CN115759265A - 一种基于模糊偏好关系的故障诊断方法及系统 - Google Patents

一种基于模糊偏好关系的故障诊断方法及系统 Download PDF

Info

Publication number
CN115759265A
CN115759265A CN202211365946.9A CN202211365946A CN115759265A CN 115759265 A CN115759265 A CN 115759265A CN 202211365946 A CN202211365946 A CN 202211365946A CN 115759265 A CN115759265 A CN 115759265A
Authority
CN
China
Prior art keywords
fault diagnosis
evidence
value
preference
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211365946.9A
Other languages
English (en)
Inventor
周宏宽
孙衢骎
王晨阳
柴文婷
郑伟
柯志武
冯毅
刘佩
柯汉兵
陈朝旭
陶模
李献领
郭晓杰
赵振兴
黄崇海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
719th Research Institute of CSIC
Original Assignee
719th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 719th Research Institute of CSIC filed Critical 719th Research Institute of CSIC
Priority to CN202211365946.9A priority Critical patent/CN115759265A/zh
Publication of CN115759265A publication Critical patent/CN115759265A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

本发明提供一种基于模糊偏好关系的故障诊断方法及系统,属于智能监测技术,包括:基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;基于证据距离计算所述故障诊断证据集合中各证据的支持度值;利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。本发明将模糊偏好关系应用于多传感器环境下的故障检测场景,通过证据理论转化为证据冲突问题,具有较好的收敛性,在故障诊断中具有较强的准确性和客观性。

Description

一种基于模糊偏好关系的故障诊断方法及系统
技术领域
本发明涉及智能监测技术领域,尤其涉及一种基于模糊偏好关系的故障诊断方法及系统。
背景技术
随着工业智能化的推进,智能制造进入新的发展阶段,伴随而来的智能化设备的精密程度和复杂程度都有所提升,而工业设备在运行中长久地受到振动和冲击,容易造成零件磨损和部件老化等问题,进而导致工业设备发生故障。
因为故障诊断的应用场景,因设备的不同、工况的不同、复杂程度的不同、评定方法与专家的经验水平不同等条件限制,导致实际中的诊断过程有许多难以测定的不确定性。因此,将模糊理论引入故障诊断具有必要性。基于模糊偏好关系的决策是近年来决策理论的重要研究内容。首先,不同工业设备的物理机制、精密程度、故障机理、零件种类等都有不同的区别,这导致造成故障发生的原因是多样的,因此诊断过程具有模糊性。其次,专家们往往根据故障特征来判断故障,而多种故障特征共同作用,可能同时对应多种故障类别,这样的判断也存在模糊性。因此,使用模糊偏好决策来辅助故障诊断任务,具有很好的应用场景和使用前景。
通常,决策和群决策的过程包括如下主要部分:1.确定方案集(故障类型集合)与专家集(故障诊断专家,或是不同的故障识别模型);2.专家集的各成员分别给出故障诊断意见,给出是否故障、故障类别、置信程度等信息;3.对专家的判断信息进行一致性、有效性分析,选择或设计适当的信息集结方法,进而对方案排序;4.最后进行灵敏性、共识性、保序性等分析。
由于现有方法中没有系统地将模糊偏好关系应用于故障检测,形成系统客观的故障判断方案,因此针对模糊偏好关系理论应用于故障检测需要提出新的方法。
发明内容
本发明提供一种基于模糊偏好关系的故障诊断方法及系统,用以解决现有技术中工业设备故障检测容易受多种因素影响,导致诊断结果不够客观准确的缺陷。
第一方面,本发明提供一种基于模糊偏好关系的故障诊断方法,包括:
基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;
基于证据距离计算所述故障诊断证据集合中各证据的支持度值;
利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;
将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
根据本发明提供的一种基于模糊偏好关系的故障诊断方法,所述基于证据距离计算所述故障诊断证据集合中各证据的支持度值,包括:
采用距离测量函数获取各证据对应的基本概率分配值,基于所述基本概率分配值构建距离测度矩阵;
基于所述基本概率分配值,得到相似性测度值;
由所述距离测度矩阵和所述相似性测度值,得到相似性度量矩阵;
对所述相似性度量矩阵进行非对角元素的行求和,得到原始支持度值;
将所述原始支持度值进行标准化,得到所述支持度值。
根据本发明提供的一种基于模糊偏好关系的故障诊断方法,所述利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值,包括:
获取所述基本概率分配值的信念熵,将所述信念熵转换为信息量;
将所述信息量进行归一化,得到归一化信息量;
基于所述归一化信息量构建模糊偏好关系矩阵;
由所述模糊偏好关系矩阵构建一致性矩阵;
利用所述一致性矩阵得到所述相对可信度偏好值。
根据本发明提供的一种基于模糊偏好关系的故障诊断方法,所述基于所述归一化信息量构建模糊偏好关系矩阵,包括:
将所述模糊偏好关系矩阵中对角线元素赋值为0.5;
若确定所述各证据的数量为2,则将所述模糊偏好关系矩阵中非对角线元素赋值为0.5;
若确定所述各证据的数量大于2,则利用所述归一化信息量计算所述模糊偏好关系矩阵中非对角线元素位置对应的熵方差,由所述熵方差确定所述非对角线元素。
根据本发明提供的一种基于模糊偏好关系的故障诊断方法,所述由所述模糊偏好关系矩阵构建一致性矩阵,包括:
采用可加性一致性对所述模糊偏好关系矩阵进行改造,得到所述一致性矩阵;
其中,所述各证据的备选项排名值通过所述一致性矩阵获得。
根据本发明提供的一种基于模糊偏好关系的故障诊断方法,所述将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果,包括:
将所述支持度值和所述相对可信度偏好值进行相乘,得到归一化支持度;
对所述归一化支持度进行规范化处理,得到基本概率分配值的最终权重;
将所述各证据的最终权重与所述基本概率分配值进行加权求和,得到所述多个证据的组合故障诊断结果。
第二方面,本发明还提供一种基于模糊偏好关系的故障诊断系统,包括:
生成模块,用于基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;
第一计算模块,用于基于证据距离计算所述故障诊断证据集合中各证据的支持度值;
第二计算模块,用于利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;
融合模块,用于将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
第三方面,本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述基于模糊偏好关系的故障诊断方法。
第四方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述基于模糊偏好关系的故障诊断方法。
第五方面,本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述基于模糊偏好关系的故障诊断方法。
本发明提供的基于模糊偏好关系的故障诊断方法及系统,将模糊偏好关系应用于多传感器环境下的故障检测场景,通过证据理论转化为证据冲突问题,具有较好的收敛性,在故障诊断中具有较强的准确性和客观性。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于模糊偏好关系的故障诊断方法的流程示意图;
图2是本发明提供的可靠分配层次模型示意图;
图3是本发明提供的基于模糊偏好关系的故障诊断系统的结构示意图;
图4是本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
针对现有技术中工业系统故障检测所面临的局限性,本发明提出一种基于模糊偏好关系的故障诊断方法,图1是本发明提供的基于模糊偏好关系的故障诊断方法的流程示意图,如图1所示,包括:
步骤100:基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;
步骤200:基于证据距离计算所述故障诊断证据集合中各证据的支持度值;
步骤300:利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;
步骤400:将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
可以理解的是,多传感器数据融合技术在故障诊断及各种应用中发挥着重要作用,采用Dempster-Shafer证据理论能提高系统性能;然而,当证据之间高度冲突时,它可能会产生与直觉相反的结果。针对这一问题,本发明提出的方法是基于证据距离、信念熵和模糊偏好关系分析的多传感器数据融合方法。
首先基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合,利用证据距离函数来衡量证据之间的冲突程度,利用证据距离所产生的支持度来表示证据的可靠性。当一项证据得到其他证据的有力支持时,它与其他证据之间的冲突就应该更少,所以这一项证据应该有很大的权重。相反,当一项证据得不到其他证据的支持时,它就会被认为与其他证据存在高度冲突,因此这一证据的权重应该很小。其次,利用信念熵计算证据的信息量,在计算出的定量信息量的基础上,应用模糊偏好关系分析方法来表示证据块的相对可信度偏好。然后利用证据块的相对可信度偏好来调整证据的支持度。由于引入了基于信念熵的模糊偏好关系分析,它可以自动构造模糊偏好关系矩阵,而不是由专家来确定,从而降低了决策过程中的认知不确定性。最后,在使用Dempster的组合规则之前,利用调整后的证据块权重对证据块的主体进行修改,即得到多个证据的组合故障诊断结果。
以图2中可靠分配层次模型为例,包括故障检测目标,即滚齿积液压系统;包括故障诊断指标集合,即可维修值、工况、复杂度、制造技术、失效率、成本和失效影响程度;还包括故障检测对象,即供油站、控制阀和机床油路整合为证据集合。
此处,模糊偏好关系在许多决策过程中起着基础性的作用,最早由Tanino在1984年提出,它是一种利用专家提供的语言值来构造成对比较的决策矩阵的方法,具体包括:
设P为模糊偏好关系,且X={A1,A2,…,Ak}为备选项的集合,其中
Figure BDA0003918734600000071
则模糊偏好关系定义为:
Figure BDA0003918734600000072
其中pij∈[0,1](1≤i≠j≤k)表示备选Ai对Aj的偏好值,并且满足以下条件:
pij+pji=1and pii=0.5
需要说明的是,pij=0.5表示备选项Ai和Aj之间的无差异;pij=1表示Ai绝对是Aj的首选;pij>0.5表示Ai是Aj的首选。
而在模糊偏好关系中,偏好值可能不一致,因此,Tanino提出了模糊偏好关系的可加性一致性概念P=(pij)k×k
pir=pij+pjr-0.5
其中pii=0.5和pij+pji=1(1≤i≠j≠r≤k)。
之后,Lee认为完全模糊偏好关系可能不满足在某些情况下顺序的一致性。因此,Lee提出了模糊偏好关系中顺序的一致性来解决这个问题:
设P*=(pij)k×k是一个完全模糊偏好关系,其中pij表示备选Ai对Aj的偏好值,pij+pji=1,pii=0.5(1≤i≠j≤k)。一致性矩阵
Figure BDA0003918734600000073
可以在完全模糊偏好关系P*的基础上构造,其定义为:
Figure BDA0003918734600000081
一致性矩阵
Figure BDA0003918734600000082
有如下性质:
Figure BDA0003918734600000083
Figure BDA0003918734600000084
Figure BDA0003918734600000085
Figure BDA0003918734600000086
对于所有的i∈{1,2,…,k},其中s≠i并且s≠r
Figure BDA0003918734600000087
是一个一致性矩阵,被标记为RV(Ai)的备选Ai的排名值,定义为:
Figure BDA0003918734600000088
其中1≤i≤k,并且
Figure BDA0003918734600000089
除此之外,信念熵又称为Deng熵,并在各个领域得到了应用。Deng熵作为Shannon熵的推广,是测量不确定信息的有效数学工具,因为不确定信息可以用BPA表示,因此可以用于证据理论。在不确定性用概率分布表示的情况下,Deng熵测量的不确定性程度与香农熵测量的不确定性程度相同。
设A为识别e框架上的基本概率分配(Basic probability assignment,BPA)m的一个命题,定义BPA m的邓熵Ed(m)为:
让A表示识别框架Θ上的基本概率分配(BPA)m命题;BPA m的邓熵Ed(m)定义如下:
Figure BDA00039187346000000810
其中,|A|是命题A的基数。
当信念仅分配给单个对象时,即|A|=1,则邓熵退化为香农熵,即:
Figure BDA0003918734600000091
命题的基数越大,证据的邓熵就越大,从而使得证据包含的信息越多。当一个证据有一个大的邓熵时,它应该得到其他证据的更好支持,这表明这个证据在最终的组合中起着重要的作用。
本发明将模糊偏好关系应用于多传感器环境下的故障检测场景,通过证据理论转化为证据冲突问题,具有较好的收敛性,在故障诊断中具有较强的准确性和客观性。
基于上述实施例,所述基于证据距离计算所述故障诊断证据集合中各证据的支持度值,包括:
采用距离测量函数获取各证据对应的基本概率分配值,基于所述基本概率分配值构建距离测度矩阵;
基于所述基本概率分配值,得到相似性测度值;
由所述距离测度矩阵和所述相似性测度值,得到相似性度量矩阵;
对所述相似性度量矩阵进行非对角元素的行求和,得到原始支持度值;
将所述原始支持度值进行标准化,得到所述支持度值。
具体地,首先,距离测量dij之间的BPAs mi(i=1,2,…,k)和mj(j=1,2,…,k)由前式可得;因此,可以构造一个距离测度矩阵DMM=(dij)k×k
Figure BDA0003918734600000092
其次,BPAs mi和mj之间的相似性测度Sij可以通过以下方法得到:
Sij=1-dij,1≤i≤k;1≤j≤k
然后,相似性度量矩阵SMM=(Sij)k×k可以构造为:
Figure BDA0003918734600000101
得到BPAmi的支持度定义如下:
Figure BDA0003918734600000102
最后,BPA mi的支持度被如下公式标准化,并记为
Figure BDA0003918734600000103
Figure BDA0003918734600000104
本发明通过证据距离函数来衡量各证据之间的冲突程度,即可以得到支持度来表示证据的可靠性。
基于上述实施例,所述利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值,包括:
获取所述基本概率分配值的信念熵,将所述信念熵转换为信息量;
将所述信息量进行归一化,得到归一化信息量;
基于所述归一化信息量构建模糊偏好关系矩阵;
由所述模糊偏好关系矩阵构建一致性矩阵;
利用所述一致性矩阵得到所述相对可信度偏好值。
其中,所述基于所述归一化信息量构建模糊偏好关系矩阵,包括:
将所述模糊偏好关系矩阵中对角线元素赋值为0.5;
若确定所述各证据的数量为2,则将所述模糊偏好关系矩阵中非对角线元素赋值为0.5;
若确定所述各证据的数量大于2,则利用所述归一化信息量计算所述模糊偏好关系矩阵中非对角线元素位置对应的熵方差,由所述熵方差确定所述非对角线元素。
其中,所述由所述模糊偏好关系矩阵构建一致性矩阵,包括:
采用可加性一致性对所述模糊偏好关系矩阵进行改造,得到所述一致性矩阵;
其中,所述各证据的备选项排名值通过所述一致性矩阵获得。
具体地,在信息融合过程中,重要的是根据所获得的证据块来识别相对可信的证据。由于信息收集的不确定性的增加,系统所涉及的无规则状态程度上升,这就违反了使用Dempster组合规则的必要条件。利用有序信息可以使基于Dempster-Shafer证据理论的技术更具鲁棒性。因此,利用基于信念熵的模糊偏好关系分析来表示各证据之间的相对可信度偏好。具体步骤如下:
1)BPA mi(i=1,2,…,k)的信念熵由前式计算得到。由于证据的信念熵在某一情况下可能为零,为了避免给这类证据分配零权重,利用信息量IVi来测量BPA mi的不确定性,如下所示:
Figure BDA0003918734600000111
2)BPA mi的信息量归一化如下,记为
Figure BDA0003918734600000112
Figure BDA0003918734600000113
3)模糊偏好关系矩阵P=(pij)k×k,其中pij∈[0,1]可通过以下步骤构造:
对角线元素pii被赋值为0.5;
如果只有两个证据,那么所有的非对角元素pij和pji将被赋值为0.5,因为没有足够的证据来检测这些证据是如何相互偏好的。因此,模糊偏好关系矩阵P=(pij)k×k可以构造为:
Figure BDA0003918734600000114
如果有两个以上的证据,则BPA mi(1<i<k)的熵方差计算如下:
Figure BDA0003918734600000121
Vari值越小,表明该证据在决策系统中的冲突就越大,因此应该给这个证据分配一个小的偏好值,Vari值越大,则该证据在决策系统中的“冲突”越小,因此该证据应被赋予较大的偏好值。在上述熵方差的基础上,计算出非对角元素pij和pji
Figure BDA0003918734600000122
Figure BDA0003918734600000123
其中,1≤i≤k,1≤j≤k.
根据得到的模糊偏好关系矩阵P=(pij)k×k,构造一致性矩阵P。
用一致性矩阵P表示BPA的可信度值mi,定义:
Figure BDA0003918734600000124
可以注意到
Figure BDA0003918734600000125
因此,每条证据的可信度值被视为表明证据相对可信度偏好的权重。
本发明利用证据的相对可信度偏好对每条证据的支持度进行调整,使每条证据产生合适的权重。
基于上述实施例,所述将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果,包括:
将所述支持度值和所述相对可信度偏好值进行相乘,得到归一化支持度;
对所述归一化支持度进行规范化处理,得到基本概率分配值的最终权重;
将所述各证据的最终权重与所述基本概率分配值进行加权求和,得到所述多个证据的组合故障诊断结果。
具体地,将前述两个实施例中得到的支持度值和相对可信度偏好值进行加权融合,具体步骤包括:
基于可信度Crdi,BPA mi的归一化支持度将会调整,记为ASupi
Figure BDA0003918734600000131
ASupi规范化如下,记为
Figure BDA0003918734600000132
作为BPA mi的最终权重:
Figure BDA0003918734600000133
在最终权重
Figure BDA0003918734600000134
的基础上,加权平均证据WAE(m)可得:
Figure BDA0003918734600000135
其中k为BPAs的数量,mi为第i个BPA,它由传感器报告建模。
如果有k条证据,则根据Dempster的组合规则,将加权平均证据WAE(m)进行k-1次组合,最后可以得到多个证据的最终组合结果。
本发明综合了证据距离、信念熵和模糊偏好关系分析,在实际应用中可考虑故障的可信程度并加以计算,在前两个程序的基础上,获得加权平均证据,具有较强的准确性和客观性。
下面对本发明提供的基于模糊偏好关系的故障诊断系统进行描述,下文描述的基于模糊偏好关系的故障诊断系统与上文描述的基于模糊偏好关系的故障诊断方法可相互对应参照。
图3是本发明提供的基于模糊偏好关系的故障诊断系统的结构示意图,如图3所示,包括:生成模块31、第一计算模块32、第二计算模块33和融合模块34,其中:
生成模块31用于基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;第一计算模块32用于基于证据距离计算所述故障诊断证据集合中各证据的支持度值;第二计算模块33用于利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;融合模块34用于将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
本发明将模糊偏好关系应用于多传感器环境下的故障检测场景,通过证据理论转化为证据冲突问题,具有较好的收敛性,在故障诊断中具有较强的准确性和客观性。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行基于模糊偏好关系的故障诊断方法,该方法包括:基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;基于证据距离计算所述故障诊断证据集合中各证据的支持度值;利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的基于模糊偏好关系的故障诊断方法,该方法包括:基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;基于证据距离计算所述故障诊断证据集合中各证据的支持度值;利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的基于模糊偏好关系的故障诊断方法,该方法包括:基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;基于证据距离计算所述故障诊断证据集合中各证据的支持度值;利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种基于模糊偏好关系的故障诊断方法,其特征在于,包括:
基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;
基于证据距离计算所述故障诊断证据集合中各证据的支持度值;
利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;
将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
2.根据权利要求1所述的基于模糊偏好关系的故障诊断方法,其特征在于,所述基于证据距离计算所述故障诊断证据集合中各证据的支持度值,包括:
采用距离测量函数获取各证据对应的基本概率分配值,基于所述基本概率分配值构建距离测度矩阵;
基于所述基本概率分配值,得到相似性测度值;
由所述距离测度矩阵和所述相似性测度值,得到相似性度量矩阵;
对所述相似性度量矩阵进行非对角元素的行求和,得到原始支持度值;
将所述原始支持度值进行标准化,得到所述支持度值。
3.根据权利要求2所述的基于模糊偏好关系的故障诊断方法,其特征在于,所述利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值,包括:
获取所述基本概率分配值的信念熵,将所述信念熵转换为信息量;
将所述信息量进行归一化,得到归一化信息量;
基于所述归一化信息量构建模糊偏好关系矩阵;
由所述模糊偏好关系矩阵构建一致性矩阵;
利用所述一致性矩阵得到所述相对可信度偏好值。
4.根据权利要求3所述的基于模糊偏好关系的故障诊断方法,其特征在于,所述基于所述归一化信息量构建模糊偏好关系矩阵,包括:
将所述模糊偏好关系矩阵中对角线元素赋值为0.5;
若确定所述各证据的数量为2,则将所述模糊偏好关系矩阵中非对角线元素赋值为0.5;
若确定所述各证据的数量大于2,则利用所述归一化信息量计算所述模糊偏好关系矩阵中非对角线元素位置对应的熵方差,由所述熵方差确定所述非对角线元素。
5.根据权利要求3所述的基于模糊偏好关系的故障诊断方法,其特征在于,所述由所述模糊偏好关系矩阵构建一致性矩阵,包括:
采用可加性一致性对所述模糊偏好关系矩阵进行改造,得到所述一致性矩阵;
其中,所述各证据的备选项排名值通过所述一致性矩阵获得。
6.根据权利要求1所述的基于模糊偏好关系的故障诊断方法,其特征在于,所述将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果,包括:
将所述支持度值和所述相对可信度偏好值进行相乘,得到归一化支持度;
对所述归一化支持度进行规范化处理,得到基本概率分配值的最终权重;
将所述各证据的最终权重与所述基本概率分配值进行加权求和,得到所述多个证据的组合故障诊断结果。
7.一种基于模糊偏好关系的故障诊断系统,其特征在于,包括:
生成模块,用于基于故障检测目标、故障检测对象和故障诊断指标集合,生成故障诊断证据集合;
第一计算模块,用于基于证据距离计算所述故障诊断证据集合中各证据的支持度值;
第二计算模块,用于利用基于信念熵的模糊偏好关系,计算得到所述故障诊断证据集合中各证据的相对可信度偏好值;
融合模块,用于将所述支持度值和所述相对可信度偏好值进行加权融合,得到多个证据的组合故障诊断结果。
8.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述基于模糊偏好关系的故障诊断方法。
9.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述基于模糊偏好关系的故障诊断方法。
10.一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述基于模糊偏好关系的故障诊断方法。
CN202211365946.9A 2022-10-31 2022-10-31 一种基于模糊偏好关系的故障诊断方法及系统 Pending CN115759265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211365946.9A CN115759265A (zh) 2022-10-31 2022-10-31 一种基于模糊偏好关系的故障诊断方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211365946.9A CN115759265A (zh) 2022-10-31 2022-10-31 一种基于模糊偏好关系的故障诊断方法及系统

Publications (1)

Publication Number Publication Date
CN115759265A true CN115759265A (zh) 2023-03-07

Family

ID=85356031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211365946.9A Pending CN115759265A (zh) 2022-10-31 2022-10-31 一种基于模糊偏好关系的故障诊断方法及系统

Country Status (1)

Country Link
CN (1) CN115759265A (zh)

Similar Documents

Publication Publication Date Title
US20190180379A1 (en) Life insurance system with fully automated underwriting process for real-time underwriting and risk adjustment, and corresponding method thereof
CN110991474A (zh) 一种机器学习建模平台
CN111931806A (zh) 一种多传感器数据融合的设备故障诊断方法及装置
CN112668164A (zh) 诱导有序加权证据推理的变压器故障诊断方法及系统
CN112633461A (zh) 应用辅助系统和方法以及计算机可读记录介质
CN113487223B (zh) 一种基于信息融合的风险评估方法和评估系统
CN116881718A (zh) 一种基于大数据清洗的人工智能训练方法及系统
CN114819777A (zh) 一种基于数字孪生技术的企业销售业务分析管理系统
WO2019176988A1 (ja) 検査システム、識別システム、及び識別器評価装置
CN110766086B (zh) 基于强化学习模型对多个分类模型进行融合的方法和装置
CN110543417B (zh) 一种对软件测试进行有效性评估的方法及评估装置
CN115759265A (zh) 一种基于模糊偏好关系的故障诊断方法及系统
CN113537407B (zh) 基于机器学习的图像数据评价处理方法及装置
CN113393023B (zh) 模具质量评估方法、装置、设备及存储介质
CN115048290A (zh) 软件质量的评估方法、装置、存储介质及计算机设备
CN111047185B (zh) 贮存环境因素对弹药贮存可靠性影响的确定方法及装置
CN114020971A (zh) 一种异常数据检测方法及装置
JP6950647B2 (ja) データ判定装置、方法、及びプログラム
CN116703622B (zh) 一种车辆损伤鉴定方法及系统
CN116957361B (zh) 一种基于虚实结合的船舶任务系统健康状态检测方法
CN114722061B (zh) 数据处理方法及装置、设备、计算机可读存储介质
US20240185369A1 (en) Biasing machine learning model outputs
Baptista et al. Revision and implementation of metrics to evaluate the performance of prognostics models
CN113779011A (zh) 基于机器学习的数据修复方法、装置及计算机设备
CN117114394A (zh) 一种用于桥梁施工风险D-S证据融合的基于FME构建BPAs的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination