CN115745000A - Pt-modified multi-element metal oxide sensitive material and preparation method and application thereof - Google Patents
Pt-modified multi-element metal oxide sensitive material and preparation method and application thereof Download PDFInfo
- Publication number
- CN115745000A CN115745000A CN202211395423.9A CN202211395423A CN115745000A CN 115745000 A CN115745000 A CN 115745000A CN 202211395423 A CN202211395423 A CN 202211395423A CN 115745000 A CN115745000 A CN 115745000A
- Authority
- CN
- China
- Prior art keywords
- sensitive material
- solution
- transition metal
- metal oxide
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 84
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 26
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 38
- 239000001257 hydrogen Substances 0.000 claims abstract description 34
- 239000000243 solution Substances 0.000 claims abstract description 28
- -1 transition metal salts Chemical class 0.000 claims abstract description 21
- 239000008367 deionised water Substances 0.000 claims abstract description 20
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 12
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 7
- 239000012298 atmosphere Substances 0.000 claims abstract description 7
- 150000002505 iron Chemical class 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000005406 washing Methods 0.000 claims abstract description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 2
- 239000012716 precipitator Substances 0.000 claims abstract 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 61
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 229910021381 transition metal chloride Inorganic materials 0.000 claims description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims 3
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract description 5
- 239000000843 powder Substances 0.000 description 22
- 230000004044 response Effects 0.000 description 21
- 150000002431 hydrogen Chemical class 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 239000007788 liquid Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000011084 recovery Methods 0.000 description 8
- 229910017855 NH 4 F Inorganic materials 0.000 description 5
- 239000011540 sensing material Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002073 nanorod Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- ICYJJTNLBFMCOZ-UHFFFAOYSA-J molybdenum(4+);disulfate Chemical compound [Mo+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ICYJJTNLBFMCOZ-UHFFFAOYSA-J 0.000 description 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 1
- IIDYTZRUUWUVQF-UHFFFAOYSA-D niobium(5+) pentasulfate Chemical compound [Nb+5].[Nb+5].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IIDYTZRUUWUVQF-UHFFFAOYSA-D 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical class O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体金属氧化物气体传感器领域,具体涉及一种用于提高氢气传感器性能的Pt修饰的多元金属氧化物敏感材料及其制备方法和应用。The invention belongs to the field of semiconductor metal oxide gas sensors, and in particular relates to a Pt-modified multi-element metal oxide sensitive material for improving the performance of a hydrogen sensor, a preparation method and an application thereof.
背景技术Background technique
氢气是工业生产中常用的还原剂,具有广泛的用途。值得注意的是,氢气是一种无色无味的气体,在空气中具有扩散度高、燃烧热高和爆炸浓度低的特点,导致氢气在运输、使用过程中的安全问题引发了极大的关注。半导体金属氧化物气体传感器因具有稳定性高、成本低及制造工艺简单等优点而被广泛应用于有毒气体、易燃易爆气体及工业废气的检测。然而,半导体金属氧化物气体传感器的敏感材料仍面临着灵敏度低、响应/回复时间长及选择性差等问题需要被解决。因此,开发一种灵敏度高、响应速度快、选择性高和浓度检测低的气体传感器一直备受关注。Hydrogen is a common reducing agent in industrial production and has a wide range of uses. It is worth noting that hydrogen is a colorless and odorless gas, which has the characteristics of high diffusivity, high combustion heat and low explosion concentration in the air, which has caused great attention to the safety of hydrogen during transportation and use. . Semiconductor metal oxide gas sensors are widely used in the detection of toxic gases, flammable and explosive gases, and industrial waste gases due to their advantages of high stability, low cost, and simple manufacturing process. However, the sensitive materials of semiconductor metal oxide gas sensors still face problems such as low sensitivity, long response/recovery time, and poor selectivity, which need to be solved. Therefore, the development of a gas sensor with high sensitivity, fast response, high selectivity and low concentration detection has been of great interest.
为了开发高灵敏度、响应/恢复速度快和浓度检测低的半导体金属氧化物敏感材料,申请号为CN201910260163.6的中国专利公开了一种Pt修饰SnO2纳米棒敏感材料的制备方法,所制备的SnO2纳米棒的长径比高且使用紫外光还原法将Pt纳米颗粒均匀分散在SnO2纳米棒表面,使传感器在较低氢气浓度下,表现出明显的电阻变化。申请号为CN201110137838.1的中国专利公开了一种Pt和Pd负载TiO2的复合敏感材料,该敏感材料通过两次阳极氧化高纯钛片制得TiO2,再将贵金属粒子(Pt和Pd)沉积到TiO2纳米管上。贵金属涂层加快了H2与TiO2纳米管表面的相互作用,提高了氢气的灵敏度。申请号为CN201510760530.0的中国专利公开了一种Pt/Pd纳米颗粒溅射氧化钼纤维纸的制备方法,此方法制备的传感器可在常温下工作、灵敏度高、响应/恢复时间短等优势。以上气体传感器性能的提升主要依赖于贵金属Pt/Pd与单一金属氧化物复合,使传感器在操作温度、灵敏度、响应/恢复时间等方面有了提高,但单一金属元素氧化物中缺陷的种类、数量有限且贵金属Pt/Pd纳米颗粒的负载会增加传感器的成本。In order to develop semiconductor metal oxide sensitive materials with high sensitivity, fast response/recovery speed and low concentration detection, Chinese patent application number CN201910260163.6 discloses a method for preparing Pt-modified SnO2 nanorod sensitive materials. The prepared The aspect ratio of SnO 2 nanorods is high, and the Pt nanoparticles are uniformly dispersed on the surface of SnO 2 nanorods by using the ultraviolet light reduction method, so that the sensor shows a significant change in resistance at a lower hydrogen concentration. The Chinese patent application number CN201110137838.1 discloses a composite sensitive material of Pt and Pd loaded TiO 2 , the sensitive material is made of TiO 2 by anodizing high-purity titanium sheet twice, and then precious metal particles (Pt and Pd) deposited onto TiO2 nanotubes. The noble metal coating accelerates the interaction of H2 with the surface of TiO2 nanotubes and improves the hydrogen sensitivity. The Chinese patent with application number CN201510760530.0 discloses a method for preparing Pt/Pd nanoparticles sputtering molybdenum oxide fiber paper. The sensor prepared by this method can work at room temperature, has high sensitivity, and has the advantages of short response/recovery time. The improvement of the performance of the above gas sensors mainly depends on the combination of noble metal Pt/Pd and a single metal oxide, which improves the sensor in terms of operating temperature, sensitivity, response/recovery time, etc., but the type and quantity of defects in the single metal oxide The limited and noble metal Pt/Pd nanoparticles loading increases the cost of the sensor.
发明内容Contents of the invention
本发明的一个目的是针对以上要解决的技术问题,提供一种Pt修饰的多元金属氧化物敏感材料的制备方法,以提高氢气传感器的灵敏度、稳定性和响应/恢复时间。An object of the present invention is to provide a method for preparing a Pt-modified multi-element metal oxide sensitive material to improve the sensitivity, stability and response/recovery time of the hydrogen sensor.
为了实现以上发明目的,本发明提供了一种Pt修饰的多元金属氧化物敏感材料的制备方法,包括以下步骤:In order to achieve the above object of the invention, the invention provides a method for preparing a Pt-modified multi-element metal oxide sensitive material, comprising the following steps:
S1:将铁盐、沉淀剂及一种或多种其他过渡金属盐依次加入到去离子水中,搅拌得到均匀混合的溶液A;S1: Add iron salt, precipitant and one or more other transition metal salts into deionized water in sequence, and stir to obtain a uniformly mixed solution A;
S2:将混合溶液A放入带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8h~12h;S2: Put the mixed solution A into a reaction kettle lined with polytetrafluoroethylene, heat it to 120°C, and keep it warm for 8h-12h;
S3:将步骤S2中得到的物料离心、洗涤和干燥后在300℃、空气条件下煅烧3h,得到FeMOx敏感材料;S3: centrifuging, washing and drying the material obtained in step S2, and calcining at 300° C. under air conditions for 3 hours to obtain a FeMO x sensitive material;
S4:将步骤S3中得到的FeMOx敏感材料分散在乙醇溶液中,得到均匀混合的溶液B;S4: Dispersing the FeMO x sensitive material obtained in step S3 in an ethanol solution to obtain a uniformly mixed solution B;
S5:将氯铂酸溶液缓慢且逐滴加入到溶液B中,搅拌3h后洗涤、干燥;S5: Add the chloroplatinic acid solution slowly and dropwise to the solution B, stir for 3 hours, wash and dry;
S6:将步骤S5中得到的物料在H2/Ar气氛下加热到120℃,保温2小时后,冷却至室温,得到Pt/FeMOx敏感材料。其中,M指除铁之外的其他过渡金属元素。S6: Heating the material obtained in step S5 to 120° C. under H 2 /Ar atmosphere, keeping the temperature for 2 hours, and then cooling to room temperature to obtain a Pt/FeMO x sensitive material. Wherein, M refers to other transition metal elements except iron.
相比于现有技术,本发明选用带隙宽度窄、稳定性高、低成本和环境友好的Fe2O3为基底,与其它异价金属掺杂,采用简单的水热合成法,一步合成具有多缺陷的多元金属氧化物敏感材料,并将贵金属Pt以原子形式分散在金属氧化物表面,显著提升气体传感器的气敏性能。本发明制得的Pt修饰的多元金属氧化物敏感材料在缺陷种类和数量方面相比现有Pt/Pd与单一金属氧化物复合的敏感材料具有明显增加。其制备方法简单、成本低、可重复性强且无需表面活性剂。Compared with the prior art, the present invention uses Fe 2 O 3 with narrow band gap, high stability, low cost and environmental friendliness as the substrate, doped with other avalent metals, and adopts a simple hydrothermal synthesis method to synthesize in one step A multi-defect multi-element metal oxide sensitive material, and the noble metal Pt is atomically dispersed on the surface of the metal oxide, which significantly improves the gas sensing performance of the gas sensor. The Pt-modified multi-element metal oxide sensitive material prepared by the invention has obvious increase in defect types and quantities compared with the prior sensitive material compounded by Pt/Pd and a single metal oxide. Its preparation method is simple, low in cost, strong in repeatability and does not require surfactants.
优选地,步骤S1中,金属元素与沉淀剂的摩尔比为1:(2~5);金属元素中,铁元素与其他过渡金属元素(M)的摩尔比为1:(1~3)。Preferably, in step S1, the molar ratio of the metal element to the precipitant is 1: (2-5); among the metal elements, the molar ratio of the iron element to other transition metal elements (M) is 1: (1-3).
优选地,步骤S1中,铁盐、沉淀剂、一种或多种其他过渡金属盐及去离子水的摩尔比为1:(4.36~10):(0~3):(2700~4370)。Preferably, in step S1, the molar ratio of iron salt, precipitant, one or more other transition metal salts and deionized water is 1:(4.36-10):(0-3):(2700-4370).
优选地,步骤S5中,氯铂酸溶液的浓度为50mg mL-1,且氯铂酸中的铂元素与溶液B中的金属元素的摩尔比为1:(200~400)。Preferably, in step S5, the concentration of the chloroplatinic acid solution is 50 mg mL -1 , and the molar ratio of the platinum element in the chloroplatinic acid to the metal element in solution B is 1: (200-400).
优选地,步骤S1中,所述铁盐为FeCl3、Fe2(SO4)3、Fe(NO3)3中的任一种。Preferably, in step S1, the iron salt is any one of FeCl 3 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 .
优选地,步骤S1中,所述其他过渡金属盐为除了铁盐之外的其他过渡金属氯化物或过渡金属硫化物。其他过渡金属盐可选用如:氯化铜、氯化锌、氯化锰、氯化铬、氯化钛、氯化钼、氯化钨等过渡金属氯化物,或硫酸锰、硫酸锌、硫酸钼、硫酸铌、硫酸铜等过渡金属硫化物。Preferably, in step S1, the other transition metal salts are other transition metal chlorides or transition metal sulfides except iron salts. Other transition metal salts can be used such as: copper chloride, zinc chloride, manganese chloride, chromium chloride, titanium chloride, molybdenum chloride, tungsten chloride and other transition metal chlorides, or manganese sulfate, zinc sulfate, molybdenum sulfate , niobium sulfate, copper sulfate and other transition metal sulfides.
优选地,步骤S1中,所述沉淀剂为尿素、氟化氨中任一种或二者的混合物。Preferably, in step S1, the precipitating agent is any one of urea and ammonium fluoride or a mixture of both.
本发明还提供一种采用上述制备方法制备而成的Pt修饰的多元金属氧化物敏感材料,其在缺陷种类和数量方面相比现有Pt/Pd与单一金属氧化物复合的敏感材料具有明显增加。The present invention also provides a Pt-modified multi-element metal oxide sensitive material prepared by the above-mentioned preparation method, which has significantly increased defect types and quantities compared with existing Pt/Pd and single metal oxide composite sensitive materials .
本发明还提供上述Pt修饰的多元金属氧化物敏感材料在氢气传感器中的应用。将该Pt修饰的多元金属氧化物敏感材料作为氢气传感器的气敏材料,可有效提高氢气传感器的灵敏度、响应/恢复时间、选择性及稳定性。The present invention also provides the application of the above-mentioned Pt-modified multi-element metal oxide sensitive material in a hydrogen sensor. The Pt-modified multi-element metal oxide sensitive material is used as the gas-sensing material of the hydrogen sensor, which can effectively improve the sensitivity, response/recovery time, selectivity and stability of the hydrogen sensor.
本发明制得的Pt修饰的多元金属氧化物敏感材料在缺陷种类和数量方面具有明显增加。其制备方法简单、成本低、可重复性强且无需表面活性剂。实验测试结果表明,Pt修饰多元金属氧化物传感器在灵敏度、响应/恢复时间、选择性及稳定性方面相比现有氢气传感器均有显著提升。The Pt-modified multi-element metal oxide sensitive material prepared by the invention has obvious increase in defect types and quantities. Its preparation method is simple, low in cost, strong in repeatability and does not require surfactants. Experimental test results show that the Pt-modified multi-component metal oxide sensor has significantly improved sensitivity, response/recovery time, selectivity and stability compared with existing hydrogen sensors.
附图说明Description of drawings
图1为对比例1制得的Fe2O3敏感材料的SEM图;Fig. 1 is the SEM picture of the Fe2O3 sensitive material that comparative example 1 makes ;
图2为实施例1制得的Pt/Fe2(MoO4)3敏感材料的SEM图;Fig. 2 is the SEM picture of the Pt/Fe 2 (MoO 4 ) 3 sensitive material that
图3为实施例3制备的Pt/ZnFe2O4敏感材料的SEM图;Fig. 3 is the SEM picture of the Pt/ZnFe 2 O 4 sensitive materials prepared by embodiment 3;
图4为采用实施例1、实施例2、实施例3、对比例1和对比例2制得的敏感材料制得的氢气传感器在不同温度下对10ppm氢气的灵敏度变化曲线图;Fig. 4 is the sensitivity variation curve graph to 10ppm hydrogen of the hydrogen sensor that adopts the sensitive material that
图5为采用实施例1制得的敏感材料制成的氢气传感器在最佳操作温度、不同氢气浓度下的连续动态响应曲线;Fig. 5 is the continuous dynamic response curve of the hydrogen sensor made of the sensitive material made in
图6为采用实施例3制得的敏感材料制成的氢气传感器在最佳操作温度、不同氢气浓度下的连续动态响应曲线;Fig. 6 is the continuous dynamic response curve of the hydrogen sensor made of the sensitive material made in embodiment 3 at optimum operating temperature and different hydrogen concentrations;
图7为采用实施例1制得的敏感材料制成的氢气传感器在最佳操作温度、10ppm氢气浓度下的连续动态响应曲线;Fig. 7 is the continuous dynamic response curve under optimum operating temperature and 10ppm hydrogen concentration of the hydrogen sensor made by the sensitive material adopted in
图8为采用实施例3制得的敏感材料制成的氢气传感器在最佳操作温度、10ppm氢气浓度下的连续动态响应曲线;Fig. 8 is the continuous dynamic response curve of the hydrogen sensor made of the sensitive material made in embodiment 3 at optimum operating temperature and 10ppm hydrogen concentration;
图9为分别采用实施例1和实施例3制得的敏感材料制成的氢气传感器在最佳操作温度对10ppm氢气、一氧化碳和甲烷的响应值变化图。Fig. 9 is a graph showing changes in the response values of hydrogen sensors made of the sensitive materials prepared in Example 1 and Example 3 to 10 ppm hydrogen, carbon monoxide and methane at the optimum operating temperature.
具体实施方式Detailed ways
以下结合具体实施例,对本发明作进一步说明。应当理解,本发明的实施并不局限于下面的实例,对基于本发明所做的任何形式上的变通或改变都将属于本发明的范畴。如本发明的实施例仅列举了两种Pt修饰的多元金属氧化物敏感材料(Pt/Fe2(MoO4)3和Pt/ZnFeO4),并非局限于该两种Pt修饰的多元金属氧化物敏感材料,本领域技术人员可替换为其他异价金属掺杂在α-Fe2O3基体中,亦可在权利要求书中限定的参数范围内对试剂和原料的用量和实验条件进行调整,均应当视为属于本发明的范畴内。The present invention will be further described below in conjunction with specific embodiments. It should be understood that the implementation of the present invention is not limited to the following examples, and any modifications or changes in form based on the present invention will fall within the scope of the present invention. As the embodiment of the present invention only lists two Pt-modified multi-element metal oxide sensitive materials (Pt/Fe 2 (MoO 4 ) 3 and Pt/ZnFeO 4 ), it is not limited to these two Pt-modified multi-element metal oxides Sensitive materials, those skilled in the art can be replaced by other avalent metals doped in the α-Fe 2 O 3 matrix, and the amount of reagents and raw materials and experimental conditions can also be adjusted within the parameters defined in the claims. All should be regarded as belonging to the scope of the present invention.
在本发明中,所采用的设备和原料等均可从市场购得或本领域常用的。以下是实施例中采用的主要试剂:In the present invention, the equipment and raw materials used can be purchased from the market or commonly used in this field. The following are the main reagents used in the examples:
实施例1:Example 1:
按以下步骤制备Pt/Fe2(MoO4)3敏感材料:The Pt/Fe 2 (MoO 4 ) 3 sensitive material was prepared according to the following steps:
取0.41g Fe(NO3)3·9H2O,3.76g(NH4)6Mo7O24·4H2O,0.116g NH4F和0.308g CN2H4O(金属元素与沉淀剂的摩尔比为1:2,铁元素与其他过渡金属元素比为1:3)依次加入70mL去离子水中(铁元素:沉淀剂:钼元素:去离子水摩尔比为1:8:3:3851),搅拌40min,得到均匀混合的液体。将均匀混合后的液体放入100mL带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8小时,自然冷却至室温后将得到悬浮液用去离子水和乙醇(3:1)的混合溶液清洗至少3次后,在60℃下干燥17小时,得到干燥的粉末样品。最后,将粉末样品在300℃、空气条件下煅烧3小时,升温速率为5℃/min,得到Fe2(MoO4)3气敏材料。取100mgFe2(MoO4)3上述制备的样品加入到10mL乙醇溶液中,超声与搅拌间断处理至Fe2(MoO4)3粉末均匀分散在乙醇溶液中。取166μL、50mg mL-1的H2PtCl6溶液(铂元素与过渡金属元素(Fe和Mo)的摩尔比为1:200)缓慢且逐滴加入到上述Fe2(MoO4)3的乙醇混合溶液中,搅拌3小时后洗涤、冷冻干燥,得到粉末样品。将上述得到的粉末样品在10% H2/Ar气氛下加热到120℃,加热速率为2℃min-1,保温2小时后,冷却至室温,得到Pt/Fe2(MoO4)3敏感材料。Take 0.41g Fe(NO 3 ) 3 9H 2 O, 3.76g (NH 4 ) 6 Mo 7 O 24 4H 2 O, 0.116g NH 4 F and 0.308g CN 2 H 4 O (the mixture of metal element and precipitation agent The molar ratio is 1:2, and the ratio of iron element to other transition metal elements is 1:3) into 70mL deionized water in turn (the molar ratio of iron element: precipitant: molybdenum element: deionized water is 1:8:3:3851) , and stirred for 40 min to obtain a uniformly mixed liquid. Put the uniformly mixed liquid into a 100mL reaction kettle with a polytetrafluoroethylene liner, heat it to 120°C, keep it warm for 8 hours, and cool it down to room temperature naturally. Dilute the suspension with deionized water and ethanol (3:1 ) was washed at least 3 times, and then dried at 60°C for 17 hours to obtain a dry powder sample. Finally, the powder sample was calcined at 300°C in air for 3 hours with a heating rate of 5°C/min to obtain the Fe 2 (MoO 4 ) 3 gas-sensing material. Take 100mg of the Fe 2 (MoO 4 ) 3 sample prepared above and add it into 10 mL of ethanol solution, and perform ultrasonic and stirring intermittently until the Fe 2 (MoO 4 ) 3 powder is evenly dispersed in the ethanol solution. Take 166 μL, 50 mg mL -1 of H 2 PtCl 6 solution (the molar ratio of platinum element to transition metal element (Fe and Mo) is 1:200) and slowly and dropwise add it to the above-mentioned Fe 2 (MoO 4 ) 3 ethanol and mix solution, stirred for 3 hours, washed and freeze-dried to obtain a powder sample. The powder sample obtained above was heated to 120°C under 10% H 2 /Ar atmosphere at a heating rate of 2°C min -1 , kept for 2 hours, then cooled to room temperature to obtain a Pt/Fe 2 (MoO 4 ) 3 sensitive material .
实施例2:Example 2:
按以下步骤制备Pt/Fe2(MoO4)3敏感材料:The Pt/Fe 2 (MoO 4 ) 3 sensitive material was prepared according to the following steps:
取0.58g Fe(NO3)3·9H2O,3.22g(NH4)6Mo7O24·4H2O,0.160g NH4F和0.423g CN2H4O(金属元素与沉淀剂的摩尔比为1:2.75,铁元素与过渡金属元素摩尔比为1:1.8)依次加入70mL去离子水中(铁元素:沉淀剂:钼元素:去离子水摩尔比为1:7.7:1.8:2700),搅拌40min,得到均匀混合的液体。将均匀混合后的液体放入100mL带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8小时,自然冷却至室温后将得到悬浮液用去离子水和乙醇(3:1)的混合溶液清洗至少3次后,在60℃下干燥17小时,得到干燥的粉末样品。最后,将粉末样品在300℃、空气条件下煅烧3小时,升温速率为5℃/min,得到Fe2(MoO4)3气敏材料。取100mgFe2(MoO4)3上述制备的样品加入到10mL乙醇溶液中,超声与搅拌间断处理至Fe2(MoO4)3粉末均匀分散在乙醇溶液中。取110μL、50mg mL-1的H2PtCl6溶液(铂元素与过渡金属元素(Fe和Mo)的摩尔比为1:300)缓慢且逐滴加入到上述Fe2(MoO4)3的乙醇混合溶液中,搅拌3小时后洗涤、冷冻干燥,得到粉末样品。将上述得到的粉末样品在10% H2/Ar气氛下加热到120℃,加热速率为2℃min-1,保温2小时后,冷却至室温,得到Pt/Fe2(MoO4)3敏感材料。Take 0.58g Fe(NO 3 ) 3 9H 2 O, 3.22g (NH 4 ) 6 Mo 7 O 24 4H 2 O, 0.160g NH 4 F and 0.423g CN 2 H 4 O (the mixture of metal element and precipitation agent The molar ratio is 1:2.75, and the molar ratio of iron element to transition metal element is 1:1.8) into 70mL deionized water in turn (the molar ratio of iron element: precipitant: molybdenum element: deionized water is 1:7.7:1.8:2700) , and stirred for 40 min to obtain a uniformly mixed liquid. Put the uniformly mixed liquid into a 100mL reaction kettle with a polytetrafluoroethylene liner, heat it to 120°C, keep it warm for 8 hours, and cool it down to room temperature naturally. Dilute the suspension with deionized water and ethanol (3:1 ) was washed at least 3 times, and then dried at 60°C for 17 hours to obtain a dry powder sample. Finally, the powder sample was calcined at 300°C in air for 3 hours with a heating rate of 5°C/min to obtain the Fe 2 (MoO 4 ) 3 gas-sensing material. Take 100mg of the Fe 2 (MoO 4 ) 3 sample prepared above and add it into 10 mL of ethanol solution, and perform ultrasonic and stirring intermittently until the Fe 2 (MoO 4 ) 3 powder is evenly dispersed in the ethanol solution. Take 110 μL, 50 mg mL -1 of H 2 PtCl 6 solution (the molar ratio of platinum element to transition metal element (Fe and Mo) is 1:300) and slowly and dropwise add it to the above-mentioned Fe 2 (MoO 4 ) 3 ethanol and mix solution, stirred for 3 hours, washed and freeze-dried to obtain a powder sample. The powder sample obtained above was heated to 120°C under 10% H 2 /Ar atmosphere at a heating rate of 2°C min -1 , kept for 2 hours, then cooled to room temperature to obtain a Pt/Fe 2 (MoO 4 ) 3 sensitive material .
实施例3:Example 3:
按以下步骤制备Pt/ZnFe2O4敏感材料:Prepare Pt/ZnFe 2 O 4 sensitive material as follows:
取0.36g Fe(NO3)3·9H2O,0.12g ZnCl2,0.116g NH4F和0.364g CN2H4O(金属元素与沉淀剂的摩尔比为1:5,铁元素与过渡金属元素比为1:1)依次加入70mL去离子水中(铁元素:沉淀剂:钼元素:去离子水摩尔比为1:10:1:4370),搅拌40min,得到均匀混合的液体。将均匀混合后的液体放入100mL带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8小时,自然冷却至室温后将得到悬浮液用去离子水和乙醇(3:1)的混合溶液清洗至少3次后,在60℃下干燥17小时,得到干燥的粉末样品。最后,将粉末样品在300℃、空气条件下煅烧3小时,升温速率为5℃/min,得到ZnFe2O4敏感材料。取100mg ZnFe2O4上述制备的样品加入到10mL乙醇溶液中,超声与搅拌间断处理至ZnFe2O4粉末均匀分散在乙醇溶液中。取37.0μL、50mgmL-1的H2PtCl6(铂元素与过渡金属元素(Fe和Zn)的摩尔比为1:400)溶液缓慢且逐滴加入到上述ZnFe2O4的乙醇混合溶液中,搅拌3小时后洗涤、冷冻干燥,得到粉末样品。将上述得到的粉末样品在10% H2/Ar气氛下加热到120℃,加热速率为2℃min-1,保温2小时后,冷却至室温,得到Pt/ZnFe2O4敏感材料。Take 0.36g Fe(NO 3 ) 3 9H 2 O, 0.12g ZnCl 2 , 0.116g NH 4 F and 0.364g CN 2 H 4 O (the molar ratio of metal element to precipitation agent is 1:5, iron element and transition The ratio of metal elements is 1:1) into 70mL deionized water (the molar ratio of iron element: precipitant: molybdenum element: deionized water is 1:10:1:4370) in sequence, and stirred for 40min to obtain a uniformly mixed liquid. Put the uniformly mixed liquid into a 100mL reaction kettle with a polytetrafluoroethylene liner, heat it to 120°C, keep it warm for 8 hours, and cool it down to room temperature naturally. Dilute the suspension with deionized water and ethanol (3:1 ) was washed at least 3 times, and then dried at 60°C for 17 hours to obtain a dry powder sample. Finally, the powder sample was calcined at 300°C in air for 3 hours with a heating rate of 5°C/min to obtain the ZnFe 2 O 4 sensitive material. Take 100mg of the ZnFe 2 O 4 sample prepared above and add it into 10mL ethanol solution, ultrasonicate and stir intermittently until the ZnFe 2 O 4 powder is evenly dispersed in the ethanol solution. Take 37.0 μL, 50 mgmL -1 of H 2 PtCl 6 (the molar ratio of platinum element to transition metal element (Fe and Zn) is 1:400) solution and slowly and dropwise add it to the above ZnFe 2 O 4 ethanol mixed solution, After stirring for 3 hours, it was washed and freeze-dried to obtain a powder sample. The powder sample obtained above was heated to 120°C in a 10% H 2 /Ar atmosphere at a heating rate of 2°C min -1 , kept for 2 hours, then cooled to room temperature to obtain a Pt/ZnFe 2 O 4 sensitive material.
对比例1:Comparative example 1:
按以下步骤制备Fe2O3气敏材料Prepare Fe2O3 gas-sensing material according to the following steps
取0.41g FeCl3·6H2O,0.05g NH4F和0.189g CN2H4O(金属元素与沉淀剂的摩尔比为1:4.36)依次加入70mL去离子水中(铁元素:沉淀剂:去离子水摩尔比为1:4.36:3851),搅拌40min,得到均匀混合的液体。将均匀混合后的液体放入100mL带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8小时,自然冷却至室温后将得到悬浮液用去离子水和乙醇(3:1)的混合溶液清洗至少3次后,在60℃下干燥17小时,得到干燥的粉末样品。最后,将粉末样品在300℃、空气条件下煅烧3小时,升温速率为5℃/min,得到Fe2O3敏感材料。对比例2:Take 0.41g FeCl 3 6H 2 O, 0.05g NH 4 F and 0.189g CN 2 H 4 O (the molar ratio of metal element to precipitant is 1:4.36) and add them into 70mL deionized water (iron element: precipitant: The molar ratio of deionized water is 1:4.36:3851), and stirred for 40 minutes to obtain a uniformly mixed liquid. Put the uniformly mixed liquid into a 100mL reaction kettle with a polytetrafluoroethylene liner, heat it to 120°C, keep it warm for 8 hours, and cool it down to room temperature naturally. Dilute the suspension with deionized water and ethanol (3:1 ) was washed at least 3 times, and then dried at 60°C for 17 hours to obtain a dry powder sample. Finally, the powder sample was calcined at 300°C in air for 3 hours with a heating rate of 5°C/min to obtain the Fe 2 O 3 sensitive material. Comparative example 2:
按以下步骤制备Pt/Fe2O3敏感材料:Prepare Pt/Fe 2 O 3 sensitive materials as follows:
取0.41g FeCl3·6H2O,0.05g NH4F和0.189g CN2H4O(金属元素与沉淀剂的摩尔比为1:4.36)依次加入70mL去离子水中(铁元素:沉淀剂:去离子水摩尔比为1:4.36:3851),搅拌40min,得到均匀混合的液体。将均匀混合后的液体放入100mL带有聚四氟乙烯内衬的反应釜中,加热至120℃,保温8小时,自然冷却至室温后将得到悬浮液用去离子水和乙醇(3:1)的混合溶液清洗至少3次后,在60℃下干燥17小时,得到干燥的粉末样品。最后,将粉末样品在300℃、空气条件下煅烧3小时,升温速率为5℃/min,得到Fe2O3敏感材料。取100mg上述制备的样品加入到10mL乙醇溶液中,超声与搅拌间断处理至Fe2O3粉末均匀分散在乙醇溶液中。取24.0μL、50mg mL-1的H2PtCl6(铂元素与Fe元素的摩尔比为1:350)溶液缓慢且逐滴加入到上述Fe2O3的乙醇混合溶液中,搅拌3小时后洗涤、冷冻干燥,得到粉末样品。将上述得到的粉末样品在10% H2/Ar气氛下加热到120℃,加热速率为2℃min-1,保温2小时后,冷却至室温,得到Pt/Fe2O3敏感材料。Take 0.41g FeCl 3 6H 2 O, 0.05g NH 4 F and 0.189g CN 2 H 4 O (the molar ratio of metal element to precipitant is 1:4.36) and add them into 70mL deionized water (iron element: precipitant: The molar ratio of deionized water is 1:4.36:3851), and stirred for 40 minutes to obtain a uniformly mixed liquid. Put the uniformly mixed liquid into a 100mL reaction kettle with a polytetrafluoroethylene liner, heat it to 120°C, keep it warm for 8 hours, and cool it down to room temperature naturally. Dilute the suspension with deionized water and ethanol (3:1 ) was washed at least 3 times, and then dried at 60°C for 17 hours to obtain a dry powder sample. Finally, the powder sample was calcined at 300°C in air for 3 hours with a heating rate of 5°C/min to obtain the Fe 2 O 3 sensitive material. Take 100mg of the sample prepared above and add it into 10mL ethanol solution, ultrasonicate and stir intermittently until the Fe 2 O 3 powder is evenly dispersed in the ethanol solution. Take 24.0 μL, 50 mg mL -1 of H 2 PtCl 6 (the molar ratio of platinum element to Fe element is 1:350) solution and slowly and dropwise add it to the above Fe 2 O 3 ethanol mixed solution, stir for 3 hours and then wash , freeze-drying to obtain a powder sample. The powder sample obtained above was heated to 120°C in a 10% H 2 /Ar atmosphere at a heating rate of 2°C min -1 , kept for 2 hours, then cooled to room temperature to obtain a Pt/Fe 2 O 3 sensitive material.
测试结果分析:Analysis of test results:
从图1的SEM图中可以观察到对比例1制得的Fe2O3敏感材料主要以线状和多面体形貌存在,表面光滑。从图2的SEM图可以看出,实施例1制得的Pt/Fe2(MoO4)3敏感材料呈现由纳米线构成的花状形貌,并没有在Pt/Fe2(MoO4)3表面观察到Pt纳米颗粒存在,这是由于Pt负载量少,Pt以原子形式分散在Fe2(MoO4)3表面。从图3的SEM图可以看出,实施例3制得的Pt/ZnFe2O4敏感材料由纳米线堆叠而成。由1~3的SEM图可以看出,本发明提供的制备方法成功制备了Fe2O3敏感材料、Pt/Fe2(MoO4)3敏感材料和Pt/ZnFe2O4敏感材料。由图4可知,采用对比例1制得的敏感材料制成的Fe2O3传感器、采用对比例2制得的敏感材料制成的Pt/Fe2O3传感器、采用实施例1制得的敏感材料制成的Pt/Fe2(MoO4)3传感器、采用实施例2制得的敏感材料制成的Pt/Fe2(MoO4)3传感器和采用实施例3制得的敏感材料制成的Pt/ZnFe2O4传感器的响应值在10ppm氢气条件下,随着温度的升高,响应值先升到最大值再降低。相同温度下,采用实施例1制得的敏感材料制成的Pt/Fe2(MoO4)3传感器和采用实施例3制得的敏感材料制成的Pt/ZnFe2O4传感器相比采用对比例1制得的敏感材料制成的Fe2O3传感器、采用对比例2制得的敏感材料制成的Pt/Fe2O3传感器和采用实施例2制得的敏感材料制成的Pt/Fe2(MoO4)3传感器的响应值有较大提高。由图5可知,在300℃,采用实施例1制得的敏感材料制成的Pt/Fe2(MoO4)3传感器的响应值随氢气浓度的增大而增大。由图6可知,在300℃,采用实施例3制得的敏感材料制成的Pt/ZnFe2O4传感器的响应值随氢气浓度的增大而增大。由图7可知,在300℃、10ppm氢气条件下,采用实施例1制得的敏感材料制成的Pt/Fe2(MoO4)3氢气传感器的稳定性高、并且响应/恢复时间短。由图8可知,在300℃、10ppm氢气条件下,采用实施例3制得的敏感材料制成的Pt/ZnFe2O4氢气传感器的稳定性高,且无基线偏移现象发生。根据图9的柱状图可知,采用实施例1制得的敏感材料制成的Pt/Fe2(MoO4)3气体传感器和采用实施例3制得的敏感材料制成的Pt/ZnFe2O4气体传感器对氢气的选择性较高。From the SEM image of Figure 1, it can be observed that the Fe 2 O 3 sensitive material prepared in Comparative Example 1 mainly exists in the shape of lines and polyhedrons, and the surface is smooth. From the SEM image of Figure 2, it can be seen that the Pt/Fe 2 (MoO 4 ) 3 sensitive material prepared in Example 1 presents a flower-like morphology composed of nanowires, and there is no The presence of Pt nanoparticles was observed on the surface, which was due to the small amount of Pt loading, and Pt was dispersed in the form of atoms on the surface of Fe 2 (MoO 4 ) 3 . It can be seen from the SEM image of FIG. 3 that the Pt/ZnFe 2 O 4 sensitive material prepared in Example 3 is composed of nanowire stacks. From the SEM images of 1 to 3, it can be seen that the preparation method provided by the present invention successfully prepared Fe 2 O 3 sensitive materials, Pt/Fe 2 (MoO 4 ) 3 sensitive materials and Pt/ZnFe 2 O 4 sensitive materials. As can be seen from Figure 4, the Fe2O3 sensor made of the sensitive material made in Comparative Example 1, the Pt/ Fe2O3 sensor made of the sensitive material made in Comparative Example 2, the sensor made of the sensitive material made in Example 1 The Pt/Fe 2 (MoO 4 ) 3 sensor made of sensitive material, the Pt/Fe 2 (MoO 4 ) 3 sensor made of the sensitive material made in Example 2 and the sensitive material made in Example 3 The response value of the Pt/ZnFe 2 O 4 sensor is under the condition of 10ppm hydrogen, as the temperature increases, the response value first rises to the maximum value and then decreases. At the same temperature, the Pt/Fe 2 (MoO 4 ) 3 sensor made of the sensitive material made in Example 1 is compared with the Pt/ZnFe 2 O 4 sensor made of the sensitive material made in Example 3. The Fe 2 O 3 sensor made of the sensitive material made in
以上各项性能数据表明,实施例2制备的Pt/Fe2(MoO4)3气体传感器对氢气灵敏度的提高有限,而将实施例1和实施例3制得的Pt修饰的多元Fe2O3基敏感材料作为氢气传感器的气敏材料,制成的氢气传感器在响应值、稳定性、响应时间和选择性方面表现出了明显的优势。The above performance data show that the Pt/Fe 2 (MoO 4 ) 3 gas sensor prepared in Example 2 has a limited improvement in hydrogen sensitivity, while the Pt-modified multi-component Fe 2 O 3 prepared in Example 1 and Example 3 As the gas-sensing material of hydrogen sensor, the hydrogen sensor made has obvious advantages in response value, stability, response time and selectivity.
本发明并不局限于说明书和实施方式所列运用,其完全可以被适用于各种适合本发明的领域,在不背离本发明精神及其实质的情况下,对于熟悉本领域的人员而言,可容易地实现另外的修改和变形,但这些相应的修改和变形都应属于本发明所要求的保护范围。The present invention is not limited to the application listed in the specification and implementation, and it can be applied to various fields suitable for the present invention. Without departing from the spirit and essence of the present invention, for those familiar with the field, Other modifications and variations can be easily realized, but these corresponding modifications and variations should all belong to the scope of protection required by the present invention.
以上所述仅为本发明的部分实施例,并非因此限定本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所做出的等同替换和显而易见的变化所得到的方案,应当包含在本发明的保护范围内。The above descriptions are only part of the embodiments of the present invention, and are not intended to limit the implementation and protection scope of the present invention. For those skilled in the art, they should be able to realize that all equivalent replacements made by using the content of the description of the present invention are obvious and obvious The scheme obtained by the change should be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211395423.9A CN115745000B (en) | 2022-11-09 | 2022-11-09 | Pt-modified multi-metal oxide sensitive material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211395423.9A CN115745000B (en) | 2022-11-09 | 2022-11-09 | Pt-modified multi-metal oxide sensitive material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115745000A true CN115745000A (en) | 2023-03-07 |
CN115745000B CN115745000B (en) | 2023-12-19 |
Family
ID=85368363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211395423.9A Active CN115745000B (en) | 2022-11-09 | 2022-11-09 | Pt-modified multi-metal oxide sensitive material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115745000B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116514175A (en) * | 2023-05-16 | 2023-08-01 | 中国石油大学(华东) | Preparation method of zinc ferrite/molybdenum oxide nanomaterial, MEMS hydrogen sulfide sensor and its application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106198647A (en) * | 2016-07-22 | 2016-12-07 | 武汉工程大学 | A kind of dimethylbenzene gas sensitive, dimethylbenzene gas sensitive device and preparation method thereof |
CN107459064A (en) * | 2016-06-03 | 2017-12-12 | 中国科学院大连化学物理研究所 | A kind of nanocube accumulates layered mesoporous FeMoO4The preparation method of solid material |
CN109781800A (en) * | 2019-01-25 | 2019-05-21 | 青岛大学 | A kind of gas sensor based on metal molybdate nanocomposite and preparation method thereof |
CN110124678A (en) * | 2019-05-29 | 2019-08-16 | 中国矿业大学 | The Fe prepared using waste silicon molybdenum rod2(MoO4)3/MoO3Catalysis material, method and its application |
-
2022
- 2022-11-09 CN CN202211395423.9A patent/CN115745000B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107459064A (en) * | 2016-06-03 | 2017-12-12 | 中国科学院大连化学物理研究所 | A kind of nanocube accumulates layered mesoporous FeMoO4The preparation method of solid material |
CN106198647A (en) * | 2016-07-22 | 2016-12-07 | 武汉工程大学 | A kind of dimethylbenzene gas sensitive, dimethylbenzene gas sensitive device and preparation method thereof |
CN109781800A (en) * | 2019-01-25 | 2019-05-21 | 青岛大学 | A kind of gas sensor based on metal molybdate nanocomposite and preparation method thereof |
CN110124678A (en) * | 2019-05-29 | 2019-08-16 | 中国矿业大学 | The Fe prepared using waste silicon molybdenum rod2(MoO4)3/MoO3Catalysis material, method and its application |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116514175A (en) * | 2023-05-16 | 2023-08-01 | 中国石油大学(华东) | Preparation method of zinc ferrite/molybdenum oxide nanomaterial, MEMS hydrogen sulfide sensor and its application |
Also Published As
Publication number | Publication date |
---|---|
CN115745000B (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101759146B (en) | A method for preparing ZnO/ZnFe2O4 composite nano hollow spheres | |
CN107827150B (en) | A kind of nickel-doped tin oxide nanomaterial, formaldehyde gas sensor and preparation method | |
CN106093140B (en) | Composite structure doped gas-sensing material for NO2 gas, gas-sensing element and its manufacturing method and application | |
Wang et al. | Enhanced triethylamine sensing performance of metal–organic framework derived nest-type Fe-doped NiO nanostructure | |
CN110606503B (en) | Gold-modified porous tin dioxide micro-nanosheet composite material and preparation method and application thereof | |
CN110606504A (en) | A kind of graded core-shell SnO2 microsphere and its preparation method and application | |
CN108715457A (en) | Based on MOF template controlledly synthesis nano structure of zinc oxide gas sensors | |
CN115745000A (en) | Pt-modified multi-element metal oxide sensitive material and preparation method and application thereof | |
CN107572601A (en) | A kind of synthetic method of CoO appearance of nano material regulation and control | |
CN113740390B (en) | A kind of nickel-doped indium oxide nanoparticle and its preparation method and application | |
CN108956708A (en) | A kind of alcohol gas sensor and preparation method thereof based on zinc ferrite nano sensitive material | |
CN105181755A (en) | Ammonia gas sensor and its preparation process | |
Xu et al. | High efficiency triethylamine gas sensor based on SmVO4 nano octahedron granules | |
Li et al. | Heterostructure engineering of In2O3/ErVO4 hairy curd for high-performance TEA gas sensors | |
CN108663416B (en) | Gas sensor for formaldehyde detection and manufacturing method thereof | |
CN107449805A (en) | A kind of cobalt acid zinc nanometer more shell yolk shell films sensitive to acetone | |
CN110108760A (en) | One kind being based on Zn ion doping α-Fe2O3Gas sensor of nanometer rods and preparation method thereof | |
CN100432012C (en) | Nanometer gas-sensing material of ternary composite metal oxide and production thereof | |
Neri | Non-conventional sol–gel routes to nanosized metal oxides for gas sensing: from materials to applications | |
CN107324386A (en) | A kind of preparation method of dendroid VO2@ZnO core-shell structures | |
CN113933360B (en) | A doped sensitive material for improving the performance of a hydrogen sensor, its preparation method and application | |
CN115893476B (en) | Preparation method and application of indium oxide hollow tube derived from indium MOFs coated with Pd nanoparticles | |
CN111468740A (en) | A method for preparing hexagonal elemental copper nanosheets by polyol method | |
CN103801326B (en) | A kind of load type nano gold catalyst and preparation method thereof | |
Zhao et al. | Hierarchically assembled ZnO nanorods on TiO2 nanobelts for high performance gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |