CN115739973B - 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法 - Google Patents

菌渣联合硝化抑制剂处理多菌灵污染土壤的方法 Download PDF

Info

Publication number
CN115739973B
CN115739973B CN202211514138.4A CN202211514138A CN115739973B CN 115739973 B CN115739973 B CN 115739973B CN 202211514138 A CN202211514138 A CN 202211514138A CN 115739973 B CN115739973 B CN 115739973B
Authority
CN
China
Prior art keywords
soil
carbendazim
fungus
nitrification inhibitor
combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211514138.4A
Other languages
English (en)
Other versions
CN115739973A (zh
Inventor
张满云
王安岽
郭涛
周帑荣
王炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Original Assignee
Hunan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University filed Critical Hunan Agricultural University
Priority to CN202211514138.4A priority Critical patent/CN115739973B/zh
Publication of CN115739973A publication Critical patent/CN115739973A/zh
Application granted granted Critical
Publication of CN115739973B publication Critical patent/CN115739973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

本发明涉及土壤修复及处理技术领域,具体公开了菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,将硝化抑制剂溶解于蒸馏水中得到硝化抑制液,将硝化抑制液、菌渣与土壤混合后于25~30℃的条件下修复即可。所述硝化抑制剂的添加量占菌渣含氮量的0.5~1.5%,所述菌渣与土壤的质量比为2~4:96~98。本发明无需培养菌株,能很大程度上简化土壤修复的工序,施用后菌渣与硝化抑制剂联合应用,土壤中的多菌灵能降低38.14%,且能满足不同类型、不同污染程度的土壤修复需要,具有很好的实际应用价值。

Description

菌渣联合硝化抑制剂处理多菌灵污染土壤的方法
技术领域
本发明土壤处理技术领域,具体涉及一种菌渣联合硝化抑制剂处理多菌灵污染土壤的方法。
背景技术
多菌灵为用于抑制病原微生物和保证作物产量的广谱杀菌剂,重复和高剂量施用多菌灵带来严重的土壤污染,威胁着土壤生态,造成如土壤质量退化、微生物活性抑制等现象。由于多菌灵主要应用于农业土壤中,因此,必须采用生态环保和经济的方法来促进农业土壤中多菌灵的清除。
现有技术中,大都采用菌剂进行降解,如公开号为CN102329740A的中国专利公开了一株多菌灵降解木霉菌株及其制备方法,其提供的菌株为木霉(Trichoderma sp.)Tr1,该菌株已在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏号为CGMCCNo.5210;该菌株是利用含有多菌灵的无机盐培养基,从受多菌灵污染的土壤中分离、筛选、培养获得的;应用该菌株的发酵菌液制得的微生物制剂,可用于对受到多菌灵污染的土壤进行生物修复。公开号为CN107011912B的中国专利公开了一种农药多菌灵降解微生物菌剂及其制备方法,其在专用液体发酵培养基中培养人苍白杆菌WNPA2,收集发酵液离心分离除去发酵液中的水份,获得乳白色粘稠状菌体细胞,加入甘油和硅藻土,搅拌混合均匀,获得白色固体制剂即目的产品。其对土壤的多菌灵降解率可达到50%以上。这些菌株在实验条件下具有良好的效果,然而存在的问题是菌株筛选和制备成本较高,且实际应用时菌株适应的土壤条件有限,绝大多数菌株只能满足特定条件的土壤处理需要,而在环境严苛的环境下,菌株无法良性繁殖生长进而无法对土壤中的多菌灵进行高效和持久处理,因而应用受限,开发应用更为便捷,且成本更低,同时能满足不同土壤环境的制剂以降低土壤中多菌灵残留量迫在眉睫。
菌渣是一种特殊的可回收资源,据统计,2020年全球菌渣总量高达6000万吨。菌渣结构疏松、孔隙结构丰富,可作为土壤改良剂,研究表明,施用菌渣进行微生态耕作能显著提高土壤全氮、全磷含量,刺激土壤微生物活性,提高重金属污染土壤的植物修复性能。然而菌渣中同样可能含有抗生素和病原微生物等残留物,应用于农业土壤中可能增加抗生素耐药基因丰度并带来相应的健康风险。在现代农业中,硝化抑制剂被广泛应用于抑制土壤消化作用,其可改变土壤氮循环的电子传递。然而目前为止,单独将菌渣或硝化抑制剂或者联合二者而处理多菌灵污染土壤未见报道,将菌渣与硝化抑制剂联合应用以减少污染土壤中的多菌灵残留、改善污染土壤的微生物生物量、改善微生物活性并降低菌渣对土壤带来的抗生素耐药基因污染风险,是本发明需要解决的问题。
发明内容
本发明所解决的技术问题在于提供一种菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,以降低多菌灵污染土壤中的多菌灵残留,改善污染土壤的微生物生物量、改善微生物活性并降低菌渣对土壤带来的抗生素耐药基因污染风险。
本发明所解决的技术问题采用以下技术方案来实现:
菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,将硝化抑制剂溶解于蒸馏水中得到硝化抑制液,将硝化抑制液、菌渣与土壤混合后于25~30℃的条件下修复即可。
进一步地,菌渣需进行预处理,预处理方法为:将菌渣风干至恒重,然后粉碎至直径不大于2mm的菌渣颗粒备用。
进一步地,修复过程中补水使土壤持水量保持55~65%,在该条件下,土壤修复效果最佳。
进一步地,所述硝化抑制剂的添加量占菌渣含氮量的0.5~1.5%,保证硝化抑制剂充分抑制菌渣中氮元素的流失。
进一步地,所述硝化抑制剂的添加量占菌渣含氮量的1.0%。
进一步地,所述硝化抑制剂为双氰胺。
进一步地,所述菌渣与土壤的质量比为2~4:96~98。
进一步地,所述菌渣与土壤的质量比为3:97。
进一步地,所述菌渣为平菇菌渣。
有益效果:本发明所述的菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,与空白组相比,菌渣联合硝化抑制剂具有很好的协同作用,处理后的多菌灵污染土壤中的多菌灵降低了38.14%,且显著提高了土壤中β-葡萄糖苷酶、几丁质酶、芳基硫化酶、脲酶和电子转移系统活性,并进一步降低了土壤中人类致病基因的相对丰度,降低菌渣对土壤带来的抗生素耐药基因污染风险。本发明操作便利,原料成本和施用成本低,能适应复杂的修复环境及多种类型的土壤修复的需要,能对土壤中的多菌灵进行高效和持久处理,具有很好的实际推广和应用价值。
附图说明:
图1为实施例1、对照例1、对照例2、对照例3得到土壤样品的多菌灵残留量比对图。
图2为实施例1、对照例1、对照例2、对照例3得到土壤样品的微生物活性分析。
图3为实施例1、对照例1、对照例2、对照例3得到土壤样品的多菌灵降解的速率和电子转移活性的线性回归分析结果图。
图4为实施例1、对照例1、对照例2、对照例3得到土壤样品的人类致病基因的绝对丰度。
图5为实施例1、对照例1、对照例2、对照例3得到土壤样品的人类致病基因的相对丰度。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例进一步阐述本发明。
污染土壤制备:试验土壤采自长沙市金井镇,土壤为典型红壤。于土壤表层(0~20cm深度)土壤取样后在实验室风干,研磨并通过2mm筛,土壤的基本性质如表1所示。
表1试验土壤和菌渣的基本性质
用于土壤加标处理的商用多菌灵(纯度50%)以及用于高效液相色谱的多菌灵标准品(纯度99%)均为市售产品。
用商业多菌灵对风干、筛分的试验土壤进行处理,并充分混合得到污染土壤,污染土壤中多菌灵含量为50mg/kg干土,加标土壤在试验前暗处理老化30天,保证多菌灵在土壤中分布均匀,备用。
各实施例中用到的菌渣为平菇菌渣。
实施例1
菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,方法如下:
菌渣预处理:将平菇菌渣在室温下风干至恒重,然后使用粉碎机将风干后的菌渣粉碎成直径不大于2mm的菌渣颗粒备用。
将双氰胺溶解于蒸馏水中得到硝化抑制液备用;
经过预处理后的菌渣与污染土壤按3:97的质量比混合后置于烧瓶中,然后继续加入硝化抑制液,双氰胺的加入量为加入的平菇菌渣的含氮量的1.0%,烧瓶用薄膜密封,在28℃的条件下置于黑暗中保存修复,修复过程中,添加蒸馏水使土壤保持60%的持水能力。其中遮光或黑暗中修复主要用于减少光降解的影响,进一步保证实验结果的准确度。实际操作过程中无需遮光处理。培养28d后测定土壤汇总多菌灵含量及土壤理化和微生物性状。
对照例1
本实施例所述的降低土壤多菌灵残留量的方法如下:
菌渣预处理:将平菇菌渣在室温下风干至恒重,然后使用粉碎机将风干后的菌渣粉碎成直径不大于2mm的菌渣颗粒备用。
经过预处理后的菌渣与污染土壤按3:97的质量比混合后置于烧瓶中,烧瓶用薄膜密封,在28℃黑暗中保存修复,修复过程中,土壤中添加蒸馏水使保持60%的持水能力。培养28d后测定土壤汇总多菌灵含量及土壤理化和微生物性状。
对照例2
本实施例所述的降低土壤多菌灵残留量的方法如下:
将双氰胺溶解于蒸馏水中得到硝化抑制液备用;
将污染土壤置于烧瓶中,加入硝化抑制液,双氰胺的加入量与实施例1同,烧瓶用薄膜密封,在28℃黑暗中保存修复,修复过程中,土壤中添加蒸馏水使保持60%的持水能力。培养28d后测定土壤汇总多菌灵含量及土壤理化和微生物性状。
对照例3
本实施例中,将污染土壤置于烧瓶中,烧瓶用薄膜密封,在28℃黑暗中保存修复,修复过程中,土壤中添加蒸馏水使保持60%的持水能力。培养28d后测定土壤汇总多菌灵含量及土壤理化和微生物性状。
实施例1(CSDA)、仅采用菌渣处理的对照例1(SA)、仅采用硝化抑制剂处理的对照例2(NIDA)以及空白处理的对照例3(CK)均设置4个重复。
结果检测及分析。
一)土壤性质和多菌灵残留量分析
对实施例1、对照例1、对照例2和对照例3处理后得到的土壤样品进行研磨和筛分,测定土壤理化性质的变化和多菌灵残留量分析。如图1所示,与CK组相比,SA和NIDA处理的土壤多菌灵残留均有下降,而CSDA处理的多菌灵残留量下降最多,CSDA处理的多菌灵残留量为CK处理的61.8%,为SA处理的91.05%,说明菌渣联合硝化抑制剂对多菌灵降解有协同作用。
如表2所示,其中SA和CADA处理得到的土壤样品中N和TN含量显著增加,SA和CSDA处理土壤的OM含量分别是CK处理的2.34倍和2.54倍,SA和CSDA处理土壤的铵态氮分别比CK组提高了60%和70%,然而硝态氮的含量在四个实施例得到的土壤样品中无显著差异,说明,经过CSDA处理土壤的土壤性质有很大改变。
表2处理后的土壤样品性质比对表
二)土壤微生物活性分析
对实施例1、对照例1、对照例2和对照例3处理后得到的土壤样品进行研磨和筛分,采用苯酚-次氯酸钠比色法测定土壤脲酶活性,采用Floch et al.(2009)的方法测定β-葡萄糖苷酶、几丁质酶、酸性磷酸酶和芳基磺酸镁的活性。酶测定的底物如表3所示。
表3酶测定的底物
如图2所示,NIDA、SA和CSDA处理的土壤微生物显著增强,且SA和CSDA之间的土壤微生物量也存在显著差异,其中CSDA处理后刺激了土壤中β-葡萄糖苷酶、脲酶、几丁质酶、甲酰磺胺酶活性,说明其效果并非是菌渣和硝化抑制剂的简单叠加,而是有复杂的协同作用,CSDA处理的土壤中芳基硫酸酶活性最高,是CK处理组的1.66倍。
但四个实施例的处理对磷酸酶和蛋白酶活性影响均不大。
如图3所示,表明多菌灵降解率与ETS活性呈显著正相关。
三)土壤DNA提取、测序和数据分析
将实施例1、对照例1、对照例2和对照例3处理后得到的土壤样品进行研磨和筛分,检测并验证土壤中抗生素耐药基因与人类致病基因的关系。
使用商用DNA试剂盒(Omega Bio-tek,美国)分别提取各试验土壤的基因组DNA,对基因组DNA进行拆分,构建配对端文库,然后对文库进行测序与比对。并将ARG和微生物群落的Shannon和Invsimpson指数进行量化。
采用邓肯多重检验分析不同处理间的显著差异,利用Pearson相关分析定量土壤理化性质、抗生素抗性基因、人类致病基因和土壤微生物群落之间的综合关系,并进行Duncan多重检验和Pearson相关分析,显著性阈值P<0.05。进一步对抗生素耐药基因和人类致病基因进行主成分分析(PCA)。
其中,宏基因组测序基本信息如表4所示,抗生素耐药基因的注释信息如表4所示。
表4宏观测序基本信息
表5抗生素耐药基因的注释信息
结果如图4所示,CK处理中人类致病基因的绝对丰度明显低于SA和CSDA处理组,如图5所示,CK、NIDA、SA和CSDA中人类致病基因的相对丰度分别为3.65%、3.62%、3.96%和3.81%,说明与单独的SA相比,菌渣联合硝化抑制剂的CSDA组具有显著降低人类致病基因相对丰度的能力,同时,菌渣联合硝化抑制剂的CSDA组处理的物质依赖型疾病基因相对丰度明显低于SA组,说明菌渣联合硝化抑制剂具有一定的协同作用,
综上,菌渣和硝化抑制剂联合施用可对多菌灵降解产生生物刺激效应,增加多菌灵的共代谢降解,促进多菌灵的耗散,并通过协同作用,普遍增强了污染土壤的ETS活性,增强了酶活性,增加了有机污染物的分解。同时相较于单独的菌渣组处理,菌渣与硝化抑制剂联合应用能降缓解病原体在试验土壤中的传播,并可降低土壤中人类致病基因的相对丰度,降低健康风险。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,其特征在于,将硝化抑制剂溶解于蒸馏水中得到硝化抑制液,将硝化抑制液、菌渣与土壤混合后于25~30℃的条件下修复即可;
所述硝化抑制剂的添加量占菌渣含氮量的0.5~1.5%;
所述硝化抑制剂为双氰胺;
所述菌渣与土壤的质量比为2~4:96~98;
所述菌渣为平菇菌渣。
2.根据权利要求1所述的菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,其特征在于,菌渣需进行预处理,预处理方法为:将菌渣风干至恒重,然后粉碎至直径不大于2 mm的菌渣颗粒备用。
3.根据权利要求1所述的菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,其特征在于,修复过程中补水使土壤持水量保持55~65%。
4.根据权利要求1所述的菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,其特征在于,所述硝化抑制剂的添加量占菌渣含氮量的1.0%。
5.根据权利要求1所述的菌渣联合硝化抑制剂处理多菌灵污染土壤的方法,其特征在于,所述菌渣与土壤的质量比为3:97。
CN202211514138.4A 2022-11-29 2022-11-29 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法 Active CN115739973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211514138.4A CN115739973B (zh) 2022-11-29 2022-11-29 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211514138.4A CN115739973B (zh) 2022-11-29 2022-11-29 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法

Publications (2)

Publication Number Publication Date
CN115739973A CN115739973A (zh) 2023-03-07
CN115739973B true CN115739973B (zh) 2024-04-12

Family

ID=85340543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211514138.4A Active CN115739973B (zh) 2022-11-29 2022-11-29 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法

Country Status (1)

Country Link
CN (1) CN115739973B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974433A (zh) * 2010-10-21 2011-02-16 西北农林科技大学 一种多菌灵复合降解菌和降解多菌灵的方法
WO2011032904A1 (en) * 2009-09-16 2011-03-24 Basf Se Method for reducing nitrous oxide emission from soils
CN102296041A (zh) * 2011-08-26 2011-12-28 中国农业科学院农业资源与农业区划研究所 高效降解残留农药多菌灵的细菌及其用途
CN102329740A (zh) * 2011-09-26 2012-01-25 郑恩泽 一株多菌灵降解木霉菌株及其制备方法
CN103563642A (zh) * 2013-11-22 2014-02-12 湖南省农业生物资源利用研究所 一种低硝酸盐含量茄子的栽培方法
CN108728385A (zh) * 2018-06-25 2018-11-02 宝鸡文理学院 一种多菌灵降解用农杆菌及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032904A1 (en) * 2009-09-16 2011-03-24 Basf Se Method for reducing nitrous oxide emission from soils
CN101974433A (zh) * 2010-10-21 2011-02-16 西北农林科技大学 一种多菌灵复合降解菌和降解多菌灵的方法
CN102296041A (zh) * 2011-08-26 2011-12-28 中国农业科学院农业资源与农业区划研究所 高效降解残留农药多菌灵的细菌及其用途
CN102329740A (zh) * 2011-09-26 2012-01-25 郑恩泽 一株多菌灵降解木霉菌株及其制备方法
CN103563642A (zh) * 2013-11-22 2014-02-12 湖南省农业生物资源利用研究所 一种低硝酸盐含量茄子的栽培方法
CN108728385A (zh) * 2018-06-25 2018-11-02 宝鸡文理学院 一种多菌灵降解用农杆菌及其应用

Also Published As

Publication number Publication date
CN115739973A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
Li et al. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality
Liu et al. Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue
Zhou et al. Effects of microplastics on humification and fungal community during cow manure composting
Větrovský et al. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria
Yasir et al. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity
Pathak et al. In vitro studies on degradation of synthetic dye mixture by Comamonas sp. VS-MH2 and evaluation of its efficacy using simulated microcosm
Song et al. The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils
Zhou et al. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil
Zhang et al. Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting
Hui et al. Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes
Chaudhary et al. Biodegradation of diesel oil and n-alkanes (C 18, C 20, and C 22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil
LI et al. Screening of a composite microbial system and its characteristics of wheat straw degradation
Reyes-Escogido et al. Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples
Zhang et al. Response of bacterial community to iron oxide nanoparticles during agricultural waste composting and driving factors analysis
Puppala et al. Characterization of novel acidic and thermostable phytase secreting Streptomyces sp.(NCIM 5533) for plant growth promoting characteristics
Sonia et al. Studies on the ecology of actinomycetes in an agricultural soil amended with organic residues: I. identification of the dominant groups of Actinomycetales
Liu et al. Integrating 16S rRNA amplicon metagenomics and selective culture for developing thermophilic bacterial inoculants to enhance manure composting
Zhao et al. Different phenanthrene-degrading bacteria cultured by in situ soil substrate membrane system and traditional cultivation
You et al. A sustainable approach for bioremediation of secondary salinized soils: Studying remediation efficiency and soil nitrate transformation by bioaugmentation
Govindasamy et al. Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits
CN106906158B (zh) 一株含油污泥降解功能菌及其应用
Zhang et al. Application of pig manure compost with different biochar modifies the antibiotic resistome and bacterial community in agriculture soil
CN115739973B (zh) 菌渣联合硝化抑制剂处理多菌灵污染土壤的方法
Zhang et al. Ammonia-oxidizing bacterial communities and shaping factors with different Phanerochaete chrysosporium inoculation regimes during agricultural waste composting
Kaksonen et al. Rhizosphere effect of Galega orientalis in oil-contaminated soil

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant