CN115756925B - 一种基于智能优化算法的车载网络故障诊断方法 - Google Patents

一种基于智能优化算法的车载网络故障诊断方法 Download PDF

Info

Publication number
CN115756925B
CN115756925B CN202211449952.2A CN202211449952A CN115756925B CN 115756925 B CN115756925 B CN 115756925B CN 202211449952 A CN202211449952 A CN 202211449952A CN 115756925 B CN115756925 B CN 115756925B
Authority
CN
China
Prior art keywords
wuyangull
optimal
fault diagnosis
vehicle
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211449952.2A
Other languages
English (en)
Other versions
CN115756925A (zh
Inventor
陈克伟
袁东
尚颖辉
张嘉曦
石海滨
金东阳
李晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces of PLA
Original Assignee
Academy of Armored Forces of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces of PLA filed Critical Academy of Armored Forces of PLA
Priority to CN202211449952.2A priority Critical patent/CN115756925B/zh
Publication of CN115756925A publication Critical patent/CN115756925A/zh
Application granted granted Critical
Publication of CN115756925B publication Critical patent/CN115756925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种基于智能优化算法的车载网络故障诊断方法,包括以下步骤:提取故障特征;确定目标函数;基于乌燕鸥算法,通过高斯映射初始化乌燕鸥种群位置,即初始化每个乌燕鸥的惩罚因子C和核函数参数g,并根据目标函数,计算最优适应度值和最优乌燕鸥位置;引入交流学习机制,改进原乌燕鸥算法的位置更新方式,并进行位置更新;对最优乌燕鸥位置进行双向sine变异;根据预设的最大迭代次数依次更新最优乌燕鸥位置,确定最优乌燕鸥位置,即获得对应最优的惩罚因子C和核函数参数g;构建车载网络故障诊断模型,获得故障诊断结果和测试准确率。该方法克服了乌燕鸥优化算法存在的几点不足,能够显著提升车载网络故障诊断故障诊断的效果。

Description

一种基于智能优化算法的车载网络故障诊断方法
技术领域
本发明涉及故障诊断技术领域,具体涉及一种基于智能优化算法的车载网络故障诊断方法。
背景技术
车载网络是将车辆平台内的子系统、设备、模块和部件连接起来的纽带,它是实现车辆综合电子系统的一项核心支撑技术,被认为是车辆平台的“中枢神经”。但是,现行的车载网络故障诊断仍旧大多依赖人工经验排查,往往难以有效诊断出故障原因。在车载网络中,不同的故障类型和故障位置往往导致不同程度的网络物理层波形信号畸变;而波形信号的畸变又将直接导致网络误码和丢包,影响车辆网络化控制系统的控制性能。因此,基于网络物理层波形提取的网络状态特征,并结合网络链路层数据构建特征向量,可以有效表征各类故障模式,从而将车载网络的故障诊断转变为模式识别问题。
支持向量机(Support vector machine,SVM)作为机器学习的研究内容之一,在网络故障诊断等领域中运用非常广泛的一种识别方法。例如,董超等人基于物理层信号提出一种基于支持向量机的MAC协议识别方法(董超,王蔚峻,李艾静,于卫波,王海.基于支持向量机的MAC协议识别方法[P].江苏省:CN107231427B,2020-04-07.);王立德等人将SVM引入列车通信网络实时状态感知与故障诊断中,构建列车通信网络诊断模型,有效的实现列车通信网络的故障诊断(王立德;申萍;聂晓波;李召召;杜晓敏;宋辉.一种基于机器学习的列车通信网络故障诊断方法[P].北京市:CN111988192A,2020-11-24.);向诗晗等人提出采用鸽群算法训练优化SVM模型,进而实现网络故障诊断(向诗晗;徐萍;石才;张旭;胡翔;张磊;余军;彭先军.基于鸽群算法优化支持向量机的网络故障预测方法及系统[P].湖北省:CN109391515A,2019-02-26.)。
在SVM训练过程中,SVM的惩罚因子C和RBF核函数参数g的选择质量,直接影响最终的故障诊断结果。智能优化算法是一种有效SVM模型参数优化方法。乌燕鸥优化算法(Sootytern optimization algorithm,STOA)是一种模拟乌燕鸥觅食行为的新型智能优化算法,同样可以应用于车载网络故障诊断问题。但是,乌燕鸥优化算法存仍然存在有一些缺陷,使得算法容易陷入局部最优和收敛精度不高,在进行网络故障诊断时,往往达不到理想的故障诊断效果。
发明内容
为解决上述问题,本发明提供一种基于智能优化算法的车载网络故障诊断方法,克服了乌燕鸥优化算法存在的几点不足,能够显著提升车载网络故障诊断故障诊断的效果。
为实现上述目的,本发明提供了如下的技术方案。
一种基于智能优化算法的车载网络故障诊断方法,包括以下步骤:
提取待诊断的车载网络故障原始数据中的故障特征;
将5折交叉验证SVM的分类准确率作为目标函数,并确定惩罚因子C和RBF核函数参数g的上下限;
基于乌燕鸥算法,通过高斯映射初始化乌燕鸥种群位置,即初始化每个乌燕鸥对应的惩罚因子C和核函数参数g,并根据目标函数,计算最优适应度值和最优乌燕鸥位置;
引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置,以改进原乌燕鸥算法的位置更新方式;
对最优乌燕鸥位置进行双向sine变异,将变异前后适应度值最优的乌燕鸥位置,作为更新后的最优乌燕鸥位置;
根据预设的最大迭代次数依次更新最优乌燕鸥位置,确定最优乌燕鸥位置,即获得对应最优的惩罚因子C和核函数参数g;将最优的惩罚因子C和核函数参数g作为SVM模型参数构建车载网络故障诊断模型;
将车载网络故障诊断的特征向量,输入到训练后的车载网络故障诊断模型,获得故障诊断结果。
优选地,所述通过高斯映射初始化乌燕鸥种群位置,包括以下步骤:
确定种群的大小N,乌燕鸥寻优下边界LB和乌燕鸥寻优上边界UB;
通过高斯映射产生随机数xt
式中,mod(·)为求余函数,xt+1为下一个随机数;
利用产生的高斯随机数初始化乌燕鸥位置:
Ps(t)=(UB-LB)×xt+LB。
优选地,所述引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置,包括以下步骤:
冲突避免:模拟乌燕鸥的冲突避免行为过程,用如下公式表达:
Cs(t)=SA×Ps(t)
式中:Ps(t)表示当前第t次迭代的乌燕鸥的位置;Cs(t)表示的是在不与其他乌燕鸥碰撞的情况下乌燕鸥的新位置;SA代表一个避免碰撞的变量因素,用来计算避免碰撞后的位置,它的约束条件公式如下:
SA=Cf-(t×Cf/Miter)
式中:Cf为用来调整SA的控制变量;t表示当前迭代次数;SA随着迭代次数的增加,从Cf逐渐减小为0;如假设Cf为2,SA将从2逐渐减小为0;Miter为迭代次数;
聚集:聚集是指当前乌燕鸥在避免冲突的前提下向相邻乌燕鸥中最好的位置靠拢,也就是向最优位置靠拢,其数学表达式如下:
Ms(t)=CB×(Pbs(t)-Ps(t))
式中:Pbs(t)是第t次迭代乌燕鸥的最优位置;Ms(t)表示在不同位置Ps(t)向最优位置Pbs(t)移动的过程;CB是一个使勘探更加全面的随机变量,按照以下公式变化:
CB=0.5×rand
式中:rand是[0,1]范围内的随机数;
更新:更新是指当前乌燕鸥朝着最优位置的所在方向进行移动,更新位置,其数学表达式为:
Ds(t)=Cs(t)+Ms(t)
式中:Ds(t)是乌燕鸥从当前位置向最优位置方向移动的距离;
攻击行为:在迁移过程中,乌燕鸥可以通过翅膀提高飞行高度,也可以调整自身的速度和攻击角度,在攻击猎物的时候,它们在空中的盘旋行为可定义为以下数学模型:
式中:r是每个螺旋的半径;θ是[0,2π]范围内的随机角度值;u和v是定义螺旋形状的相关常数,均可设定为1;e是自然对数的底数;
引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置:
其中,r1和r2为随机学习权重能够调节乌燕鸥的向最优乌燕鸥学习和种群内部其他乌燕鸥学习的影响,总和为1;Pbs(t)表示第t次迭代的最佳位置;Pk(t)表示从乌燕鸥种群内部挑选的其他乌燕鸥,k为[1,N]范围内的数;
引入饥饿值概念,为整个种群的每个乌燕鸥都分配一个饥饿值Ss(t),其代表乌燕鸥的生存能力,即获取食物的能力;饥饿值的数学定义如下:
其中,f(·)为计算适应度值时的适应度函数;fbs和fws分别代表适应度函数的最佳值和最差值;饥饿值越低的乌燕鸥为最容易获取食物的能力就越强;
当饥饿值大于0.3时,乌燕鸥的更新公式如下:
Ps(t+1)=Pbs(t)+α×(Ds(t)×(x+y+z))×Ph(t)+β(Pq(t)-Ps(t))
式中:α和β为0到1之间的随机数;h和q为[1,N]范围内的数;Ph(t)和Pq(t)为第h和q个乌燕鸥的位置,r1≠r2
计算适应度值:
fitness(t)=Ff(Ps(t+1))
式中,Ff(·)为计算适应度值时的适应度函数;
记录当次迭代中最优乌燕鸥。
优选地,所述对最优乌燕鸥位置进行双向sine变异,包括以下步骤:
对于维度j,根据当前迭代次数计算sine混沌值,并等概率切换正负方向:
sin Value=sin(πx0)
式中,rand为0到1的随机数;x0为迭代序列值;
对最优位置进行变异扰动:
Pbs(j)(t+1)′=Pbs(j)(t+1)+SinValue×Pbs(j)(t+1)
式中:Pbs(j)(t+1)表示第t+1次迭代的最优位置Pbs(t+1)的第j维;
贪婪更新:
每个维度都进行变异后,停止变异。
本发明的有益效果:
本发明提出一种基于智能优化算法的车载网络故障诊断方法,该方法通过引入高斯映射进行乌燕鸥种群位置的初始化,可以提升种群位置分布的均匀性和多样性,进而算法的稳定性得以增强;该方法对乌燕鸥的位置更新方式进行了改进,乌燕鸥向最优乌燕鸥学习的同时,引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置,实现了算法搜索范围的增大,算法的适应性得以增强。该方法对最优乌燕鸥利用双向sine混沌映射变异,实现了算法在后期跳出局部最优解的能力。
附图说明
图1是本发明实施例的一种基于智能优化算法的车载网络故障诊断方法的流程图;
图2是本发明实施例的一种基于智能优化算法的车载网络故障诊断方法的实验平台示意图;
图3是本发明实施例的一种基于智能优化算法的车载网络故障诊断方法的诊断结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本发明的一种基于智能优化算法的车载网络故障诊断方法,针对STOA存在的几个问题,提出改进型乌燕鸥优化算法(Improve Sooty tern optimization algorithm,ISTOA)优化SVM并用于车载网络的故障诊断,基于智能优化算法的车载网络故障诊断方法的流程如图1所示,具体步骤如下:
S1:对车载网络故障的原始数据进行故障特征提取,得到车载网络故障诊断的特征向量,构建车载网络故障诊断的数据集,将数据集分为训练数据集和测试数据集。
S2:建立基于改进型乌燕鸥优化算法优化SVM的车载网络故障诊断的目标函数funtion。因为是利用训练数据集计算SVM的分类准确率,所以可以将训练数据集的5折交叉验证SVM的分类准确率作为目标函数,并确定SVM模型的惩罚因子C和RBF核函数参数g的上下限。
S3:参数设置。乌燕鸥种群的大小(即乌燕鸥个体的数量)N;迭代的最大次数(即迭代停止的条件)Miter;乌燕鸥寻优下边界LB;乌燕鸥寻优上边界UB。
S4:确定种群的大小N,乌燕鸥寻优下边界LB和乌燕鸥寻优上边界UB;引入高斯映射初始化乌燕鸥种群位置,包括以下步骤:
确定种群的大小N,乌燕鸥寻优下边界LB和乌燕鸥寻优上边界UB;
通过高斯映射产生随机数xt
式中,mod(·)为求余函数,xt+1为下一个随机数;
利用产生的高斯随机数初始化乌燕鸥位置:
Ps(t)=(UB-LB)×xt+LB。
S5:冲突避免:模拟乌燕鸥的冲突避免行为过程,用如下公式表达:
Cs(t)=SA×Ps(t)
式中:Ps(t)表示当前第t次迭代的乌燕鸥的位置;Cs(t)表示的是在不与其他乌燕鸥碰撞的情况下乌燕鸥的新位置;SA代表一个避免碰撞的变量因素,用来计算避免碰撞后的位置,它的约束条件公式如下:
SA=Cf-(t×Cf/Miter)
式中:Cf为用来调整SA的控制变量;t表示当前迭代次数;SA随着迭代次数的增加,从Cf逐渐减小为0;如假设Cf为2,SA将从2逐渐减小为0;Miter为迭代次数;
聚集:聚集是指当前乌燕鸥在避免冲突的前提下向相邻乌燕鸥中最好的位置靠拢,也就是向最优位置靠拢,其数学表达式如下:
Ms(t)=CB×(Pbs(t)-Ps(t))
式中:Pbs(t)是第t次迭代乌燕鸥的最优位置;Ms(t)表示在不同位置Ps(t)向最优位置Pbs(t)移动的过程;CB是一个使勘探更加全面的随机变量,按照以下公式变化:
CB=0.5×rand
式中:rand是[0,1]范围内的随机数;
更新:更新是指当前乌燕鸥朝着最优位置的所在方向进行移动,更新位置,其数学表达式为:
Ds(t)=Cs(t)+Ms(t)
式中:Ds(t)是乌燕鸥从当前位置向最优位置方向移动的距离;
攻击行为:在迁移过程中,乌燕鸥可以通过翅膀提高飞行高度,也可以调整自身的速度和攻击角度,在攻击猎物的时候,它们在空中的盘旋行为可定义为以下数学模型:
式中:r是每个螺旋的半径;θ是[0,2π]范围内的随机角度值;u和v是定义螺旋形状的相关常数,均可设定为1;e是自然对数的底数;
原始乌燕鸥算法中,只利用全局最优乌燕鸥位置进行引导,来更新乌燕鸥位置,为了更加有效的提高乌燕鸥的全局搜索能力,乌燕鸥向最优乌燕鸥学习的同时,引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置:
其中,r1和r2为随机学习权重能够调节乌燕鸥的向最优乌燕鸥学习和种群内部其他乌燕鸥学习的影响,总和为1;Pbs(t)表示第t次迭代的最佳位置;Pk(t)表示从乌燕鸥种群内部挑选的其他乌燕鸥,k为[1,N]范围内的数;
引入饥饿值概念,为整个种群的每个乌燕鸥都分配一个饥饿值Ss(t),其代表乌燕鸥的生存能力,即获取食物的能力;饥饿值的数学定义如下:
其中,f(·)为计算适应度值时的适应度函数;fbs和fws分别代表适应度函数的最佳值和最差值;饥饿值越低的乌燕鸥为最容易获取食物的能力就越强;
当饥饿值大于0.3时,乌燕鸥的更新公式如下:
Ps(t+1)=Pbs(t)+α×(Ds(t)×(x+y+z))×Ph(t)+β(Pq(t)-Ps(t))
式中:α和β为0到1之间的随机数;h和q为[1,N]范围内的数;Ph(t)和Pq(t)为第h和q个乌燕鸥的位置,r1≠r2
S6:计算适应度值:
fitness(t)=Ff(Ps(t+1))
式中,Ff(·)为计算适应度值时的适应度函数。
S7:记录信息,记录当次迭代中最优乌燕鸥。
S8:对最优乌燕鸥,进行逐维度双向sine变异。对于维度j,首先根据当前迭代次数计算sine混沌值、并等概率切换正负方向:
sin V alue=sin(πx0)
式中,rand为0到1的随机数;x0为迭代序列值;
对最优位置进行变异扰动:
Pbs(j)(t+1)′=Pbs(j)(t+1)+SinValue×Pbs(j)(t+1)
式中:Pbs(j)(t+1)表示第t+1次迭代的最优位置Pbs(t+1)的第j维;
贪婪更新:
每个维度都进行变异后,停止变异。
S9:记录信息,记录当次迭代中最优乌燕鸥。
S10:重复执行S6~S9,根据预设的最大迭代次数依次更新最优乌燕鸥位置,确定最优乌燕鸥位置,即得到SVM的最优参数。
S11:将最优的惩罚因子C和核函数参数g作为SVM模型参数构建车载网络故障诊断模型;将车载网络故障诊断的特征向量,输入到训练后的车载网络故障诊断模型,获得故障诊断结果和测试准确率。
本实施例中:
如图2所示为车载网络实验平台,该平台采用双总线拓扑结构,总线末端接端接器以防止阻抗不匹配而发生发射现象,网络上分别挂接车载网络协议分析仪1台、车载网络故障注入设备1台、网络节点6个等。在验证实验中,平台模拟车载网络6种典型状态,分别是:(1)网络正常;(2)网络断路;(3)近端端接故障;(4)远端端接故障;(5)双侧端接故障;(6)间歇性断路。
采集车载网络每种状态2000组样本,并随机将其中1600组作为训练样本,剩余400组为测试样本。分别采用STOA-SVM和ISTOA-SVM对车载网络进行故障诊断。STOA算法中的参数为:N=50,Maxiter=200,C和g的搜索范围均是在0-100之间,即LB=0,UB=100;ISTOA算法中的参数为:N=50,Maxiter=200,C和g的搜索范围均是在0-100之间,即LB=0,UB=100。
如图3所示,与STOA-SVM比较,ISTOA-SVM对车载网络的6种状态的独立诊断精度均要高些;对于平均诊断精度,ISTOA-SVM相比于STOA-SVM提高了6.27%。也就是说,ISTOA搜索得到的SVM参数要优于STOA搜索得到的SVM参数。仿真结果表明,ISTOA算法比STOA算法搜索能力更强,ISTOA-SVM比STOA-SVM的诊断精确度更高,验证了方法的有效性。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种基于智能优化算法的车载网络故障诊断方法,其特征在于,包括以下步骤:
提取待诊断的车载网络故障原始数据中的故障特征;
将5折交叉验证SVM的分类准确率作为目标函数,并确定惩罚因子C和RBF核函数参数g的上下限;
基于乌燕鸥算法,通过高斯映射初始化乌燕鸥种群位置,即初始化每个乌燕鸥对应的惩罚因子C和RBF核函数参数g,并根据目标函数,计算最优适应度值和最优乌燕鸥位置;
引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置,以改进原乌燕鸥算法的位置更新方式;
对最优乌燕鸥位置进行双向sine变异,将变异前后适应度值最优的乌燕鸥位置,作为更新后的最优乌燕鸥位置;
根据预设的最大迭代次数依次更新最优乌燕鸥位置,确定最优乌燕鸥位置,即获得对应最优的惩罚因子C和RBF核函数参数g;将最优的惩罚因子C和RBF核函数参数g作为SVM模型参数构建车载网络故障诊断模型;
将用于车载网络故障诊断的特征向量,输入到训练后的车载网络故障诊断模型,获得故障诊断结果;
所述引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置,包括以下步骤:
冲突避免:模拟乌燕鸥的冲突避免行为过程,用如下公式表达:
Cs(t)=SA×Ps(t)
式中:Ps(t)表示当前第t次迭代的乌燕鸥的位置;Cs(t)表示的是在不与其他乌燕鸥碰撞的情况下乌燕鸥的新位置;SA代表一个避免碰撞的变量因素,用来计算避免碰撞后的位置,它的约束条件公式如下:
SA=Cf-(t×Cf/Miter)
式中:Cf为用来调整SA的控制变量;t表示当前迭代次数;SA随着迭代次数的增加,从Cf逐渐减小为0;假设Cf为2,SA将从2逐渐减小为0;Miter为迭代次数;
聚集:聚集是指当前乌燕鸥在避免冲突的前提下向相邻乌燕鸥中最好的位置靠拢,也就是向最优位置靠拢,其数学表达式如下:
Ms(t)=CB×(Pbs(t)-Ps(t))
式中:Pbs(t)是第t次迭代乌燕鸥的最优位置;Ms(t)表示在不同位置Ps(t)向最优位置Pbs(t)移动的过程;CB是一个使勘探更加全面的随机变量,按照以下公式变化:
CB=0.5×rand
式中:rand为0到1的随机数;
更新:更新是指当前乌燕鸥朝着最优位置的所在方向进行移动,更新位置,其数学表达式为:
Ds(t)=Cs(t)+Ms(t)
式中:Ds(t)是乌燕鸥从当前位置向最优位置方向移动的距离;
攻击行为:在迁移过程中,乌燕鸥通过翅膀提高飞行高度,调整自身的速度和攻击角度,在攻击猎物的时候,它们在空中的盘旋行为定义为以下数学模型:
式中:r是每个螺旋的半径;θ是[0,2π]范围内的随机角度值;u和v是定义螺旋形状的相关常数,均设定为1;e是自然对数的底数;
引入交流学习机制,与种群内部的其他乌燕鸥进行交流学习来更新自身的位置:
其中,r1和r2为随机学习权重,能够调节乌燕鸥的向最优乌燕鸥学习和种群内部其他乌燕鸥学习的影响,总和为1,r1≠r2;Pk(t)表示从乌燕鸥种群内部挑选的其他乌燕鸥,k为[1,N]范围内的数,N为种群的大小;
引入饥饿值概念,为整个种群的每个乌燕鸥都分配一个饥饿值Ss(t),其代表乌燕鸥的生存能力,即获取食物的能力;饥饿值的数学定义如下:
其中,Ff(·)为计算适应度值时的适应度函数;fbs和fws分别代表适应度函数的最佳值和最差值;饥饿值越低的乌燕鸥获取食物的能力越强;
当饥饿值大于0.3时,乌燕鸥的更新公式如下:
Ps(t+1)=Pbs(t)+α×(Ds(t)×(x+y+z))×Ph(t)+β(Pq(t)-Ps(t))
式中:α和β为0到1之间的随机数;h和q为[1,N]范围内的数;Ph(t)和Pq(t)为第h和q个乌燕鸥的位置;
计算适应度值:
fiteness(t)=Ff(Ps(t+1))
记录当次迭代中最优乌燕鸥;
所述对最优乌燕鸥位置进行双向sine变异,包括以下步骤:
对于维度j,根据当前迭代次数计算sine混沌值,并等概率切换正负方向:
sin Value=sin(πx0)
式中,rand为0到1的随机数;x0为迭代序列值;
对最优位置进行变异扰动:
Pbs(j)(t+1)′=Pbs(j)(t+1)+SinValue×Pbs(j)(t+1)
式中:Pbs(j)(t+1)表示第t+1次迭代的最优位置Pbs(t+1)的第j维;
贪婪更新:
式中,每个维度都进行变异后,停止变异。
2.根据权利要求1所述的基于智能优化算法的车载网络故障诊断方法,其特征在于,所述通过高斯映射初始化乌燕鸥种群位置,包括以下步骤:
确定种群的大小N,乌燕鸥寻优下边界LB和乌燕鸥寻优上边界UB;
通过高斯映射产生下一个随机数xt+1
式中,mod(·)为求余函数,xt为当前随机数;
利用产生的高斯随机数初始化乌燕鸥位置:
Ps(t)=(UB-LB)×xt+LB。
CN202211449952.2A 2022-11-19 2022-11-19 一种基于智能优化算法的车载网络故障诊断方法 Active CN115756925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211449952.2A CN115756925B (zh) 2022-11-19 2022-11-19 一种基于智能优化算法的车载网络故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211449952.2A CN115756925B (zh) 2022-11-19 2022-11-19 一种基于智能优化算法的车载网络故障诊断方法

Publications (2)

Publication Number Publication Date
CN115756925A CN115756925A (zh) 2023-03-07
CN115756925B true CN115756925B (zh) 2024-01-19

Family

ID=85373725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211449952.2A Active CN115756925B (zh) 2022-11-19 2022-11-19 一种基于智能优化算法的车载网络故障诊断方法

Country Status (1)

Country Link
CN (1) CN115756925B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116542006B (zh) * 2023-07-07 2024-06-18 中国人民解放军陆军装甲兵学院 一种车载电源系统拓扑结构设计方法
CN117021977B (zh) * 2023-10-10 2024-01-09 中国人民解放军陆军装甲兵学院 一种多轮独立电驱动车辆驱动力集成控制策略生成方法
CN117688886B (zh) * 2024-02-02 2024-04-30 中国人民解放军陆军装甲兵学院 一种无线电能传输系统补偿电路参数优化方法
CN118013863B (zh) * 2024-04-09 2024-06-25 山东工商学院 基于改进燕隼捕食算法的封闭母线温度故障监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867369A (zh) * 2021-12-03 2021-12-31 中国人民解放军陆军装甲兵学院 一种基于交流学习的海鸥算法的机器人路径规划方法
CN113867368A (zh) * 2021-12-03 2021-12-31 中国人民解放军陆军装甲兵学院 一种基于改进海鸥算法的机器人路径规划方法
CN114926023A (zh) * 2022-05-19 2022-08-19 燕山大学 一种基于改进海鸥优化算法的柔性作业车间调度方法
CN115204316A (zh) * 2022-09-07 2022-10-18 中国人民解放军陆军装甲兵学院 一种基于支持向量机的车载网络故障诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867369A (zh) * 2021-12-03 2021-12-31 中国人民解放军陆军装甲兵学院 一种基于交流学习的海鸥算法的机器人路径规划方法
CN113867368A (zh) * 2021-12-03 2021-12-31 中国人民解放军陆军装甲兵学院 一种基于改进海鸥算法的机器人路径规划方法
CN114926023A (zh) * 2022-05-19 2022-08-19 燕山大学 一种基于改进海鸥优化算法的柔性作业车间调度方法
CN115204316A (zh) * 2022-09-07 2022-10-18 中国人民解放军陆军装甲兵学院 一种基于支持向量机的车载网络故障诊断方法

Also Published As

Publication number Publication date
CN115756925A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN115756925B (zh) 一种基于智能优化算法的车载网络故障诊断方法
CN115660024B (zh) 基于智能优化算法和机器学习的车载网络故障诊断方法
CN115700593B (zh) 一种基于机器学习的车载网络故障诊断方法
CN111767405B (zh) 文本分类模型的训练方法、装置、设备及存储介质
CN108304936B (zh) 机器学习模型训练方法和装置、表情图像分类方法和装置
CN109067773B (zh) 一种基于神经网络的车载can网络入侵检测方法及系统
CN115204316A (zh) 一种基于支持向量机的车载网络故障诊断方法
CN111310915A (zh) 一种面向强化学习的数据异常检测防御方法
US11967850B2 (en) Systems and methods of applying artificial intelligence to battery technology
CN112434171A (zh) 一种基于强化学习的知识图谱推理补全方法及系统
CN112329837B (zh) 一种对抗样本检测方法、装置、电子设备及介质
CN114170789A (zh) 基于时空图神经网络的智能网联车换道决策建模方法
CN115730637A (zh) 多模态车辆轨迹预测模型训练方法、装置及轨迹预测方法
CN112800682A (zh) 一种反馈寻优的风机叶片故障监测方法
CN111680642A (zh) 一种地形分类方法及装置
CN115545120A (zh) 车载网络故障诊断方法和诊断装置、存储介质、终端设备
CN110456217A (zh) 一种基于wpd-foa-lssvm双模型的mmc故障定位方法
CN111368648B (zh) 雷达辐射源个体识别方法、装置、电子设备及其存储介质
CN114021458B (zh) 基于并行原型网络的小样本雷达辐射源信号识别方法
CN112668698A (zh) 一种神经网络的训练方法及系统
CN114325245B (zh) 基于行波数据深度学习的输电线路故障选线与定位方法
CN115640823A (zh) 一种基于智能优化算法的网络安全态势预测方法
CN111460367B (zh) 一种基于s变换/wgan解决输卤管道泄漏数据不平衡的算法
CN112749508A (zh) 一种基于gmm和bp神经网络的路感模拟方法
CN109376652A (zh) 基于人工免疫粒子群聚类算法的特高压并联电抗器故障诊断方法、装置及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant