CN115792238A - Method for screening and determining TCR interacting with specific antigen and interaction strength of TCR interacting with specific antigen - Google Patents
Method for screening and determining TCR interacting with specific antigen and interaction strength of TCR interacting with specific antigen Download PDFInfo
- Publication number
- CN115792238A CN115792238A CN202210209696.3A CN202210209696A CN115792238A CN 115792238 A CN115792238 A CN 115792238A CN 202210209696 A CN202210209696 A CN 202210209696A CN 115792238 A CN115792238 A CN 115792238A
- Authority
- CN
- China
- Prior art keywords
- tcr
- yeast
- pmhc
- specific antigen
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 100
- 239000000427 antigen Substances 0.000 title claims abstract description 55
- 108091007433 antigens Proteins 0.000 title claims abstract description 55
- 102000036639 antigens Human genes 0.000 title claims abstract description 55
- 230000003993 interaction Effects 0.000 title claims abstract description 37
- 238000012216 screening Methods 0.000 title claims abstract description 31
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 61
- 230000013011 mating Effects 0.000 claims abstract description 34
- 230000008859 change Effects 0.000 claims abstract description 28
- 210000005253 yeast cell Anatomy 0.000 claims description 72
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 60
- 108090000623 proteins and genes Proteins 0.000 claims description 50
- 230000009258 tissue cross reactivity Effects 0.000 claims description 32
- 108091008874 T cell receptors Proteins 0.000 claims description 27
- 238000007481 next generation sequencing Methods 0.000 claims description 13
- 230000002950 deficient Effects 0.000 claims description 7
- 238000003501 co-culture Methods 0.000 claims description 4
- 238000002818 protein evolution Methods 0.000 abstract description 11
- 210000004027 cell Anatomy 0.000 description 62
- 108090000765 processed proteins & peptides Proteins 0.000 description 37
- 150000007523 nucleic acids Chemical class 0.000 description 29
- 102000004169 proteins and genes Human genes 0.000 description 29
- 239000012634 fragment Substances 0.000 description 28
- 102000004196 processed proteins & peptides Human genes 0.000 description 26
- 229920001184 polypeptide Polymers 0.000 description 23
- 108020004707 nucleic acids Proteins 0.000 description 22
- 102000039446 nucleic acids Human genes 0.000 description 22
- 230000035772 mutation Effects 0.000 description 20
- 239000002609 medium Substances 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 238000007796 conventional method Methods 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 210000001744 T-lymphocyte Anatomy 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000004520 electroporation Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 238000004113 cell culture Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 239000013642 negative control Substances 0.000 description 12
- 238000003752 polymerase chain reaction Methods 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 11
- 238000010367 cloning Methods 0.000 description 10
- 238000000684 flow cytometry Methods 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 9
- 238000012408 PCR amplification Methods 0.000 description 8
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 108091029865 Exogenous DNA Proteins 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000013600 plasmid vector Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000010361 transduction Methods 0.000 description 7
- 230000026683 transduction Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 230000009368 gene silencing by RNA Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 108091005573 modified proteins Proteins 0.000 description 4
- 102000035118 modified proteins Human genes 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 238000002823 phage display Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 238000007480 sanger sequencing Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 239000007222 ypd medium Substances 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 3
- 241000252212 Danio rerio Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 108091005948 blue fluorescent proteins Proteins 0.000 description 3
- 239000006143 cell culture medium Substances 0.000 description 3
- 230000024245 cell differentiation Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000011426 transformation method Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000010307 cell transformation Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000004850 protein–protein interaction Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000003153 stable transfection Methods 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 238000003146 transient transfection Methods 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100034613 Annexin A2 Human genes 0.000 description 1
- 238000010446 CRISPR interference Methods 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 102210042925 HLA-A*02:01 Human genes 0.000 description 1
- 101000924474 Homo sapiens Annexin A2 Proteins 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 101100010928 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) tuf gene Proteins 0.000 description 1
- 101100313649 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) POT1 gene Proteins 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 108010092262 T-Cell Antigen Receptors Proteins 0.000 description 1
- 101150001810 TEAD1 gene Proteins 0.000 description 1
- 101150074253 TEF1 gene Proteins 0.000 description 1
- 102100029898 Transcriptional enhancer factor TEF-1 Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 244000301083 Ustilago maydis Species 0.000 description 1
- 235000015919 Ustilago maydis Nutrition 0.000 description 1
- 101100161758 Yarrowia lipolytica (strain CLIB 122 / E 150) POX3 gene Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- -1 domains Proteins 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000011124 ex vivo culture Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108010007811 human immunodeficiency virus p17 gag peptide Proteins 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 108010003486 leucyl-leucyl-phenylalanyl-glycyl-tyrosyl-prolyl-valyl-tyrosyl-valine Proteins 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012913 medium supplement Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007671 third-generation sequencing Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000012418 validation experiment Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种筛选并确定与特定抗原相互作用的TCR及其与特定抗原相互作用强度的方法,本发明的方法是一种利用酵母展示和酵母交配系统实现筛选并确定与特定抗原相互作用的TCR及其与特定抗原相互作用强度,根据本发明的方法,将TCR和pMHC分别展示到不同交配型酵母表面,然后进行酵母交配实验,进而通过酵母交配系统中 TCR与pMHC互相作用形成的二倍体酵母细胞来筛选并确定TCR及其与特定抗原相互作用强度。同时通过计算所述筛选并确定出的每种TCR 序列的差异倍数(fold change)值,由此确定出与特定抗原相互作用的 TCR及其与特定抗原相互作用强度。The invention relates to a method for screening and determining the TCR interacting with a specific antigen and its interaction strength with a specific antigen. The method of the invention is a method for screening and determining the interaction with a specific antigen by using yeast display and yeast mating TCR and its interaction strength with specific antigens. According to the method of the present invention, TCR and pMHC are respectively displayed on the surface of yeast of different mating types, and then the yeast mating experiment is carried out, and then the interaction between TCR and pMHC in the yeast mating system is doubled. Somatic yeast cells were used to screen and determine the TCR and its interaction strength with specific antigens. At the same time, by calculating the fold change value of each TCR sequence determined by the screening, the TCR interacting with the specific antigen and its interaction strength with the specific antigen are determined.
背景技术Background technique
TCR(T cell receptor,T细胞抗原受体)是T细胞表面的特异性T 细胞受体,是一种能够识别内/外源性抗原的分子,可以实现对特定受损伤细胞的杀伤和清除,同时可以介导免疫应答,在免疫应答和免疫调节中发挥着重要的作用,该受体也是T细胞特异性识别和结合抗原肽-MHC分子的分子结构,通常与CD3分子呈复合物形式存在于T细胞表面。在T细胞识别抗原的过程中,受体TCR和主要组织相容性复合体(Major HistocompatibiltyComplex,MHC)提呈的 pMHC(抗原分子多肽或肽-MHC)之间密切结合,从而激活T细胞,即T细胞受到抗原刺激后,分化、增殖、转化为活化的T细胞,产生对抗原的直接杀伤作用及活化T细胞所释放的细胞因子的协同杀伤作用的免疫效应。肿瘤细胞免疫疗法(TCR-T)就是利用与目标肿瘤抗原特异性结合的T细胞,从而实现杀伤、清除肿瘤细胞的治疗方法。TCR (T cell receptor, T cell antigen receptor) is a specific T cell receptor on the surface of T cells. It is a molecule that can recognize endogenous/exogenous antigens, and can kill and clear specific damaged cells. At the same time, it can mediate immune response and play an important role in immune response and immune regulation. This receptor is also the molecular structure of T cells that specifically recognize and bind antigen peptide-MHC molecules, and usually exists in the form of complexes with CD3 molecules in T cell surface. In the process of T cell antigen recognition, the receptor TCR is closely combined with the pMHC (antigen molecule polypeptide or peptide-MHC) presented by the major histocompatibility complex (Major Histocompatibility Complex, MHC), thereby activating T cells, namely After T cells are stimulated by antigens, they differentiate, proliferate, and transform into activated T cells, which produce the immune effect of direct killing of antigens and synergistic killing of cytokines released by activated T cells. Tumor cell immunotherapy (TCR-T) is a treatment method that uses T cells that specifically bind to target tumor antigens to kill and eliminate tumor cells.
TCR识别pMHC激活免疫应答对于维持人体的健康至关重要,体外进化出的高亲和力的TCR能够提高改造T细胞的抗肿瘤能力。其中,最能代表T细胞应答特征的分子为TCR高变区域CDR3(第三互补决定区),该区域是TCR主要的抗原结合部位,对TCR CDR3库进行研究,将为 T细胞生理和病理特征的全面解析提供基础。TCR recognition of pMHC to activate the immune response is crucial to maintaining the health of the human body, and the high-affinity TCR evolved in vitro can improve the anti-tumor ability of engineered T cells. Among them, the molecule that best represents the T cell response characteristics is the TCR hypervariable region CDR3 (the third complementarity determining region), which is the main antigen-binding site of the TCR. The study of the TCR CDR3 library will provide a basis for the physiological and pathological characteristics of T cells. provides the basis for a comprehensive analysis.
目前,研究筛选高亲和力TCR的方法主要是通过噬菌体展示和酵母展示的方式进行。At present, the methods for researching and screening high-affinity TCRs are mainly carried out through phage display and yeast display.
噬菌体展示技术(Phage Display Technology)的本质是一种筛选技术。将不同的外源基因分别插入噬菌体载体中,随着噬菌体的传代,外源蛋白会展现在噬菌体表面,形成噬菌体文库。The essence of phage display technology is a screening technology. Different foreign genes were inserted into the phage vectors, and with the passage of the phage, the foreign proteins would be displayed on the surface of the phage to form a phage library.
酵母展示技术是一种真核蛋白表达系统,其利用酵母细胞表面展示系统(拥有完善的蛋白质翻译后修饰和分泌机制)将异源真核蛋白固定并展示在酵母细胞表面,已在蛋白质文库筛选、蛋白质定向进化、高亲和性抗体分选、抗原/抗体库构建、亲和力成熟、疫苗生产、免疫生物催化和生物传感器等多个领域应用广泛。目前的酵母展示技术多以四聚体蛋白的形式的pMHC为研究对象,筛选TCR的序列。Yeast display technology is a eukaryotic protein expression system, which uses the yeast cell surface display system (with perfect protein post-translational modification and secretion mechanism) to immobilize and display heterologous eukaryotic proteins on the surface of yeast cells, which has been screened in protein libraries , protein directed evolution, high-affinity antibody sorting, antigen/antibody library construction, affinity maturation, vaccine production, immune biocatalysis, and biosensors. The current yeast display technology mostly takes pMHC in the form of tetrameric protein as the research object, and screens the sequence of TCR.
例如,Kranz等研究组包括Holler et al.,2000;(Holler,P.D.,Holman, P.O.,Shusta,E.V.,O’Herrin,S.,Wittrup,K.D.,and Kranz,D.M.(2000).In vitro evolutionof a T cell receptor with high affinity for peptide/MHC.Proc.Natl.Acad.Sci.97,5387–5392;)Richman et al.,2006;(Richman,S.A.,Healan,S.J., Weber,K.S.,Donermeyer,D.L.,Dossett,M.L.,Greenberg,P.D.,Allen,P.M.,and Kranz,D.M.(2006).Development of a novel strategy for engineering high-affinity proteinsby yeast display.Protein Eng.Des.Sel.19,255–264;) Shusta et al.,2000;(Shusta,E.V.,Holler,P.D.,Kieke,M.C.,Kranz,D.M.,and Wittrup,K.D.(2000).Directedevolution of a stable scaffold for T-cell receptorengineering.Nat.Biotechnol.18,754–759;)Smith et al.,2015(Smith,S.N., Harris,D.T.,and Kranz,D.M.(2015).T Cell Receptor Engineering and Analysis Using theYeast Display Platform.In Yeast Surface Display,(Humana Press,New York,NY),pp.95–141.)成功将scTCR(单链TCR)的V区通过Linker 连接展示到酵母表面,并通过体外随机突变构建得到的105的TCR的突变库,流式筛选到了与目标抗原结合的高亲和力的TCR,该文献的技术使用的是以质粒形式表达TCR突变库、传统的酶切连接的克隆方法。此外,我国研究人员例如广东药学院的黄树林教授等人,成功实现了 scTCR的酵母展示(Shao etal.,2010)(Shao,H.W.,Guo,H.P.,Huang,X.L., Zhang,W.F.,and Huang,S.L.(2010).Theconstruction and yeast surface display of single chain T cell receptor(scTCR).J.Guangdong Pharm.Coll.)。For example, Kranz and other research groups include Holler et al., 2000; (Holler, PD, Holman, PO, Shusta, EV, O'Herrin, S., Wittrup, KD, and Kranz, DM (2000). In vitro evolution of a T cell receptor with high affinity for peptide/MHC.Proc.Natl.Acad.Sci.97,5387–5392;) Richman et al.,2006; (Richman, SA, Healan, SJ, Weber, KS, Donermeyer, DL, Dossett, ML, Greenberg, PD, Allen, PM, and Kranz, DM (2006). Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng. Des. Sel. 19, 255–264;) Shusta et al. , 2000; (Shusta, EV, Holler, PD, Kieke, MC, Kranz, DM, and Wittrup, KD (2000). Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754–759;) Smith et al al., 2015 (Smith, SN, Harris, DT, and Kranz, DM (2015). T Cell Receptor Engineering and Analysis Using the Yeast Display Platform. In Yeast Surface Display, (Humana Press, New York, NY), pp.95 –141.) Successfully displayed the V region of scTCR (single-chain TCR) on the surface of yeast through Linker connection, and constructed a mutant library of 10 5 TCRs obtained by random mutation in vitro, and obtained high-affinity binding to the target antigen through flow cytometry screening TCR, the technology in this document uses the cloning method of expressing the TCR mutant library in the form of a plasmid and traditional enzyme-cut ligation. In addition, Chinese researchers, such as Professor Huang Shulin of Guangdong College of Pharmaceutical Sciences, successfully realized the yeast display of scTCR (Shao et al., 2010) (Shao, HW, Guo, HP, Huang, XL, Zhang, WF, and Huang, SL(2010).The construction and yeast surface display of single chain T cell receptor(scTCR).J.Guangdong Pharm.Coll.).
这种人为建库的方式突破了天然T细胞库筛选的局限性,在保持 TCR的抗原特异性的同时,增加了筛选的效率,但是上述文献均使用质粒形式游离表达的scTCR。This method of artificial library construction breaks through the limitations of natural T cell library screening, and increases the efficiency of screening while maintaining the antigen specificity of TCR. However, the above literatures all use scTCR expressed in the form of plasmids.
现有的对TCR的序列进行筛选的技术存在着各自的问题,例如通过构建TCR序列的细胞突变库进行TCR的筛选往往受限于细胞的转染效率,得到的细胞突变库的库容有限,并且需要培养细胞的花费较多;如Li et al.,2005(Li,Y.,Moysey,R.,Molloy,P.E.,Vuidepot,A.-L.,Mahon, T.,Baston,E.,Dunn,S.,Liddy,N.,Jacob,J.,Jakobsen,B.K.,etal.(2005). Directed evolution of human T-cell receptors with picomolaraffinities by phage display.Nat.Biotechnol.23,349–354.)所记载的,通过噬菌体展示技术将待研究的TCR突变库展示到M13噬菌体表面,利用MHC蛋白进行筛选,但是由于噬菌体的蛋白质合成与折叠机制与真核生物不同,并不是所有的TCR序列都能在噬菌体中获得很好的表达;此外,现存的使用酵母展示技术的筛选方法也需依赖于纯化的MHC蛋白(DavidM. Kranz课题组),比较费时费力;通过MHC四聚体分离与MHC四聚体结合的T细胞进一步通过测序鉴定TCR序列的筛选方法鉴定出的TCR 均是相对低亲和力的TCR,另外,该筛选方法必须进行MHC四聚体蛋白纯化,需要蛋白纯化技术的方法均存在费时费力且因价格昂贵而商业可行性差的问题。Existing technologies for screening TCR sequences have their own problems. For example, the screening of TCRs by constructing cell mutation libraries of TCR sequences is often limited by the transfection efficiency of cells, and the capacity of the obtained cell mutation libraries is limited, and The cost of culturing cells is more; such as Li et al., 2005 (Li, Y., Moysey, R., Molloy, P.E., Vuidepot, A.-L., Mahon, T., Baston, E., Dunn, S.,Liddy,N.,Jacob,J.,Jakobsen,B.K.,etal.(2005).Directed evolution of human T-cell receptors with picomolaraffinities by phage display.Nat.Biotechnol.23,349–354.), The TCR mutation library to be studied is displayed on the surface of M13 phage by phage display technology, and MHC protein is used for screening, but because the protein synthesis and folding mechanism of phage is different from that of eukaryotes, not all TCR sequences can be obtained in phage Very good expression; in addition, the existing screening method using yeast display technology also needs to rely on purified MHC protein (DavidM. Kranz research group), which is time-consuming and laborious; the T The TCRs identified by the screening method of identifying the TCR sequence by sequencing the cells are all relatively low-affinity TCRs. In addition, the screening method must be purified by MHC tetramer protein, and the methods that require protein purification technology are time-consuming, laborious and expensive. and poor commercial viability.
蓝勋实验室在2020年的专利ZL 202011473454.2中记载了利用改造的酵母交配系统研究并筛选能够与特定TCR进行结合的抗原,能够实现不通过蛋白纯化的方式研究TCR与抗原的相互作用,筛选出能够与特定TCR结合的抗原。该方法通过在酵母表面展示一种TCR,在另一种酵母中展示抗原突变库,从而筛选与特定TCR结合的目标抗原。但是该专利申请中,只能够筛选与特定TCR结合的目标抗原,并没有公开该系统是否能够用于筛选与特定抗原结合的TCR,也未公开或启示如何确定TCR与pMHC的相互作用强度。In the patent ZL 202011473454.2 of Lan Xun Laboratory in 2020, it is recorded that the modified yeast mating system is used to study and screen antigens that can bind to specific TCRs, and it is possible to study the interaction between TCRs and antigens without protein purification, and to screen out Antigens capable of binding to specific TCRs. In this method, one TCR is displayed on the surface of yeast, and an antigen mutation library is displayed on another yeast, so as to screen the target antigen that binds to a specific TCR. However, in this patent application, only target antigens that bind to specific TCRs can be screened, and it is not disclosed whether the system can be used to screen TCRs that bind to specific antigens, nor does it disclose or suggest how to determine the interaction strength between TCR and pMHC.
在构建pMHC突变库的过程中,利用改造过的pMHC文库接收载体,通过Golden Gate克隆方法进行通量构建。依然存在构建过程繁琐的技术问题。In the process of constructing the pMHC mutant library, the modified pMHC library receiving vector was used to construct the flux through the Golden Gate cloning method. There are still technical issues with the cumbersome build process.
因此,如何低成本地、高特异性地筛选与特定抗原结合的TCR以及同时确定筛选出的TCR序列与特定抗原相互作用的强度一直是本领域尚未解决的问题。Therefore, how to screen the TCR that binds to a specific antigen with low cost and high specificity and at the same time determine the strength of the interaction between the screened TCR sequence and the specific antigen has always been an unresolved problem in the art.
发明内容Contents of the invention
鉴于上述现有技术中存在的问题,本发明提供了一种方法,可以实现对TCR CDR3区域随机突变并筛选高亲和力的TCR序列。本发明的方法,通过利用酵母展示和酵母交配系统,将TCR和pMHC 蛋白分别展示到不同交配型酵母表面,之后将整合了TCR和pMHC 的不同交配型酵母进行酵母交配实验,进而通过酵母交配系统中 TCR与pMHC互相作用形成的二倍体信号来筛选高亲和力的TCR序列。同时通过计算所述确定出的每种TCR序列的差异倍数(fold change)值,确定筛选出的TCR与特定抗原的相互作用强度。In view of the above-mentioned problems in the prior art, the present invention provides a method that can realize random mutation of TCR CDR3 region and screen high-affinity TCR sequences. In the method of the present invention, by using yeast display and yeast mating system, TCR and pMHC proteins are respectively displayed on the surface of different mating type yeasts, and then yeast mating experiments are performed on different mating type yeasts integrating TCR and pMHC, and then through the yeast mating system The diploid signal formed by the interaction between TCR and pMHC is used to screen high-affinity TCR sequences. At the same time, the interaction strength between the screened TCR and the specific antigen is determined by calculating the fold change value of each of the determined TCR sequences.
本发明涉及的方法,利用酵母展示与酵母交配系统,可以特别地筛选出针对特定抗原(如肿瘤抗原)的高亲和力的一个或多个 TCR,并可以同时确定出一个或多个TCR与该特定抗原的相互作用强度。通过本发明的方法筛选出的TCR可应用于TCR-T等细胞治疗中。The method involved in the present invention uses the yeast display and yeast mating system to specifically screen out one or more TCRs with high affinity for a specific antigen (such as a tumor antigen), and simultaneously determine one or more TCRs that are compatible with the specific antigen. Antigen interaction strength. The TCR screened by the method of the present invention can be applied to cell therapy such as TCR-T.
在一个方面,本发明提供了一种筛选并确定与特定抗原相互作用的TCR及其与特定抗原相互作用强度的方法,其包括:In one aspect, the present invention provides a method for screening and determining the TCR interacting with a specific antigen and the strength of its interaction with the specific antigen, comprising:
(a)将所述特定抗原-MHC复合物(pMHC)和TCR文库分别展示到不同交配型酵母表面;(a) displaying the specific antigen-MHC complex (pMHC) and the TCR library on the surface of yeast of different mating types;
(b)共培养所述不同交配型酵母;(b) cocultivating the yeasts of different mating types;
(c)筛选出酵母细胞二倍体,并确定出所述酵母细胞二倍体中的 TCR序列;(c) screening out yeast cell diploids, and determining the TCR sequence in the yeast cell diploids;
(d)计算所述确定出的每种TCR序列的差异倍数(fold change) 值;(d) calculating the fold change (fold change) value of each TCR sequence determined;
由此确定出与特定抗原相互作用的TCR及其与特定抗原相互作用强度。From this, the TCRs interacting with a specific antigen and the strength of their interaction with a specific antigen are determined.
优选地,在一些实施方式中,展示TCR的酵母细胞以整合形式表达TCR。Preferably, in some embodiments, the TCR-displaying yeast cell expresses the TCR in an integrated form.
优选地,在一些实施方式中,展示pMHC的酵母细胞以整合形式表达pMHC。Preferably, in some embodiments, the yeast cell displaying pMHC expresses pMHC in an integrated form.
本领域技术人员能够理解,可以以本领域任何常规的技术方法获得交配缺陷型酵母细胞。在一些实施方式中,交配缺陷型酵母细胞是Sag1基因缺失的酵母细胞。Those skilled in the art can understand that mating-deficient yeast cells can be obtained by any conventional technical method in the art. In some embodiments, the mating-deficient yeast cell is a yeast cell in which the Sag1 gene has been deleted.
在一些实施方式中,酵母细胞是酿酒酵母,优选所述酿酒酵母为EBY100菌株或EBY100菌株的遗传改造菌株(如Younger,D., Berger,S.,Baker,D.&Klavins,E.High-throughput characterization of protein–protein interactions by reprogrammingyeast mating.Proc.Natl. Acad.Sci.114,12166–12171(2017)中所描述的)。In some embodiments, the yeast cell is Saccharomyces cerevisiae, preferably the Saccharomyces cerevisiae is EBY100 strain or a genetically modified strain of EBY100 strain (such as Younger, D., Berger, S., Baker, D. & Klavins, E. High-throughput Characterization of protein–protein interactions by reprogramming yeast mating. Proc. Natl. Acad. Sci. 114, 12166–12171 (2017) described).
在一些实施方式中,MHC和TCR均是人源的。In some embodiments, both MHC and TCR are human.
本领域技术人员能够理解,可以通过本领域任何常规技术手段确定出酵母细胞二倍体中的TCR序列,如通过一代测序(如sanger 测序)、二代测序、三代测序等方法。优选地,在一些实施方式中,使用二代测序的方法确定出酵母细胞二倍体中的TCR序列。Those skilled in the art can understand that the TCR sequence in yeast cell diploid can be determined by any conventional technical means in the art, such as first-generation sequencing (such as sanger sequencing), second-generation sequencing, third-generation sequencing and other methods. Preferably, in some embodiments, the TCR sequence in yeast cell diploids is determined using next-generation sequencing.
本领域技术人员同样能够理解,可以使用本领域任何常规的技术手段构建TCR文库(如使用基因合成的方法构建,使用随机突变引物等)。优选地,在一些实施方式中,可以使用随机突变引物进行PCR 扩增的方式来构建TCR文库。Those skilled in the art can also understand that any conventional technical means in the art can be used to construct the TCR library (such as using gene synthesis, using random mutation primers, etc.). Preferably, in some embodiments, the TCR library can be constructed by using random mutation primers for PCR amplification.
优选地,在一些实施方式中,TCR文库中的TCR序列之间的不同在于CDR3序列的不同。Preferably, in some embodiments, the TCR sequences in the TCR library differ in CDR3 sequences.
在一些实施方式中,使用Gibson Assembly的克隆方法构建TCR 文库。在一些实施方式中,使用Gibson Assembly的克隆方法如本文实施例中所示。In some embodiments, the TCR library is constructed using Gibson Assembly's cloning method. In some embodiments, the cloning method using Gibson Assembly is as shown in the Examples herein.
在又一个方面,本发明还提供了一种将筛选出的TCR用于 TCR-T等细胞治疗中的用途。In yet another aspect, the present invention also provides a use of the screened TCR in cell therapy such as TCR-T.
附图说明Description of drawings
图1:构建TCR文库的策略示意图Figure 1: Schematic diagram of the strategy for constructing a TCR library
图2:显示TCR文库中不同TCR与特定pMHC的差异倍数(fold change)值的图;Figure 2: A graph showing the fold change values of different TCRs and specific pMHCs in the TCR library;
图3:显示验证实验中的流式检测结果的图,体现了TCR与 pMHC之间的相互作用强度(以平均荧光强度(MFI)表示)。Figure 3: Graph showing the results of flow cytometry in a validation experiment, showing the strength of the interaction between TCR and pMHC (expressed as mean fluorescence intensity (MFI)).
图4:使用斯皮尔曼相关系数计算的以平均荧光强度(MFI)表示的相互作用强度和以差异倍数(fold change)值表示的相互作用强度之间的正相关性。Figure 4: Positive correlation between interaction strength expressed as mean fluorescence intensity (MFI) and as fold change value calculated using Spearman's correlation coefficient.
具体实施方式Detailed ways
以下对本文涉及到的术语进行解释,但是本发明并不被下述解释所限定。The terms used herein are explained below, but the present invention is not limited by the following explanations.
1.定义1. Definition
除非另有特别指出,否则本发明的实施将采用在本领域技术内的化学、生物化学、有机化学、分子生物学、微生物学、重组DNA 技术、遗传学、免疫学、细胞生物学、干细胞方案、细胞培养和转基因生物学的常规方法,其中许多在下文描述用于举例说明的目的。这样的技术在文献中充分说明。参见例如Sambrook,et al,Molecular Cloning:A LaboratoryManual(3rd Edition,2001);Sambrook,et al., Molecular Cloning:A LaboratoryManual(2nd Edition,1989);Maniatis et al,Molecular Cloning:A Laboratory Manual(1982);Ausubel et al., Current Protocols in Molecular Biology(John Wiley andSons,updated July 2008);Short Protocols in Molecular Biology:A Compendium ofMethods from Current Protocols in Molecular Biology,Greene Pub. Associatesand Wiley-Interscience;Glover,DNA Cloning:A Practical Approach,vol.I&II(IRLPress,Oxford,1985);Anand,Techniques for the Analysis of Complex Genomes,(Academic Press,New York,1992); Guthrie and Fink,Guide to Yeast Genetics andMolecular Biology (Academic Press,New York,1991);Oligonucleotide Synthesis(N.Gait, Ed.,1984);Nucleic Acid Hybridization(B.Hames&S.Higgins,Eds., 1985);Transcription and Translation(B.Hames&S.Higgins,Eds., 1984);Animal CellCulture(R.Freshney,Ed.,1986);Perbal,A Practical Guide to Molecular Cloning(1984);Fire et al.,RNA Interference Technology:From Basic Science to DrugDevelopment(Cambridge University Press,Cambridge,2005);Schepers,RNAInterference in Practice(Wiley-VCH,2005);Engelke,RNA Interference(RNAi):TheNuts&Bolts of siRNA Technology(DNA Press,2003);Gott,RNA Interference,Editing,and Modification:Methods and Protocols (Methods in Molecular Biology;HumanPress,Totowa,NJ,2004); Sohail,Gene Silencing by RNA Interference:Technologyand Application(CRC,2004);Clarke and Sanseau,microRNA:Biology, Function&Expression(Nuts&Bolts series;DNA Press,2006); Immobilized Cells And Enzymes(IRL Press,1986);the treatise, Methods In Enzymology(Academic Press,Inc.,N.Y.);Gene Transfer Vectors For Mammalian Cells(J.H.Miller and M.P.Caloseds.,1987, Cold Spring Harbor Laboratory);Harlow and Lane,Antibodies,(ColdSpring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1998);ImmunochemicalMethods In Cell And Molecular Biology(Mayer and Walker,eds.,Academic Press,London,1987);Handbook Of Experimental Immunology,Volumes I-IV(D.M.Weir andC.Blackwell, eds.,1986);Riott,Essential Immunology,6th Edition,(BlackwellScientific Publications,Oxford,1988);Embryonic Stem Cells:Methods andProtocols(Methods in Molecular Biology)(Kurstad Turksen,Ed., 2002);EmbryonicStem Cell Protocols:Volume I:Isolation and Characterization(Methods inMolecular Biology)(Kurstad Turksen,Ed., 2006);Embryonic Stem Cell Protocols:Volume II:Differentiation Models(Methods in Molecular Biology)(KurstadTurksen,Ed.,2006); Human Embryonic Stem Cell Protocols(Methods in MolecularBiology) (Kursad Turksen Ed.,2006);Mesenchymal Stem Cells:Methods andProtocols(Methods in Molecular Biology)(Darwin J.Prockop,Donald G.Phinney,andBruce A.Bunnell Eds.,2008);Hematopoietic Stem Cell Protocols(Methods inMolecular Medicine)(Christopher A.Klug,and Craig T.Jordan Eds.,2001);Hematopoietic Stem Cell Protocols (Methods in Molecular Biology)(KevinD.Bunting Ed.,2008)Neural Stem Cells:Methods and Protocols(Methods inMolecular Biology) (Leslie P.Weiner Ed.,2008);Hogan et ah,Methods ofManipulating the Mouse Embyro(2nd Edition,1994);Nagy et al,Methods ofManipulating the Mouse Embryo(3rd Edition,2002),和The Zebrafish book.A guidefor the laboratory use of zebrafish(Danio rerio),4th Ed., (Univ.of OregonPress,Eugene,OR,2000)。The practice of the present invention will employ, unless specifically indicated otherwise, protocols within the skill of the art in chemistry, biochemistry, organic chemistry, molecular biology, microbiology, recombinant DNA techniques, genetics, immunology, cell biology, stem cell , cell culture, and conventional methods of transgenic biology, many of which are described below for illustrative purposes. Such techniques are explained fully in the literature. See, eg, Sambrook, et al, Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al, Molecular Cloning: A Laboratory Manual (1982) ; Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, updated July 2008); Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Glover, DNA Cloning A Practical Approach, vol. I&II (IRLPress, Oxford, 1985); Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, New York, 1992); Guthrie and Fink, Guide to Yeast Genetics and Molecular Biology (Academic Press, New York York,1991); Oligonucleotide Synthesis(N.Gait, Ed.,1984);Nucleic Acid Hybridization(B.Hames&S.Higgins,Eds., 1985);Transcription and Translation(B.Hames&S.Higgins,Eds., 1984); Animal Cell Culture (R. Freshney, Ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984); Fire et al., RNA Interference Technology: From Basic Science to Drug Development (Cambridge University Press, Cambridge, 2005); Schepers , RNA Interference in Practice (Wiley-VCH, 2005); Engelke, RNA Interference (RNAi): The Nuts&Bolts of siRNA Technology (DNA Press, 2003); Gott, RNA Interference, Editing, and Modification: Methods and Protocols (Methods in Molecular Biology; HumanPress, Totowa, NJ, 2004); Sohail, Gene Silencing by RNA Interference: Technology and Application (CRC, 2004); Clarke and Sanseau, microRNA: Biology, Function & Expression (Nuts & Bolts series; DNA Press, 2006); Immobilized Cells And Enzymes (IRL Press, 1986); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J.H.Miller and M.P.Caloseds., 1987, Cold Spring Harbor Laboratory); Harlow and Lane, Antibodies, ( Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1998); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D.M. Weir and C. Blackwell, eds., 1986); Riott, Essential Immunology, 6th Edition, (Blackwell Scientific Publications, Oxford, 1988); Embryonic Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2002); Embryonic Stem Cells : Volume I: Isolation and Characterization (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Embryonic Stem Cell Protocols: Volume II: Differentiation Models (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Human Embryonic Stem Cell Protocols (Methods in Molecular Biology) (Kursad Turksen Ed., 2006); Mesenchymal Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Darwin J. Prockop, Donald G. Phinney, and Bruce A. Bunnell Eds., 2008); Hematopoietic Stem Cell Protocols (Methods in Molecular Medicine) (Christopher A.Klug, and Craig T.Jordan Eds., 2001); Hematopoietic Stem Cell Protocols (Methods in Molecular Biology) (Kevin D. Bunting Ed., 2008) Neural Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Leslie P. Weiner Ed., 2008); Hogan et ah, Methods of Manipulating the Mouse Embyro (2nd Edition, 1994); Nagy et al, Methods of Manipulating the Mouse Embryo (3rd Edition, 2002), and The Zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th Ed., (Univ. of Oregon Press, Eugene, OR, 2000).
本文引用的所有公开文件、专利和专利申请通过引入全文并入本文。All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.
除非另有定义,否则本文使用的所有技术和科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。为了本发明的目的,下文定义了下述术语。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. For the purposes of the present invention, the following terms are defined below.
如本文使用的,术语“约”或“大约”是指与参考数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度相比较,改变多达15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%的数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度。在一个实施方式中,术语"约"或"大约”是指围绕参考数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度±15%、±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%或±1%的数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度范围。As used herein, the term "about" or "approximately" refers to a change of up to 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1% in quantity, level, value, amount, frequency, percentage, dimension, size, volume, weight or length. In one embodiment, the term "about" or "approximately" refers to ±15%, ±10%, ±9% around a reference amount, level, value, quantity, frequency, percentage, dimension, size, amount, weight or length , ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2%, or ±1% amount, level, value, amount, frequency, percentage, scale, size, amount , weight or length range.
如本文使用的,术语“基本上(substantially/essentially)”是指与参考数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度相比较,是约90%、91%、92%、93%、94%、95%、96%、 97%、98%或99%或更高的数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度。在一个实施方式中,术语“基本上相同”是指与参考数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度大约相同的数量、水平、值、数量、频率、百分比、尺度、大小、量、重量或长度范围。As used herein, the term "substantially/essentially" means about 90%, 91%, compared to a reference amount, level, value, amount, frequency, percentage, dimension, size, amount, weight, or length , 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher in quantity, level, value, amount, frequency, percentage, dimension, size, amount, weight, or length. In one embodiment, the term "substantially the same" refers to a quantity, level, value, quantity, frequency, A percentage, measure, size, amount, weight, or length range.
如本文使用的,术语“基本上不含”当用于描述组合物例如细胞群或培养基时,指不含指定物质,例如95%不含、96%不含、97%不含、98%不含、99%不含指定物质的组合物,或如通过常规手段测量是无法检测的。类似含义可应用于术语“不存在”,当指不存在组合物的特定物质或组分时。As used herein, the term "substantially free" when used to describe a composition such as a cell population or a culture medium means free of a specified substance, for example 95% free, 96% free, 97% free, 98% free A composition that is free, 99% free of the specified substance, or is undetectable as measured by conventional means. A similar meaning applies to the term "absent" when referring to the absence of a particular substance or component of a composition.
在本说明书全文,除非上下文另有要求,否则术语“包含”,“包括”、“含有”和“具有”应理解为暗示包括所述步骤或要素或者步骤或要素组,但不排除任何其他步骤或要素或者步骤或要素组。在特定实施方式中,术语“包含”、“包括”、“含有”和“具有”同义使用。Throughout this specification, unless the context requires otherwise, the terms "comprising", "including", "containing" and "having" are to be understood as implying the inclusion of stated steps or elements or steps or groups of elements, but not the exclusion of any other steps or elements or steps or groups of elements. In certain embodiments, the terms "comprising," "including," "containing," and "having" are used synonymously.
“由……组成”意指包括但限于在短语“由……组成”后的任何。因此,短语“由……组成”是指示所列出的要素是需要的或强制性的,并且没有其他要素是可以存在的。"Consisting of" means including, but limited to, anything following the phrase "consisting of". Thus, the phrase "consisting of" indicates that the listed elements are required or mandatory, and that no other elements may be present.
“基本上由……组成”意指包括在短语“基本上由……组成”后列出的任何要素,并且限于不干扰或贡献于所列出的要素的公开内容中指定的活动或动作的其他要素。因此,短语“基本上由……组成”是指示所列出的要素是需要的或强制性的,但没有其他要素是任选的,并且取决于它们是否影响所列出的要素的活动或动作而可以存在或不存在。"Consisting essentially of" is meant to include any element listed after the phrase "consisting essentially of" and is limited to activities or actions specified in the disclosure that do not interfere with or contribute to the listed element other elements. Thus, the phrase "consisting essentially of" is intended to indicate that the listed elements are required or mandatory, but that no other elements are optional, and depending on whether they affect the activity or action of the listed elements and may or may not exist.
在本说明书全文,提到“一个实施方式”、“实施方式”、“特定实施方式”、“相关实施方式”、“某个实施方式”、“另外的实施方式”或“进一步的实施方式”或其组合意指与所述实施方式结合描述的特定特征、结构或特性被包括在本发明的至少一个实施方式中。因此,前述短语在本说明书全文的各个地方的出现不一定全部指相同实施方式。此外,特定特征、结构或特性可以以任何合适方式在一个或多个实施方式中组合。Throughout this specification, references to "one embodiment," "an embodiment," "a particular embodiment," "a related embodiment," "an embodiment," "another embodiment," or "further embodiments" A combination thereof means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the foregoing phrases in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
“贴壁”是指在适当培养基的存在下,细胞附着至容器,例如细胞附着至无菌塑料(或涂布塑料)细胞培养皿或烧瓶。某些类别的细胞在培养中无法维持或不生长,除非它们贴壁至细胞培养容器。某些类别的细胞("非贴壁细胞")在培养中维持和/或增殖而无需贴壁。"Adherent" refers to the attachment of cells to a container, eg, to a sterile plastic (or coated plastic) cell culture dish or flask, in the presence of an appropriate medium. Certain types of cells cannot be maintained or grow in culture unless they adhere to the cell culture vessel. Certain classes of cells ("non-adherent cells") are maintained and/or proliferated in culture without attachment.
“培养(culture)”或“细胞培养”是指在体外环境中的细胞的维持、生长和/或分化。“细胞培养基”、“培养基”、“培养介质”、“介质”、“补充物”和“培养基补充物”是指培养细胞培养物的营养组合物。"Culture" or "cell culture" refers to the maintenance, growth and/or differentiation of cells in an in vitro setting. "Cell culture medium", "culture medium", "culture medium", "medium", "supplement" and "medium supplement" refer to nutritional compositions for growing cell cultures.
“培养物(culture)”或“细胞培养物”是指被培养的物质如细胞,和/或其中存在有被培养的物质如细胞的培养基。"Culture" or "cell culture" refers to a cultured substance, such as a cell, and/or a medium in which a cultured substance, such as a cell, is present.
“培养(cultivate)”是指在组织或机体外,例如在无菌塑料(或经涂覆塑料)细胞培养皿或烧瓶中的细胞的维持、繁殖(生长)和/或分化。 "培养"可利用培养基作为营养素、激素和/或帮助使细胞繁殖和/或维持细胞的其他因子的来源。"Cultivate" refers to the maintenance, propagation (growth) and/or differentiation of cells outside a tissue or organism, eg, in sterile plastic (or coated plastic) cell culture dishes or flasks. "Cultivation" may utilize a culture medium as a source of nutrients, hormones, and/or other factors that help to propagate and/or maintain cells.
“成分”是指可用于细胞培养基中以维持和/或促进细胞生长和/ 或分化的任何化合物或其他材料,无论其来源是化学还是生物的。术语“组分”、“营养素”和“成分”可互换使用。用于细胞培养基的常规成分可包括但不限于氨基酸、盐、金属、糖、脂质、核酸、激素、维生素、脂肪酸、蛋白质等等。促进和/或维持离体或体外细胞培养的其他成分可通过本领域普通技术人员根据期望效果的需要而加以选择。"Ingredient" means any compound or other material, whether chemical or biological in origin, that can be used in a cell culture medium to maintain and/or promote cell growth and/or differentiation. The terms "component", "nutrient" and "ingredient" are used interchangeably. Conventional ingredients for cell culture media may include, but are not limited to, amino acids, salts, metals, sugars, lipids, nucleic acids, hormones, vitamins, fatty acids, proteins, and the like. Other components that promote and/or maintain ex vivo or in vitro cell culture can be selected by those of ordinary skill in the art as needed for the desired effect.
“分离(isolate)”是指使组合物或材料与其天然环境分开且收集,例如个体细胞或细胞培养物与组织或机体的分开。在一个方面,细胞群或组合物基本上不含其在自然界中可与之结合的细胞和材料。就靶细胞群而言,“分离的”或“纯化的”或“基本上纯的”是指就构成总细胞群的靶细胞而言,至少约50%、至少约75%、至少约 85%、至少约90%,并且在特定实施方式中,至少约95%纯的细胞群。细胞群或组合物的纯度可通过本领域众所周知的适当方法进行评价。例如,基本上纯的全能细胞群是指就构成总细胞群的全能细胞而言,至少约50%、至少约75%、至少约85%、至少约90%,并且在特定实施方式中,至少约95%,并且在某些实施方式中,约98%纯的细胞群。"Isolate" means to separate and collect a composition or material from its natural environment, eg, separation of individual cells or cell cultures from a tissue or body. In one aspect, a cell population or composition is substantially free of cells and materials with which it is associated in nature. "Isolated" or "purified" or "substantially pure" with respect to a target cell population means at least about 50%, at least about 75%, at least about 85% of the target cells comprising the total cell population , at least about 90%, and in particular embodiments, at least about 95% pure cell population. The purity of a cell population or composition can be assessed by appropriate methods well known in the art. For example, a substantially pure population of totipotent cells refers to at least about 50%, at least about 75%, at least about 85%, at least about 90%, and in particular embodiments, at least about A population of cells that is about 95%, and in certain embodiments, about 98% pure.
“传代(passage)”是指当细胞已增殖至所需程度时,将细胞细分且铺板到多个细胞培养表面或容器内的动作。在一些实施方式中,“传代”是指将细胞细分、稀释且铺板。当细胞从原代培养表面或容器传代到后续组的表面或容器时,后续培养在本文中可被称为“继代培养”或“第一次传代”等。每个细分和铺板到新培养容器内的动作被视为一次传代。"Passage" refers to the act of subdividing and plating cells onto multiple cell culture surfaces or vessels when the cells have proliferated to the desired extent. In some embodiments, "passaging" refers to subdividing, diluting, and plating cells. When cells are passaged from a primary culture surface or vessel to a subsequent set of surfaces or vessels, the subsequent culture may be referred to herein as "subculture" or "first passage" or the like. Each subdivision and plating into a new culture vessel is considered a passage.
“铺板(plating)”是指将一个或多个细胞置于培养容器内,使得细胞贴壁至细胞培养容器且在细胞培养容器上铺展。"Plating" refers to placing one or more cells in a culture vessel such that the cells adhere to and spread on the cell culture vessel.
“增殖”是指一个细胞分裂成两个基本上等同的细胞或者细胞群数量增加(例如,以进行复制)的性质。"Proliferation" refers to the property of a cell dividing into two substantially equal cells or a population of cells increasing in number (eg, to replicate).
“繁殖”或“扩增”是指使组织或机体外的细胞例如在无菌容器例如塑料(或经涂覆塑料)细胞培养皿或烧瓶中生长(例如经由细胞增殖来复制)。"Propagation" or "expansion" refers to growing (eg, replicating via cell proliferation) cells of a tissue or outside an organism, eg, in sterile containers, eg, plastic (or coated plastic) cell culture dishes or flasks.
本文所用术语“载体”或“表达载体”指含核酸序列的载体,所述核酸序列编码能转录的至少部分基因产物。在一些情况中,RNA 分子然后翻译成蛋白质、多肽或肽。在其他情况中,这些序列未经翻译,例如,在反义分子或核酶的产生中。表达载体可含有多种控制序列,其是指特定宿主生物体中可操作连接的编码序列的转录和可能的翻译所需的核酸序列。除了控制转录和翻译的控制序列以外,载体和表达载体可含有还具有其他功能并在下文中描述的核酸序列。The term "vector" or "expression vector" as used herein refers to a vector comprising a nucleic acid sequence encoding at least a portion of a gene product capable of being transcribed. In some cases, the RNA molecule is then translated into a protein, polypeptide or peptide. In other cases, these sequences are not translated, eg, in the production of antisense molecules or ribozymes. Expression vectors may contain various control sequences, which refer to nucleic acid sequences required for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. Vectors and expression vectors may contain, in addition to control sequences that control transcription and translation, nucleic acid sequences that have other functions and are described below.
本文所用术语“基因”定义为功能性蛋白质、多肽或肽的编码单元。应理解,该功能性术语包括基因组序列、cDNA序列、和小工程改造基因区段,其表达或适于表达蛋白质、多肽、结构域、肽、融合蛋白和突变体。The term "gene" as used herein is defined as a coding unit for a functional protein, polypeptide or peptide. It is understood that the functional term includes genomic sequences, cDNA sequences, and small engineered gene segments that express or are adapted to express proteins, polypeptides, domains, peptides, fusion proteins, and mutants.
本文所用术语“多核苷酸”或“核酸”定义为核苷酸链。此外,核酸是核苷酸的聚合物。因此,本文所用核酸和多核苷酸可互换使用。核酸是多核苷酸,其可水解为单体“核苷酸”。单体核苷酸和水解为核苷。The term "polynucleotide" or "nucleic acid" as used herein is defined as a chain of nucleotides. Furthermore, nucleic acids are polymers of nucleotides. Accordingly, as used herein, nucleic acid and polynucleotide are used interchangeably. Nucleic acids are polynucleotides, which can be hydrolyzed into monomeric "nucleotides." Monomeric nucleotides and hydrolysis to nucleosides.
本文所用术语“多肽”定义为氨基酸残基链,其通常具有限定序列。本文所用术语多肽可与术语蛋白质互换使用。本发明的多肽和肽可通过各种氨基酸缺失、插入和/或取代而被修饰。在特定实施方式中,经修饰的多肽和/或肽能够调节对象中的免疫响应。在一些实施方式中,使用了野生型的蛋白质或肽。在一些实施方式中,使用了经修饰的蛋白质或多肽以生成pMHC。The term "polypeptide" as used herein is defined as a chain of amino acid residues, usually having a defined sequence. As used herein the term polypeptide is used interchangeably with the term protein. Polypeptides and peptides of the invention can be modified by various amino acid deletions, insertions and/or substitutions. In specific embodiments, the modified polypeptide and/or peptide is capable of modulating an immune response in a subject. In some embodiments, wild-type proteins or peptides are used. In some embodiments, modified proteins or polypeptides are used to generate pMHC.
本文使用的术语“纯化的”指基本不与其他蛋白质或多肽结合的多肽,例如作为重组宿主细胞培养物的纯化产物或来自非重组来源的纯化产物。As used herein, the term "purified" refers to a polypeptide that is substantially free from association with other proteins or polypeptides, eg, as a purified product of recombinant host cell culture or from a non-recombinant source.
在抗体或TCR结合的语境中,术语“特异性结合”指抗体或TCR 与特定多肽(如特定抗原)(或者更准确地,与特定多肽的特定表位)的高亲合力和/或高亲和力结合。抗体或TCR与这些表位的结合通常强于同一抗体或TCR与任何其他表位或不包含该表位的任何其他多肽的结合。In the context of antibody or TCR binding, the term "specifically binds" refers to the high affinity and/or high affinity and/or high Affinity binding. Binding of an antibody or TCR to these epitopes is generally stronger than binding of the same antibody or TCR to any other epitope or any other polypeptide not comprising that epitope.
可用于本发明的抗原或抗原来源的肽或多肽可以是任何研究者感兴趣的抗原或抗原来源的肽或多肽。The antigen or antigen-derived peptide or polypeptide useful in the present invention may be any antigen or antigen-derived peptide or polypeptide of interest to the researcher.
本文所用术语“启动子”定义为细胞合成器或导入的合成器所识别的DNA序列,需要其起始基因的特异转录。The term "promoter" as used herein is defined as a DNA sequence recognized by a cellular synthesizer, or an introduced synthesizer, which is required to initiate the specific transcription of a gene.
本文所用术语“转染”、“转导”或“转化”可互换使用,指外源DNA导入宿主细胞的过程。转染(或转导)可通过许多方法中任一来实现,包括电穿孔、微注射、基因枪递送、逆转录病毒感染、脂质体转染、超染(superfection)等。转染(或转导或转化)分为稳定转染(或转导或转化)和瞬时转染(或转导或转化)两种方式。稳定转染(或转导或转化)是指将外源DNA整合到宿主细胞的基因组中。瞬时转染(或转导或转化)是指导入宿主细胞的外源DNA不必整合到宿主细胞的基因组中。As used herein, the terms "transfection", "transduction" or "transformation" are used interchangeably and refer to the process by which exogenous DNA is introduced into a host cell. Transfection (or transduction) can be achieved by any of a number of methods, including electroporation, microinjection, gene gun delivery, retroviral infection, lipofection, superfection, and the like. Transfection (or transduction or transformation) is divided into two ways: stable transfection (or transduction or transformation) and transient transfection (or transduction or transformation). Stable transfection (or transduction or transformation) refers to the integration of foreign DNA into the genome of the host cell. Transient transfection (or transduction or transformation) means that the foreign DNA introduced into the host cell does not necessarily integrate into the genome of the host cell.
本文所用术语“整合形式”是指外源DNA导入宿主细胞后整合到宿主细胞的基因组中,该外源DNA能够在宿主细胞增殖时进行复制,从而在宿主细胞增殖或传代的过程中持续存在于宿主细胞中,从而该外源DNA能够持续在宿主细胞中表达相应的mRNA或蛋白。The term "integrated form" as used herein refers to the integration of exogenous DNA into the genome of the host cell after it is introduced into the host cell. In the host cell, the exogenous DNA can continuously express the corresponding mRNA or protein in the host cell.
本文所用术语“交配型”或“接合型”是指真菌中能相互接合产生有性孢子的类群为两个交配型。酵母中存在两个交配型,分别称为alpha型和a型。本领域技术人员通常理解,不同交配型的酵母不能接合。The term "mating type" or "conjugative type" as used herein refers to two mating types in fungi that can mate with each other to produce sexual spores. There are two mating types in yeast called alpha and a. It is generally understood by those skilled in the art that yeast of different mating types cannot conjugate.
本文所用术语“交配缺陷型”是指由于酵母细胞的一些改变,使得不同交配型的酵母在常规共培养时无法进行交配。本领域技术人员能够利用本领域的常规方法(如基因突变、基因编辑技术,相应化合物处理等)制备或获得交配缺陷型酵母。在一些实施方式中,可以使用本领域常规技术使得酵母细胞中的Sag1基因缺失,由此获得交配缺陷型酵母。The term "mating deficient" as used herein means that due to some changes in yeast cells, yeasts of different mating types cannot mate in conventional co-cultivation. Those skilled in the art can prepare or obtain mating-deficient yeast by using conventional methods in the art (such as gene mutation, gene editing technology, treatment with corresponding compounds, etc.). In some embodiments, conventional techniques in the art can be used to delete the Sag1 gene in yeast cells, thereby obtaining mating-deficient yeast.
本文所用术语“过表达”是指相应目的基因在宿主细胞中的表达量上升。可以使用本领域任何常规技术手段过表达目的基因,包括但不限于将外源目的基因导入宿主细胞、使用化合物(抑制剂或激动剂)或基因编辑技术(如CRISPRi)在宿主细胞中增加目的基因的表达,由此得到过表达目的基因的宿主细胞。The term "overexpression" used herein refers to an increase in the expression level of the corresponding target gene in the host cell. The gene of interest can be overexpressed using any conventional technical means in the art, including but not limited to introducing an exogenous gene of interest into the host cell, using a compound (inhibitor or agonist) or gene editing technology (such as CRISPRi) to increase the gene of interest in the host cell The expression of the target gene is thus obtained by the host cell overexpressing the target gene.
本文所用术语“质粒形式”是指外源DNA导入宿主细胞后没有整合到宿主细胞的基因组中,而是依赖于质粒上的自我复制元件进行独立复制与扩增。但是在宿主细胞增殖或传代的过程中,需要保持对质粒的筛选压力。一旦缺失筛选压力,该外源DNA可能会丢失,从而在宿主细胞增殖或传代的过程中,该外源DNA的量会持续降低,从而该外源DNA在宿主细胞中表达相应的mRNA或蛋白的量也会持续降低。The term "plasmid form" as used herein means that the exogenous DNA is not integrated into the genome of the host cell after it is introduced into the host cell, but relies on the self-replicating elements on the plasmid for independent replication and amplification. However, during the process of host cell proliferation or passage, it is necessary to maintain the selection pressure on the plasmid. Once the selection pressure is lost, the exogenous DNA may be lost, so that the amount of the exogenous DNA will continue to decrease during the process of host cell proliferation or passage, so that the exogenous DNA can express the corresponding mRNA or protein in the host cell volume will continue to decrease.
本文所用术语“相互作用强度”是指分子与其配体结合的强度,其可用本文所用术语“平衡解离常数(KD)”来表征,其单位是体积摩尔浓度(M或mol/L)。平衡解离常数可通过本领域已知的技术进行测量,如表面等离子共振(SPR,Surface Plasmon Resonance)技术。在一些实施方式中,可以使用如Moritz,A.et al.High-throughput peptide-MHC complexgeneration and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01molecules.Sci.Immunol.4,eaav0860 (2019)中所记载的方式进行测量。The term "interaction strength" as used herein refers to the strength of binding of a molecule to its ligand, which can be characterized by the term "equilibrium dissociation constant (KD)" as used herein, and its unit is molar concentration (M or mol/L). The equilibrium dissociation constant can be measured by techniques known in the art, such as Surface Plasmon Resonance (SPR, Surface Plasmon Resonance) technique. In some embodiments, for example, Moritz, A. et al. High-throughput peptide-MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules. Sci. Immunol. 4, eaav0860 (2019) can be used Measured in the manner described in .
本文所用术语“阴性对照组”是指本领域技术人员所已知的常规实验方法中使用的任何阴性对照,其是实验中未接受任何类型处理或本领域技术人员预期不会发生相应效果的组,因此该组在实验期间不应显示任何变化,其用于在实验过程中控制未知变量。具体而言,在一些实施方式中,例如当研究一种抗原(称为“抗原A”) 与一种TCR(称为“TCR-A”)的相互作用时,阴性对照组可以是表达抗原A的酵母与表达本领域已知的不与抗原A结合的TCR的酵母细胞的共培养,阴性对照组也可以是表达TCR-A的酵母细胞与表达本领域已知不与TCR-A结合的抗原的酵母细胞的共培养。The term "negative control group" as used herein refers to any negative control used in conventional experimental methods known to those skilled in the art, which is a group that has not received any type of treatment in the experiment or that the corresponding effect is not expected to occur by those skilled in the art , so this group should not show any change during the experiment, which is used to control for unknown variables during the experiment. Specifically, in some embodiments, for example when studying the interaction of an antigen (termed "antigen A") with a type of TCR (termed "TCR-A"), the negative control group may be a protein expressing antigen A The co-cultivation of yeast and yeast cells expressing TCR known in the art that does not bind to antigen A, and the negative control group can also be yeast cells expressing TCR-A and expressing antigens known in the art that do not bind to TCR-A co-culture of yeast cells.
“经修饰的蛋白质”或“经修饰的多肽”或“经修饰的肽”是指相对于野生型蛋白质或多肽化学结构(特别是其氨基酸序列)被改变了的蛋白质或多肽。在一些实施方式中,经修饰的蛋白质或多肽或肽具有至少一种经改变的活性或功能(要意识到蛋白质或多肽或肽可具有多种活性或功能)。特别预期的是,经修饰的蛋白质或多肽或肽的一种活性或功能可被改变,但另一方面可保留一种野生型活性或功能,例如免疫原性或在形成pMHC情况下的与免疫系统的其他细胞相互作用的能力。"Modified protein" or "modified polypeptide" or "modified peptide" refers to a protein or polypeptide whose chemical structure (particularly its amino acid sequence) has been altered relative to a wild-type protein or polypeptide. In some embodiments, a modified protein or polypeptide or peptide has at least one altered activity or function (recognizing that a protein or polypeptide or peptide may have multiple activities or functions). It is particularly contemplated that an activity or function of the modified protein or polypeptide or peptide may be altered, but on the other hand retain a wild-type activity or function, such as immunogenicity or, in the case of pMHC formation, immunogenicity The ability of the system to interact with other cells.
本文所述的“二代测序”是指利用本领域技术人员常规理解的二代测序方法在常规的二代测序平台中确定“DNA序列或DNA片段序列”。在一些实施方式中,所述二代测序包含PCR扩增待测序片段并引入测序接头序列和条形码序列,通过二代测序平台测得序列的步骤。The "next-generation sequencing" described herein refers to the determination of "DNA sequence or DNA fragment sequence" on a conventional next-generation sequencing platform using the next-generation sequencing method commonly understood by those skilled in the art. In some embodiments, the next-generation sequencing includes the step of PCR amplifying the fragment to be sequenced and introducing a sequencing linker sequence and a barcode sequence, and determining the sequence by a next-generation sequencing platform.
本文所用术语“随机突变引物”是指在所需引入突变位置以NNK (N代表任何一种核苷酸,K代表是G或T)作为突变的碱基形式,非突变位置与模板DNA的两条链有互补位置,且引物3’端与模板DNA 互补大于20bp。The term "random mutation primer" as used herein refers to the base form of mutation with NNK (N represents any nucleotide, K represents G or T) at the desired introduction mutation position, the non-mutation position and the two sides of the template DNA The strands have complementary positions, and the 3' end of the primer is more than 20bp complementary to the template DNA.
本文所用术语“确定序列”是指以本领域常规技术获得相应样品的核酸或脱氧核糖核酸的核苷酸序列的过程。例如,可以通过一代测序方法(如sanger测序法)或二代测序方法来进行测序来检测相应序列。在一些实施方式中,可以使用二代测序方法来进行测序来检测相应序列。The term "determining the sequence" as used herein refers to the process of obtaining the nucleotide sequence of the nucleic acid or deoxyribonucleic acid of the corresponding sample by conventional techniques in the art. For example, the corresponding sequence can be detected by performing sequencing by a first-generation sequencing method (eg, sanger sequencing method) or a next-generation sequencing method. In some embodiments, next generation sequencing methods can be used to perform sequencing to detect the corresponding sequences.
本文所用术语“reads数”是指二代测序方法的一次测序中,对于待测序的DNA片段序列的读取的片段的数量。The term "number of reads" used herein refers to the number of read fragments for the sequence of the DNA fragment to be sequenced in one sequencing of the next generation sequencing method.
本文使用的术语“病原体”指疾病的特异性致病因子,可包括例如任何细菌、病毒或寄生虫。The term "pathogen" as used herein refers to a specific causative agent of a disease and may include, for example, any bacteria, virus or parasite.
本文使用的术语“疾病”指身体机能、系统或器官的中断、停止或紊乱。优选的疾病包括传染病。The term "disease" as used herein refers to interruption, cessation or disorder of a bodily function, system or organ. Preferred diseases include infectious diseases.
2.核酸的制备2. Preparation of Nucleic Acids
本文所用核酸包括但不限于本领域任何可用方法(包括但不限于重组方法,即从重组文库或细胞基因组使用常规克隆技术和PCR等克隆核酸)所获得的所有核酸序列。此外,核酸包括可包括突变,包括但不限于本领域已知方法对核苷酸或核苷的突变。核酸可包括一种或多种多核苷酸。在一些实施方式中,所述核酸包含在病毒载体内。在一些实施方式中,所述病毒载体是逆转录病毒或慢病毒载体。Nucleic acids used herein include, but are not limited to, all nucleic acid sequences obtained by any available method in the art (including but not limited to recombinant methods, ie cloning nucleic acids from recombinant libraries or cell genomes using conventional cloning techniques and PCR, etc.). In addition, nucleic acid encompasses may include mutations, including, but not limited to, mutations to nucleotides or nucleosides by methods known in the art. A nucleic acid may comprise one or more polynucleotides. In some embodiments, the nucleic acid is contained within a viral vector. In some embodiments, the viral vector is a retroviral or lentiviral vector.
在一些实施方式中,用于本发明的核酸可通过任何本领域已知技术制备,例如化学合成、酶生产或生物生产。核酸可从生物样品中回收或分离。可为重组的或其对于细胞来说可为天然或内源的(由该细胞基因组生产)。在一些实施方式中,可以通过基因扩增技术例如PCR(聚合酶链式反应),以化学合成的,或细胞内的核酸为模板,扩增感兴趣的核酸片段,并由此得到足够量的感兴趣的核酸序列或核酸序列。In some embodiments, nucleic acids for use in the invention can be prepared by any technique known in the art, such as chemical synthesis, enzymatic production, or biological production. Nucleic acids can be recovered or isolated from biological samples. It may be recombinant or it may be native or endogenous to the cell (produced from the genome of the cell). In some embodiments, the nucleic acid fragments of interest can be amplified by gene amplification techniques such as PCR (polymerase chain reaction), using chemically synthesized or intracellular nucleic acids as templates, and thus obtain sufficient amounts of Nucleic acid sequence or nucleic acid sequences of interest.
核酸合成还可根据标准方法进行。合成核酸的非限制性示例(如合成的寡核苷酸),包括用磷酸三酯、亚磷酸酯,或亚磷酰胺化学法体外化学合成的核酸和固相技术或通过脱氧核苷三磷酸H-磷酸酯中间体。已公开各种不同核苷酸合成机制。Nucleic acid synthesis can also be performed according to standard methods. Non-limiting examples of synthetic nucleic acids (such as synthetic oligonucleotides) include nucleic acids chemically synthesized in vitro using phosphotriester, phosphite, or phosphoramidite chemistry and solid-phase techniques or by deoxynucleoside triphosphate H - Phosphate intermediates. A variety of different nucleotide synthesis mechanisms have been disclosed.
核酸可用已知技术分离。在具体实施方式中,可使用分离小核酸分子和/或分离RNA分子的方法。色谱是用于从蛋白质或从其他核酸分隔或分离核酸的方法。该方法可涉及凝胶基质电泳、过滤柱、醇沉淀和/或其他色谱。若待使用或评估来自细胞的核酸,方法通常涉及用离液剂(如异硫氰酸胍)和/或洗涤剂(如N-月桂酰肌氨酸)裂解细胞,然后实施分离具体RNA群的方法。Nucleic acids can be isolated using known techniques. In particular embodiments, methods of isolating small nucleic acid molecules and/or isolating RNA molecules can be used. Chromatography is a method used to separate or separate nucleic acids from proteins or from other nucleic acids. The method may involve gel matrix electrophoresis, filter columns, alcohol precipitation and/or other chromatography. If nucleic acids from cells are to be used or evaluated, methods generally involve lysing the cells with a chaotropic agent (such as guanidine isothiocyanate) and/or a detergent (such as N-lauroyl sarcosine), followed by performing a procedure to isolate specific RNA populations. method.
3.蛋白表达3. Protein expression
在一些实施方式中,可以使用任一种启动子在酵母细胞或T细胞表面上表达感兴趣的蛋白(如pMHC或TCR)。在一些实施方式中,用于表达蛋白(如pMHC或TCR)的启动子是组成型的。本领域中存在多种已知的组成型启动子,包括但不限于TEFl和甘油醛-3-磷酸脱氢酶启动子。在一些实施方式中,在本发明中用于在酵母细胞表面表达pMHC的启动子是pGPD、pTEF1、pTEF2、pADH1、GAP等酵母中常用的组成型启动子,在一些实施方式中,使用pGPD启动子在酵母中表达pMHC。在一些实施方式中,用于表达多肽(如pMHC 或TCR)的启动子是诱导型的。在本领域技术人员期望控制何时表达感兴趣多肽时,诱导型启动子是有用的。许多诱导型启动子是本领域中已知的,包括但不限于GAL1、P0X3和LIP2启动子。本领域技术人员能够知道在感兴趣的细胞(如酵母细胞或T细胞)中发挥功能的合适的组成型和诱导型启动子。In some embodiments, any of the promoters can be used to express a protein of interest (eg, pMHC or TCR) on the surface of yeast cells or T cells. In some embodiments, the promoter used to express a protein (eg, pMHC or TCR) is constitutive. There are a variety of constitutive promoters known in the art, including but not limited to the TEF1 and glyceraldehyde-3-phosphate dehydrogenase promoters. In some embodiments, the promoters used to express pMHC on the surface of yeast cells in the present invention are constitutive promoters commonly used in yeast such as pGPD, pTEF1, pTEF2, pADH1, GAP, etc. In some embodiments, pGPD is used to promote expression of pMHC in yeast. In some embodiments, the promoter used to express a polypeptide (eg, pMHC or TCR) is inducible. Inducible promoters are useful when one of skill in the art desires to control when a polypeptide of interest is expressed. Many inducible promoters are known in the art, including but not limited to GAL1, POX3 and LIP2 promoters. Those skilled in the art are aware of suitable constitutive and inducible promoters that function in cells of interest, such as yeast cells or T cells.
在一些实施方式中,可以通过本领域已知的各种方法进行酵母细胞转化,例如醋酸锂转化法、电转法等。在一些实施方式中,使用电转法进行酵母细胞转化。在一些实施方式中,可以构建包含两端引入与酵母基因组整合时需要的同源臂的目标序列质粒,通过酶切质粒,回收该目标序列,将线性化的片段转化到酵母细胞中,以获得整合形式的基因表达的酵母细胞,使得酵母细胞能够持续稳定地表达感兴趣的蛋白或多肽。In some embodiments, yeast cell transformation can be performed by various methods known in the art, such as lithium acetate transformation, electroporation, and the like. In some embodiments, yeast cell transformation is performed using electroporation. In some embodiments, a target sequence plasmid containing both ends of the homology arm required for integration with the yeast genome can be constructed, the target sequence can be recovered by digesting the plasmid, and the linearized fragment can be transformed into yeast cells to obtain Yeast cells with integrated gene expression, so that yeast cells can continuously and stably express the protein or polypeptide of interest.
在一些实施方式中,可以通过本领域已知的各种方法转染T细胞,例如病毒介导的转染,电转法等。In some embodiments, T cells can be transfected by various methods known in the art, such as virus-mediated transfection, electroporation, and the like.
4.酵母细胞4. Yeast cells
用于本发明的酵母细胞是本领域已知的,所述酵母细胞包括酿酒酵母(Saccharomyces cerevisiae)、多形汉逊酵母(Hansenula poIymorpha)、粟酒裂殖酵母(Schizosaccharomyces pombe)、乳酸克鲁维酵母(Kluyveromyces lactis)、脆壁克鲁维酵母(Kluyveromyces fragilis)、玉蜀黍黑粉菌(Ustilago maydis)、巴斯德毕赤酵母(Pichia pastoris)、甲醇毕赤酵母(Pichiamethanolica)、季也蒙毕赤酵母(PichiaguiIlermondii)和麦牙糖假丝酵母(Candidamaltosa)。在一些实施方式中,优选地,用于本文所述方法、系统、用途或培养物的酵母是酿酒酵母(Saccharomyces cerevisiae)。更优选地,在一些实施方式中,酵母是EBY100菌株或EBY100菌株的遗传改造菌株。如本文所用“遗传改造菌株”是指在原有菌株的基础上,使用本领域常规的遗传操作手段改变原有菌株的交配型等,或对原有菌株的一个、两个、三个、四个或更多基因进行删除、替换或突变,或在原有菌株中外源表达一个、两个、三个、四个或更多基因,或者对原有菌株的染色体进行融合、重排等。优选地,在一些实施方式中,酵母是EBY100a 菌株来源的MATalpha酵母菌株,如Younger,D.,Berger,S.,Baker,D. &Klavins,E.High-throughput characterization ofprotein–protein interactions by reprogramming yeastmating.Proc.Natl.Acad.Sci.114, 12166–12171(2017)中所述。Yeast cells useful in the present invention are known in the art and include Saccharomyces cerevisiae, Hansenula polymorpha, Schizosaccharomyces pombe, Kluyvern lactate Yeast (Kluyveromyces lactis), Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichiamethanolica, Pichia mongolica Yeast (Pichiagui Ilermondii) and Candida maltosa. In some embodiments, preferably, the yeast used in the methods, systems, uses or cultures described herein is Saccharomyces cerevisiae. More preferably, in some embodiments, the yeast is EBY100 strain or a genetically engineered strain of EBY100 strain. As used herein, "genetically modified strain" refers to changing the mating type of the original strain, etc., on the basis of the original strain, using conventional genetic manipulation means in the field, or modifying one, two, three, or four of the original strain. One or more genes are deleted, replaced or mutated, or one, two, three, four or more genes are exogenously expressed in the original strain, or the chromosomes of the original strain are fused or rearranged. Preferably, in some embodiments, the yeast is a MATalpha yeast strain derived from the EBY100a strain, such as Younger, D., Berger, S., Baker, D. & Klavins, E. High-throughput characterization of protein–protein interactions by reprogramming yeastmating. Described in Proc. Natl. Acad. Sci. 114, 12166–12171 (2017).
5.酵母培养系统5. Yeast culture system
在一些实施方式中,可以使用包含任意本领域常用的酵母培养基培养酵母。在一些实施方式中,酵母培养基是完全培养基YPD培养基。In some embodiments, yeast can be cultured using any yeast medium commonly used in the art. In some embodiments, the yeast medium is complete medium YPD medium.
在一些实施方式中,将展示TCR文库的酵母细胞和展示pMHC 的酵母细胞共培养20小时、21小时、22小时、23小时、24小时、 25小时、26小时、27小时或更长时间或任意前述值作为端点构成的范围或其中的任意值(优选为22小时)之后,筛选酵母细胞二倍体,并检测所述酵母细胞二倍体的TCR序列。In some embodiments, the yeast cells displaying the TCR library and the yeast cells displaying the pMHC are co-cultured for 20 hours, 21 hours, 22 hours, 23 hours, 24 hours, 25 hours, 26 hours, 27 hours or longer or any After the aforementioned values are taken as the range constituted by the endpoint or any value therein (preferably 22 hours), the yeast cell diploids are screened, and the TCR sequences of the yeast cell diploids are detected.
在一些优选的实施方式中,使用处于对数生长期的展示TCR和展示pMHC酵母细胞共培养。In some preferred embodiments, yeast cells displaying TCR and yeast cells displaying pMHC in logarithmic growth phase are used for co-culture.
6.相互作用强度的确定6. Determination of Interaction Strength
本领域技术人员能够理解,可以使用任何本领域已知的方法确定pMHC和TCR的相互作用强度,如可以通过测定特定TCR和特定pMHC之间的KD值(平衡解离常数)来表征相互作用强度的强弱,也可以通过流式细胞检测的方法确定特定TCR和特定pMHC的相互作用强度。例如,可以使用纯化的特定pMHC偶联荧光基团与展示特定TCR的酵母共孵育,而后通过流式细胞检测的方法检测该荧光基团的荧光强度以表征该pMHC与TCR相互作用的强度。本领域技术人员能够理解,例如可以使用流式细胞检测法中的平均荧光强度、几何平均荧光强度或中位数荧光强度(更优选地,使用平均荧光强度)根据本领域的方法来确定或计算该荧光强度,以表征该pMHC 与TCR相互作用的强度。本领域技术人员能够理解,例如可以使用本领域常规的对照(如阴性对照)等方法确定或计算相互作用强度,例如可以将阴性对照组的平均荧光强度作为本底水平,将实验组的平均荧光强度减去阴性对照组的平均荧光强度得到的平均荧光强度数值作为平均表达量。Those skilled in the art can understand that any method known in the art can be used to determine the interaction strength between pMHC and TCR, such as the interaction strength can be characterized by measuring the KD value (equilibrium dissociation constant) between a specific TCR and a specific pMHC The strength of the specific TCR and specific pMHC can also be determined by flow cytometry. For example, a purified specific pMHC-coupled fluorophore can be used to co-incubate with yeast displaying a specific TCR, and then the fluorescence intensity of the fluorophore can be detected by flow cytometry to characterize the strength of the interaction between the pMHC and the TCR. Those skilled in the art can understand that, for example, the mean fluorescence intensity, the geometric mean fluorescence intensity or the median fluorescence intensity (more preferably, using the mean fluorescence intensity) in flow cytometry can be used to determine or calculate according to methods in the art The fluorescence intensity is used to characterize the interaction strength between the pMHC and TCR. Those skilled in the art can understand that, for example, methods such as conventional controls in the art (such as negative controls) can be used to determine or calculate the interaction strength, for example, the average fluorescence intensity of the negative control group can be used as the background level, and the average fluorescence intensity of the experimental group The average fluorescence intensity value obtained by subtracting the average fluorescence intensity of the negative control group from the intensity was taken as the average expression level.
发明人令人惊讶地发现,使用本发明的方法测定的差异倍数 (fold change)值与使用上述本领域常规方法测得的相互作用强度具有正相关性。由此,可以根据本发明的方法,通过差异倍数(fold change)值来计算或确定筛选出的TCR与特定pMHC的相互作用强度。本领域技术人员能够理解,可以通过差异倍数(fold change)的值的大小来表征相对应的TCR和pMHC的相互作用强度。The inventors have surprisingly found that the value of the fold change (fold change) determined using the method of the present invention has a positive correlation with the interaction strength measured using the above-mentioned conventional methods in the art. Thus, according to the method of the present invention, the interaction strength between the screened TCR and a specific pMHC can be calculated or determined through the fold change value. Those skilled in the art can understand that the interaction strength between the corresponding TCR and pMHC can be characterized by the value of the fold change.
在一些实施方式中,该正相关性可以用斯皮尔曼(spearman)相关系数进行分析。在统计学中,斯皮尔曼(spearman)相关系数经常用希腊字母ρ表示。它是衡量两个变量的依赖性的非参数指标。它利用单调方程评价两个统计变量的相关性。如果数据中没有重复值,并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或-1。在斯皮尔曼相关系数中,该系数的绝对值代表相关性大小。0.7及以上代表相关性很高,P值代表显著性,P值小于0.05则代表具有统计学意义上的显著性。In some embodiments, the positive correlation can be analyzed using Spearman's correlation coefficient. In statistics, Spearman's correlation coefficient is often denoted by the Greek letter ρ. It is a nonparametric measure of the dependence of two variables. It evaluates the correlation of two statistical variables using a monotonic equation. If there are no repeated values in the data, and when two variables are perfectly monotonically correlated, the Spearman correlation coefficient is +1 or -1. In the Spearman correlation coefficient, the absolute value of the coefficient represents the magnitude of the correlation. 0.7 and above represent high correlation, P value represents significance, and P value less than 0.05 represents statistical significance.
7.差异倍数(fold change)的计算与确定7. Calculation and determination of fold change
本发明使用的差异倍数(fold change)的计算与确定包括如下步骤:(1)酵母二倍体细胞中筛选出的每种TCR序列的数量(即特定TCR序列的reads数)除以测得的所有TCR序列数量(即所有TCR 序列的reads数),得到一个ratio值(即“ratio实测”);(2)将ratio 实测除以针对阴性对照组的ratio实测值(即“ratio对照实测”),得到文库中每个TCR序列的差异倍数(fold change)值。The calculation and determination of the fold change (fold change) used in the present invention include the following steps: (1) the number of each TCR sequence screened out in yeast diploid cells (ie the number of reads of a specific TCR sequence) divided by the measured The number of all TCR sequences (that is, the number of reads of all TCR sequences) to obtain a ratio value (ie, " measured ratio"); (2) divide the measured ratio by the measured value of ratio for the negative control group (ie, " measured ratio control ") , to obtain the fold change value of each TCR sequence in the library.
在一些实施方式中,在计算差异倍数(fold change)值之前,可以对ratio实测和ratio对照实测做一次校正。在一些实施方式中,测得的所有TCR序列中包含TCR区域存在多于一个终止密码子的TCR序列,所述校正的方法是,使用测得的其中一种包含TCR区域存在多于一个终止密码子的TCR序列数量(或多种包含TCR区域存在多于一个终止密码子的TCR序列数量的平均值)除以测得的所有TCR序列数量,得到一个ratio值(即“ratio内参”),在使用ratio实测除以ratio对照实测之前,分别使用ratio实测和ratio对照实测除以ratio内参,分别得到ratio实测校正和ratio对照实测校正,之后使用ratio实测校正除以ratio对照实测校正,得到差异倍数(fold change)。In some embodiments, before calculating the fold change (fold change) value, a correction can be made to the measured ratio and the compared measured ratio. In some embodiments, all TCR sequences measured include TCR sequences with more than one stop codon in the TCR region, and the correction method is to use one of the measured TCR sequences containing more than one stop codon in the TCR region. The number of TCR sequences (or the average number of TCR sequences with more than one stop codon in the TCR region) is divided by the measured number of all TCR sequences to obtain a ratio value (ie "ratio internal reference "). Before dividing the actual ratio measurement by the ratio control measurement, divide the ratio measurement and the ratio control measurement by the ratio internal reference to obtain the ratio measurement correction and the ratio control measurement correction respectively, and then divide the ratio measurement correction by the ratio control measurement correction to obtain the difference multiple ( fold change).
实施例Example
本实施例主要介绍一种筛选高亲和力TCR的方法,该方法不需要进行耗时费力的纯化蛋白操作,能够快速筛选高亲和力TCR。This example mainly introduces a method for screening high-affinity TCRs, which does not require time-consuming and laborious protein purification operations, and can rapidly screen high-affinity TCRs.
实施例1将pMHC展示到酵母细胞表面Example 1 Displaying pMHC on the surface of yeast cells
具体实验步骤为:The specific experimental steps are:
使用本领域的常规方法合成待研究的抗原-MHC复合物 (pMHC),本实施例以SL9-HLA-A*0201(SEQ ID NO:1)和 TAX-HLA-A*0201(SEQ ID NO:2)为例进行例证。其中TAX的氨基酸序列为:LLFGYPVYV;SL9的氨基酸序列为SLYNTVATL。The antigen-MHC complex (pMHC) to be studied was synthesized using conventional methods in the art. In this example, SL9-HLA-A*0201 (SEQ ID NO:1) and TAX-HLA-A*0201 (SEQ ID NO: 2) Illustrate by example. The amino acid sequence of TAX is: LLFGYPVYV; the amino acid sequence of SL9 is SLYNTVATL.
以本领域的常规方法合成SL9-HLA-A*0201(SEQ ID NO:1)和 TAX-HLA-A*0201(SEQ ID NO:2)时在两端分别引入NheI和XhoI限制性内切酶酶切位点。When synthesizing SL9-HLA-A*0201 (SEQ ID NO:1) and TAX-HLA-A*0201 (SEQ ID NO:2) by conventional methods in the art, NheI and XhoI restriction endonucleases were respectively introduced at both ends Restriction sites.
使用NheI(NEB,R3131L)和XhoI(NEB,R0146L)限制性内切酶分别将SL9-HLA-A*0201(SEQ ID NO:1)、TAX-HLA-A*0201(SEQ ID NO:2)、ysynalpha_DEST质粒载体(SEQ IDNO:3)酶切。按照表1所示条件在37℃水浴锅中酶切3小时。SL9-HLA-A*0201 (SEQ ID NO:1), TAX-HLA-A*0201 (SEQ ID NO:2) were respectively synthesized using NheI (NEB, R3131L) and XhoI (NEB, R0146L) restriction enzymes , ysynalpha_DEST plasmid vector (SEQ ID NO: 3) digestion. According to the conditions shown in Table 1, enzyme digestion was carried out in a 37°C water bath for 3 hours.
表1酶切反应的条件Table 1 Conditions of enzyme digestion reaction
用1.5%DNA琼脂糖胶(Biowest,111860)(按琼脂糖与1xTAE缓冲液(利用50XTAE(solarbio,T1060)配置,用ddH2O稀释)的质量(g) 体积(ml)比为1.5:100进行配制),在120V电压下,进行40分钟的电泳,而后在紫外灯下分别切取目的片段,使用胶回收试剂(上海博彩, K132)盒回收相应的片段。之后按照表2所示的连接条件,将酶切后的SL9-HLA-A*0201(SEQ ID NO:1)、酶切后的 TAX-HLA-A*0201(SEQ ID NO:2)分别与酶切后的ysynalpha_DEST 质粒载体(SEQ ID NO:3)连接。连接反应在室温下进行20分钟。Use 1.5% DNA agarose gel (Biowest, 111860) (according to the mass (g) volume (ml) ratio of agarose and 1xTAE buffer (use 50XTAE (solarbio, T1060) to prepare, dilute with ddH 2 O) is 1.5:100 preparation), under 120V voltage, electrophoresis was carried out for 40 minutes, and then the target fragments were cut out under ultraviolet light, and the corresponding fragments were recovered using the gel recovery reagent (Shanghai Bocai, K132) box. Then, according to the connection conditions shown in Table 2, the digested SL9-HLA-A*0201 (SEQ ID NO:1) and the digested TAX-HLA-A*0201 (SEQ ID NO:2) were respectively combined with The digested ysynalpha_DEST plasmid vector (SEQ ID NO: 3) was ligated. The ligation reaction was performed at room temperature for 20 minutes.
表2连接反应的条件Table 2 Conditions of ligation reaction
使用常规方法(如热转法或电转法)将连接产物转化到大肠杆菌 DH5α(康为世纪,CW0808H)中,最终得到用于整合形式表达的 ysynalpha-pMHC的载体(即ysynalpha-SL9-HLA-A*0201载体和ysynalpha-TAX-HLA-A*0201)。之后使用本领域常规方法对 ysynalpha-SL9-HLA-A*0201中的SL9区域进行突变,将SL9序列的第三个氨基酸对应的3个碱基突变成终止密码子,由此得到 ysynalpha-SL9 3*-HLA-A*0201载体。上述ysynalpha-pMHC载体同时还包含一个编码蓝色荧光蛋白的基因序列。The ligation product was transformed into Escherichia coli DH5α (Kangwei Century, CW0808H) using conventional methods (such as heat transfer or electroporation), and finally the vector of ysynalpha-pMHC (ie ysynalpha-SL9-HLA- A*0201 vector and ysynalpha-TAX-HLA-A*0201). Afterwards, the SL9 region in ysynalpha-SL9-HLA-A*0201 was mutated using conventional methods in the art, and the 3 bases corresponding to the third amino acid of the SL9 sequence were mutated into a stop codon, thereby obtaining ysynalpha-SL9 3*-HLA-A*0201 carrier. The above-mentioned ysynalpha-pMHC vector also contains a gene sequence encoding blue fluorescent protein.
通过使用sanger测序法验证所得载体序列正确。The resulting vector sequence was verified to be correct by using Sanger sequencing.
使用PmeI酶(NEB,R0560L)对获得的ysynalpha-pMHC载体进行酶切后,切胶回收,获得含有pMHC(即TAX-HLA-A*0201、 SL9-HLA-A*0201或SL9 3*-HLA-A*0201)的目标片段的线性化片段。该线性化片段同样包含上述编码蓝色荧光蛋白的基因序列。After digesting the obtained ysynalpha-pMHC vector with PmeI enzyme (NEB, R0560L), the gel was cut and recovered to obtain vectors containing pMHC (ie TAX-HLA-A*0201, SL9-HLA-A*0201 or SL9 3*-HLA -A*0201) linearized fragment of the target fragment. The linearized fragment also includes the above-mentioned gene sequence encoding blue fluorescent protein.
利用常规的醋酸锂转化法或者电转法将上述线性化后的 ysynalpha-pMHC载体的片段转化到EBY100酵母菌株中,得到展示 pMHC的酵母细胞,即表达SL9-HLA-A*0201的酵母细胞、表达 TAX-HLA-A*0201的酵母细胞和表达SL9 3*-HLA-A*0201的酵母细胞。该酵母细胞同时被整合表达了一个蓝色荧光蛋白,可以用于筛选。Transform the fragment of the linearized ysynalpha-pMHC vector into EBY100 yeast strain by conventional lithium acetate transformation method or electroporation method to obtain yeast cells displaying pMHC, namely yeast cells expressing SL9-HLA-A*0201, expressing Yeast cells of TAX-HLA-A*0201 and yeast cells expressing SL9 3*-HLA-A*0201. The yeast cells are also integrated to express a blue fluorescent protein, which can be used for screening.
实施例2构建TCR文库Example 2 Construction of TCR library
使用本领域的常规方法合成868TCR序列(SEQ ID NO:4),合成时在两端分别引入Nhei和XhoI限制性内切酶酶切位点。The 868TCR sequence (SEQ ID NO: 4) was synthesized using conventional methods in the field, and Nhei and XhoI restriction endonuclease sites were introduced at both ends of the synthesis.
使用NheI(NEB,R3131L)和XhoI(NEB,R0146L)限制性内切酶分别将TCR和ysyna_DEST质粒(SEQ ID NO:5)按照上表1所示条件在 37℃水浴锅(型号)酶切3小时。Use NheI (NEB, R3131L) and XhoI (NEB, R0146L) restriction endonucleases to digest TCR and ysyna_DEST plasmid (SEQ ID NO: 5) according to the conditions shown in Table 1 above in a water bath (model) at 37°C for 3 Hour.
用1.5%DNA琼脂糖胶(来源及型号:Biowest,111860)(按琼脂糖与1xTAE缓冲液(利用50XTAE(solarbio,T1060)配置,用水稀释)的质量(g)体积(ml)比为1.5:100进行配制),在120V电压下,进行40min 的电泳,而后在紫外灯下分别切取目的片段,用上海博彩胶回收试剂 (K132)盒回收相应的片段。之后按照表2所示的连接条件,室温连接 20分钟。Use 1.5% DNA agarose gel (source and model: Biowest, 111860) (according to the mass (g) volume (ml) ratio of agarose and 1xTAE buffer (use 50XTAE (solarbio, T1060) to prepare, dilute with water) is 1.5: 100 for preparation), under the voltage of 120V, electrophoresis was carried out for 40min, and then the target fragments were cut out under the ultraviolet light, and the corresponding fragments were recovered with the Shanghai Boca Gel Recovery Reagent (K132) box. Then according to the connection conditions shown in Table 2, connect at room temperature for 20 minutes.
使用常规方法(如热转法或电转法)将连接产物转化到大肠杆菌 DH5α(来源及型号:康为世纪,CW0808H)中,按照本领域常规方法培养并扩增转化后的大肠杆菌,并对其进行质粒提取,最终得到用于整合形式表达的ysyna-TCR的载体,即ysyna-868TCR载体。通过使用sanger 测序法验证所得载体序列正确。该质粒载体作为后续用于制备TCR文库的模板。Use conventional methods (such as heat transfer or electroporation) to transform the ligation product into Escherichia coli DH5α (source and model: Kangwei Century, CW0808H), cultivate and amplify the transformed Escherichia coli according to conventional methods in the art, and The plasmid is extracted to finally obtain the ysyna-TCR vector for expression in an integrated form, that is, the ysyna-868TCR vector. The resulting vector sequence was verified to be correct by using Sanger sequencing. The plasmid vector serves as a template for subsequent preparation of the TCR library.
以ysyna-868TCR为模板,根据本领域常规的引物设计方法,设计 2对引物将TCR序列扩增出来,获得的2段PCR产物(分别为片段1 和片段2),片段1和片段2均与ysyna_DEST质粒载体有15bp同源臂,并且片段1和片段2相互之间具有20bp同源序列。其中,一对引物是覆盖TCR CDR3区的NNK随机突变反向引物,除了要突变位点,其他引物位置均与模板一致。Using ysyna-868TCR as a template, according to the conventional primer design method in the field, design 2 pairs of primers to amplify the TCR sequence, and obtain 2 PCR products (fragment 1 and fragment 2, respectively). Fragment 1 and fragment 2 are both related to The ysyna_DEST plasmid vector has 15 bp homology arms, and Fragment 1 and Fragment 2 have 20 bp homology to each other. Among them, a pair of primers are NNK random mutation reverse primers covering the TCR CDR3 region. Except for the mutation site, the positions of the other primers are consistent with the template.
利用本领域常规方法合成引物,使用PAGE纯化。利用2X Phanta Max Master(Vazyme,P515-03)按照表3所示的PCR体系、表4所示的PCR 扩增条件进行扩增。The primers were synthesized by conventional methods in the art and purified by PAGE. Amplify using 2X Phanta Max Master (Vazyme, P515-03) according to the PCR system shown in Table 3 and the PCR amplification conditions shown in Table 4.
表3 PCR体系条件Table 3 PCR system conditions
表4 PCR反应条件Table 4 PCR reaction conditions
用1.5%DNA琼脂糖胶(Biowest,111860)(按琼脂糖与1xTAE缓冲液(利用50XTAE(solarbio,T1060)配置,用水稀释)的质量(g)体积(ml) 比为1.5:100进行配制),在120V电压下,进行40分钟的电泳,而后在紫外灯下分别切取目的片段,用上海博彩胶回收试剂(K132)盒回收相应的片段(即片段1和片段2)。用Nanodrop(Thermo,NanoDrop 2000) 测浓度。Use 1.5% DNA agarose gel (Biowest, 111860) (prepared according to the mass (g) volume (ml) ratio of agarose and 1xTAE buffer (use 50XTAE (solarbio, T1060) to prepare and dilute with water) 1.5:100) , under the voltage of 120V, electrophoresis was performed for 40 minutes, and then the target fragments were cut out under the ultraviolet light, and the corresponding fragments (ie fragment 1 and fragment 2) were recovered with the Shanghai Boca Gel Recovery Reagent (K132) box. The concentration was measured with Nanodrop (Thermo, NanoDrop 2000).
同时,将ysyna_DEST质粒载体用NHEI和XHOI酶切在表1所述酶切条件下酶切,之后使用上海博彩胶回收试剂(K132)盒回收。用 Nanodrop(Thermo,NanoDrop 2000)测浓度。At the same time, the ysyna_DEST plasmid vector was digested with NHEI and XHOI under the digestion conditions described in Table 1, and then recovered using the Shanghai Boca Gel Recovery Reagent (K132) kit. The concentration was measured with Nanodrop (Thermo, NanoDrop 2000).
用无缝克隆试剂盒Gibson试剂盒(碧云天,D7010M)进行Gibson克隆,反应体系如表5所示。The seamless cloning kit Gibson kit (Beiyuntian, D7010M) was used for Gibson cloning, and the reaction system is shown in Table 5.
表5 Gibson克隆体系Table 5 Gibson cloning system
表5的反应在恒温50℃下进行30分钟。对反应产物进行醇沉,步骤如下;The reactions in Table 5 were carried out at a constant temperature of 50°C for 30 minutes. Carry out alcohol precipitation to reaction product, step is as follows;
1.取出上述PCR反应后的混合物,加入其1/10体积的3M乙酸钠 (3mol/L,PH=5.2,Solarbio,A1070),充分混匀,使得乙酸钠的最终浓度为0.3mol/L;1. Take out the mixture after the above PCR reaction, add 1/10 volume of 3M sodium acetate (3mol/L, PH=5.2, Solarbio, A1070), and mix well so that the final concentration of sodium acetate is 0.3mol/L;
2.加入上述步骤1的混合物总体积的2倍体积的乙醇(麦克林,E809056)(加入前用冰预冷),充分混匀,置于-20℃中静置15~30分钟;2. Add 2 times the volume of ethanol (McLean, E809056) of the total volume of the mixture in the above step 1 (pre-cooled with ice before adding), mix well, and place it at -20°C for 15 to 30 minutes;
3.12,000g离心10分钟,小心移出上清液,并使用移液枪或真空泵吸去管壁上所有的液滴;3. Centrifuge at 12,000g for 10 minutes, carefully remove the supernatant, and use a pipette gun or vacuum pump to suck off all the droplets on the tube wall;
4.加入700μl的70%乙醇(用水和无水乙醇配置),12000g离心 2分钟,并使用移液枪或真空泵吸去管壁上所有的液滴;4. Add 700μl of 70% ethanol (prepared with water and absolute ethanol), centrifuge at 12000g for 2 minutes, and use a pipette gun or vacuum pump to suck all the droplets on the tube wall;
5.于室温下将离心管的盖子打开,置于实验桌上,以使残留的液体挥发至干;5. Open the cap of the centrifuge tube at room temperature and place it on the laboratory table to evaporate the remaining liquid to dryness;
6.加30μl的ddH2O溶解离心管中的DNA沉淀,用Nanodrop (Thermo,NanoDrop2000)测定DNA浓度。6. Add 30 μl of ddH 2 O to dissolve the DNA precipitate in the centrifuge tube, and measure the DNA concentration with Nanodrop (Thermo, NanoDrop2000).
使用本领域常规的方法,将醇沉后的产物电转到TOP10的电转感受态(上海维地,DE1010)中,按照说明书步骤电转,具体步骤如下:Using conventional methods in this field, the product after alcohol precipitation was electrotransferred into TOP10 electroporation-competent (Shanghai Weidi, DE1010), and electroporation was performed according to the instructions. The specific steps are as follows:
1.0.1cm电击杯和杯盖从储存液中拿出倒置于干净的吸水纸上5分钟,待其沥干水分,正置5分钟,使乙醇充分挥发,待乙醇挥发干净立即插入冰中,压实冰面,电极杯顶离冰面0.5cm以方便盖上杯盖,冰中静置5分钟充分降温。1. Take the 0.1cm electric shock cup and cup lid out of the storage solution and place them upside down on clean absorbent paper for 5 minutes. After draining the water, place it upright for 5 minutes to allow the ethanol to fully evaporate. Insert it into ice immediately after the ethanol has evaporated. The top of the electrode cup is 0.5cm away from the ice surface so that the lid can be easily covered, and the ice is allowed to stand for 5 minutes to fully cool down.
2.取-80℃保存的TOP10电转感受态(上海维地,DE1010)细胞插入冰中5分钟,待其融化,加入目的DNA(质粒或连接产物)并用手拨打EP管底轻轻混匀,避免产生气泡,立即插入冰中。2. Take the TOP10 electrotransfer competent (Shanghai Weidi, DE1010) cells stored at -80°C and insert them into ice for 5 minutes, wait for them to melt, add the target DNA (plasmid or ligation product) and mix gently by hand at the bottom of the EP tube. Avoid creating air bubbles and immediately plunge into ice.
DNA浓度不超过100ng/μl,体积不超过5μl/50μl感受态。The DNA concentration does not exceed 100ng/μl, and the volume does not exceed 5μl/50μl competent.
3.用200μl枪头(用刀切除0.5cm枪尖)将感受态-DNA混合物快速移到电击杯中,避免产生气泡,盖上杯盖。3. Use a 200 μl pipette tip (cut off the 0.5cm pipette tip with a knife) to quickly move the competent-DNA mixture into the electric shock cup to avoid the generation of air bubbles, and cover the cup.
4.启动电转仪,设置参数:C=25μF,PC=200Ω,V=1.8kV(BioRad 电转仪),将电击杯快速放入电转槽中,电击完成快速插入冰中。4. Start the electroporation instrument, set the parameters: C=25μF, PC=200Ω, V=1.8kV (BioRad electroporation instrument), quickly put the electroporation cup into the electroporation tank, and quickly insert it into the ice after electroporation.
5.2分钟后从冰中取出电击杯,放室温,加入1ml不含抗生素的无菌S.O.C.培养基(室温),用1ml枪吹吸电击杯底部数次混匀后,转移到50ml离心管(BD Falcon 50ml锥形离心管等),向离心管中补加S.O.C. 培养基至10ml。倾斜45度放入摇床,37℃,225rpm复苏60分钟。After 5.2 minutes, take out the electric shock cup from the ice, put it at room temperature, add 1ml of sterile S.O.C. 50ml conical centrifuge tube, etc.), add S.O.C. medium to the centrifuge tube to 10ml. Inclined at 45 degrees, placed on a shaker, recovered at 37°C, 225rpm for 60 minutes.
6.5000rpm离心一分钟收菌,重悬后全部涂板到含相应抗生素的 2-5个15cmS.O.C平板上。将平板倒置放于37℃培养箱过夜培养13-17 小时。6. Collect the bacteria by centrifuging at 5000rpm for one minute, resuspend and smear all the bacteria on 2-5 15cm S.O.C plates containing corresponding antibiotics. Place the plate upside down and incubate overnight in a 37°C incubator for 13-17 hours.
获得平板后,将所有的大肠杆菌利用刮刀(来源及型号:百赛利德, BL6013039)刮取收集到50ml离心管中,用于后续的质粒大提。After obtaining the plate, scrape and collect all the Escherichia coli with a scraper (source and model: Becelide, BL6013039) into a 50ml centrifuge tube for subsequent plasmid extraction.
将菌3000rpm离心15分钟收集菌体,用天根的质粒大提试剂盒(来源及型号:天根,DP117)进行质粒大提。提取后,利用Nanodrop测得包含TCR突变库的质粒载体。Centrifuge the bacteria at 3000 rpm for 15 minutes to collect the bacteria, and use Tiangen's plasmid extraction kit (source and model: Tiangen, DP117) for plasmid extraction. After extraction, the plasmid vector containing the TCR mutation library was detected using Nanodrop.
用PmeI(neb,R0560L)对所提取的包含TCR突变库的质粒载体进行酶切,将包括ARS314、TCR、TRP和荧光蛋白的片段酶切下来;胶回收得到片段;Use PmeI (neb, R0560L) to digest the extracted plasmid vector containing the TCR mutation library, and digest the fragments including ARS314, TCR, TRP and fluorescent protein; recover the fragments from the gel;
利用常规醋酸锂转化法,或者电转法,将回收后的TCR文库转化到EBY100(MATa)酵母中,EBY100(MATa)酵母同时整合表达了一个红色荧光蛋白,可以在后续流式实验中检测到红色荧光。通过SC-TRP平板筛选单克隆;用刮刀刮取所有的酵母菌落,离心,重悬在SC-TRP培养基中;冻存,作为表达或展示TCR文库的酵母细胞。The recovered TCR library is transformed into EBY100(MATa) yeast by conventional lithium acetate transformation method or electroporation method. EBY100(MATa) yeast integrates and expresses a red fluorescent protein at the same time, which can be detected in subsequent flow cytometry experiments. fluorescence. Screen single clones on SC-TRP plates; scrape all yeast colonies with a scraper, centrifuge, and resuspend in SC-TRP medium; cryopreserve as yeast cells expressing or displaying TCR libraries.
表6 SC-TRP培养基的配方Formulation of table 6 SC-TRP medium
实施例3 TCR筛选Example 3 TCR Screening
将表达TCR文库的酵母细胞与表达pMHC序列的酵母细胞于YPD 培养基中摇床摇晃(220rpm)过夜培养,培养温度为30℃。The yeast cells expressing the TCR library and the yeast cells expressing the pMHC sequence were cultured overnight in YPD medium with shaking (220 rpm), and the culture temperature was 30°C.
表7 YPD培养基的配方The formula of table 7 YPD medium
第二天,利用分光光度计(佑科,723N可见分光光度计)从OD=0.1 转接,培养约4-5小时,酵母生长达到指数期(OD=0.4),将表达TCR 文库的酵母和表达pMHC的酵母投入96孔V型深孔板中共培养,每孔的总培养体积为1ml,其中表达TCR文库的酵母在每孔中的OD值为 0.0125,表达抗原文库的酵母在每空中的OD值为0.0375。On the second day, use a spectrophotometer (Youke, 723N visible spectrophotometer) to transfer from OD=0.1, cultivate for about 4-5 hours, and the yeast growth reaches the exponential phase (OD=0.4), and the yeast expressing the TCR library and Yeast expressing pMHC was put into 96-well V-shaped deep-well plate for co-cultivation, the total culture volume of each well was 1ml, the OD value of the yeast expressing the TCR library in each well was 0.0125, and the OD value of the yeast expressing the antigen library in each well was The value is 0.0375.
在设定为30℃和220RPM转速的摇床中的进行酵母交配实验,混合培养22h,根据所构建的TCR突变库大小(按照上述所确定的库容的 100倍的量加入表达文库酵母细胞以实现覆盖度,例如,1OD等于107/ml 的酵母细胞,如库容为1x104,则总共加入0.1OD的酵母,做10个复孔)来决定做多少个复孔同步进行交配实验。The yeast mating experiment was carried out in a shaker set at 30°C and 220RPM, mixed for 22 hours, and the expression library yeast cells were added according to the size of the constructed TCR mutation library (according to the amount of 100 times the library capacity determined above to achieve Coverage, for example, 1OD is equal to 10 7 /ml of yeast cells, if the storage capacity is 1x10 4 , add 0.1OD of yeast in total, and make 10 replicate wells) to determine how many replicate wells to do the mating experiment simultaneously.
获得TCR-pMHC介导形成的二倍体酵母细胞。其中,将无关肽段 TAX-HLA-A*0201(其中TAX的第8位引入一个终止密码子)作为阴性对照,在后续二代测序后,用实验组和对照组的差异作为阈值,并选择对测序数据进行校正。Diploid yeast cells formed mediated by TCR-pMHC were obtained. Among them, the irrelevant peptide TAX-HLA-A*0201 (in which the 8th position of TAX introduces a stop codon) was used as a negative control, and after the subsequent next-generation sequencing, the difference between the experimental group and the control group was used as the threshold, and Calibrate the sequencing data.
交配之后,由于只有二倍体才可以在SC-Lys-Leu培养基中生长,所以可利用SC-Lys-Leu培养基筛选二倍体。取600μl菌株用SC-Lys-Leu 的培养基洗2遍;转接到SC-Lys-Leu培养基中培养24小时,筛选二倍体,或者利用流式分选出双荧光(mcherry和mTurquoise)的目标群体。After mating, SC-Lys-Leu medium can be used to screen for diploids since only diploids can grow in SC-Lys-Leu medium. Take 600 μl of the strain and wash it twice with SC-Lys-Leu medium; transfer to SC-Lys-Leu medium and culture for 24 hours, screen for diploids, or use flow cytometry to sort out double fluorescence (mcherry and mTurquoise) target group.
表8 SC-Lys-Leu培养基Table 8 SC-Lys-Leu medium
实施例4确定所述酵母细胞二倍体中的TCR序列Embodiment 4 Determines the TCR sequence in the yeast cell diploid
培养24小时后,对二倍体酵母细胞3000rpm 5分钟离心后,利用本领域常规方法珠磨法提取二倍体酵母细胞的基因组;After culturing for 24 hours, the diploid yeast cells were centrifuged at 3000 rpm for 5 minutes, and the genome of the diploid yeast cells was extracted by bead milling method, which is a conventional method in the art;
根据本领域常规的方法,设计正向引物和反向引物特异性扩增二倍体酵母细胞的基因组中的TCR的CDR3区域,PCR扩增体系和条件如表9和表10所示,表9 PCR扩增体系According to the conventional methods in the art, design forward primer and reverse primer to specifically amplify the CDR3 region of TCR in the genome of diploid yeast cells, PCR amplification system and conditions are as shown in Table 9 and Table 10, Table 9 PCR amplification system
表10 PCR扩增条件Table 10 PCR amplification conditions
利用zymoclean试剂盒(Zymo,D4008)胶回收上述PCR产物后,重悬,作为第二轮PCR的模板;按照表11和表12的条件进行第二轮PCR 扩增(i5端引物是 AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGC AGCGTC,i7端引物是 CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTC GG);引入测序的barcode序列。其中XXXXXXXX是用于标记和区分各个样本的barcode序列。Utilize the zymoclean kit (Zymo, D4008) to recover the above PCR product, resuspend it, and use it as the template for the second round of PCR; carry out the second round of PCR amplification according to the conditions in Table 11 and Table 12 (primers at the i5 end are AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGC AGCGTC, The primer at the i7 end is CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGGCTC GG); the sequenced barcode sequence was introduced. Where XXXXXXXX is the barcode sequence used to mark and distinguish each sample.
表11 PCR扩增体系Table 11 PCR amplification system
表12 PCR扩增条件Table 12 PCR amplification conditions
利用Qubit检测双链DNA的浓度,将片段等量进行混合测序;Use Qubit to detect the concentration of double-stranded DNA, and mix and sequence the fragments in equal amounts;
获得二代测序数据后,将测到的特定TCR序列的数量(即特定TCR 序列的reads数)除以测得的所有TCR序列数量(即所有TCR序列的 reads数),得到一个ratio值(即“ratio实测”)。将ratio实测除以针对阴性对照组的ratio实测值(即“ratio对照实测”),得到文库中每个TCR序列的差异倍数(fold change)值。所述阴性对照组可以是任何本领域已知的与TCR文库中的TCR均没有相互作用的肽段。如实施例5中使用的阴性对照组是SL9 3*-HLA-A*0201和TAX-HLA-A*0201。After obtaining the next-generation sequencing data, divide the measured number of specific TCR sequences (ie, the number of reads of specific TCR sequences) by the measured number of all TCR sequences (ie, the number of reads of all TCR sequences) to obtain a ratio value (ie, "ratio measured "). The measured ratio was divided by the measured ratio for the negative control group (ie, "ratio control measured ") to obtain the fold change value for each TCR sequence in the library. The negative control group can be any peptide known in the art that has no interaction with the TCR in the TCR library. Negative control groups as used in Example 5 were SL9 3*-HLA-A*0201 and TAX-HLA-A*0201.
可以将相对于TCR文库库容的差异倍数(fold change)值最高的前 10%、15%、20%、25%、30%的TCR序列作为能够与特定pMHC相互作用的TCR序列。The top 10%, 15%, 20%, 25%, and 30% of the TCR sequences with the highest fold change values relative to the TCR library storage capacity can be used as TCR sequences that can interact with specific pMHC.
该实验每次做3-4个技术复孔,并且独立重复2次,每次独立实验分别分析结果,相对于对照组,以差异倍数(fold change)>1并且至少一次独立实验中P值<0.05为筛选阈值。The experiment was done with 3-4 technical duplicate holes each time, and repeated twice independently, and the results were analyzed separately in each independent experiment. Compared with the control group, the fold change (fold change)>1 and the P value in at least one independent experiment< 0.05 is the screening threshold.
实施例5筛选结果的验证Verification of embodiment 5 screening results
本实施例构建了868TCR的在αCDR3位置发生突变的几个突变体,分别为GADDYALN、GAHDYSLN、GSHDYALN、GAHDYALV、 GAHDYYLN、SAHDYALN、GAYDYALN、GAHDYILN、TNSGYALN、GAHDYAYN、GAHDYAQN、GLHDYALN、GACDYALN、LAHDYALN、 GAHDY*LN。以实施例1中记载的方法,得到表达上述868TCRαCDR3 突变体组成的文库的酵母细胞。将展示该文库的酵母细胞分别与 SL9-HLA-A*0201、TAX-HLA-A*0201(NC)和SL9 3*-HLA-A*0201(NC) 共孵育,按照上述实施例的方法,通过二代测序筛选能够与 SL9-HLA-A*0201结合的TCR序列。In this example, several mutants of 868TCR with a mutation at the αCDR3 position were constructed, namely GADDYALN, GAHDYSLN, GSHDYALN, GAHDYALV, GAHDYYLN, SAHDYALN, GAYDYALN, GAHDYILN, TNSGYALN, GAHDYAYN, GAHDYAQN, GLHDYALN, GACDYALN, LAHDYALN, GAHDY* LN. Yeast cells expressing the above-mentioned library consisting of 868TCRα CDR3 mutants were obtained by the method described in Example 1. The yeast cells displaying the library were co-incubated with SL9-HLA-A*0201, TAX-HLA-A*0201(NC) and SL9 3*-HLA-A*0201(NC) respectively, according to the method of the above examples, TCR sequences that can bind to SL9-HLA-A*0201 were screened by next-generation sequencing.
筛选结果如图2所示,能够与SL9-HLA-A*0201结合的TCR的αCDR3序列如图2所示,其中蓝色代表与SL9-HLA-A*0201结合的TCR 的αCDR3序列的ratio实测值,橙色代表TAX-HLA-A*0201(NC)和SL9 3*-HLA-A*0201(NC)结合的TCR的αCDR3序列的ratio实测的平均值。The screening results are shown in Figure 2, and the αCDR3 sequence of the TCR that can bind to SL9-HLA-A*0201 is shown in Figure 2, where blue represents the measured ratio of the αCDR3 sequence of the TCR that binds to SL9-HLA-A*0201 The orange represents the measured average value of the ratio of the αCDR3 sequence of the TCR bound by TAX-HLA-A*0201(NC) and SL9 3*-HLA-A*0201(NC).
为了进一步说明本发明的灵敏度与特异性,发明人对实施例中筛选出来的TCR序列进行验证。本领域技术人员能够理解,本领域技术人员可以使用其他的本领域常规方法验证筛选出的TCR序列与特定 p-MHC的结合能力。In order to further illustrate the sensitivity and specificity of the present invention, the inventors verified the TCR sequences screened in the examples. Those skilled in the art can understand that those skilled in the art can use other conventional methods in the art to verify the binding ability of the screened TCR sequence to specific p-MHC.
获得上述筛选得到的TCR序列后,按照上述实施例中的克隆以及转化方法,构建表达特定TCR的酵母细胞,之后将该酵母细胞单克隆于YPD培养基中培养过夜(摇床速度220rpm,温度为30℃),第二天从 OD=0.1的浓度开始培养,培养4小时后收集1X106个酵母细胞于1.5ml EP管中,3000rpm离心5min,去除上清后,加入1ml PBS(Hyclone/ 海克隆,SH30256.01)+1%BSA(Amresco,A0332-100g)的培养基重悬细胞,去除残留的培养基(3000rpm离心5min,弃去上清),重复一次。After obtaining the TCR sequence obtained by the above screening, according to the cloning and transformation methods in the above examples, construct a yeast cell expressing a specific TCR, and then culture the yeast cell monoclonal in YPD medium overnight (shaking table speed 220rpm, temperature: 30°C), start culturing from the concentration of OD=0.1 on the next day, collect 1X106 yeast cells in 1.5ml EP tube after culturing for 4 hours, centrifuge at 3000rpm for 5min, remove the supernatant, add 1ml PBS (Hyclone/Hyclone , SH30256.01) + 1% BSA (Amresco, A0332-100g) medium to resuspend the cells, remove the residual medium (centrifuge at 3000rpm for 5min, discard the supernatant), and repeat once.
之后用50μl的PBS+1体积%的FBS重悬,利用 SL9-HLA-A*0201-PE的四聚体抗体(1:200,效价使用,MBL, TS-M027-1)进行染色。室温避光染色30min后,加入1ml PBS(Hyclone/ 海克隆,SH30256.01)+1%BSA(Amresco,A0332-100g)的培养基重悬细胞,3000rpm离心5min,弃去上清,重复一次后,用加入1ml PBS(Hyclone/ 海克隆,SH30256.01)+1%BSA(Amresco,A0332-100g)的培养基重悬细胞。Afterwards, it was resuspended with 50 μl of PBS+1 vol% FBS, and stained with the tetrameric antibody of SL9-HLA-A*0201-PE (1:200, titer used, MBL, TS-M027-1). After staining at room temperature for 30 minutes in the dark, add 1ml of PBS (Hyclone/ sea clone, SH30256.01) + 1% BSA (Amresco, A0332-100g) medium to resuspend the cells, centrifuge at 3000rpm for 5 minutes, discard the supernatant, repeat once , and resuspend the cells in the medium adding 1 ml of PBS (Hyclone/Hyclone, SH30256.01) + 1% BSA (Amresco, A0332-100g).
利用BD LSR Fortessa流式分析仪检测表达相应筛选出的TCR序列的酵母细胞是否可以与SL9-HLA-A*0201-PE的四聚体抗体结合,根据流式的结果计算荧光基团PE的平均荧光强度,越高代表抗原与TCR突变体的结合力越强。Use the BD LSR Fortessa flow analyzer to detect whether the yeast cells expressing the corresponding screened TCR sequence can bind to the tetrameric antibody of SL9-HLA-A*0201-PE, and calculate the average of the fluorophore PE according to the flow cytometry results The higher the fluorescence intensity, the stronger the binding force between the antigen and the TCR mutant.
图3是流式检测的结果,发现筛选出来的TCR(即P<0.05)均能与特定pMHC有较好的结合。也可以看出,筛选结果中差异倍数(fold change) 与在验证实验中平均荧光强度呈正相关。Figure 3 shows the results of flow cytometry, and it was found that the screened TCRs (ie, P<0.05) could all have a good combination with specific pMHC. It can also be seen that the fold change in the screening results is positively correlated with the average fluorescence intensity in the verification experiment.
实施例2的结果显示本发明的方法筛选结果灵敏度高,特异性好。The result of Example 2 shows that the screening result of the method of the present invention has high sensitivity and good specificity.
图4是使用斯皮尔曼相关系数计算的以平均荧光强度(MFI)表示的相互作用强度和以差异倍数(fold change)值表示的相互作用强度之间的正相关性。Figure 4 is the positive correlation between the interaction strength expressed as mean fluorescence intensity (MFI) and the interaction strength expressed as fold change value calculated using Spearman's correlation coefficient.
在统计学中,斯皮尔曼(spearman)相关系数经常用希腊字母ρ表示。它是衡量两个变量的依赖性的非参数指标。它利用单调方程评价两个统计变量的相关性。如果数据中没有重复值,并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或-1。在斯皮尔曼相关系数中,该系数的绝对值代表相关性大小。0.7及以上代表相关性很高,P值代表显著性,P值小于0.05则代表具有统计学意义上的显著性。In statistics, Spearman's correlation coefficient is often denoted by the Greek letter ρ. It is a nonparametric measure of the dependence of two variables. It evaluates the correlation of two statistical variables using a monotonic equation. If there are no repeated values in the data, and when two variables are perfectly monotonically correlated, the Spearman correlation coefficient is +1 or -1. In the Spearman correlation coefficient, the absolute value of the coefficient represents the magnitude of the correlation. 0.7 and above represent high correlation, P value represents significance, and P value less than 0.05 represents statistical significance.
图4的结果中,ρ=0.809,P=1.48×10-4,说明使用本发明的方法确定的差异倍数(fold change)值,与现有技术中使用纯化的pMHC和展示 TCR的酵母细胞经流式细胞检测法测得的能表示相互作用强度的平均荧光强度(MFI)之间是正相关的,且该正相关性具有统计学上的显著意义。由此,可以通过本发明的方法,确定筛选出的TCR与特定抗原相互作用的强度。In the results of Figure 4, ρ=0.809, P=1.48×10 -4 , indicating that the fold change value determined using the method of the present invention is different from that in the prior art using purified pMHC and yeast cells displaying TCR. The mean fluorescence intensity (MFI) measured by flow cytometry, which can represent the interaction strength, is positively correlated, and the positive correlation is statistically significant. Thus, the method of the present invention can be used to determine the interaction strength of the screened TCR with a specific antigen.
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。对于本领域技术人员来说,本发明可以有各种更改和变化,包括技术特征的组合、重组。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The present invention has been described through the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. For those skilled in the art, the present invention may have various modifications and changes, including combination and recombination of technical features. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210209696.3A CN115792238B (en) | 2022-03-04 | 2022-03-04 | Method for screening and determining TCR (TCR) interacting with specific antigen and interaction strength of TCR with specific antigen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210209696.3A CN115792238B (en) | 2022-03-04 | 2022-03-04 | Method for screening and determining TCR (TCR) interacting with specific antigen and interaction strength of TCR with specific antigen |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115792238A true CN115792238A (en) | 2023-03-14 |
CN115792238B CN115792238B (en) | 2024-08-20 |
Family
ID=85431067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210209696.3A Active CN115792238B (en) | 2022-03-04 | 2022-03-04 | Method for screening and determining TCR (TCR) interacting with specific antigen and interaction strength of TCR with specific antigen |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115792238B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020058253A1 (en) * | 1998-01-20 | 2002-05-16 | Kranz David M. | High affinity TCR proteins and methods |
CN104684926A (en) * | 2012-07-27 | 2015-06-03 | 伊利诺伊州大学理事会 | engineered T cell receptor |
CN112501269A (en) * | 2020-12-15 | 2021-03-16 | 清华大学 | Method for rapidly identifying high-affinity TCR antigen cross-reactivity |
-
2022
- 2022-03-04 CN CN202210209696.3A patent/CN115792238B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020058253A1 (en) * | 1998-01-20 | 2002-05-16 | Kranz David M. | High affinity TCR proteins and methods |
CN104684926A (en) * | 2012-07-27 | 2015-06-03 | 伊利诺伊州大学理事会 | engineered T cell receptor |
CN112501269A (en) * | 2020-12-15 | 2021-03-16 | 清华大学 | Method for rapidly identifying high-affinity TCR antigen cross-reactivity |
Non-Patent Citations (3)
Title |
---|
SHARYN THOMAS 等: "Human T cells expressing affinity-matured TCR display accelerated responses but fail to recognize low density of MHC-peptide antigen", 《IMMUNOBIOLOGY》, vol. 118, no. 2, pages 319 - 329 * |
SUSAN E. BROPHY 等: "A yeast display system for engineering functional peptide-MHC complexes", 《JOURNAL OF IMMUNOLOGICAL METHODS 》, vol. 272, pages 235 - 246, XP004400055, DOI: 10.1016/S0022-1759(02)00439-8 * |
邵红伟 等: "单链TCR分子的构建与酵母表面展示", 《广东药学院学报》, vol. 26, no. 3, pages 305 - 309 * |
Also Published As
Publication number | Publication date |
---|---|
CN115792238B (en) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3250688B1 (en) | Method for inducing targeted meiotic recombinations | |
EP3612623B1 (en) | Compositions and methods for increasing the culture density of a cellular biomass within a cultivation infrastructure | |
CN109963945A (en) | Single guide RNA, CRISPR/CAS9 system and its application method | |
CN113840920A (en) | Combined knock-in screens and heterologous polypeptides co-expressed under the control of endogenous loci | |
CN110055248A (en) | Controllable promoter | |
FR2821855A1 (en) | SYNTHETIC GENES AND BACTERIAL PLASMIDS WITHOUT CPG | |
CN107893073B (en) | Method for screening glutamine synthetase defect type HEK293 cell strain | |
CN105316356B (en) | Microalgae polygenes coexpression vector and polygenes co-express microalgae | |
JP2024133642A (en) | Active DNA transposon system and methods of use thereof | |
WO2020041384A1 (en) | 3-phenyl-2-cyano-azetidine derivatives, inhibitors of rna-guided nuclease activity | |
CN102876700B (en) | PiggyBac transposon mediated muscle specific expression A-FABP (adipocyte fatty acid binding protein) universal vector construction method | |
JP2022530029A (en) | Nucleic Acid Guided nuclease Methods and Compositions for Cell Targeting Screening | |
CN104892770B (en) | It is a kind of that there is efficient infection to T cell and candidate stem cell and promote the slow virus carrier of multiplication capacity | |
CN115792238B (en) | Method for screening and determining TCR (TCR) interacting with specific antigen and interaction strength of TCR with specific antigen | |
CA3177781A1 (en) | Use of a deficient fusion protein for nuclease activity so as to induce meiotic recombinations | |
WO2023225007A2 (en) | Engineered viral vectors with enhanced packaging capacity and methods of using the same | |
KR101947869B1 (en) | Exploring hotspot method for expression of recombinant protein in cell line using next-generation sequencing | |
CN115786439A (en) | A method for determining the strength of TCR and antigen interaction | |
CN115786148A (en) | Method for bidirectional screening of interactive TCR and pMHC | |
Wen et al. | Construction and screening of an antigen-derived peptide library displayed on yeast cell surface for CD4+ T cell epitope identification | |
CN110408616B (en) | GLUT4 gene knockout sgRNA and A549 cell lines and construction method thereof | |
CN109423522B (en) | Identification and application of molecular breeding marker of functional mutation site of porcine CD4 gene | |
CN118325904B (en) | sgRNA highly targeted to human HLA-A gene, its composition and application | |
US20220298502A1 (en) | Nuclease and nickase fusion proteins for increased homologous recombination in mammalian cells | |
WO2023179795A1 (en) | Method for rapidly, simply and conveniently obtaining correctly paired tcrs, and obtained tcrs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |