CN115765618A - 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法 - Google Patents

一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法 Download PDF

Info

Publication number
CN115765618A
CN115765618A CN202211291099.6A CN202211291099A CN115765618A CN 115765618 A CN115765618 A CN 115765618A CN 202211291099 A CN202211291099 A CN 202211291099A CN 115765618 A CN115765618 A CN 115765618A
Authority
CN
China
Prior art keywords
maximum power
photovoltaic
power point
current
mppt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211291099.6A
Other languages
English (en)
Inventor
黄英伟
邱永涛
庄敬清
蔡晓榆
洪冰心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishi Power Supply Co of State Grid Fujian Electric Power Co Ltd
Original Assignee
Shishi Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishi Power Supply Co of State Grid Fujian Electric Power Co Ltd filed Critical Shishi Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority to CN202211291099.6A priority Critical patent/CN115765618A/zh
Publication of CN115765618A publication Critical patent/CN115765618A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种基于INC‑MPC的光伏最大功率点跟踪控制系统及控制方法,该系统包括:光伏阵列模块,用于将太阳能转化为电能;基于INC的MPPT模块,用于利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;模型预测控制模块,用于根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与单电流MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D,达到MPPT快速跟踪的目的;以及boost变换器,连接在光伏阵列与负载之间,接受所述模型预测控制模块的控制。应用本技术方案可实现提高系统的响应速度及稳态性。

Description

一种基于INC-MPC的光伏最大功率点跟踪控制系统及控制 方法
技术领域
本发明涉及光伏发电技术领域,特别是一种基于INC-MPC的光伏最大功率点跟踪控制系统及控制方法。
背景技术
近年来,光伏发电因其无污染、不受地域限制等优点备受关注。然而,光伏电池容易受到光强和温度的影响,利用率较低。需要对光伏发电系统进行最大功率点跟踪控制。
目前,有众多的最大功率点控制算法。开路电压法和短路电流法能够对最大功率点进行快速的跟踪,但是不适应对外界环境的变化;扰动观察法需要判断电压扰动前后系统输出功率的变化,只能在最大功率点附近振荡运行。电导增量法通过光伏阵列的P-V曲线来调整光伏阵列的工作点,对光照强度变化反应较为缓慢。模糊算法对于光伏电池的非线性时变参数控制缺乏在线自学习能力;神经网络算法的训练是建立在已知的光伏阵列模型上进行设计,还存在着一定的局限性。
发明内容
有鉴于此,本发明的目的在于提供一种基于INC-MPC的光伏最大功率点跟踪控制系统及控制方法,有利于提高系统的响应速度及稳态性。
为实现上述目的,本发明采用如下技术方案:一种基于INC-MPC的光伏最大功率点跟踪控制系统,包括:
光伏阵列模块,用于将太阳能转化为电能;
基于INC的MPPT模块,用于利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;
模型预测控制模块,用于根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与基于INC的MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D,达到MPPT快速跟踪的目的;以及boost变换器,连接在光伏阵列与负载之间,接受所述模型预测控制模块的控制。
在一较佳的实施例中,所述基于INC的MPPT模块通过光伏阵列的P-U曲线知道根据dP/dU的值,判断出光伏阵列工作点的位置,继而确定调整光伏阵列工作点的策略,从而进行最大功率点跟踪。
在一较佳的实施例中,所述基于INC的MPPT模块按如下方法实现:
设boost变换器的输入功率为,输入电压为vPV,输入电流为iPV,有:
Ppv=ipv×vpv (1)
同时对上式两端对V求导,可得:
Figure BDA0003901398620000021
当dP/dV>0时,V小于最大功率点电压Vmax;当dP/dV<0时,V小于最大功率点电压Vmax;当dP/dV=0,V等于最大功率点电压Vmax;将上述三种情况代入上式可得:
当V<Vmax时,dI/dV>-I/V;
当V>Vmax时,dI/dV<-I/V;
当V=Vmax时,dI/dV=-I/V;
根据dI/dV与-I/V之间的关系来调整工作点电压;
当光照强度变化剧烈的情况下,对上述算法进行改进如下:
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)=0,i*=iPV(k);
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)>0,i*=iPV(k)+Δi;
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)<0,i*=iPV(k)-Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k);
当=i(k)-i(k-1)0,且,i*=iPV(k)+Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k)-Δi;
其中,Δi=iPV(k)-iPV(k-1)。
在一较佳的实施例中,所述模型预测控制模块基于boost变换器的预测模型,利用下一时刻的电流值与预测的电流参考值进行比较。
在一较佳的实施例中,所述一步长模型预测控制模块采用如下最小化评价函数J:
Figure BDA0003901398620000031
其中,iPV,s=n(k+1)为k+1时刻光伏阵列输出电流,i*为单电流MPPT模块计算的电流参考值,s=0为开关管断开状态,s=1为开关管闭合状态。
在一较佳的实施例中,光伏阵列在未来k+n+1时刻的参考电流输出值:
Figure BDA0003901398620000032
在一较佳的实施例中,两步长模型预测控制需要4个开关变量,每一个二进制开关控制变量s由采样时间t+1和t+2组合形成,所述两步长模型预测控制模块采用如下最小化评价函数J:
Figure BDA0003901398620000041
本发明还提供了一种基于INC-MPC的光伏最大功率点跟踪控制系统的控制方法,采用了上述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,包括如下步骤:
步骤S1:光伏阵列模块将太阳能转化为电能;
步骤S2:基于INC的MPPT模块利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;
步骤S3:模型预测控制模块根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与基于INC的MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D。
与现有技术相比,本发明具有以下有益效果:通过基于INC的最大功率点控制法为模型预测控制模块提供了参考的电流值,模型预测控制模块根据boost变换器计算出等效电流值,并通过匹配误差来控制boost变换器开关管,使得系统能够在外界环境突然变化的情况有较快的瞬时响应,不仅简化了控制系统,而且改善了光伏系统在光照强度剧烈变化时的响应速度及稳态性。
附图说明
图1为本发明优选实施例中光伏电池等效电路图。
图2为本发明优选实施例中光伏电池P-V输出特性曲线图。
图3为本发明优选实施例中基于INC的MPPT控制流程图。
图4为本发明优选实施例中boost变换器两种工作状态电路图。
图5为本发明优选实施例中两步长模型预测控制原理图。
图6为本发明优选实施例中光伏最大功率点跟踪控制系统框图。
图7为本发明优选实施例中模型预测控制流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式;如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在说明本发明之前,先说明光伏电池板的特性:
根据光伏电池板的内部结构和输出伏安特性得到其等效电路如图1所示。
光伏电池的输出特性方程为:
Figure BDA0003901398620000051
式中,iPV-太阳能电池板的输出电流,iph-光生电流,io-反向饱和电流,q-电子电荷,uPV-太阳能电池板的输出电压,A-二极管理想因子,K-波尔兹曼常数,T-绝对温度,Rs串联等效电阻,Rsh-并联等效电阻。
建立光伏电池的数学模型Matlab/Simulink,得到光伏电池的P-V特性曲线如图2所示。
图2显示光伏阵列在不同光照强度下的P-V特性曲线,从图可以看出每条曲线上都存在唯一一个最大功率输出点。功率会随着外部环境变化而变化,因此很难保证负载总是工作在最大功率点上,造成能源的浪费,必须进行MPPT控制。
图6为本实施例中光伏最大功率点跟踪控制系统结构框图。如图6所示,本系统包括:光伏阵列模块、基于INC的MPPT模块、模型预测控制模块和boost变换器。
所述光伏阵列模块用于将太阳能转化为电能。
所述基于INC的MPPT模块用于利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势。
所述模型预测控制模块用于根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与单电流MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D,达到MPPT快速跟踪的目的。
所述boost变换器连接在光伏阵列与负载之间,接受所述模型预测控制模块的控制。
基于单电流传感器的MPPT算法的基本原理是:通过推导出的光伏阵列(1-D)iPV-D曲线,根据d[(1-D)iPV]和dD的值判断出光伏阵列工作点的位置,进而调整光伏阵列的工作点。具体按如下方法实现:
设boost变换器的输入功率为PPV,输入电压为vPV,输入电流为iPV,有:
Ppv=ipv×vpv (1)
同时对上式两端对V求导,可得:
Figure BDA0003901398620000071
当dP/dV>0时,V小于最大功率点电压Vmax;当dP/dV<0时,V小于最大功率点电压Vmax;当dP/dV=0,V等于最大功率点电压Vmax;将上述三种情况代入上式可得:
当V<Vmax时,dI/dV>-I/V;
当V>Vmax时,dI/dV<-I/V;
当V=Vmax时,dI/dV=-I/V;
这样可以根据dI/dV与-I/V之间的关系来调整工作点电压,从而实现最大功率跟踪。
当光照强度变化剧烈的情况下,对上述算法进行改进如下:
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)=0,i*=iPV(k);
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)>0,i*=iPV(k)+Δi;
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)<0,i*=iPV(k)-Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k);
当=i(k)-i(k-1)0,且,i*=iPV(k)+Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k)-Δi;
其中,Δi=iPV(k)-iPV(k-1)。
基于INC的MPPT控制流程如图3所示。
模型预测控制模块根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与单电流MPPT算法预测的电流值进行比较,得到评价函数J,以控制Boost变换器的开关状态,来输出最优占空比D,达到MPPT快速跟踪的目的。图4(a)和4(b)是Boost变换器的开关闭合和断开的状态。
当开关闭合时,电路可表达为式(5):
Figure BDA0003901398620000081
当开关断开时,电路可表达为式(6):
Figure BDA0003901398620000082
结合以上两种情况,可得:
Figure BDA0003901398620000083
在Δt的采样间隔时间内,式(7)可表述为:
Figure BDA0003901398620000084
设开关管的工作周期为T,则对上式进行离散化处理,可得:
Figure BDA0003901398620000085
则,判断boost开关管动作的目标函数,即最小化评价函数J为:
Figure BDA0003901398620000086
其中,iPV,s=n(k+1)为k+1时刻光伏阵列输出电流,i*为单电流MPPT模块计算的电流参考值,s=0为开关管断开状态,s=1为开关管闭合状态。
为了进一步提高系统的鲁棒性能,避免光伏阵列在未来的k+n个时刻发生大幅度震荡现象,光伏阵列在未来k+n+1时刻的参考电流输出值:
Figure BDA0003901398620000087
图5为两步长模型预测控制原理图。两步长模型预测控制需要估计4个开关变量,每一个二进制开关控制变量s由采样时间t+1和t+2组合形成,其特征在于,所述两步长模型预测控制模块采用如下最小化评价函数J:
Figure BDA0003901398620000091
本实施例的具体控制流程图如图7所示。
本实施例的光伏最大功率点跟踪控制方法,包括如下步骤:
步骤S1:光伏阵列模块将太阳能转化为电能;
步骤S2:基于INC的MPPT模块利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;
步骤S3:模型预测控制模块根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与单电流MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D。
可见,本发明提供的光伏最大功率点跟踪控制系统及方法,通过基于INC的最大功率点控制法为模型预测控制模块提供了参考的电流值,模型预测控制模块根据boost变换器计算出等效电流值,并通过匹配误差来控制boost变换器开关管,使得系统能够在外界环境突然变化的情况,电池输出功率经过动态过程后快速达到稳定。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (8)

1.一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,包括:
光伏阵列模块,用于将太阳能转化为电能;
基于INC的MPPT模块,用于利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;
模型预测控制模块,用于根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与基于INC的MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D,达到MPPT快速跟踪的目的;以及boost变换器,连接在光伏阵列与负载之间,接受所述模型预测控制模块的控制。
2.根据权利要求1所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,所述基于INC的MPPT模块通过光伏阵列的P-U曲线知道根据dP/dU的值,判断出光伏阵列工作点的位置,继而确定调整光伏阵列工作点的策略,从而进行最大功率点跟踪。
3.根据权利要求1所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,所述基于INC的MPPT模块按如下方法实现:
设boost变换器的输入功率为,输入电压为vPV,输入电流为iPV,有:
Ppv=ipv×vpv (1)
同时对上式两端对V求导,可得:
Figure FDA0003901398610000011
当dP/dV>0时,V小于最大功率点电压Vmax;当dP/dV<0时,V小于最大功率点电压Vmax;当dP/dV=0,V等于最大功率点电压Vmax;将上述三种情况代入上式可得:
当V<Vmax时,dI/dV>-I/V;
当V>Vmax时,dI/dV<-I/V;
当V=Vmax时,dI/dV=-I/V;
根据dI/dV与-I/V之间的关系来调整工作点电压;
当光照强度变化剧烈的情况下,对上述算法进行改进如下:
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)=0,i*=iPV(k);
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)>0,i*=iPV(k)+Δi;
当=i(k)-i(k-1)=0,且=v(k)-v(k-1)<0,i*=iPV(k)-Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k);
当=i(k)-i(k-1)0,且,i*=iPV(k)+Δi;
当=i(k)-i(k-1)0,且,i*=iPV(k)-Δi;
其中,Δi=iPV(k)-iPV(k-1)。
4.根据权利要求3所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,所述模型预测控制模块基于boost变换器的预测模型,利用下一时刻的电流值与预测的电流参考值进行比较。
5.根据权利要求4所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,所述一步长模型预测控制模块采用如下最小化评价函数J:
Figure FDA0003901398610000021
其中,iPV,s=n(k+1)为k+1时刻光伏阵列输出电流,i*为单电流MPPT模块计算的电流参考值,s=0为开关管断开状态,s=1为开关管闭合状态。
6.根据权利要求5所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,光伏阵列在未来k+n+1时刻的参考电流输出值:
Figure FDA0003901398610000031
7.根据权利要求6所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,其特征在于,两步长模型预测控制需要4个开关变量,每一个二进制开关控制变量s由采样时间t+1和t+2组合形成,所述两步长模型预测控制模块采用如下最小化评价函数J:
Figure FDA0003901398610000032
8.一种基于INC-MPC的光伏最大功率点跟踪控制系统的控制方法,其特征在于,采用了上述权利要求1至7任意一项所述的一种基于INC-MPC的光伏最大功率点跟踪控制系统,包括如下步骤:
步骤S1:光伏阵列模块将太阳能转化为电能;
步骤S2:基于INC的MPPT模块利用INC的MPPT算法预测系统下一时刻的电流值,为模型预测控制模块提供外部电流的参考值和变化趋势;
步骤S3:模型预测控制模块根据boost变换器的状态空间方程计算下一时刻光伏电池的电流值,并与基于INC的MPPT算法预测的电流值进行比较得到评价函数J,以控制boost变换器的开关状态来输出最优占空比D。
CN202211291099.6A 2022-10-21 2022-10-21 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法 Pending CN115765618A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211291099.6A CN115765618A (zh) 2022-10-21 2022-10-21 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211291099.6A CN115765618A (zh) 2022-10-21 2022-10-21 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法

Publications (1)

Publication Number Publication Date
CN115765618A true CN115765618A (zh) 2023-03-07

Family

ID=85352496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211291099.6A Pending CN115765618A (zh) 2022-10-21 2022-10-21 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN115765618A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116501099A (zh) * 2023-06-01 2023-07-28 深圳市迪晟能源技术有限公司 光伏与太阳能光光线垂直关系智能调控系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116501099A (zh) * 2023-06-01 2023-07-28 深圳市迪晟能源技术有限公司 光伏与太阳能光光线垂直关系智能调控系统
CN116501099B (zh) * 2023-06-01 2023-09-22 深圳市迪晟能源技术有限公司 光伏与太阳能光光线垂直关系智能调控系统

Similar Documents

Publication Publication Date Title
Dounis et al. Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system
CN113282131B (zh) 一种光伏最大功率点跟踪控制系统及方法
Hamed et al. Fuzzy controller design using FPGA for photovoltaic maximum power point tracking
Elbarbary et al. Review of maximum power point tracking algorithms of PV system
Arulmurugan et al. Intelligent fuzzy MPPT controller using analysis of DC to DC novel buck converter for photovoltaic energy system applications
Chouder et al. Simulation of fuzzy-based MPP tracker and performance comparison with perturb & observe method
Pandey et al. Study and comparative analysis of perturb and observe (P&O) and fuzzy logic based PV-MPPT algorithms
CN115765618A (zh) 一种基于inc-mpc的光伏最大功率点跟踪控制系统及控制方法
Mahmoud et al. A comparative study of four widely-adopted mppt techniques for pv power systems
Srivastava et al. Grid integrated solar PV system with comparison between fuzzy logic controlled MPPT and P&O MPPT
Chalok et al. Optimal extraction of photovoltaic energy using fuzzy logic control for maximum power point tracking technique
Bana et al. Single-stage grid-connected pv system with artificial neural network controller
Gnanavel et al. An Experimental Investigation of Fuzzy‐Based Voltage‐Lift Multilevel Inverter Using Solar Photovoltaic Application
Khandelwal et al. Applications of AI for power electronics and drives systems: A review
Priyadarshi et al. A particle swarm optimization based fuzzy logic control for photovoltaic system
Abed et al. DC/DC converter control using suggested artificial intelligent controllers
D'Souza et al. Peak current control based maximum power point trackers for faster transient responses
KHAN et al. Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System
Feng et al. A variable step sizes perturb and observe MPPT method in PV system based on flyback converter
Kumar et al. Design and Implementation of Solar based Maximum Power Point Tracking using Machine Learning
Ge et al. An Improved Distributed Maximum Power Point Tracking Technique in Photovoltaic Systems Based on Reinforcement Learning Algorithm
Paquianadin et al. Maximizing solar photovoltaic system efficiency by multivariate linear regression based maximum power point tracking using machine learning
Mwine et al. A novel neural network based MPPT method under partial shading conditions
Dalimunthe et al. Improvement of Perturb and Observe Based on Reinforcement Learning for Maximum Power Point Tracking Under Fast Changing Condition.
Garraoui et al. MPPT Algorithms for PV System based on SM adaptive-FL and RCC method: A comparative study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination