CN115746404B - Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material - Google Patents
Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material Download PDFInfo
- Publication number
- CN115746404B CN115746404B CN202211432805.4A CN202211432805A CN115746404B CN 115746404 B CN115746404 B CN 115746404B CN 202211432805 A CN202211432805 A CN 202211432805A CN 115746404 B CN115746404 B CN 115746404B
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- hexagonal boron
- epoxy
- composite material
- nanosheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 89
- 239000004593 Epoxy Substances 0.000 title claims abstract description 54
- 239000002131 composite material Substances 0.000 title claims abstract description 47
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 28
- 238000002715 modification method Methods 0.000 title claims abstract description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 18
- 238000000498 ball milling Methods 0.000 claims abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims abstract description 12
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 10
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 9
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 7
- 238000003828 vacuum filtration Methods 0.000 claims abstract description 7
- 238000000967 suction filtration Methods 0.000 claims abstract description 4
- 238000012546 transfer Methods 0.000 claims abstract description 4
- 238000001132 ultrasonic dispersion Methods 0.000 claims abstract description 4
- 238000001291 vacuum drying Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 44
- 239000011259 mixed solution Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 14
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- 239000003822 epoxy resin Substances 0.000 claims description 11
- 229920000647 polyepoxide Polymers 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 235000006408 oxalic acid Nutrition 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 235000011054 acetic acid Nutrition 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 235000015165 citric acid Nutrition 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 235000011007 phosphoric acid Nutrition 0.000 claims description 2
- 150000008065 acid anhydrides Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 50
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 5
- 239000000945 filler Substances 0.000 description 4
- 239000011858 nanopowder Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 150000008064 anhydrides Chemical group 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
Landscapes
- Epoxy Resins (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及表面改性六方氮化硼纳米片及其改性方法、环氧复合材料,其中的改性方法包括:(1)将六方氮化硼粉末加入到含环氧基的硅烷偶联剂的均相水溶液中,超声分散,得到六方氮化硼分散液并调节pH至0~6;(2)将步骤(1)得到的分散液转移至球磨罐中,在100~2000rpm下球磨1~48h,球磨之后进行真空抽滤,将抽滤所得粉末干燥,得到表面环氧基功能化的六方氮化硼纳米片;(3)将步骤(2)得到的六方氮化硼纳米片加入到支化聚乙烯亚胺的水溶液中,超声分散后在0~80℃下反应1~48h,接着真空抽滤和干燥,得到表面改性六方氮化硼纳米片。本发明的表面改性六方氮化硼纳米片显著提高环氧复合材料的导热与力学性能。
The invention relates to surface-modified hexagonal boron nitride nanosheets and modification methods thereof, and epoxy composite materials. The modification method includes: (1) adding hexagonal boron nitride powder to an epoxy group-containing silane coupling agent In a homogeneous aqueous solution, disperse it ultrasonically to obtain a hexagonal boron nitride dispersion and adjust the pH to 0 to 6; (2) Transfer the dispersion obtained in step (1) to a ball mill tank, and ball mill at 100 to 2000 rpm for 1 to 48h, perform vacuum filtration after ball milling, and dry the powder obtained by suction filtration to obtain surface epoxy functionalized hexagonal boron nitride nanosheets; (3) Add the hexagonal boron nitride nanosheets obtained in step (2) to the branch. In an aqueous solution of polyethyleneimine, the reaction is carried out at 0 to 80°C for 1 to 48 hours after ultrasonic dispersion, followed by vacuum filtration and drying to obtain surface-modified hexagonal boron nitride nanosheets. The surface-modified hexagonal boron nitride nanosheets of the present invention significantly improve the thermal conductivity and mechanical properties of epoxy composite materials.
Description
技术领域Technical field
本发明属于纳米复合材料领域,具体涉及表面改性六方氮化硼纳米片及其改性方法、环氧复合材料。The invention belongs to the field of nanocomposite materials, and specifically relates to surface-modified hexagonal boron nitride nanosheets and modification methods thereof, and epoxy composite materials.
背景技术Background technique
随着现代电力电子器件逐渐向小型化、高度集成化与高功率密度的方向发展,设备内部电子元器件的热管理问题愈发突出。高集成密度的电子元器件在工作状态下会产生大量热量,引起元器件温度迅速升高,最终严重影响电子设备的性能与寿命。为了及时导出累积热量,确保电子元器件长时间稳定工作,在电子元器件之间填充导热材料是十分必要的。环氧树脂是一类具有较好综合性能(机械强度、粘附强度、绝缘性能、化学稳定性等)的热固性树脂,被广泛用作电子元器件的封装材料。然而,纯的环氧树脂导热系数较低(0.2W/m·K左右),无法有效将电子元器件的热量及时地扩散出去。因此,发展具有高导热,且综合性能优异的环氧封装材料,具有重要的现实意义。As modern power electronic devices gradually develop towards miniaturization, high integration and high power density, the thermal management problem of electronic components within the equipment has become increasingly prominent. Highly integrated electronic components will generate a large amount of heat during operation, causing the temperature of the components to rise rapidly, ultimately seriously affecting the performance and life of electronic equipment. In order to dissipate accumulated heat in time and ensure that electronic components work stably for a long time, it is necessary to fill thermally conductive materials between electronic components. Epoxy resin is a type of thermosetting resin with good comprehensive properties (mechanical strength, adhesion strength, insulation performance, chemical stability, etc.) and is widely used as packaging material for electronic components. However, pure epoxy resin has a low thermal conductivity (around 0.2W/m·K) and cannot effectively diffuse the heat from electronic components in a timely manner. Therefore, it is of great practical significance to develop epoxy packaging materials with high thermal conductivity and excellent comprehensive properties.
通过向环氧树脂基体中引入高导热填料来提升其导热性能是目前最常用的做法。作为一种具有高导热系数和优异机械性能的无机填料,六方氮化硼(h-BN),尤其是剥离后的h-BN纳米片,广泛被用于制造各种高导热复合材料。值得注意的是,简单粗糙地将h-BN填料加入到基体中,通常会使得其在基体内部分散不均,并且填料与基体之间存在大量的界面空隙,降低复合材料的导热性能。公开号为CN110922719A的专利文献公开了一种高导热氮化硼/环氧树脂复合材料及其制备方法与应用,其以h-BN纳米粒子为原料,先后经超声剥离、硅烷偶联剂表面修饰得到表面改性h-BN纳米片,最后将其与环氧树脂进行复合,制得的表面改性h-BN纳米片步骤繁琐,且h-BN纳米片与环氧树脂之间的界面相容性提升有限。公开号为CN113969040A的专利文献以超支化聚乙烯聚合物为修饰分子,通过π-π等非共价作用对h-BN进行表面修饰,有效提高了h-BN纳米粒子的分散性及其与环氧基体的界面相容性,但非共价作用使得修饰分子与h-BN结合力弱,并且修饰分子与环氧基体之间不能产生化学连接,获得的环氧复合材料导热性能与机械性能仍不够理想。It is currently the most common practice to introduce high thermal conductivity fillers into the epoxy resin matrix to improve its thermal conductivity. As an inorganic filler with high thermal conductivity and excellent mechanical properties, hexagonal boron nitride (h-BN), especially the exfoliated h-BN nanosheets, is widely used to manufacture various high thermal conductivity composite materials. It is worth noting that simply and roughly adding h-BN filler to the matrix will usually cause uneven dispersion within the matrix, and there will be a large number of interface gaps between the filler and the matrix, reducing the thermal conductivity of the composite material. The patent document with publication number CN110922719A discloses a highly thermally conductive boron nitride/epoxy resin composite material and its preparation method and application. It uses h-BN nanoparticles as raw materials, and is successively subjected to ultrasonic peeling and surface modification with a silane coupling agent. Surface-modified h-BN nanosheets are obtained, and finally they are compounded with epoxy resin. The steps to prepare surface-modified h-BN nanosheets are cumbersome, and the interface between h-BN nanosheets and epoxy resin is compatible. Sexual enhancement is limited. The patent document with publication number CN113969040A uses hyperbranched polyethylene polymer as the modified molecule to modify the surface of h-BN through non-covalent interactions such as π-π, which effectively improves the dispersion of h-BN nanoparticles and their interaction with rings. Interfacial compatibility of the oxygen matrix, but the non-covalent interaction makes the binding force between the modified molecules and h-BN weak, and there is no chemical connection between the modified molecules and the epoxy matrix. The thermal conductivity and mechanical properties of the obtained epoxy composite materials are still Less than ideal.
发明内容Contents of the invention
基于现有技术中存在的上述缺点和不足,本发明提供一种表面改性六方氮化硼纳米片及其改性方法、环氧复合材料。其目的是为了通过简单的步骤获得表面改性的h-BN纳米片,提高h-BN的分散性,且改性的h-BN纳米片表面存在丰富的活性基团,可以同时与环氧分子及固化剂在发生界面化学反应,改善填料-基体界面相容性,最终提高环氧复合材料的导热性能与机械性能。Based on the above-mentioned shortcomings and deficiencies in the prior art, the present invention provides a surface-modified hexagonal boron nitride nanosheet, a modification method thereof, and an epoxy composite material. The purpose is to obtain surface-modified h-BN nanosheets through simple steps and improve the dispersion of h-BN. There are abundant active groups on the surface of the modified h-BN nanosheets, which can interact with epoxy molecules at the same time. And the curing agent undergoes an interfacial chemical reaction to improve the filler-matrix interface compatibility, and ultimately improve the thermal conductivity and mechanical properties of the epoxy composite material.
为了达到上述发明目的,本发明采用以下技术方案:In order to achieve the above-mentioned object of the invention, the present invention adopts the following technical solutions:
表面改性六方氮化硼纳米片的改性方法,包括以下步骤:The modification method of surface-modified hexagonal boron nitride nanosheets includes the following steps:
(1)将六方氮化硼粉末加入到含环氧基的硅烷偶联剂的均相水溶液中,超声分散,得到六方氮化硼分散液并调节pH至0~6;(1) Add hexagonal boron nitride powder to the homogeneous aqueous solution of the epoxy-containing silane coupling agent, and disperse it ultrasonically to obtain a hexagonal boron nitride dispersion and adjust the pH to 0 to 6;
(2)将步骤(1)得到的分散液转移至球磨罐中,在100~2000rpm下球磨1~48h,球磨之后进行真空抽滤,将抽滤所得粉末干燥,得到表面环氧基功能化的六方氮化硼纳米片;(2) Transfer the dispersion obtained in step (1) to a ball milling tank, and ball mill at 100 to 2000 rpm for 1 to 48 hours. After ball milling, vacuum filtration is performed, and the powder obtained by suction filtration is dried to obtain surface epoxy functionalized hexagonal boron nitride nanosheets;
(3)将步骤(2)得到的六方氮化硼纳米片加入到支化聚乙烯亚胺的水溶液中,超声分散后在0~80℃下反应1~48h,接着真空抽滤和干燥,得到表面改性六方氮化硼纳米片。(3) Add the hexagonal boron nitride nanosheets obtained in step (2) to the aqueous solution of branched polyethyleneimine, disperse it ultrasonically, and react at 0 to 80°C for 1 to 48 hours, followed by vacuum filtration and drying to obtain Surface modified hexagonal boron nitride nanosheets.
作为优选方案,所述步骤(1)中,含环氧基的硅烷偶联剂选用KH560,均相水溶液为水/乙醇混合溶液。As a preferred embodiment, in step (1), the epoxy group-containing silane coupling agent is KH560, and the homogeneous aqueous solution is a water/ethanol mixed solution.
作为优选方案,所述步骤(1)中,六方氮化硼粉末在水/乙醇混合溶液中的分散浓度为0.5~50mg·mL-1;KH560在水/乙醇混合溶液中的质量分数为0.01~30wt%;水/乙醇混合溶液的体积比为1/(0.1~10)。As a preferred version, in the step (1), the dispersion concentration of hexagonal boron nitride powder in the water/ethanol mixed solution is 0.5~50 mg·mL -1 ; the mass fraction of KH560 in the water/ethanol mixed solution is 0.01~ 30wt%; the volume ratio of water/ethanol mixed solution is 1/(0.1~10).
作为优选方案,所述步骤(1)中,超声分散的时长为5~120min;通过酸液调节六方氮化硼分散液的pH。As a preferred embodiment, in the step (1), the duration of ultrasonic dispersion is 5 to 120 minutes; the pH of the hexagonal boron nitride dispersion is adjusted with an acid solution.
作为优选方案,所述酸液为盐酸、硫酸、硝酸、磷酸、草酸、醋酸、乙二酸、柠檬酸中的至少一种;As a preferred embodiment, the acid liquid is at least one of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid, acetic acid, oxalic acid, and citric acid;
酸液的摩尔浓度为0.01~10mol·L-1。The molar concentration of the acid solution is 0.01 to 10 mol·L -1 .
作为优选方案,所述步骤(2)中,干燥的温度为30~150℃,干燥时长为1~48h。As a preferred version, in the step (2), the drying temperature is 30-150°C, and the drying time is 1-48 hours.
作为优选方案,所述支化聚乙烯亚胺的分子量为200~100000,支化聚乙烯亚胺水溶液的浓度为0.01~30wt%。As a preferred embodiment, the molecular weight of the branched polyethyleneimine is 200-100000, and the concentration of the branched polyethyleneimine aqueous solution is 0.01-30wt%.
本发明还提供如上任一项方案所述的改性方法改性得到的表面改性六方氮化硼纳米片。The present invention also provides surface-modified hexagonal boron nitride nanosheets modified by the modification method described in any of the above solutions.
本发明还提供环氧复合材料,其制备过程,包括以下步骤:The invention also provides epoxy composite materials, and their preparation process includes the following steps:
(1)将如权利要求8所述的表面改性六方氮化硼纳米片加入到乙醇中,超声分散5~120min,得到浓度为0.5~50mg·mL-1的纳米片分散液;(1) Add the surface-modified hexagonal boron nitride nanosheets as claimed in claim 8 into ethanol and disperse them ultrasonically for 5 to 120 minutes to obtain a nanosheet dispersion with a concentration of 0.5 to 50 mg·mL -1 ;
(2)将纳米片分散液与环氧树脂、固化剂搅拌混合均匀,然后减压蒸馏以除尽乙醇,得到混合液;(2) Stir and mix the nanosheet dispersion, epoxy resin, and curing agent evenly, and then distill under reduced pressure to remove the ethanol to obtain a mixed solution;
(3)将混合液与促进剂在常温下搅拌混合均匀,然后在真空下静置脱泡,待气泡除尽后,将混合溶液浇筑到模具上,经固化得到环氧复合材料。(3) Stir the mixed solution and accelerator evenly at room temperature, and then leave it to defoam under vacuum. After the bubbles are removed, pour the mixed solution onto the mold and solidify to obtain the epoxy composite material.
其中,采用E-51环氧树脂作为基体,甲基六氢苯酐(MHHPA)作为固化剂,2,4,6-三(二甲氨基甲基)苯酚(DMP-30)作为促进剂,它们之间的质量比为E-51:MHHPA:DMP-30=100:(70~100):(0.1~2);固化温度为80~180℃,固化时间为1~24h。Among them, E-51 epoxy resin is used as the matrix, methylhexahydrophthalic anhydride (MHHPA) is used as the curing agent, and 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30) is used as the accelerator. The mass ratio between them is E-51:MHHPA:DMP-30=100: (70~100):(0.1~2); the curing temperature is 80~180℃, and the curing time is 1~24h.
作为优选方案,所述表面改性六方氮化硼纳米片在环氧复合材料中的含量为1~40wt%。As a preferred solution, the content of the surface-modified hexagonal boron nitride nanosheets in the epoxy composite material is 1 to 40 wt%.
本发明与现有技术相比,有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明的表面改性六方氮化硼纳米片,是将六方氮化硼纳米粒子分散在含环氧基的硅烷偶联剂的均相水溶液中,经湿法球磨一步直接得到的表面环氧基功能化的六方氮化硼纳米片;并通过氨基与环氧基反应进一步得到BPEI改性的六方氮化硼。The surface-modified hexagonal boron nitride nanosheets of the present invention are surface epoxy groups directly obtained by dispersing hexagonal boron nitride nanoparticles in a homogeneous aqueous solution of an epoxy-containing silane coupling agent and performing wet ball milling in one step. Functionalized hexagonal boron nitride nanosheets; and further obtain BPEI-modified hexagonal boron nitride through the reaction of amino groups and epoxy groups.
本发明的改性方法制得的表面改性六方氮化硼纳米片产率高、尺寸均匀,表面存在丰富的氨基,可较好地分散于环氧基体中,在填料/基体之间产生良好的界面相容性;并可与环氧分子链的环氧基团产生共价结合,提高交联度,增强环氧复合材料的导热与力学性能。The surface-modified hexagonal boron nitride nanosheets prepared by the modification method of the present invention have high yield, uniform size, abundant amino groups on the surface, can be better dispersed in the epoxy matrix, and produce good results between the filler/matrix. It has excellent interfacial compatibility; it can also form covalent bonds with the epoxy groups of the epoxy molecular chain to increase the degree of cross-linking and enhance the thermal conductivity and mechanical properties of epoxy composite materials.
本发明的改性方法过程简单,成本低廉,对环境友好,适合大规模生产,可广泛用于增强各种热固性和热塑性聚合物的导热与力学性能。The modification method of the invention is simple in process, low in cost, environmentally friendly, suitable for large-scale production, and can be widely used to enhance the thermal conductivity and mechanical properties of various thermosetting and thermoplastic polymers.
附图说明Description of the drawings
图1是本发明实施例1中涉及到的纳米粉末的SEM照片。其中A图原始BN粉末(记作BN);B图为球磨得到的BN纳米片(记作BNNS);C图为使用含KH560溶液球磨得到的BN纳米片(记作KH560-BNNS);D图为BPEI表面改性的BN纳米片(记作BPEI-KH560-BNNS);Figure 1 is an SEM photograph of the nanopowder involved in Example 1 of the present invention. Picture A shows the original BN powder (denoted as BN); Picture B shows the BN nanosheets obtained by ball milling (denoted as BNNS); Picture C shows the BN nanosheets obtained by ball milling using a solution containing KH560 (denoted as KH560-BNNS); Picture D It is BPEI surface modified BN nanosheets (denoted as BPEI-KH560-BNNS);
图2是本发明实施例1中涉及到的相关纳米粉末的FTIR图谱。其中a为BN;b为BNNS;c为KH560-BNNS;d为BPEI-KH560-BNNS;e为KH560;f为BPEI。Figure 2 is an FTIR spectrum of the relevant nanopowder involved in Example 1 of the present invention. Among them, a is BN; b is BNNS; c is KH560-BNNS; d is BPEI-KH560-BNNS; e is KH560; f is BPEI.
图3是本发明实施例1中涉及到的相关纳米粉末的TGA曲线。其中a为BN;b为BNNS;c为KH560-BNNS;d为BPEI-KH560-BNNS。Figure 3 is a TGA curve of the relevant nanopowder involved in Example 1 of the present invention. Among them, a is BN; b is BNNS; c is KH560-BNNS; d is BPEI-KH560-BNNS.
具体实施方式Detailed ways
以下通过具体实施例对本发明的技术方案作进一步解释说明。The technical solution of the present invention will be further explained below through specific examples.
实施例1:Example 1:
本实施例的表面改性BN纳米片制备方法,包括以下步骤:The preparation method of surface-modified BN nanosheets in this embodiment includes the following steps:
1)将2g BN粉末加入到120mL含1wt%KH560的水/乙醇混合溶液中(水:乙醇=1:4),超声分散30min后,通过8mol·L-1盐酸溶液将BN分散液的pH值调至4;然后将BN分散液转移至碳化钨球磨罐中,并加入碳化钨研磨球30颗;在600rpm转速下球磨24h;1) Add 2g BN powder to 120mL of water/ethanol mixed solution containing 1wt% KH560 (water:ethanol=1:4). After ultrasonic dispersion for 30 minutes, adjust the pH value of the BN dispersion by 8mol·L -1 hydrochloric acid solution. Adjust to 4; then transfer the BN dispersion to the tungsten carbide ball mill tank, and add 30 tungsten carbide grinding balls; ball mill at 600 rpm for 24 hours;
2)待球磨结束后,将溶液进行真空抽滤;然后将抽滤所得粉末在80℃下干燥12h,得表面环氧基功能化BN纳米片;2) After the ball milling is completed, carry out vacuum filtration of the solution; then dry the powder obtained by suction filtration at 80°C for 12 hours to obtain surface epoxy functionalized BN nanosheets;
3)将2)所得环氧基功能化BN纳米片加入到含1wt%BPEI的水溶液中,超声分散30min;然后在50℃下反应12h,经真空抽滤和干燥得表面改性BN纳米片。3) Add the epoxy-functionalized BN nanosheets obtained in 2) to an aqueous solution containing 1wt% BPEI, and disperse it ultrasonically for 30 minutes; then react at 50°C for 12 hours, vacuum filtrate and dry to obtain surface-modified BN nanosheets.
本实施例的环氧复合材料的制备方法,包括以下步骤:The preparation method of the epoxy composite material in this embodiment includes the following steps:
4)将所述表面改性BN纳米片加入到乙醇中,超声分散30min,得到浓度为10mg·mL-1的BN纳米片分散液;4) Add the surface-modified BN nanosheets to ethanol and disperse with ultrasonic for 30 minutes to obtain a BN nanosheet dispersion with a concentration of 10 mg·mL -1 ;
5)将上述BN分散液与E-51环氧树脂、MHHPA搅拌混合2h,然后在60℃下减压蒸馏12h,以除尽乙醇溶剂;5) Stir and mix the above BN dispersion with E-51 epoxy resin and MHHPA for 2 hours, and then distill under reduced pressure at 60°C for 12 hours to remove the ethanol solvent;
6)将5)所得溶液与DMP-30在常温下搅拌混合0.5h,然后在真空下静置脱泡1h,待气泡除尽后,将混合溶液浇筑到模具上,在120℃下固化4h,得表面改性BN纳米片/环氧复合材料。6) Stir and mix the solution obtained in 5) and DMP-30 at room temperature for 0.5h, then leave it to defoam under vacuum for 1h. After the bubbles are removed, pour the mixed solution onto the mold and solidify at 120°C for 4h. Surface-modified BN nanosheet/epoxy composite material was obtained.
其中,表面改性BN纳米片在环氧复合材料中的质量分数为15wt%;E-51:MHHPA:DMP-30=100:82:0.6。Among them, the mass fraction of surface-modified BN nanosheets in the epoxy composite material is 15wt%; E-51:MHHPA:DMP-30=100:82:0.6.
将本实施例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material in this embodiment was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
制备表面改性BN纳米片(即BPEI-KH560-BNNS)是制备环氧纳米复合材料的第一步。如图1A所示,BN呈现出不规则的形貌和紧密堆叠的分层结构。在球磨处理后,明显的纳米片层结构被观察到,如图1B所示,这主要是由于球磨过程中的剪切力将堆叠的纳米片剥离下来了。图1C显示,KH560的添加不会对球磨所得BN纳米片的结构产生明显影响。并且,图1D表明,使用BPEI进行后修饰也不会对BN纳米片的结构产生明显影响。The preparation of surface-modified BN nanosheets (i.e., BPEI-KH560-BNNS) is the first step in the preparation of epoxy nanocomposites. As shown in Figure 1A, BN exhibits an irregular morphology and a closely stacked layered structure. After the ball milling process, an obvious nanosheet structure was observed, as shown in Figure 1B, which was mainly due to the shear force during the ball milling process that peeled off the stacked nanosheets. Figure 1C shows that the addition of KH560 does not have a significant impact on the structure of BN nanosheets obtained by ball milling. Moreover, Figure 1D shows that post-modification using BPEI will not have a significant impact on the structure of BN nanosheets.
为了确定表面改性BN纳米片的化学结构,红外光谱被记录。如图2所示,相比于BN和BNNS,KH560-BNNS在2933cm-1和1091cm-1处出现了两个新的吸收带,分别归属于KH560分子中C-H和Si-O键的伸缩振动。而对于BPEI-KH560-BNNS,除了2933cm-1和1091cm-1这两个吸收带,在1460cm-1处出现了一个新的吸收带,归属于BPEI分子中C-N键的伸缩振动,这表明BPEI分子实现了对KH560-BNNS的表面改性。To determine the chemical structure of surface-modified BN nanosheets, infrared spectra were recorded. As shown in Figure 2, compared with BN and BNNS, KH560-BNNS has two new absorption bands at 2933cm -1 and 1091cm -1 , which are attributed to the stretching vibration of CH and Si-O bonds in the KH560 molecule respectively. For BPEI-KH560-BNNS, in addition to the two absorption bands of 2933cm -1 and 1091cm -1 , a new absorption band appears at 1460cm -1 , which is attributed to the stretching vibration of the CN bond in the BPEI molecule, which indicates that the BPEI molecule The surface modification of KH560-BNNS was achieved.
为了确定表面改性BN纳米片的热稳定性,热重分析被执行。如图3所示,BN在整个温度范围(30~800℃)内的失重率仅为0.27%,而BNNS的失重率估计为2.85%,这主要是由于BNNS表面-OH和吸附水分子的移除。经KH560修饰后,KH560-BNNS的失重率为4.99%。当KH560-BNNS被BPEI进一步改性后,BPEI-KH560-BNNS的失重率达到9.43%,主要是由于表面KH560和BPEI分子在高温下发生了热分解。To determine the thermal stability of surface-modified BN nanosheets, thermogravimetric analysis was performed. As shown in Figure 3, the weight loss rate of BN in the entire temperature range (30~800°C) is only 0.27%, while the weight loss rate of BNNS is estimated to be 2.85%, which is mainly due to the migration of -OH and adsorbed water molecules on the BNNS surface. remove. After modification with KH560, the weight loss rate of KH560-BNNS was 4.99%. When KH560-BNNS was further modified by BPEI, the weight loss rate of BPEI-KH560-BNNS reached 9.43%, which was mainly due to the thermal decomposition of surface KH560 and BPEI molecules at high temperatures.
对比例1:Comparative example 1:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
在步骤1)中,使用不含KH560的水/乙醇混合溶液中进行球磨;In step 1), use a KH560-free water/ethanol mixed solution for ball milling;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例2:Comparative example 2:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
在步骤1)中,使用不含KH560的水/乙醇混合溶液中进行球磨,得到BN纳米片;In step 1), perform ball milling in a water/ethanol mixed solution without KH560 to obtain BN nanosheets;
在步骤2)中,将BN纳米片加入到含1wt%KH560的水/乙醇混合溶液中(水:乙醇=1:4),通过8mol·L-1盐酸溶液将BN分散液的pH值调至4,搅拌反应24h,得到功能化BN纳米片;In step 2), add BN nanosheets to a water/ethanol mixed solution containing 1wt% KH560 (water:ethanol=1:4), and adjust the pH value of the BN dispersion to 8 mol·L -1 hydrochloric acid solution. 4. Stir the reaction for 24 hours to obtain functionalized BN nanosheets;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例3:Comparative example 3:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
在步骤1)的过程中,将BN粉末加入到含KH560的水/乙醇混合溶液中进行机械搅拌;In the process of step 1), BN powder is added to the water/ethanol mixed solution containing KH560 for mechanical stirring;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例4:Comparative example 4:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
在步骤1)中,将水/乙醇混合溶液中的KH560用KH550替代,KH550无环氧基团;In step 1), replace KH560 in the water/ethanol mixed solution with KH550, which has no epoxy group;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例5:Comparative example 5:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
将步骤3)中,将表面环氧基功能化BN纳米片加入到BPEI溶液中,室温下搅拌混合12h;In step 3), add the surface epoxy functionalized BN nanosheets to the BPEI solution and stir and mix at room temperature for 12 hours;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例6:Comparative example 6:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
将步骤3)中,将溶液中的支化聚乙烯亚胺(BPEI)替换成相同分子量的线性聚乙烯亚胺(LPEI),LPEI无氨基侧链;In step 3), replace the branched polyethyleneimine (BPEI) in the solution with linear polyethyleneimine (LPEI) of the same molecular weight. LPEI has no amino side chains;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例7:Comparative Example 7:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
采用商业来源的BN纳米粉末代替实施例1中的表面改性BN纳米片;Use commercially sourced BN nanopowder instead of the surface-modified BN nanosheets in Example 1;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例8:Comparative example 8:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
采用商业来源的BN纳米片代替实施例1中的表面改性BN纳米片;Use commercially sourced BN nanosheets instead of the surface-modified BN nanosheets in Example 1;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对比例9:Comparative example 9:
本对比例与实施例1的不同之处在于:The differences between this comparative example and Example 1 are:
省略步骤(3),将表面环氧基功能化BN纳米片(即KH560修饰BN纳米片)代替实施例1中的表面改性BN纳米片;Step (3) is omitted, and the surface epoxy functionalized BN nanosheets (i.e., KH560 modified BN nanosheets) are used instead of the surface modified BN nanosheets in Example 1;
其他步骤及工艺条件均与实施例1相同。Other steps and process conditions are the same as in Example 1.
将本对比例的环氧复合材料浇铸成标准样品,以测试复合材料的导热和力学性能。The epoxy composite material of this comparative example was cast into a standard sample to test the thermal conductivity and mechanical properties of the composite material.
对实施例1及对比例1-9中的环氧复合材料以及纯环氧材料进行导热系数、拉伸强度和冲击强度测试,具体测试结果见表1。The thermal conductivity, tensile strength and impact strength were tested on the epoxy composite materials and pure epoxy materials in Example 1 and Comparative Examples 1-9. The specific test results are shown in Table 1.
表1实施例及对比例中样品的导热系数、拉伸强度及冲击强度Table 1 Thermal conductivity, tensile strength and impact strength of samples in Examples and Comparative Examples
对比例1中,BPEI对BN纳米片产生的是非共价改性。与实施例1的对比结果表明,BPEI共价改性的BN纳米片比BPEI非共价改性的BN纳米片具有更好的导热与力学提升效果;In Comparative Example 1, BPEI produced non-covalent modification of BN nanosheets. Comparative results with Example 1 show that BPEI covalently modified BN nanosheets have better thermal conductivity and mechanical improvement effects than BPEI non-covalently modified BN nanosheets;
对比例2中,环氧基功能化BN纳米片是通过使用KH560分步修饰得到的。与实施例1的对比结果表明,BPEI改性一步球磨得到的环氧基功能化BN纳米片比BPEI改性分步修饰得到的环氧基功能化BN纳米片具有更好的导热与力学提升效果;In Comparative Example 2, epoxy functionalized BN nanosheets were obtained by step-by-step modification using KH560. The comparison results with Example 1 show that the epoxy-functionalized BN nanosheets obtained by one-step ball milling modified by BPEI have better thermal conductivity and mechanical improvement effects than the epoxy-functionalized BN nanosheets obtained by step-by-step modification by BPEI. ;
对比例3中,BN未经球磨,无法获得纳米片结构。与实施例1的对比结果表明,BPEI表面改性的BN纳米片比BPEI表面改性的BN粉末具有更好的导热与力学提升效果;In Comparative Example 3, BN was not ball milled and the nanosheet structure could not be obtained. Comparative results with Example 1 show that BPEI surface-modified BN nanosheets have better thermal conductivity and mechanical improvement effects than BPEI surface-modified BN powder;
对比例4中,使用KH550代替KH560,得到的为氨基功能化的BN纳米片,无法进一步与BPEI进行共价连接。与实施例1的对比结果表明,BPEI表面改性的BN纳米片比KH550修饰的BN纳米片具有更好的导热与力学提升效果;In Comparative Example 4, KH550 was used instead of KH560, resulting in amino-functionalized BN nanosheets that could not be further covalently linked to BPEI. Comparative results with Example 1 show that BPEI surface-modified BN nanosheets have better thermal conductivity and mechanical improvement effects than KH550-modified BN nanosheets;
对比例5中,室温下BPEI与环氧基BN纳米片反应程度较低。与实施例1的对比结果表明,一定温度下制备的BPEI表面改性BN纳米片比常温下制备的BPEI表面改性BN纳米片具有更好的导热与力学提升效果;In Comparative Example 5, the degree of reaction between BPEI and epoxy-based BN nanosheets is low at room temperature. Comparative results with Example 1 show that the BPEI surface-modified BN nanosheets prepared at a certain temperature have better thermal conductivity and mechanical improvement effects than the BPEI surface-modified BN nanosheets prepared at room temperature;
对比例6中,线型聚乙烯亚胺LPEI表面改性的BN纳米片上氨基数量较少,使得其与环氧基体交联程度偏低。与实施例1的对比结果表明,BPEI表面改性的BN纳米片比LPEI表面改性的BN纳米片具有更好的导热与力学提升效果;In Comparative Example 6, the number of amino groups on the surface-modified BN nanosheets of linear polyethyleneimine LPEI is small, resulting in a low degree of cross-linking with the epoxy matrix. Comparative results with Example 1 show that BPEI surface-modified BN nanosheets have better thermal conductivity and mechanical improvement effects than LPEI surface-modified BN nanosheets;
对比例7、8和9与实施例1的对比结果表明,相同添加比例下,BPEI表面改性BN纳米片比商用BN粉末、BN纳米片及KH560修饰BN纳米片具有更好的导热与力学提升效果。The comparison results of Comparative Examples 7, 8 and 9 with Example 1 show that at the same addition ratio, BPEI surface-modified BN nanosheets have better thermal conductivity and mechanical improvement than commercial BN powder, BN nanosheets and KH560 modified BN nanosheets. Effect.
本发明的表面改性BN的化学改性原理为:The chemical modification principle of the surface-modified BN of the present invention is:
一、在球磨过程的剪切力作用下,BN粉末被剥离成BN纳米片;同时BN纳米片表面的羟基与水解的KH560发生反应,得到环氧功能化的BN纳米片,为BPEI的进一步修饰提供连接点;1. Under the shear force of the ball milling process, BN powder is peeled off into BN nanosheets; at the same time, the hydroxyl groups on the surface of the BN nanosheets react with the hydrolyzed KH560 to obtain epoxy-functionalized BN nanosheets, which is a further modification of BPEI. Provide connection points;
二、含丰富氨基的BPEI与环氧功能化BN纳米片的环氧基团发生开环反应,获得BPEI表面改性的BN纳米片;经BPEI表面改性后,BN纳米片表面含有丰富的氨基,可同时与环氧树脂基体中的环氧基团及酸酐固化剂中的酸酐基团发生反应,产生牢固的化学连接,并改善BN纳米片分散性及界面相容性。2. BPEI containing rich amino groups undergoes a ring-opening reaction with the epoxy group of the epoxy-functionalized BN nanosheets to obtain BPEI surface-modified BN nanosheets. After BPEI surface modification, the surface of BN nanosheets contains rich amino groups. , can react with the epoxy groups in the epoxy resin matrix and the anhydride groups in the anhydride curing agent at the same time to produce a strong chemical connection and improve the dispersion and interfacial compatibility of BN nanosheets.
在上述实施例及其替代方案中,各原料以及改性方法涉及的工艺参数均可在所限定的范围内根据实际应用需求进行确定。In the above embodiments and their alternatives, each raw material and the process parameters involved in the modification method can be determined within a limited range according to actual application requirements.
鉴于本发明方案实施例众多,所有组分、组分含量以及工艺参数均可在相应的范围内根据应用需求进行确定,各实施例实验数据庞大众多,不适合于此处逐一列举说明,但是各实施例所需要验证的内容和得到的最终结论均接近。In view of the numerous embodiments of the present invention, all components, component contents and process parameters can be determined within the corresponding range according to application requirements. The experimental data of each embodiment are huge and numerous, and it is not suitable to list and explain them one by one here. However, each The content that needs to be verified in the examples and the final conclusions obtained are close.
以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。The above is only a detailed description of the preferred embodiments and principles of the present invention. For those of ordinary skill in the art, there will be changes in the specific implementation methods based on the ideas provided by the present invention, and these changes should also be made. regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211432805.4A CN115746404B (en) | 2022-11-16 | 2022-11-16 | Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211432805.4A CN115746404B (en) | 2022-11-16 | 2022-11-16 | Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115746404A CN115746404A (en) | 2023-03-07 |
CN115746404B true CN115746404B (en) | 2023-11-21 |
Family
ID=85371928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211432805.4A Active CN115746404B (en) | 2022-11-16 | 2022-11-16 | Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115746404B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116554553B (en) * | 2023-06-15 | 2023-11-28 | 中辰电缆股份有限公司 | Functionalized boron nitride nano-sheet, polyurethane elastomer, polypropylene composite material, and preparation methods and applications thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109021233A (en) * | 2018-06-26 | 2018-12-18 | 同济大学 | The high thermal stability composite polyimide material and preparation method thereof of the material of boron nitride nanometer containing amino functional |
CN109385900A (en) * | 2018-10-19 | 2019-02-26 | 复旦大学 | A kind of enhanced carbon fiber sizing agent of nanoscale twins boron nitride and preparation method thereof |
CN112961462A (en) * | 2021-02-05 | 2021-06-15 | 中国科学院江西稀土研究院 | Epoxy resin foam plastic and preparation method and application thereof |
CN114836004A (en) * | 2022-04-12 | 2022-08-02 | 华南理工大学 | Heat-conducting and insulating epoxy resin composite material and preparation method and application thereof |
-
2022
- 2022-11-16 CN CN202211432805.4A patent/CN115746404B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109021233A (en) * | 2018-06-26 | 2018-12-18 | 同济大学 | The high thermal stability composite polyimide material and preparation method thereof of the material of boron nitride nanometer containing amino functional |
CN109385900A (en) * | 2018-10-19 | 2019-02-26 | 复旦大学 | A kind of enhanced carbon fiber sizing agent of nanoscale twins boron nitride and preparation method thereof |
CN112961462A (en) * | 2021-02-05 | 2021-06-15 | 中国科学院江西稀土研究院 | Epoxy resin foam plastic and preparation method and application thereof |
CN114836004A (en) * | 2022-04-12 | 2022-08-02 | 华南理工大学 | Heat-conducting and insulating epoxy resin composite material and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
双层表面改性氮化硼纳米片对环氧基绝缘材料热稳定性的影响;吴毅 等;《绝缘材料》;第55卷(第2期);第44-49页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115746404A (en) | 2023-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110054864B (en) | High-thermal-conductivity composite filler and preparation method of polymer-based composite material thereof | |
CN109880283B (en) | Preparation method of surface-modified nano silicon dioxide modified phenolic resin | |
CN111073216B (en) | A kind of high thermal conductivity epoxy resin-based nanocomposite thermal interface material and its preparation method and application | |
CN104327512B (en) | Preparation method of silicone rubber composite material containing carbon nanotubes | |
CN101570590B (en) | Preparation method for organically-modified nano-silica/nylon 66 composite material | |
CN106189165B (en) | A kind of preparation method of high heat conductive insulating hexagonal boron nitride/polycarbonate composite material | |
CN107629461A (en) | A kind of efficient modification functionalization means for inactive surfaces | |
CN105907042B (en) | A kind of functionalized carbon nano-tube epoxy resin nano composites and preparation method thereof | |
CN107459774A (en) | A kind of graphene/nanometer silica/epoxy resin composite material and preparation method thereof | |
CN106433034A (en) | Method for preparing amino functionalized carbon nanotube/epoxy resin compound material | |
CN111763406A (en) | A kind of graphene nanocomposite preparation technology | |
CN106672950B (en) | A kind of preparation method of organic modification graphene | |
CN108659467A (en) | The method of SiC/ graphene oxide compound modification of epoxy resin | |
CN114016286B (en) | Method for modifying carbon fiber by functionalized graphene oxide electrophoretic deposition and carbon fiber composite material thereof | |
CN115746404B (en) | Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material | |
CN113493676A (en) | Condensed type two-component organic silicon pouring sealant and preparation method thereof | |
CN115637021B (en) | A modified silicon dioxide synergistically dispersed epoxy resin composite material and its preparation and application | |
CN101885901A (en) | Epoxy resin/montmorillonite nanocomposite with biphenyl structure | |
CN101891936B (en) | Preparation method of composite material based on epoxy resin and phosphazene nanotubes | |
Shen et al. | Efficient reinforcement of epoxy resin with amine‐rich rigid short‐chain grafted graphene oxide | |
CN113801379B (en) | Bacterial cellulose/boron nitride composite high-thermal-conductivity flexible film material and preparation method thereof | |
CN104530647B (en) | Centrifugal auxiliary law prepares the method for Epoxy/nano silica composite material | |
CN113999493B (en) | A kind of preparation method of high thermal conductivity composite material | |
CN118978792A (en) | Epoxy resin for motor potting and preparation method thereof | |
CN114106754B (en) | Nano wave-absorbing particle modified phenolic resin adhesive and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 314000 No. 899, guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee after: Jiaxing University Country or region after: China Address before: No. 899 Guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee before: JIAXING University Country or region before: China |