程图。
图4描绘了在示例电磁测量工具上的天线周围部署的示例测试环路的截面图。
图5描绘了图4所示测试环路的横截面图。
图6描绘了包括测试环路、电磁天线和相应电子设备的校准组件的示意图。
图7A、7B和7C描绘了部署在示例天线周围的轴向(7A)、横向(7B)和倾斜(7C)测试环路。
图8描绘了示例计算机系统。
具体实施方式
所公开的实施例总体上涉及用于对地下地层进行电磁测量的井下电磁测量方法和井下电磁测量工具(例如,随钻电阻率测井工具)。当进行井下电磁测量时,理解电磁工具(例如,电阻率工具)中的多个天线之间的磁矩失配可以帮助确定测量值。例如,在一些应用中,例如深(或超深)边界检测和/或2D/3D储层成像,只有相对小的测量误差是可接受的。传统校准在一些工具中并不实用,在这些工具中,需要进行大量的研究,并且发射器和接收器系统相隔很远。虽然一些校准程序已经投入商业使用,但是发明人发现需要改进电磁测井工具校准方法。在一些实施例中,发明人在此公开了一种具有提高的精度的方法,该方法不需要测井工具的复杂数学或经验模型。在一些实施例中,可以提供测试环路和数据采集系统来校准测量工具天线。例如,在包括多个接收器天线的实施例中,可以使用测试环路和数据采集系统相对于彼此校准接收器天线。
所公开的方法包括在电磁测量工具中的第一天线周围部署测试环路,以及感应耦合测试环路和天线。耦合时在第一天线或测试环路中测量第一感应电压。然后,测试环路在第二个天线附近部署。测试环路和第二天线感应耦合,并且在耦合时在第二天线或测试环路中测量第二感应电压。计算第一电压与第二电压的比值。该比值可用于相对于第二天线校准第一天线。
该比值可被编程到测量工具中,并用于校正第一和第二天线之间的磁矩失配(即,相对于第二天线校准第一天线,反之亦然)。所公开的实施例可以通过相对于另一个天线(例如,相对于类似构造的相邻天线)校准一个天线来有利地提供改进的测量精度。此外,可以有利地执行校准,而无需使用电磁耦合模型,无需接收器短接头之间的校准,以及无需发射器和接收器短接头之间的校准。
图1示出了用于钻地层101以形成井眼102的钻井系统100的一个示例。钻井系统100包括钻机103,钻机103用于转动向下延伸到井眼102中的钻井工具组件104。钻井工具组件104可包括钻柱105、井底组件(BHA)106和附接到钻柱105的井下端的钻头110。
钻柱105可以包括通过工具接头109端对端连接的钻杆108的几个接头。钻柱105通过中心孔传输钻井液,并将旋转动力从钻机103传输到BHA106。在一些实施例中,钻柱105可以还包括附加部件,例如短接头、短节等。钻杆108提供液压通道,钻井液通过该液压通道从地面泵出。钻井液通过钻头110中选定尺寸的喷嘴、喷口或其它孔口排出,用于冷却钻头110和其上的切割结构,以及用于在钻井时将钻屑提升出井眼102。
BHA 106可以包括钻头110或其他部件。示例性BHA 106可以包括附加的或其他的部件(例如,联接在钻柱105和钻头110之间)。附加的BHA部件的示例包括钻铤、稳定器、随钻测量(MWD)工具、随钻测井(LWD)工具,例如电磁测量工具、井下马达、扩孔器、断面铣刀、液压分离装置、震击器、振动或阻尼工具、其他部件或前述部件的组合。BHA 106还可以包括旋转导向系统(RSS)。RSS可包括改变钻头110方向的定向钻井工具,从而改变井眼轨迹。
通常,钻井系统100可包括其他钻井部件和附件,例如特殊阀门(例如,方钻杆旋塞、防喷器和安全阀)。包括在钻井系统100中的附加部件可以被认为是钻井工具组件104、钻柱105的一部分,或者BHA 106的一部分,这取决于它们在钻井系统100中的位置。
BHA 106中的钻头110可以是适于降解井下材料的任何类型的钻头。例如,钻头110可以是适于钻地层101的钻头。用于钻井地层的钻头的示例类型是固定切割器或刮刀钻头。在其它实施例中,钻头110可以是用于移除金属、复合材料、弹性体、其它井下材料或其组合的磨机。例如,钻头110可以与造斜器一起使用,以钻入为井眼102加衬的套管107中。钻头110也可以是用于磨掉井眼102内的工具、堵塞物、水泥、其他材料或其组合的废料磨机。使用磨机形成的削屑或其他切屑可能会被提升到地面,或者可能会落到井下。
本领域普通技术人员将会理解,图1所示的部署仅仅是一示例。例如,公开的实施例不限于随钻测井操作。这里描述的天线校准也可以在冲洗模式下使用钻柱时使用,在冲洗模式下,钻井不活跃地发生,在钻井之后或在任何其他时间使用缆线测井工具。
图2A和2B描绘了可以部署在例如图1所示的BHA 106中的示例电磁测井工具实施例。在一些电磁测井工具(例如,LWD电阻率工具)中,取决于测量应用/目的,可以修改发射器接收器间距,使得发射器与一个或多个接收器的间距从大约10英尺到超过200英尺。模块化工具配置的一个示例在图2A中示出。所示的电磁测量工具实施例包括发射器和接收器短接头50和60。发射器短接头(或工具)50包括部署在发射器套环51上的电磁发射器52。接收器短接头(或工具)60包括部署在接收器套环61上的电磁接收器62。当部署在钻柱(例如,图1中的钻柱105)中时,发射器短接头50和接收器短接头60可以轴向间隔开基本上任何合适的距离,以实现期望的测量深度(例如,根据测量目的,在从大约10英尺到大约100英尺或200英尺或更深的范围内)。此外,可以使用多个接收器短接头。虽然未示出,但是一个或多个其他BHA工具(例如其他LWD工具)可以部署在短接头50和60之间。
图2B描绘了包括单个发射器短接头50’和多个接收器短接头60’的实施例。在所描述的实施例中,发射器短接头50’包括倾斜的发射天线54,并且每个接收器短接头60’包括三个(第一、第二和第三)倾斜的接收天线64、65和66,它们在方位角上彼此偏移(旋转)大约120度。当然将会理解,所公开的实施例不限于采用倾斜天线的实施例。基本上可以使用任何合适的天线,例如包括轴向天线、横向天线和倾斜天线。
如本领域普通技术人员所知,轴向天线的力矩基本上平行于工具的纵轴。轴向天线通常缠绕在测井工具的圆周上,使得天线平面基本上垂直于工具轴线。横向天线是其力矩基本上垂直于工具的纵轴的横向天线。横向天线可以包括例如鞍形线圈(例如,如美国专利公开2011/0074427和2011/0238312中公开的)。倾斜的天线通常缠绕在测井工具的圆周上,使得天线的平面相对于工具轴线成角度(或倾斜)(例如,以大约45度的角度)。上述每种天线配置在业界都是众所周知的。
再次参考图2B,示例电磁测井工具可包括基本上任何合适数量的发射器和接收器短接头,其包括基本上任何数量的相应发射和接收天线。仅作为示例,所示的电磁测井工具包括单个发射器短接头50’和多个间隔开的接收器短接头60’(例如,多个接收器短接头,每个接收器短接头包括第一、第二和第三倾斜接收天线)。当然,所公开的实施例不限于这些方面。
根据所描述的实施例,术语“发射器”和“接收器”用于描述天线的不同功能,就好像它们是不同类型的天线一样。应该理解,这是为了说明的目的。发射天线和接收天线具有相同的物理特性,并且本领域的普通技术人员将会理解,适用互易性原理,并且辐射元件可以在某一时间用作发射器,而在另一时间用作接收器。因此,对特定工具实施例中的发射器和接收器的任何具体描述都应该被解释为包括互补配置,其中“发射器”和“接收器”被交换。此外,在本说明书中,“发射器”或“接收器”在一般意义上使用,并且可以包括单个辐射元件、两个辐射元件或三个辐射元件。
还将理解,在电磁测量期间,发射天线和接收天线彼此电磁耦合。例如,发射天线可以被激励(例如,用交流电流),并且可以在接收天线上测量感应电压。当然,基于互易性,接收天线可以被等效地激励,并且可以在发射天线上测量感应电压。所公开的实施例明确地不限于这些方面。
电磁测量(例如,传播和感应测量)的使用在井下钻井领域是已知的。在这种测量中,发射和接收天线通过发射发射天线(向天线施加随时间变化的电流)电磁耦合,以在局部环境(例如,工具套环和地层)中产生相应的随时间变化的磁场。磁场进而在导电地层中感应出电流(涡流)。这些涡电流进一步产生次级磁场,该次级磁场可以在接收天线中产生电压响应。如本领域普通技术人员所知,可以处理接收天线中的测量电压,以获得地层的一个或多个特性。如上所述,电磁测量可以利用基本上任何合适的天线配置,例如,一个或多个轴向、横向、倾斜、双轴和/或三轴天线布置。
继续参考图2A和2B,将会理解,电磁测井工具中的某些发射和接收天线具有相似的结构,并且可以旨在具有相同的尺寸和形状,使得它们具有基本相同的磁矩。然而,通常由制造公差引起的天线尺寸的变化会导致磁矩变化,这又会导致在进行电磁测量时从一个天线到另一个天线的测量变化(或误差)(例如,从一个天线到另一个天线的测量振幅和/或相位的变化)。在某些实施例(和应用)中,对这些变化导致的误差的校正可以提高测量精度。传统的空气校准方法和模型校准方法可能不适合实现高度精确和可靠的校准。
图3描绘了用于校准电磁测量工具中的至少一个天线(例如,天线64、65和66)的一个示例方法实施例150的流程图。如下面更详细描述的,在152处,在电磁测量工具中的第一天线周围部署测试环路。在154处,测试环路和第一天线电磁耦合,并且在156处,在测试环路或第一天线中测量相应的感应电压。例如,在154处,可以在测试环路中产生交流电流,以在第一天线中感应出相应的交流电压,该交流电压可以在156处被测量。在一些实施例中,可以在154处在第一天线中产生交流电,并且在156处在测试环路中测量相应的感应电压。
然后,在158处,在电磁测量工具中的第二天线周围部署测试环路(例如,通过沿着工具从第一天线到第二天线轴向移动测试环路)。测试环路和第二天线在160处电磁耦合,并且在162处测量测试环路或第二天线中的相应电压。如上所述,在160处,可以在测试环路或第二天线中产生交流电流,并且在162处,在第二天线或测试环路中测量相应的交流电压。
在164中计算在156处测量的第一电压和在162处测量的第二电压之间的比值(有时也称为增益比或增益校正比)。该比值可用于在166处校准用第一天线进行的电磁(EM)测量与用第二天线进行的电磁测量。例如,如下文更详细描述的,用第一天线进行的电压测量可以乘以该比值,以用第二天线进行的相应测量来校准测量。
图4描绘了部署在示例电磁测量工具210周围的示例测试环路220的截面图,该示例电磁测量工具210包括第一、第二和第三相邻天线212、214和216。在所描绘的实施例中,测试环路220部署在第一天线212周围。测量工具210可以包括例如接收器短接头60(图2B),其具有对应于第一、第二和第三倾斜接收天线64、65和66的第一、第二和第三天线212、214和216(尽管所公开的实施例明确地不限于此)。虽然基本上可以采用任何合适的测试环路,但是测试环路220可以有利地包括轴向测试环路(具有与测量短接头210的轴线211平行或重合的力矩)。在一些实施例中,测试环路可以包括倾斜的测试环路。
图5描绘了测试环路220的横截面视图,其中横截面与图4所示的横截面正交(即,向上或向下看测量工具轴线211)。测试环路220可以包括一圈或多圈天线导线232,通过支撑构件234和圆形引导件(未示出)与天线212(图4)隔开。将会理解,测试环路220的引导件和天线导线232不一定是圆形的(例如,引导件和天线导线在倾斜的测试环路中可以是椭圆形的)。
继续参考图4和图5,可以通过在工具天线212上安装(部署)测试环路220来执行校准(例如,如图4所示,用成圈的天线导线232环绕管状天线212)。在某些有利的实施例中,测试环路220的这种安装(部署)可以以高放置精度和/或可重复性来执行。这种高放置精度和可重复性可以通过多种方式实现,例如,使用测量短接头主体210上的对准特征,使用与测量短接头主体210上的特征对准的对准环,使用附接到测试环路220上的对准套筒224,其与短接头主体210或对准环上的特征对准,和/或上述方式的任意组合。例如,如图4所示,测试环路可以部署在对准套筒224上,该对准套筒224被配置(定尺寸和形状)用于部署在测量短接头210周围。对准环222可部署在测量工具210上的工具上的预定位置,或者可具有在指定位置与工具主体210配合的特征。对准套筒224可以具有与对准环222中的开口对准的开口。可以插入销226以将测试环路220相对于天线212固定在适当的位置。当然,也可以使用其他合适的对准方法。测量工具210上的每个天线可以遵循测试环路安装和对准程序。
图6描绘了包括测试环路220、工具天线212和相应电子设备的示例校准组件250的示意图。在该特定示意图中,测试环路220被配置为发射器,被测天线212被配置为接收器(尽管如上所述,所公开的实施例在这方面不受限制)。测试环路220和归一化电阻器242与信号发生器252串联。信号发生器252被通电以通过测试环路220和电阻器242施加交流电,从而在天线212周围发射电磁场。例如,可以使用电压传感器262来测量天线212中的感应电压。电阻器242两端的电压降也可以例如使用电压传感器264来测量。应当理解,电压传感器262和电压传感器264可以是相同的电压传感器,并且该组件可以包括被配置为将电压传感器连接到天线212或电阻器242的开关(或开关组件)。
信号发生器252可以被配置成产生基本上任何合适频率的交流电。电磁测量工具通常被配置成以多个不同的测量频率进行电磁测量,例如,以3、4、6或8个不同的频率。例如,一些工具实施例可以被配置成以1kHz、2kHz、3kHz、6kHz、12kHz、24kHz、48kHz、96kHz和/或192kHz(或任何其他期望的频率)进行电磁测量。因此,将信号发生器252配置成以一个或多个特定频率产生交流电可能是有利的,在该特定频率下工具被配置成进行测量,从而使得工具能够在这些频率下被校准。
再次参考图3,154和160中的电磁耦合可以在工具被配置为进行电磁测量的特定频率(或多个频率)下执行。例如,电磁耦合和相应的电压测量可以在154和156处(以及在160和162处)以基本上任何数量的合适频率(例如,上面列出的那些频率)进行。电磁耦合和电压测量可以在第一频率下进行。然后是第二频率。诸如此类。然后可以在164处计算每个频率下的比值,使得可以在166中在每个频率下校准电磁测量。
在将测试环路220固定到测量短接头210(在天线212周围)时,短接头210和测试环路220可以被提升远离金属物体,以减少或消除来自那些物体的干扰。例如,套环可以被提起至少8英尺(约2.5米),从而向上移动并远离地板、天花板、墙壁和大型金属/磁性物体。
数据采集系统可以连接到测试环路和天线212(在提升组件之前或之后)。采集系统可以被配置成当信号发生器被激励时测量天线212两端的电压(例如,幅度或幅度和相位)以及归一化电阻器242两端的电压(例如,幅度或幅度和相位)。数据采集系统可以包括来自信号发生器252的参考,以使得能够测量测试环路220中的交流电和天线212中的测量电压之间的相位延迟。信号发生器252和数据采集系统可以集成到单个设备中,或者可以位于单独的设备中。
继续参考图3,在154处,测试环路220和天线可以电磁耦合,同时通过激励信号发生器来提升组件。在156处,数据采集系统可以测量第一天线212中的复合电压(例如,包括振幅和相位)以及归一化电阻器242两端的复合电压。如上所述,电磁耦合和相应的电压测量可以在工具运行的基本上任何数量的频率下进行。在一些实施例中,电磁耦合和电压测量可以在工具操作的每个频率下进行。
一旦在所有期望的频率下测试了第一天线,就可以降低组件,并且将测试环路220(以及相关联的对准系统)移动到下一个(第二)天线214。然后可以再次提升该组件,并如上所述连接数据采集系统。然后,可以遵循相同的过程来电磁耦合测试环路220和第二天线214,并且在一个或多个期望的频率下测量第二天线214中以及归一化电阻器242两端的相应复电压。然后,对于第三天线216和基本上任意数量的其他天线,可以根据需要可选地遵循该过程。
如上所述,所公开的校准过程相对于另一个天线(例如,第二天线)校准一个天线(例如,第一天线)。在这种校准中,第一天线的增益(例如,力矩)被归一化为第二天线的增益。例如,在上面参考图2B和图4描述的实施例中,中间天线(第二天线)214可以用作参考天线,并且第一天线212和第三天线216的增益可以通过比值(或增益比)来调整,使得三个天线上的增益(或力矩)相等。例如,可以如下计算第一天线212和第二天线214之间以及第三天线216和第二天线214之间的天线增益比:
Figure BDA0004043749740000091
Figure BDA0004043749740000092
其中,gC_ANT_A1和gC_ANT_A3表示第一和第三天线相对于第二天线的增益(例如,复值增益),VC_ANT_A1,VC_ANT_A2和VC_ANT_A3表示当测试环路与这些天线耦合时第一、第二和第三天线中的电压测量值(例如,复值电压测量值),VC_RES_A1,VC_RES_A2和VC_RES_A3表示当测试环路与第一、第二和第三天线耦合时归一化电阻器两端的电压测量值(例如,复值电压测量值)。
继续参考等式1,通过取两个比值的乘积来计算增益,第一比值是测量(校准)天线中的电压与参考天线中的电压的比值,第二比值是当测试环路与参考天线电磁耦合时归一化电阻器中的电压与测试环路与测量(校准)天线电磁耦合时归一化电阻器中的电压的比值。
上述天线增益比或校准系数(例如,天线增益校准系数)可被编程到测量短接头中,并用于校正电磁测量。等式1中给出的比值可以可选地与其他校准系数相结合,以获得校正的增益比。例如,可以在操作井下工具之前、期间或之后执行进一步的校准,以计算增益校准的电磁测量。组合校准可包括附加的校正,这些校正可在运行之前或运行期间进行计算,如下等式所示:
GA1=gC_PA_A1·gC_AHG_A1·gC_ALG_A1·gC_ANT_A1
GA3=gC_PA_A3·gC_AHG_A3·gC_ALG_A3·gc_ANT_A3 (2)
其中GA1和GA3表示第一和第三天线的组合增益比,gC_PA_A1和gC_PA_A3表示测量短接头中前置放大器的校准,gC_AHG_A1和gC_AHG_A3表示高增益采集板的校准,gC_ALG_A1和gC_ANT_A3表示低增益采集板的校准。例如,在一些实施例中,接收器短接头可以在井下操作的同时执行自测,以考虑温度和/或其他变化,并且所得到的校准或增益比可以被实时包括在总增益中,以提供更准确的校准。虽然上面已经描述了一些校准,但是更多或更少的校准可以与天线增益比校准相结合,以达到整体校准/校正。如上所述,校准可以在运行前、运行中、运行后或其组合中进行。同样如上所述,上述电压和增益比可以是包括振幅和相位信息的复量,然而,所公开的实施例不限于此,因为电压和增益比也可以是仅包括振幅信息的实量。
应当理解,等式1和2中的增益比可以在如上所述的每个测量频率(例如,1kHz、2kHz、3kHz、6kHz、12kHz、24kHz、48kHz、96kHz和/或192kHz或任何其他期望的频率)下计算。井下工具可以被编程为将这些增益比(如等式l或2中所表达的)与井下电磁测量相结合。例如,在任何特定频率,第一、第二和第三天线处的测量电压可以被校准,例如,如下所述(在一些实施例中,包括第一、第二和第三天线,例如上面参考图2B和图4描述的):
VCAL_A1=GA1·VMEAS_A1
VCAL_A3=GA3·VMEAS_A3
VCAL_A2=VMEAS_A2 (3)
其中,VCAL_A1、VCAL_A2和VCAL_A3表示第一、第二和第三天线的校准电压,VMEAS_A1、VMEAS_A2和VMEAS_A3表示第一、第二和第三天线的测量电压,GA1和GA3表示上面计算的增益比。在这个实施例中,第一和第三天线上的测量电压相对于第二天线(在这个示例中作为参考)被校准。因此,在这个示例中,第二天线上的电压没有被校准/校正。
上面描述的是用于校正接收器短接头的天线磁矩的增益分量的实施例。在一些实施例中,以与校正天线磁矩的增益分量类似的方式,也可以计算和校准天线倾斜角分量。在这样的实施例中,可以首先处理电压测量值(使用如上所述的测试环路获得,并且在下面更详细地描述),以计算第一和第二或者第一、第二和第三(等等)天线中的每一个的倾斜角。然后,计算的比值还包括倾斜角的函数的比值(例如,倾斜角的余弦的比值或倾斜角的正弦的比值,如下面更详细描述的)。
在一些实施例中,可以根据使用顺序放置在天线上的两个不同的测试环路(彼此有角度偏移)获得的电压测量来计算天线倾斜角。图7A和7B描绘了示例测试环路,其中图7A描绘了围绕倾斜天线275部署的轴向测试环路272,图7B描绘了围绕倾斜天线275部署的横向测试环路274。虽然使用轴向和横向测试环路可能是有利的,但是所公开的实施例并不局限于此。在一些实施例中,当轴向测试环路272围绕天线275部署时,可使用如上所述的数据采集系统进行电压测量。然后,可以用部署在天线周围的横向测试环路274进行电压测量。然后可以对诸如天线276和277的其他天线进行类似的测量。这些电压测量然后可以被处理以计算天线倾斜角,例如,如下:
Figure BDA0004043749740000121
其中Tiltx表示天线x(例如,天线1、天线2、天线3等)的倾斜角,VC_T_x表示当天线与横向测试环路耦合时的测量电压,VC_A_x表示当天线与轴向测试环路耦合时的测量电压,并且N表示归一化因子,该归一化因子是轴向测试环路和横向测试环路之间的磁矩比。应当理解,N可以根据测试环路尺寸和归一化电阻器中的电压来精确确定。
例如,增益比可以计算如下:
Figure BDA0004043749740000122
Figure BDA0004043749740000123
gC_ANT_A1=0.5(gC_ANT_A1_Axial+gC_ANT_A1_Trans) (5)
其中gC_ANT_A1_Axial和gC_ANT_A1_Trans表示第一天线相对于第二天线的增益(例如,复值增益),VC_A_1,VC_A_2,VC_T_1和VC_T_2是如上面关于等式4定义的耦合电压(例如,复值电压测量值),VC_RES_A_1,VC_RES_A_2,VC_RES_T_1,和VC_RES_T_2表示当轴向和横向测试环路与第一和第二天线耦合时归一化电阻器两端的电压测量值(例如,复值电压测量值)。应当理解,等式5也可以用于简单地通过用天线3的电压测量值和倾斜角(等等)替换天线1的电压测量值和倾斜角来计算第三(或第四等)天线相对于第二天线的增益。
在另一个实施例中,倾斜角和增益(增益比)可以使用倾斜测试环路(其力矩相对于工具轴线倾斜的测试环路)来计算。倾斜测试环路的一个示例在图7C中示出,其中倾斜测试环路280围绕电磁测量工具中的天线276部署,该电磁测量工具包括第一、第二和第三倾斜天线275、276和277。在所描绘的实施例中,倾斜天线280相对于工具轴线211倾斜45度角,如图所示(尽管所公开的实施例在这方面不受限制)。关于美国专利公开2014/0156211更详细地描述了倾斜测试环路,该专利公开通过引用整体结合于此。
例如,倾斜的测试环路280可以部署在天线上,如图7C所示。倾斜的测试环路可以围绕测量工具(围绕天线)旋转到多个已知的方位角。当测试环路和天线电磁耦合时(如上所述),可以在每个方位角测量相应的耦合电压。电压测量值可以拟合正弦函数(作为方位角的函数)来计算天线的倾斜角。可以对测量工具上的选定天线(例如,如上所述的第一、第二和第三相邻天线)执行该过程。
例如,增益比可以计算如下:
Figure BDA0004043749740000131
其中Tilt1TTL和Tilt2TTL表示使用倾斜测试环路(如上所述)确定的第一和第二天线的倾斜角,VC_TTL0_1和VC_TTL0_2表示当倾斜测试环路与第一和第二天线在方位上(旋转地)对准并且电磁耦合时测量的耦合电压(例如,复值电压测量),并且VC_RES_TTL0_2和VC_RES_TTL0_1表示当倾斜测试环路与第一和第二天线在方位上(旋转地)对准并且电磁耦合时归一化电阻器两端的电压测量(例如,复值电压测量)。应当理解,等式6也可以用于简单地通过用天线3的电压测量值和倾斜角(等)替换天线1的电压测量值和倾斜角来计算第三(或第四等)相对于第二天线的增益。
继续参考等式5和6,通过取三个比值的乘积来计算增益,第一比值是测量(校准)天线中的电压与参考天线中的电压的比值,第二比值是当测试环路与参考天线电磁耦合时归一化电阻器中的电压与测试环路与测量(校准)天线电磁耦合时归一化电阻器中的电压的比值,以及第三比值是第一天线的倾斜角的函数(例如余弦或正弦函数)与第二天线的倾斜角的相同函数的比值。
应该理解,电磁测井工具的校准(或校准的一部分)实际上可以在任何类型的计算机上实现,而不管所使用的平台。例如,如图8所示,计算机系统300包括一个或多个处理器302、相关联的存储器304(例如,随机存取存储器(RAM)、高速缓冲存储器、闪存等)、存储设备306(例如,硬盘、诸如光盘驱动器或数字视频光盘(DVD)驱动器的光驱、闪存记忆棒等),以及现代计算机典型的许多其他元件和功能(未示出)。计算机系统300还可以包括输入装置,例如键盘308、鼠标310或麦克风(未示出)。此外,计算机系统300可以包括输出装置,例如监视器312(例如,液晶显示器(LCD)、等离子显示器或阴极射线管(CRT)监视器)或打印机(未示出)。计算机系统300可以经由网络接口连接(未示出)用有线和/或无线段连接到网络314(例如,局域网(LAN)、诸如因特网的广域网(WAN)或任何其他类似类型的网络)。本领域技术人员将会理解,存在许多不同类型的计算机系统,并且前述输入和输出装置可以采取其他形式。一般而言,计算机系统300至少包括实践一个或多个所公开的实施例所必需的最少的处理、输入和/或输出装置。
此外,本领域技术人员将理解,前述计算机系统300的一个或多个元件可以位于远程位置,并通过网络连接到其他元件。例如,计算机系统可以通过遥测信道,例如泥浆脉冲遥测信道或有线钻杆,联接到部署在电磁测井工具中的井下处理器。此外,一个或多个实施例可以在具有多个节点的分布式系统上实现,其中每个部分可以位于分布式系统内的不同节点上。在一个或多个实施例中,节点对应于计算机系统。在一些实施例中,节点可以对应于具有相关物理存储器的处理器。该节点可以对应于具有共享存储器和/或资源的处理器。此外,用于执行储层工程的一个或多个实施例的软件指令可以存储在计算机可读介质上,例如光盘(CD)、磁盘、磁带或任何其他计算机可读存储设备。
计算机系统可以被配置成计算上述各种校准因子、系数和量。例如,计算机系统可以包括从相应的接收天线和测试环路形天线接收电压的指令。计算机系统还可以包括从井下工具存储器接收电磁测量值的指令(例如,在从井眼取回工具之后)。计算机系统还可以包括计算描述发射器和/或接收器天线的有效面积随温度和/或压力变化的函数的指令。例如,如上所述,计算机系统还可包括计算参考工具接收器和发射器的校准系数的指令。计算机系统可包括进一步的指令,以结合电磁测量值(例如,从井下工具存储器接收的)处理这些校准量,从而计算校准测量值。此外,可以结合井下温度和/或压力测量以及电磁测井测量来处理校准量,以计算如上所述的增益校准测量。
同样如上所述,计算的校准因子、系数和量可以存储在井下存储器中,然后可以使用井下处理器(例如,部署在电磁测井工具中的处理器)应用于电磁测量,以计算校准的测量。例如,可以使用计算机系统300计算校准并将其存储在井下存储器中。描述发射器和/或接收器天线的有效面积随温度和/或压力变化的数学函数也可以存储在井下存储器中。在这样的实施例中,井下处理器可以被配置成结合存储在存储器中的校准量来处理井下温度和/或压力测量值,以计算温度和/或压力校正量。井下处理器还可以被配置为将选定的电磁测井测量值乘以校正量和/或原始校准量,以计算井下增益校准的电磁测井测量值。
当在随钻工具中使用增益校准测量时,这些测量可用于确定关于井眼的信息。使用该确定的信息,可以对钻井进行改变。例如,在一些实施例中,井下工具可以是地质导向工具,并且能够自动跟随邻近地层边界的轨迹。在一些实施例中,校正后的测量值可被发送到井上,进行分析,并且司钻或自动司钻可修改钻井计划,例如通过在不同方向上转向。
应当理解,本公开包括许多实施例。这些实施例包括但不限于以下实施例。
在第一实施例中,公开了校准电磁测量工具。该方法包括(a)在电磁测量工具中的第一天线周围部署测试环路;(b)电磁耦合测试环路和第一天线;(c)测量第一天线或测试环路中的第一电压,该第一电压是由所述测试环路和第一天线的电磁耦合感应的;(d)在电磁测量工具中的第二天线周围部署测试环路;(e)电磁耦合测试环路和第二天线;(f)测量由所述电磁耦合测试环路和第二天线在第二天线或测试环路中感应的第二电压;以及(g)计算第一电压与第二电压的比值。
第二实施例可以包括第一实施例,并且还可以包括:(h)使用所计算的比值,将利用第一天线进行的电磁测量校准到利用第二天线进行的电磁测量。
第三实施例可以包括第二实施例,其中(h)还包括:(h1)将比值存储到电磁测量工具中的存储器中;(h2)在地下井眼中部署电磁测量工具;(h3)当部署在井眼中时,使电磁测量工具用第一天线进行第一电磁测量,用第二天线进行第二电磁测量;以及(h4)将第一电磁测量值乘以该比值,以获得校准的第一电磁测量值。
第四实施例可以包括前三个实施例中的任何一个,其中(a)和(d)还包括将电磁测量工具和测试环路向上提起并远离地板、壁和其他导电材料。
第五实施例可以包括前四个实施例中的任何一个,其中测试环路是轴向测试环路,具有与测量工具的轴线重合的力矩轴线,并且第一和第二天线是倾斜天线。
第六实施例可以包括第五实施例,其中第一和第二倾斜天线在测量工具上彼此旋转偏移。
第七实施例可以包括前六个实施例中的任何一个,其中:(b)包括向测试环路或第一天线施加交流电流;以及(e)包括向测试环路或第二天线施加交流电流。
第八实施例可以包括第七实施例,其中(b)还包括将交变电流施加到(i)测试环路或第一天线以及(ii)与测试环路或第一天线串联的归一化电阻器;以及(e)还包括将交变电流施加到(i)测试环路或第二天线,以及(ii)与测试环路或第二天线串联的归一化电阻器。
第九实施例可以包括第八实施例,其中(c)还包括测量由所述向归一化电阻器施加交流电流引起的归一化电阻器中的第一电阻器电压;以及(f)还包括测量由所述将交流电流施加到归一化电阻器引起的归一化电阻器中的第二电阻器电压。
第十实施例可以包括第九实施例,其中在(g)中计算的增益比是第一比值和第二比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值。
第十一实施例可以包括第九实施例,其中在(g)中计算的增益比是第一、第二和第三比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值,第三比值是第一天线的倾斜角的函数与第二天线的倾斜角的所述函数的比值。
第十二实施例可以包括前十一个实施例中的任何一个,并且可以还包括在多个不同的电磁频率下重复(b)、(c)、(e)和(f)。
第十三实施例可以包括前十二实施例中的任何一个,其中(g)还包括处理第一电压以计算第一天线的第一倾斜角;处理第二电压以计算第二天线的第二倾斜角;并且其中计算比值还包括计算第一倾斜角的函数与第二倾斜角的函数的比值。
第十四实施例可以包括第十三实施例,其中测试环路是倾斜的测试环路;在(a)和(d)中,在第一和第二天线周围的多个方位角上部署测试环路;并且第一和第二电压包括在多个方位角测量的相应的多个第一和第二电压。
第十五实施例可以包括第十三实施例,其中测试环路包括第一轴向测试环路和第二横向测试环路;并且第一电压包括对应于第一和第二测试环路的第一和第二第一电压,第二电压包括对应于第一和第二测试环路的第一和第二第二电压。
在第十六实施例中,公开了一种用于校准电磁测量工具的系统。该系统包括测试环路,该测试环路被配置为围绕电磁测井工具中的天线部署,该测试环路包括设置在支撑结构上的至少一圈天线导线和被配置为在所述部署时接合测井工具的套管;数据采集系统,其被配置为与测试环路和天线电连接,该数据采集系统包括信号发生器和电压测量电路,该信号发生器被配置为当测试环路围绕天线部署时将测试环路与天线电磁耦合,该电压测量电路被配置为在所述耦合期间测量测试环路或天线中的电压;以及处理器,其被配置为(i)指示电压测量电路在测试环路与测井工具中的第一天线电磁耦合时测量第一电压,以及在测试环路与测井工具中的第二天线电磁耦合时测量第二电压,以及(ii)计算第一电压与第二电压的比值。
第十七实施例可以包括第十六实施例,其中数据采集系统还包括归一化电阻器,其被配置为当数据采集系统与测试环路和天线电连接时,与测试环路或第一天线电串联。
第十八实施例可以包括第十六实施例,其中处理器还被配置为当测试环路与第一天线电磁耦合时指示电压测量电路测量第一电阻器电压,并且当测试环路与第二天线电磁耦合时测量第二电阻器电压。
第十九实施例可以包括第十六实施例,其中处理器还被配置为计算第一和第二比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值。
第二十实施例可以包括第十六至第十九实施例中的任何一个,其中:信号发生器被配置成在多个不同的频率上电磁耦合测试环路和天线;并且处理器被配置为指示电压测量电路测量多个不同频率中的每个频率下的第一和第二电压,并且计算多个不同频率中的每个频率下的第一电压与第二电压的比值。
校准系统和方法的实施例已经主要参考LWD电阻率工具的使用进行了描述;校准系统和方法可用于除钻井眼以外的应用中。在其他实施例中,根据本公开的校准系统可以用于缆线操作,然而,可以预见其他潜在的用途。因此,术语“井眼”、“钻孔”等不应被解释为将本公开的工具、系统、组件或方法限制于任何特定的行业、领域或环境。
本文描述了本公开的一个或多个具体实施例。这些描述的实施例是当前公开的技术的示例。另外,为了提供这些实施例的简明描述,在说明书中可能没有描述实际实施例的所有特征。应当理解,在任何这种实际实现的开发中,如同在任何工程或设计项目中一样,将做出许多特定于实施例的决定,以实现开发者的特定目标,例如符合系统相关和商业相关的约束,这些约束可能因实施例而异。此外,应当理解,这种开发努力可能是复杂且耗时的,但是对于受益于本公开的普通技术人员来说,这仍然是设计、制作和制造的常规任务。
此外,应当理解,对本公开的“一个实施例”或“实施例”的引用不旨在被解释为排除也结合了所述特征的附加实施例的存在。例如,关于这里的实施例描述的任何元件可以与这里描述的任何其他实施例的任何元件组合。本文所述的数字、百分比、比值或其他值旨在包括该值,以及“大约”或“近似”所述值的其他值,如本公开的实施例所涵盖的本领域普通技术人员将理解的。因此,所述值应该被解释为足够宽泛,以包含至少足够接近所述值的值,以执行期望的功能或实现期望的结果。所述值至少包括在合适的制造或生产过程中预期的变化,并且可以包括在所述值的5%以内、1%以内、0.1%以内或0.01%以内的值。
鉴于本公开,本领域普通技术人员应该认识到,等同的构造不脱离本公开的精神和范围,并且在不脱离本公开的精神和范围的情况下,可以对本文公开的实施例进行各种改变、替换和变更。包括功能性“装置加功能”条款在内的等同结构旨在涵盖在此描述的执行所述功能的结构,包括以相同方式操作的结构等同物和提供相同功能的等同结构。申请人的明确意图是不为任何权利要求调用装置加功能或其他功能性权利要求,除了那些词语“用于…装置”与相关功能一起出现的权利要求。落入权利要求的含义和范围内的对实施例的每个添加、删除和修改都将被权利要求所包含。
这里使用的术语“近似”、“大约”和“基本上”表示接近所述量的量,该量在标准制造或工艺公差内,或者仍然执行期望的功能或实现期望的结果。例如,术语“大约”、“约”和“基本上”可以指所述量的小于5%、小于1%、小于0.1%和小于0.01%的量。此外,应该理解,前面描述中的任何方向或参考系仅仅是相对方向或运动。例如,对“上”和“下”或“上方”或“下方”的任何引用仅仅是对相关元件的相对位置或运动的描述。
在不脱离本发明的精神或特征的情况下,本发明可以以其他特定形式实施。所描述的实施例被认为是说明性的而非限制性的。在权利要求的等同物的含义和范围内的变化将包含在它们的范围内。

Claims (20)

1.一种校准电磁测量工具的方法,该方法包括:
(a)在电磁测量工具中的第一天线周围部署测试环路;
(b)电磁耦合测试环路和第一天线;
(c)测量由所述电磁耦合所述测试环路和第一天线在第一天线或测试环路中感应的第一电压;
(d)在电磁测量工具中的第二天线周围部署测试环路;
(e)电磁耦合测试环路和第二天线;
(f)测量由所述电磁耦合所述测试环路和第二天线在第二天线或测试环路中感应的第二电压;和
(g)计算第一电压与第二电压的比值。
2.根据权利要求1所述的方法,还包括:
(h)使用所计算的比值将利用第一天线进行的电磁测量校准到利用第二天线进行的电磁测量。
3.根据权利要求2所述的方法,其中(h)还包括:
(h1)将该比值存储到电磁测量工具中的存储器中;
(h2)在地下井眼中部署电磁测量工具;
(h3)当部署在井眼中时,使电磁测量工具用第一天线进行第一电磁测量,用第二天线进行第二电磁测量;和
(h4)将第一电磁测量乘以所述比值,以获得校准的第一电磁测量。
4.根据权利要求1所述的方法,其中(a)和(d)还包括将所述电磁测量工具和所述测试环路向上提起并远离地板、壁和其他导电材料。
5.根据权利要求1所述的方法,其中所述测试环路是轴向测试环路,具有与所述测量工具的轴线重合的力矩轴线,并且第一和第二天线是倾斜天线。
6.根据权利要求5所述的方法,其中第一和第二倾斜天线在所述测量工具上彼此旋转偏移。
7.根据权利要求1所述的方法,其中:
(b)包括向测试环路或第一天线施加交流电流;和
(e)包括向测试环路或第二天线施加交流电流。
8.根据权利要求7所述的方法,其中:
(b)还包括将交流电流施加到(i)测试环路或第一天线和施加到(ii)与测试环路或第一天线串联的归一化电阻器;和
(e)还包括将交流电流施加到(i)测试环路或第二天线和(ii)与测试环路或第二天线串联的归一化电阻器。
9.根据权利要求8所述的方法,其中:
(c)还包括测量由所述向归一化电阻器施加交流电流引起的归一化电阻器中的第一电阻器电压;和
(f)还包括测量由所述向归一化电阻器施加交流电流引起的归一化电阻器中的第二电阻器电压。
10.根据权利要求9所述的方法,其中在(g)中计算的比值是第一比值和第二比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值。
11.根据权利要求9所述的方法,其中在(g)中计算的比值是第一、第二和第三比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值,第三比值是第一天线倾斜角的函数与第二天线倾斜角的所述函数的比值。
12.根据权利要求1所述的方法,还包括:
在多个不同的电磁频率下重复(b)、(c)、(e)和(f)。
13.根据权利要求1所述的方法,其中(g)还包括:
处理第一电压以计算第一天线的第一倾斜角;
处理第二电压以计算第二天线的第二倾斜角;和
其中计算所述比值还包括计算第一倾斜角的函数与第二倾斜角的所述函数的比值。
14.根据权利要求13所述的方法,其中:
测试环路是倾斜的测试环路;
在(a)和(d)中,在第一和第二天线周围的多个方位角上部署测试环路;和
所述第一和第二电压包括在多个方位角下测量的相应的多个第一和第二电压。
15.根据权利要求13所述的方法,其中:
测试环路包括第一轴向测试环路和第二横向测试环路;和
第一电压包括对应于第一和第二测试环路的第一和第二第一电压,第二电压包括对应于第一和第二测试环路的第一和第二第二电压。
16.一种用于校准电磁测量工具的系统,该系统包括:
测试环路,该测试环路被配置为围绕电磁测井工具中的天线部署,该测试环路包括设置在支撑结构上的至少一圈天线导线和被配置为在所述部署时接合测井工具的套管;
数据采集系统,该数据采集系统被配置为与测试环路和天线电连接,该数据采集系统包括信号发生器和电压测量电路,该信号发生器被配置为当测试环路围绕天线部署时将测试环路与天线电磁耦合,该电压测量电路被配置为在所述耦合期间测量测试环路或天线中的电压;和
处理器,该处理器被配置为(i)指示电压测量电路在测试环路与测井工具中的第一天线电磁耦合时测量第一电压,以及在测试环路与测井工具中的第二天线电磁耦合时测量第二电压,以及(ii)计算第一电压与第二电压的比值。
17.根据权利要求16所述的系统,其中:
数据采集系统还包括归一化电阻器,该归一化电阻器被配置为当数据采集系统与测试环路和天线电连接时,与测试环路或第一天线电串联。
18.根据权利要求17所述的系统,其中所述处理器还被配置成指示电压测量电路在测试环路与第一天线电磁耦合时测量归一化电阻器中的第一电阻器电压,以及在测试环路与第二天线电磁耦合时测量归一化电阻器中的第二电阻器电压。
19.根据权利要求16所述的系统,其中所述处理器还被配置为计算第一和第二比值的乘积,第一比值是第一电压与第二电压的比值,第二比值是第二电阻器电压与第一电阻器电压的比值。
20.根据权利要求16所述的系统,其中:
所述信号发生器被配置成在多个不同的频率下电磁耦合所述测试环路和所述天线;和
处理器被配置成指示电压测量电路测量在多个不同频率中的每一个频率下的第一和第二电压,并计算在多个不同频率中的每一个频率下的第一电压与第二电压的比值。
CN202180048798.5A 2020-06-19 2021-06-21 电磁测井工具中的天线校准 Pending CN115812165A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062705271P 2020-06-19 2020-06-19
US62/705,271 2020-06-19
PCT/US2021/038233 WO2021258047A1 (en) 2020-06-19 2021-06-21 Antenna calibration in an em logging tool

Publications (1)

Publication Number Publication Date
CN115812165A true CN115812165A (zh) 2023-03-17

Family

ID=79025340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180048798.5A Pending CN115812165A (zh) 2020-06-19 2021-06-21 电磁测井工具中的天线校准

Country Status (5)

Country Link
US (1) US20230184991A1 (zh)
EP (1) EP4168830A1 (zh)
CN (1) CN115812165A (zh)
BR (1) BR112022025637A2 (zh)
WO (1) WO2021258047A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293128A (en) * 1992-07-02 1994-03-08 Western Atlas International, Inc. Method and apparatus for calibrating the output measurement of a logging tool as a function of earth formation parameters
US7319331B2 (en) * 2004-05-07 2008-01-15 Baker Hughes Incorporated Two loop calibrator
US8581592B2 (en) * 2008-12-16 2013-11-12 Halliburton Energy Services, Inc. Downhole methods and assemblies employing an at-bit antenna
US20140156211A1 (en) * 2012-11-30 2014-06-05 Schlumberger Technology Corporation Tilted Test Loop Calibration System
WO2017074346A1 (en) * 2015-10-28 2017-05-04 Halliburton Energy Services, Inc. Inductive cavity sensors for resistivity tools

Also Published As

Publication number Publication date
EP4168830A1 (en) 2023-04-26
WO2021258047A1 (en) 2021-12-23
US20230184991A1 (en) 2023-06-15
BR112022025637A2 (pt) 2023-03-07

Similar Documents

Publication Publication Date Title
RU2459221C2 (ru) Приборы каротажа сопротивлений с совмещенными антеннами
US7501829B2 (en) Extra bucking coils as an alternative way to balance induction arrays
US6509738B1 (en) Electromagnetic induction well logging instrument having azimuthally sensitive response
AU2013408734B2 (en) Drilling collision avoidance apparatus, methods, and systems
US8417455B2 (en) Triaxial antenna electromagnetic measurements
EP3430445B1 (en) Downhole deep transient measurements with improved sensors
US10132954B2 (en) Downhole tool with radial array of conformable sensors for downhole detection and imaging
WO2008036557A2 (en) Resistivity tools with load-bearing segmented azimuthally sensitive antennas and methods of making same
EP3126627B1 (en) Downhole tri-axial induction electromagnetic tool
US20160327675A1 (en) Downhole inspection with ultrasonic sensor and conformable sensor responses
US9341053B2 (en) Multi-layer sensors for downhole inspection
WO2017172466A1 (en) Improved bucking to reduce effects of conducting tubular
NO20170895A1 (en) Modifying magnetic tilt angle using a magnetically anisotropic material
US20160154134A1 (en) Compensated borehole and pipe survey tool with conformable sensors
CN115812165A (zh) 电磁测井工具中的天线校准
AU2014411434B2 (en) Resistivity logging tools with tilted ferrite elements for azimuthal sensitivity
US20230393299A1 (en) Method for making directional resistivity measurements of a subterranean formation
US10684386B2 (en) Method and apparatus of near-bit resistivity for looking-ahead

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination