CN115786441A - 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法 - Google Patents

一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法 Download PDF

Info

Publication number
CN115786441A
CN115786441A CN202211159475.6A CN202211159475A CN115786441A CN 115786441 A CN115786441 A CN 115786441A CN 202211159475 A CN202211159475 A CN 202211159475A CN 115786441 A CN115786441 A CN 115786441A
Authority
CN
China
Prior art keywords
rate
ammonia
oxidizing bacteria
treatment
obligate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211159475.6A
Other languages
English (en)
Inventor
祝贵兵
姜丽萍
王衫允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202211159475.6A priority Critical patent/CN115786441A/zh
Publication of CN115786441A publication Critical patent/CN115786441A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及了一种旱田土中完全氨氧化反应及其N2O产生速率的测定方法。本方法通过抑制剂的选择性抑制能力,即3,4‑二甲基吡唑磷酸盐(DMPP)对完全氨氧化细菌和专性的氨氧化细菌、辛炔(C8H14)对专性的氨氧化细菌和乙炔(C2H2)对所有氨氧化微生物的抑制,进行旱地农田土壤微宇宙批次培养计算氨氮的消耗和氧化亚氮(N2O)的累计得到完全氨氧化细菌的氨氧化反应及其N2O生成速率和贡献率。该方法操作简单,成本低廉且有效的估计了完全氨氧化细菌对氮肥流失和温室气体排放的贡献,有利于旱地农田的田间管理和环境管控。

Description

一种旱田土中完全氨氧化反应及其N2O产生速率的测定方法
技术领域
本发明涉及环境微生物检测领域,硝化过程作为重要的氮流失途径不仅促使氮肥转化为硝酸盐以径流和冲洗的方式流失,同时也产生氧化亚氮等温室气体造成全球气候变暖等一系列的环境问题。完全氨氧化细菌作为新型氮循环微生物具有独立完成全程硝化过程和可以利用多种底物来维持自身生长等特性。因此,了解完全氨氧化细菌在氮肥损失中的贡献对优化氮肥管理,提高氮肥利用率和发展环境友好型农业生产具有重要意义。
背景技术
氮(N)元素是维持生命活动的基础物质,微生物驱动土壤氮循环过程是影响地球生物化学循环的重要步骤。氮肥是农业生产中不可或缺的外部投入,中国作为人口超级大国,氮肥施用量占全球的32%左右,而氮肥流失过程导致其作物利用率不高和温室气体(氧化亚氮,氨气等)的排放等问题一直困扰着田间管理和环境管控。硝化过程,作为不可忽视的重要氮流失途径得到了广泛的关注。自被发现以来一个多世纪,人们一直认为硝化过程是由氨氧化作用和亚硝化作用两个过程顺次进行的,分别由氨氧化微生物和亚硝酸盐氧化微生物催化反应,即通过细菌(ammonia oxidation bacteria,AOB)和古菌(ammoniaoxidation archaea,AOA)的氨氧化作用,产生亚硝酸盐提供给亚硝酸盐氧化细菌(nitriteoxidation bacteria,NOB)合成硝酸盐,来完成完整的硝化过程。典型的硝化过程被认为是由两类微生物合作所进行的专性好氧化能自养过程。但这种看法因发现了完全氨氧化细菌(complete ammonia oxidizer,comammox)及其代谢途径而改变,其代谢过程中同时编码了氨和亚硝酸盐氧化的途径,能独立完成完整的硝化路径。迄今为止,已在各种陆地和水生生态系统中检测到大量的完全氨氧化细菌,都隶属于硝化螺菌属(Nitrospira)第二分支。为了优化农业生产现状,需要彻底的了解完全氨氧化细菌在农业土壤生态系统中对氮肥流失的贡献和氧化亚氮释放预算,将会对全球粮食安全和气候变化产生不可忽视的影响。
发明内容
本发明为解决上述问题,提出一种抑制剂方法同时测定环境样品旱地农田土壤中完全氨氧化过程速率和N2O产生速率及其贡献率的办法。旱田土中完全氨氧化反应和N2O产生速率及其贡献率的测定方法,即利用3,4-二甲基吡唑磷酸盐(DMPP)对完全氨氧化细菌和专性的氨氧化细菌,辛炔(C8H14)对专性的氨氧化细菌和乙炔(C2H2)对所有氨氧化微生物的选择性抑制作用,通过在旱地农田土壤中添加抑制剂培养后测定底物铵态氮(NH4 +)和产物氧化亚氮(N2O)的变化,线性拟合计算后得到其氨氧化反应速率和N2O产生速率并进一步计算得到完全氨氧化细菌对氮肥损失的贡献率和N2O释放贡献率。本发明通过以下样品处理和数据分析方案来实现:
(1)抑制剂培养
通过使用3,4-二甲基吡唑磷酸盐(DMPP)、辛炔(C8H14)和乙炔(C2H2),确定了完全氨氧化细菌、专性的氨氧化细菌和古菌的氨氧化反应和N2O产生速率及其贡献率。称取2克混匀过筛后的新鲜旱地农田土壤至20毫升的血清瓶中,用橡胶塞和铝盖进行密封后培养。处理Ⅰ为对照组,只添加氮源(硫酸铵,(NH4)2SO4,50mg N/Kg)供微生物消耗。处理Ⅱ-Ⅳ为实验组,除氮源外另加入抑制剂,具体为:处理Ⅱ是专性的氨氧化细菌抑制组,加入终浓度为0.03v/v%的C8H14;处理Ⅲ是完全氨氧化细菌和专性的氨氧化细菌抑制组,加入终浓度为0.5mg/Kg的DMPP。处理Ⅳ是所有氨氧化微生物抑制组中,加入终浓度为的0.1v/v%的C2H2。每个处理组用精密注射器加入1毫升的配制液,以尽量减少水分变化对实验土壤中微生物活动的影响。
(2)底物和产物测定
每个处理设置三个平行样品放置于恒温培养箱于原位温度和氧气含量的条件下在避光和转速60rpm条件下培养,并于0、1、3、6和10天进行破坏性取样。使用气密针抽取培养瓶顶空N2O气体,收集到真空玻璃管中待测。将旱田土中的NH4 +使用2mol/L的氯化钾充分浸提,离心过滤处理后收集到上清液中待测。由气相色谱仪和流动分析仪对N2O和NH4 +的含量进行检测。
(3)拟合分析
完全氨氧化细菌的氨氧化反应及其N2O生成速率通过处理Ⅱ与处理Ⅲ的NH4 +消耗和N2O累积的差值计算得出。专性的氨氧化细菌的氨氧化反应及其氧化亚氮生成速率通过处理Ⅰ与处理Ⅱ的NH4 +消耗和N2O累积的差值计算得出。专性的氨氧化古菌的氨氧化反应及其氧化亚氮生成速率通过处理Ⅲ与处理Ⅳ的NH4 +消耗和N2O累积的差值计算得出。具体过程如下:
在处理Ⅳ的培养过程中,抑制了源自完全氨氧化细菌、氨氧化细菌(AOB)和古菌(AOA)导致的NH4 +的消耗和N2O的产生。因此,通过公式(1-3)计算了总的生物性氨氧化过程的NH4 +消耗和N2O产生:
Figure BDA0003858967250000021
Figure BDA0003858967250000022
结合公式(1)和(2):
Figure BDA0003858967250000023
在处理Ⅱ的培养中,氨氧化细菌(AOB)受到了抑制。因此,通过公式(4,5)计算AOB过程的NH4 +消耗和N2O的产生:
Figure BDA0003858967250000024
结合公式(1)和(4):
Figure BDA0003858967250000025
在处理Ⅲ的培养中,NH4 +的消耗仅来自于氨氧化古菌(AOA)。在处理Ⅳ的培养中,所有的氨氧化过程都被抑制了。因此,通过公式(6,7)计算AOA过程NH4 +消耗和N2O的产生:
Figure BDA0003858967250000026
结合公式(2)和(6):
Figure BDA0003858967250000027
最后,通过方程(4)和(6)的组合,计算出完全氨氧化细菌的NH4 +消耗和N2O的产生:
Figure BDA0003858967250000028
其中,
Figure BDA0003858967250000029
表示处理x(范围从Ⅰ到Ⅳ)中NH4 +的消耗或N2O的产生,
Figure BDA00038589672500000210
代表处理x中NH4 +的消耗率或N2O的产生率随时间的变化。
Figure BDA00038589672500000211
Figure BDA00038589672500000212
和分别代表潜在的源于总氨氧化过程、细菌氨氧化过程、古菌氨氧化过程和全程硝化过程的氨氧化速率或N2O产生速率。
完全氨氧化细菌的氨氧化反应和N2O产生的贡献率通过其速率与整体速率比值得到,具体过程如下:
Figure BDA0003858967250000031
其中,
Figure BDA0003858967250000032
代表潜在的源于细菌氨氧化过程、古菌氨氧化过程和全程硝化过程的氨氧化速率或N2O产生速率之总和。

Claims (15)

1.一种旱田土中完全氨氧化反应及其N2O产生速率的测定方法,其特征如下:
(1)组合抑制剂培养:组合使用三种具有选择抑制性的生物抑制剂对旱地农田土壤进行批次培养实验,其结果同时得到完全氨氧化细菌、专性的氨氧化细菌和古菌的氨氧化反应和N2O产生速率及其贡献率,抑制剂及其对应过程为:3,4-二甲基吡唑磷酸盐(DMPP)选择性抑制完全氨氧化细菌和专性的氨氧化细菌,辛炔(C8H14)选择性抑制专性的氨氧化细菌,乙炔(C2H2)抑制所有氨氧化微生物;
(2)氨氧化反应速率及其贡献率:通过不同抑制剂处理组之间的铵态氮(NH4 +-N)消耗速率变化,计算得到旱地农田土壤样品中完全氨氧化细菌的氨氧化反应速率,同时得到专性的氨氧化细菌和古菌的氨氧化反应速率,并进一步处理数据得到完全氨氧化细菌、专性的氨氧化细菌和古菌对氨氧化过程的贡献率;(3)N2O产生及其贡献率:通过不同抑制剂处理组之间的氧化亚氮(N2O)累积速率变化,计算得到旱地农田土壤样品中完全氨氧化细菌的N2O生成速率,同时得到专性的氨氧化细菌和古菌的N2O生成速率,并进一步处理数据得到完全氨氧化细菌、专性的氨氧化细菌和古菌对N2O产生的贡献率。
2.根据权利要求1所述,本方法优选将2克新鲜旱地农田土壤样品放置于20毫升血清瓶中,使用胶塞与铝盖密封后避光保存,对血清瓶进行不同抑制剂处理后于原位土壤温度和溶解氧条件下培养,要求每个处理设置三组平行。
3.根据权利要求1所述,本方法优选添加1毫升硫酸铵((NH4)2SO4,终浓度50mg N/kg)到血清瓶中,作为处理Ⅰ-对照组。
4.根据权利要求1所述,本方法优选添加1毫升硫酸铵((NH4)2SO4,终浓度50mg N/kg)和4毫升抑制剂辛炔(C8H14,终浓度0.03v/v%)到血清瓶中,作为处理Ⅱ-C8H14抑制组。
5.根据权利要求1所述,本方法优选添加0.5毫升硫酸铵((NH4)2SO4,终浓度50mg N/kg)和0.5毫升抑制剂3,4-二甲基吡唑磷酸盐(DMPP,终浓度0.5mg/Kg)到血清瓶中,作为处理Ⅲ-DMPP抑制组。
6.根据权利要求1所述,本方法优选添加1毫升硫酸铵((NH4)2SO4,终浓度50mg N/kg)和抑制剂0.5毫升乙炔(C2H2,终浓度0.01v/v%)到血清瓶中,作为处理Ⅳ-C2H2抑制组。
7.根据权利要求1所述,本方法优选血清瓶放置于恒温摇床在原位温度下和溶解氧条件下进行批次培养,于培养开始后的第0天、1天、3天、6天和10天分别陆续停止培养。
8.根据权利要求1所述,本方法优选用气密针抽取15毫升血清瓶内上部空间气体,注射进入气密管中,将产生的N2O收集待测。
9.根据权利要求1所述,本方法优选添加10毫升的2mol/L的氯化钾(KCl)到相应培养时间的血清瓶中,于170rpm摇床震荡60min,将旱地农田土壤样品中的NH4 +-N提取到液相中,经过离心过滤处理,收集上清液待测。
10.根据权利要求1所述,要求通过NH4 +的消耗速率差和N2O的累计速率差值(处理Ⅱ-处理Ⅲ)来计算得出完全氨氧化细菌的氨氧化反应速率和N2O生成速率。
11.根据权利要求1所述,要求通过NH4 +的消耗速率差和N2O的累计速率差值(处理Ⅰ-处理Ⅱ)来计算得出专性的氨氧化细菌的氨氧化反应速率和N2O生成速率。
12.根据权利要求1所述,要求通过NH4 +的消耗速率差和N2O的累计速率差值(处理Ⅲ-处理Ⅳ)来计算得出专性的氨氧化古菌的氨氧化反应速率和N2O生成速率。
13.根据权利要求1所述,要求本方法中,底物NH4 +的消耗速率和N2O积累速率回归分析中的线性回归系数(R2)大于0.60。
14.根据权利要求1所述,通过计算完全氨氧化细菌、专性的氨氧化细菌和古菌的氨氧化速率与总氨氧化速率的比值,得出各个氨氧化反应的贡献率。
15.根据权利要求1所述,通过计算完全氨氧化细菌、专性的氨氧化细菌和古菌的N2O产生速率与总N2O产生速率的比值,得出各个氨氧化反应N2O产生的贡献率。
CN202211159475.6A 2022-09-22 2022-09-22 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法 Pending CN115786441A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211159475.6A CN115786441A (zh) 2022-09-22 2022-09-22 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211159475.6A CN115786441A (zh) 2022-09-22 2022-09-22 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法

Publications (1)

Publication Number Publication Date
CN115786441A true CN115786441A (zh) 2023-03-14

Family

ID=85432101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211159475.6A Pending CN115786441A (zh) 2022-09-22 2022-09-22 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法

Country Status (1)

Country Link
CN (1) CN115786441A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769671A (zh) * 2023-07-19 2023-09-19 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品
CN118534009A (zh) * 2024-06-13 2024-08-23 大连理工大学 一种苏打盐碱土壤中盐度对n2o产生途径影响的检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769671A (zh) * 2023-07-19 2023-09-19 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品
CN116769671B (zh) * 2023-07-19 2024-05-10 华北电力大学 一种富集氨氧化微生物的方法及富集氨氧化微生物制品
CN118534009A (zh) * 2024-06-13 2024-08-23 大连理工大学 一种苏打盐碱土壤中盐度对n2o产生途径影响的检测方法

Similar Documents

Publication Publication Date Title
Shi et al. Biogeographic distribution of comammox bacteria in diverse terrestrial habitats
Huang et al. Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils
CN115786441A (zh) 一种旱田土中完全氨氧化反应及其n2o产生速率的测定方法
Zhu et al. Anaerobic ammonia oxidation in a fertilized paddy soil
Che et al. High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils
Dandie et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity
He et al. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols
Barton et al. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?
Ding et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region
Keuter et al. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices
Wang et al. The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand
Waki et al. Rate determination and distribution of anammox activity in activated sludge treating swine wastewater
Zhu et al. Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective
Yang et al. How nitrification-related N2O is associated with soil ammonia oxidizers in two contrasting soils in China?
Xiao et al. The response of ammonia oxidizing archaea and bacteria in relation to heterotrophs under different carbon and nitrogen amendments in two agricultural soils
Kou et al. Effects of 3, 4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil.
Bhattacharyya et al. Metagenomic assessment of methane production-oxidation and nitrogen metabolism of long term manured systems in lowland rice paddy
Zhao et al. Research of iron reduction and the iron reductase localization of anammox bacteria
Chen et al. Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat
Beman Activity, abundance, and diversity of nitrifying archaea and denitrifying bacteria in sediments of a subtropical estuary: Bahía del Tóbari, Mexico
Ji et al. Responses of archaeal, bacterial, and functional microbial communities to growth season and nitrogen fertilization in rice fields
Cavagnaro et al. Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil
Tao et al. Ammonia-oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances, but ammonia-oxidizing archaea are resistant
Zhan et al. Development of microbial properties and enzyme activities in copper mine wasteland during natural restoration
Wang et al. N2O micro-profiles in biofilm from a one-stage autotrophic nitrogen removal system by microelectrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination