CN115758515A - Tbm隧道不良地质段智能支护决策方法 - Google Patents
Tbm隧道不良地质段智能支护决策方法 Download PDFInfo
- Publication number
- CN115758515A CN115758515A CN202211372982.8A CN202211372982A CN115758515A CN 115758515 A CN115758515 A CN 115758515A CN 202211372982 A CN202211372982 A CN 202211372982A CN 115758515 A CN115758515 A CN 115758515A
- Authority
- CN
- China
- Prior art keywords
- data
- tbm
- rock
- tunnel
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000010276 construction Methods 0.000 claims abstract description 24
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 16
- 230000000694 effects Effects 0.000 claims abstract description 16
- 238000010801 machine learning Methods 0.000 claims abstract description 9
- 239000011435 rock Substances 0.000 claims description 219
- 239000002893 slag Substances 0.000 claims description 103
- 230000008093 supporting effect Effects 0.000 claims description 80
- 230000005641 tunneling Effects 0.000 claims description 30
- 238000012544 monitoring process Methods 0.000 claims description 29
- 238000013528 artificial neural network Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 12
- 238000005303 weighing Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 10
- 238000007621 cluster analysis Methods 0.000 claims description 9
- 230000035515 penetration Effects 0.000 claims description 9
- 238000000513 principal component analysis Methods 0.000 claims description 9
- 238000000611 regression analysis Methods 0.000 claims description 9
- 238000007619 statistical method Methods 0.000 claims description 9
- 238000000547 structure data Methods 0.000 claims description 7
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 229910001294 Reinforcing steel Inorganic materials 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011378 shotcrete Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211372982.8A CN115758515B (zh) | 2022-10-31 | Tbm隧道不良地质段智能支护决策方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211372982.8A CN115758515B (zh) | 2022-10-31 | Tbm隧道不良地质段智能支护决策方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115758515A true CN115758515A (zh) | 2023-03-07 |
CN115758515B CN115758515B (zh) | 2024-10-25 |
Family
ID=
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116817777A (zh) * | 2023-04-21 | 2023-09-29 | 中国铁建昆仑投资集团有限公司 | 基于高精度传感器和Transformer的隧道围岩变形预测方法 |
CN115758515B (zh) * | 2022-10-31 | 2024-10-25 | 盾构及掘进技术国家重点实验室 | Tbm隧道不良地质段智能支护决策方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294079A (ja) * | 1998-04-09 | 1999-10-26 | Shimizu Corp | トンネル掘進方法 |
JP2000345793A (ja) * | 1999-06-07 | 2000-12-12 | Okumura Corp | 岩盤判定システム |
CN109886329A (zh) * | 2019-02-18 | 2019-06-14 | 中国铁建重工集团有限公司 | 围岩破碎等级检测方法、检测系统和掘进设备 |
CN111144635A (zh) * | 2019-12-20 | 2020-05-12 | 山东大学 | 基于深度学习的tbm操作参数决策方法及系统 |
CN111140244A (zh) * | 2020-01-02 | 2020-05-12 | 中铁工程装备集团有限公司 | 一种硬岩掘进机支护等级智能推荐方法 |
CN111997639A (zh) * | 2020-08-22 | 2020-11-27 | 中铁隧道局集团有限公司 | Tbm施工隧道不良地质段卡机脱困及加固改良地质的方法 |
CN113673059A (zh) * | 2021-08-26 | 2021-11-19 | 济南轨道交通集团有限公司 | 基于随机森林和bp神经网络的盾构掘进参数预测方法 |
CN114033407A (zh) * | 2021-11-23 | 2022-02-11 | 中铁隧道局集团有限公司 | 一种不良地质条件下tbm施工方法 |
CN114483043A (zh) * | 2021-12-29 | 2022-05-13 | 淮北矿业股份有限公司 | 一种用于隧道掘进的探测控制系统及其探测方法 |
CN115075837A (zh) * | 2022-05-30 | 2022-09-20 | 中铁隧道局集团有限公司 | 一种敞开式tbm穿越富水破碎带施工方法及系统 |
CN115238343A (zh) * | 2022-07-06 | 2022-10-25 | 广州市第三市政工程有限公司 | 一种基于bim技术的基坑支护智能施工方法 |
CN117910112A (zh) * | 2024-01-24 | 2024-04-19 | 东北大学 | 一种tbm隧道岩爆段支护方案智能设计方法 |
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294079A (ja) * | 1998-04-09 | 1999-10-26 | Shimizu Corp | トンネル掘進方法 |
JP2000345793A (ja) * | 1999-06-07 | 2000-12-12 | Okumura Corp | 岩盤判定システム |
CN109886329A (zh) * | 2019-02-18 | 2019-06-14 | 中国铁建重工集团有限公司 | 围岩破碎等级检测方法、检测系统和掘进设备 |
CN111144635A (zh) * | 2019-12-20 | 2020-05-12 | 山东大学 | 基于深度学习的tbm操作参数决策方法及系统 |
CN111140244A (zh) * | 2020-01-02 | 2020-05-12 | 中铁工程装备集团有限公司 | 一种硬岩掘进机支护等级智能推荐方法 |
CN111997639A (zh) * | 2020-08-22 | 2020-11-27 | 中铁隧道局集团有限公司 | Tbm施工隧道不良地质段卡机脱困及加固改良地质的方法 |
CN113673059A (zh) * | 2021-08-26 | 2021-11-19 | 济南轨道交通集团有限公司 | 基于随机森林和bp神经网络的盾构掘进参数预测方法 |
CN114033407A (zh) * | 2021-11-23 | 2022-02-11 | 中铁隧道局集团有限公司 | 一种不良地质条件下tbm施工方法 |
CN114483043A (zh) * | 2021-12-29 | 2022-05-13 | 淮北矿业股份有限公司 | 一种用于隧道掘进的探测控制系统及其探测方法 |
CN115075837A (zh) * | 2022-05-30 | 2022-09-20 | 中铁隧道局集团有限公司 | 一种敞开式tbm穿越富水破碎带施工方法及系统 |
CN115238343A (zh) * | 2022-07-06 | 2022-10-25 | 广州市第三市政工程有限公司 | 一种基于bim技术的基坑支护智能施工方法 |
CN117910112A (zh) * | 2024-01-24 | 2024-04-19 | 东北大学 | 一种tbm隧道岩爆段支护方案智能设计方法 |
Non-Patent Citations (7)
Title |
---|
XUE-DONG BAI: "A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi’an metro, China", 《ACTA GEOTECHNICA》, vol. 16, 21 October 2021 (2021-10-21), pages 4061 - 4080, XP037630378, DOI: 10.1007/s11440-021-01383-7 * |
宋国新, 杨子荣, 孙祥: "模糊神经网络法在隧洞围岩分类中的应用", 岩土工程技术, no. 05, 8 October 2004 (2004-10-08) * |
屈俊涛;李辉;: "浅论系统因素与矿山安全管理", 西部探矿工程, no. 12, 15 December 2011 (2011-12-15) * |
段志伟;杜立杰;吕海明;王家海;刘海东;富勇明;: "基于主成分分析与BP神经网络的TBM围岩可掘性分级实时识别方法研究", 隧道建设(中英文), no. 03, 31 December 2020 (2020-12-31) * |
洪开荣: "中国全断面隧道掘进机发展历程、成就及展望", 隧道建设, vol. 42, no. 5, 31 May 2022 (2022-05-31) * |
潘秋景: "机器学习在盾构隧道智能施工中的应用--综述与展望", 隧道与地下工程灾害防治, vol. 4, no. 3, 20 September 2022 (2022-09-20) * |
陈冠宇;安凯;李向;: "基于卷积神经网络的不良地质体识别与分类", 地质科技情报, no. 01, 15 January 2016 (2016-01-15) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115758515B (zh) * | 2022-10-31 | 2024-10-25 | 盾构及掘进技术国家重点实验室 | Tbm隧道不良地质段智能支护决策方法 |
CN116817777A (zh) * | 2023-04-21 | 2023-09-29 | 中国铁建昆仑投资集团有限公司 | 基于高精度传感器和Transformer的隧道围岩变形预测方法 |
CN116817777B (zh) * | 2023-04-21 | 2024-06-11 | 中国铁建昆仑投资集团有限公司 | 基于高精度传感器和Transformer的隧道围岩变形预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Real-time analysis and regulation of EPB shield steering using Random Forest | |
Li et al. | Application and outlook of information and intelligence technology for safe and efficient TBM construction | |
CN113779690B (zh) | 基于随钻感知的超前地质预报方法及系统 | |
CN106778010B (zh) | 基于数据驱动支持向量回归机的tbm刀具寿命预测方法 | |
CN106248672B (zh) | 一种基于dic技术的现场孔内岩体裂纹扩展模式识别方法及系统 | |
CN109597124B (zh) | 一种工作面应力集中区槽波地震精细探测方法 | |
Li et al. | Application of an interval wear analysis method to cutting tools used in tunneling shields in soft ground | |
Wang et al. | An ultrasonic-based method for longwall top-coal cavability assessment | |
CN114417697A (zh) | 一种基于神经网络的tbm滚刀磨损实时预测方法及系统 | |
Ji et al. | Modified Q-index for prediction of rock mass quality around a tunnel excavated with a tunnel boring machine (TBM) | |
CN115239108B (zh) | 一种基于tbm实时破岩数据的软弱破碎围岩感知方法 | |
CN111077583B (zh) | 构造活化双参数监测系统及监测方法 | |
CN111946397B (zh) | 一种现场评价掘进机掌子面岩土体完整性的快速方法 | |
Kim et al. | Investigation of geological conditions beyond the excavation face using a MSP boring data monitoring system | |
CN110107274B (zh) | 基于液压系统的tbm锚杆钻机实时在线监测系统及监测方法 | |
CN115758515A (zh) | Tbm隧道不良地质段智能支护决策方法 | |
CN116663405A (zh) | 一种围岩破裂程度fdi定量评价方法 | |
CN115758515B (zh) | Tbm隧道不良地质段智能支护决策方法 | |
CN105698853B (zh) | 一种工作面回采期间围岩锚注支护效果的检测方法 | |
Schubert et al. | The guideline for the geomechanical design of underground structures with conventional excavation. | |
Schubert et al. | Excavation and support determination for the design and construction of tunnels | |
CN114066271A (zh) | 一种隧道突水灾害监测管理系统 | |
Xue et al. | Adverse geological conditions prediction and early warning in TBM tunneling using big data | |
CN111552008A (zh) | 一种煤矿井下地质构造钻孔精细化全方位探测方法 | |
Gangrade et al. | Investigating seismicity surrounding an excavation boundary in a highly stressed dipping underground limestone mine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 99, Kexue Avenue, national high tech Industrial Development Zone, Zhengzhou, Henan Province Applicant after: STATE KEY LABORATORY OF SHIELD MACHINE AND BORING TECHNOLOGY Applicant after: CHINA RAILWAY TUNNEL GROUP Co.,Ltd. Applicant after: CHINA RAILWAY TUNNEL STOCK Co.,Ltd. Address before: 511400 No. 2, West Side of Industrial Fourth Road, Mingzhuwan Starting Zone, Nansha District, Guangzhou City, Guangdong Province Applicant before: CHINA RAILWAY TUNNEL GROUP Co.,Ltd. Country or region before: China Applicant before: STATE KEY LABORATORY OF SHIELD MACHINE AND BORING TECHNOLOGY Applicant before: CHINA RAILWAY TUNNEL STOCK Co.,Ltd. |
|
GR01 | Patent grant |