CN115710021A - Method for reducing content of magnetic substances in lithium battery positive electrode material - Google Patents
Method for reducing content of magnetic substances in lithium battery positive electrode material Download PDFInfo
- Publication number
- CN115710021A CN115710021A CN202211446826.1A CN202211446826A CN115710021A CN 115710021 A CN115710021 A CN 115710021A CN 202211446826 A CN202211446826 A CN 202211446826A CN 115710021 A CN115710021 A CN 115710021A
- Authority
- CN
- China
- Prior art keywords
- lithium
- positive electrode
- electrode material
- lithium battery
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 95
- 239000000126 substance Substances 0.000 title claims abstract description 87
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 20
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 39
- 238000005245 sintering Methods 0.000 claims description 31
- 239000010406 cathode material Substances 0.000 claims description 17
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 16
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 16
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 12
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 8
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 claims description 6
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 claims description 5
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 claims description 4
- 230000005347 demagnetization Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 7
- 230000002411 adverse Effects 0.000 abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 229910052742 iron Inorganic materials 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000007885 magnetic separation Methods 0.000 description 4
- 238000010146 3D printing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 231100000989 no adverse effect Toxicity 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- AGCSFOPWOBXNNP-UHFFFAOYSA-N [Mn].[Co].[Ni].[Mn].[Li] Chemical compound [Mn].[Co].[Ni].[Mn].[Li] AGCSFOPWOBXNNP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:(1)将第一锂电池正极材料和锂盐混合均匀,得到正极混料;(2)将步骤(1)所得正极混料进行烧结处理,得到第二锂电池正极材料;其中,所述第二锂电池正极材料中的磁性物含量与第一锂电池正极材料相比,降低幅度≥50%;或者,所述第二锂电池正极材料中的磁性物含量≤100ppb。本发明提供的方法特别针对于弱磁性物质,避免了其对电池性能的不利影响,改善了除磁效果的同时提升了除磁效率,降低了安全风险和工艺成本。The invention provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps: (1) uniformly mixing the first lithium battery positive electrode material and a lithium salt to obtain a positive electrode mixture; (2) mixing The positive electrode mixture obtained in step (1) is sintered to obtain a second lithium battery positive electrode material; wherein, compared with the first lithium battery positive electrode material, the content of magnetic substances in the second lithium battery positive electrode material is reduced by ≥ 50% or, the content of magnetic substances in the positive electrode material of the second lithium battery is ≤100ppb. The method provided by the invention is especially aimed at weak magnetic substances, which avoids its adverse effect on battery performance, improves the demagnetization effect and simultaneously improves the demagnetization efficiency, and reduces safety risks and process costs.
Description
技术领域technical field
本发明属于锂离子电池技术领域,涉及一种锂电池正极材料,尤其涉及一种降低锂电池正极材料中磁性物含量的方法。The invention belongs to the technical field of lithium ion batteries, relates to a lithium battery cathode material, and in particular to a method for reducing the content of magnetic substances in the lithium battery cathode material.
背景技术Background technique
随着锂离子电池行业的快速发展,锂离子电池凭借其较高的能量密度和倍率性能,以及较长的使用寿命,已被广泛应用于移动电话、数码相机、笔记本电脑、电子烟、无人机和新能源汽车等各个领域。With the rapid development of the lithium-ion battery industry, lithium-ion batteries have been widely used in mobile phones, digital cameras, notebook computers, electronic cigarettes, and unmanned vehicles due to their high energy density, rate performance, and long service life. Machines and new energy vehicles and other fields.
众所周知,正极材料是锂离子电池的关键组成部分,其性能直接影响了锂离子电池的多项重要指标。当正极材料中存在铁、铬、镍、锌等磁性物质时,电池在化成阶段的电压达到上述磁性异物金属元素的氧化还原电位之后,这些磁性异物金属元素首先会在正极氧化并溶解,然后迁移到负极被还原成金属单质。当负极处的金属单质积累到一定程度后会形成金属枝晶刺破隔膜,从而造成电池自放电失效,严重情况下甚至还会导致锂离子电池燃烧爆炸。因此,在正极材料生产过程中,尽可能地去除材料中的磁性物质便显得尤为重要。As we all know, cathode material is a key component of lithium-ion batteries, and its performance directly affects many important indicators of lithium-ion batteries. When there are magnetic substances such as iron, chromium, nickel, zinc, etc. in the positive electrode material, after the voltage of the battery in the formation stage reaches the oxidation-reduction potential of the above-mentioned magnetic foreign matter metal elements, these magnetic foreign matter metal elements will first be oxidized and dissolved in the positive electrode, and then migrate To the negative electrode is reduced to metal simple substance. When the metal element at the negative electrode accumulates to a certain extent, metal dendrites will be formed to pierce the diaphragm, resulting in battery self-discharge failure, and in severe cases, it may even cause the lithium-ion battery to burn and explode. Therefore, in the production process of positive electrode materials, it is particularly important to remove the magnetic substances in the materials as much as possible.
针对锂电池正极材料,本领域技术人员在降低其中磁性物含量时普遍采用物理方法,即在锂电池正极材料生产过程中,通过产线设计除磁棒和除铁机等设备来除去产品中微量的磁性物。这种方法虽然能够除去磁性物,但是存在除磁效果不佳的问题,尤其是弱磁性物质无法被磁铁完全去除,从而无法有效避免磁性物对电池性能的不利影响。For lithium battery cathode materials, those skilled in the art generally use physical methods to reduce the content of magnetic substances in them, that is, in the production process of lithium battery cathode materials, the production line is designed to remove magnetic rods and iron removers and other equipment to remove trace amounts of magnetic substances in the product. of magnetic objects. Although this method can remove the magnetic substance, it has the problem of poor demagnetization effect, especially the weak magnetic substance cannot be completely removed by the magnet, so that the adverse effect of the magnetic substance on the performance of the battery cannot be effectively avoided.
而且,由于三元材料本身具有弱磁性,较强的磁场强度很容易堵塞管道,因此一般需要将除铁机调至较低的磁场强度进行除磁,如此便显著降低了三元正极材料的除磁效果,从而造成三元正极材料一旦被污染,材料的磁性物就很难去除,进而导致磁性物含量偏高,容易引起安全风险,尤其是弱磁性物质更难以去除。Moreover, because the ternary material itself has weak magnetism, a strong magnetic field strength can easily block the pipeline, so it is generally necessary to adjust the iron remover to a lower magnetic field strength for demagnetization, which significantly reduces the demagnetization of the ternary positive electrode material. Therefore, once the ternary positive electrode material is contaminated, it is difficult to remove the magnetic substance of the material, which leads to a high content of magnetic substance, which is likely to cause safety risks, especially the weak magnetic substance is more difficult to remove.
此外,在锂电池的生产过程中,往往会产生一些高磁性物,常规降低磁性异物含量的方法主要是过筛除铁,也就是将物料通过高强度的高斯通量磁芯以吸附磁性物。然而,由于存在弱磁性物质的干扰,这种方法需要重复多次,且除磁效果并不理想,尤其是对于物料中的弱磁性物质吸附能力不佳,对使用弱磁法检测的产品毫无效果。In addition, in the production process of lithium batteries, some highly magnetic substances are often produced. The conventional method to reduce the content of magnetic foreign substances is mainly to remove iron by sieving, that is, to pass materials through high-strength Gaussian flux cores to absorb magnetic substances. However, due to the interference of weak magnetic substances, this method needs to be repeated many times, and the demagnetization effect is not ideal, especially for the weak magnetic substances in the material. Effect.
CN 112125347A公开了一种低能耗快速的钴酸锂制备方法及系统,所述方法包括以下步骤:(1)制作3D打印混合料:将原料进行混合均匀得到3D打印混合料;(2)采用3D打印技术将3D打印混合料制作成匀实型混合料;(3)对匀实型混合料进行烧结处理得到块状固体料;(4)破碎处理:对块状固体料进行破碎处理,得到初级钴酸锂料;(5)通过筛分处理筛除初级钴酸锂产品中的大颗粒物,通过磁选处理除去或降低初级钴酸锂产品中铁、铬、镍、锌等磁性异物,得到钴酸锂产品。然而,所述发明采用的磁选处理并不能完全去除钴酸锂产品中的弱磁性物质,且需要重复多次,磁选效率较低且磁选效果有待进一步改善。CN 112125347A discloses a low-energy and fast lithium cobaltate preparation method and system, the method comprising the following steps: (1) making a 3D printing mixture: mixing the raw materials evenly to obtain a 3D printing mixture; (2) using 3D The printing technology makes the 3D printing mixture into a homogeneous mixture; (3) sintering the homogeneous mixture to obtain a block solid material; (4) crushing treatment: crushing the block solid material to obtain a primary Lithium cobaltate material; (5) remove large particles in the primary lithium cobaltate product by screening, remove or reduce magnetic foreign matter such as iron, chromium, nickel, zinc, etc. in the primary lithium cobaltate product by magnetic separation, and obtain cobaltate lithium products. However, the magnetic separation treatment adopted in the invention cannot completely remove the weak magnetic substances in the lithium cobalt oxide product, and needs to be repeated many times, the magnetic separation efficiency is low and the magnetic separation effect needs to be further improved.
由此可见,如何提供一种降低锂电池正极材料中磁性物含量的方法,特别是针对弱磁性物质,避免其对电池性能的不利影响,改善除磁效果的同时提升除磁效率,降低安全风险和工艺成本,成为了目前本领域技术人员迫切需要解决的问题。It can be seen from this that how to provide a method to reduce the content of magnetic substances in the positive electrode material of lithium batteries, especially for weak magnetic substances, avoid its adverse effects on battery performance, improve the demagnetization effect and improve the demagnetization efficiency at the same time, and reduce safety risks And process cost, become the urgent problem that those skilled in the art need to solve at present.
发明内容Contents of the invention
针对现有技术存在的不足,本发明的目的在于提供一种降低锂电池正极材料中磁性物含量的方法,所述方法特别针对于弱磁性物质,避免了其对电池性能的不利影响,改善了除磁效果的同时提升了除磁效率,降低了安全风险和工艺成本。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a method for reducing the content of magnetic substances in the positive electrode material of lithium batteries. The method is especially aimed at weak magnetic substances, avoiding its adverse effects on battery performance, and improving the While the demagnetization effect is improved, the demagnetization efficiency is improved, and the safety risk and process cost are reduced.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
本发明提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:The invention provides a method for reducing the content of magnetic substances in lithium battery cathode materials, the method comprising the following steps:
(1)将第一锂电池正极材料和锂盐混合均匀,得到正极混料;(1) uniformly mixing the positive electrode material of the first lithium battery and the lithium salt to obtain the positive electrode mixture;
(2)将步骤(1)所得正极混料进行烧结处理,得到第二锂电池正极材料。(2) Sintering the positive electrode mixture obtained in step (1) to obtain the second lithium battery positive electrode material.
其中,所述第二锂电池正极材料中的磁性物含量与第一锂电池正极材料相比,降低幅度≥50%,例如可以是50%、55%、60%、65%、70%、75%、80%、85%或90%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Wherein, the magnetic substance content in the positive electrode material of the second lithium battery is reduced by ≥ 50% compared with the positive electrode material of the first lithium battery, for example, it can be 50%, 55%, 60%, 65%, 70%, 75% %, 80%, 85% or 90%, but not limited to the listed values, other unlisted values within this range are also applicable.
或者,所述第二锂电池正极材料中的磁性物含量≤100ppb,例如可以是10ppb、20ppb、30ppb、40ppb、50ppb、60ppb、70ppb、80ppb、90ppb或100ppb,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Alternatively, the magnetic substance content in the positive electrode material of the second lithium battery is ≤100ppb, such as 10ppb, 20ppb, 30ppb, 40ppb, 50ppb, 60ppb, 70ppb, 80ppb, 90ppb or 100ppb, but not limited to the listed values, Other unrecited values within this value range are also applicable.
本发明通过锂电池正极材料与锂盐混合均匀并进行烧结处理,利用锂盐与正极材料中的弱磁性物质,如Fe、Fe2O3等发生反应,生成无磁性的LizFexCoyO2等物质,从而实现了降低锂电池正极材料中磁性物含量的目的,且磁性物含量降低幅度达50%以上或者磁性物含量降至100ppb以下,对电池性能和安全性能并无不利影响,工艺流程简单,成本低廉,便于大规模推广应用。In the present invention, the cathode material of the lithium battery is uniformly mixed with the lithium salt and sintered, and the lithium salt reacts with the weak magnetic substances in the cathode material, such as Fe, Fe 2 O 3 , etc., to generate non-magnetic Li z F x Co y O2 and other substances, thereby achieving the purpose of reducing the content of magnetic substances in the positive electrode material of lithium batteries, and the reduction of the content of magnetic substances is more than 50% or the content of magnetic substances is reduced to less than 100ppb, and there is no adverse effect on battery performance and safety performance. The technological process is simple, the cost is low, and it is convenient for large-scale popularization and application.
优选地,步骤(1)所述第一锂电池正极材料包括磁性物含量≥100ppb的锂电池正极材料,例如可以是100ppb、200ppb、300ppb、400ppb、500ppb、600ppb、700ppb、800ppb或900ppb,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the first lithium battery positive electrode material in step (1) includes a lithium battery positive electrode material with a magnetic content ≥ 100ppb, for example, 100ppb, 200ppb, 300ppb, 400ppb, 500ppb, 600ppb, 700ppb, 800ppb or 900ppb, but not Not limited to the listed values, other unlisted values within the range of values are also applicable.
优选地,步骤(1)所述第一锂电池正极材料包括镍钴锰酸锂、镍钴铝酸锂、镍锰酸锂、钴酸锂或锰酸锂中的任意一种或至少两种的组合,典型但非限制性的组合包括镍钴锰酸锂与镍钴铝酸锂的组合,镍钴铝酸锂与镍锰酸锂的组合,镍锰酸锂与钴酸锂的组合,钴酸锂与锰酸锂的组合,镍钴锰酸锂、镍钴铝酸锂与镍锰酸锂的组合,镍钴铝酸锂、镍锰酸锂与钴酸锂的组合,或镍锰酸锂、钴酸锂与锰酸锂的组合。Preferably, the positive electrode material of the first lithium battery in step (1) includes any one or at least two of lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium nickel manganese oxide, lithium cobalt oxide or lithium manganate Combinations, typical but non-limiting combinations include the combination of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminate, the combination of lithium nickel cobalt aluminate and lithium nickel manganese oxide, the combination of lithium nickel manganese oxide and lithium cobalt oxide, cobalt acid The combination of lithium and lithium manganate, the combination of lithium nickel cobalt manganate, lithium nickel cobalt aluminate and lithium nickel manganate, the combination of lithium nickel cobalt aluminate, lithium nickel manganate and lithium cobaltate, or lithium nickel manganate, A combination of lithium cobaltate and lithium manganate.
优选地,步骤(1)所述锂盐包括碳酸锂、氢氧化锂或氧化锂中的任意一种或至少两种的组合,典型但非限制性的组合包括碳酸锂与氢氧化锂的组合,氢氧化锂与氧化锂的组合,碳酸锂与氧化锂的组合,或碳酸锂、氢氧化锂与氧化锂的组合。Preferably, the lithium salt described in step (1) includes any one or a combination of at least two of lithium carbonate, lithium hydroxide or lithium oxide, a typical but non-limiting combination includes a combination of lithium carbonate and lithium hydroxide, A combination of lithium hydroxide and lithium oxide, a combination of lithium carbonate and lithium oxide, or a combination of lithium carbonate, lithium hydroxide and lithium oxide.
优选地,步骤(1)所述锂盐的混合质量占第一锂电池正极材料质量的0-5%,但不包括0,例如可以是0.01%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the mixed mass of the lithium salt in step (1) accounts for 0-5% of the mass of the positive electrode material of the first lithium battery, but does not include 0, for example, it can be 0.01%, 0.1%, 0.5%, 1%, 1.5% , 2%, 2.5%, 3%, 3.5%, 4%, 4.5% or 5%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
优选地,步骤(1)所述混合还伴随着搅拌,且搅拌的速率为100-500rpm,例如可以是100rpm、150rpm、200rpm、250rpm、300rpm、350rpm、400rpm、450rpm或500rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the mixing in step (1) is also accompanied by stirring, and the stirring rate is 100-500rpm, such as 100rpm, 150rpm, 200rpm, 250rpm, 300rpm, 350rpm, 400rpm, 450rpm or 500rpm, but not limited to the Numerical values listed, other unlisted numerical values within the numerical range are also applicable.
优选地,步骤(2)所述烧结处理在匣钵中进行,并将所述匣钵置于窑炉内。Preferably, the sintering treatment in step (2) is carried out in a sagger, and the sagger is placed in a kiln.
优选地,步骤(2)所述烧结处理的升温速率为0.1-5℃/min,例如可以是0.1℃/min、0.5℃/min、1℃/min、1.5℃/min、2℃/min、2.5℃/min、3℃/min、3.5℃/min、4℃/min、4.5℃/min或5℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the heating rate of the sintering treatment in step (2) is 0.1-5°C/min, such as 0.1°C/min, 0.5°C/min, 1°C/min, 1.5°C/min, 2°C/min, 2.5°C/min, 3°C/min, 3.5°C/min, 4°C/min, 4.5°C/min or 5°C/min, but not limited to the listed values, other unlisted values within this range are also applicable .
优选地,步骤(2)所述烧结处理的目标温度为300-950℃,例如可以是300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃、900℃或950℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the target temperature of the sintering treatment in step (2) is 300-950°C, such as 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C, 750°C, 800°C, 850°C, 900°C or 950°C, but not limited to the listed values, other unlisted values within this range are also applicable.
本发明中,所述烧结处理的目标温度需控制在合理范围内。当目标温度低于300℃时,锂盐与正极材料中的弱磁性物质反应并不彻底,从而降低了除磁效率,且除磁效果并不理想;当目标温度高于950℃时,又会造成处理成本的不必要升高。In the present invention, the target temperature of the sintering treatment needs to be controlled within a reasonable range. When the target temperature is lower than 300°C, the reaction between the lithium salt and the weak magnetic substance in the positive electrode material is not complete, thereby reducing the demagnetization efficiency, and the demagnetization effect is not ideal; when the target temperature is higher than 950°C, it will Unnecessary increase in processing costs.
优选地,步骤(2)所述烧结处理的保温时间为12-30h,例如可以是12h、14h、16h、18h、20h、22h、24h、26h、28h或30h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the holding time of the sintering treatment in step (2) is 12-30h, for example, it can be 12h, 14h, 16h, 18h, 20h, 22h, 24h, 26h, 28h or 30h, but it is not limited to the listed values , other unlisted values within this value range are also applicable.
作为本发明优选的技术方案,所述方法包括以下步骤:As a preferred technical solution of the present invention, the method comprises the following steps:
(1)将第一锂电池正极材料和锂盐混合均匀,并伴随着速率为100-500rpm的搅拌,得到正极混料;所述第一锂电池正极材料包括磁性物含量≥100ppb的锂电池正极材料,且所述第一锂电池正极材料包括镍钴锰酸锂、镍钴铝酸锂、镍锰酸锂、钴酸锂或锰酸锂中的任意一种或至少两种的组合;所述锂盐包括碳酸锂、氢氧化锂或氧化锂中的任意一种或至少两种的组合,且所述锂盐的混合质量占第一锂电池正极材料质量的0-5%,但不包括0;(1) Mix the first lithium battery positive electrode material and lithium salt evenly, and agitate at a rate of 100-500rpm to obtain the positive electrode mixture; the first lithium battery positive electrode material includes a lithium battery positive electrode with a magnetic substance content ≥ 100ppb material, and the positive electrode material of the first lithium battery includes any one or a combination of at least two of lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium nickel manganese oxide, lithium cobalt oxide or lithium manganate; The lithium salt includes any one or a combination of at least two of lithium carbonate, lithium hydroxide or lithium oxide, and the mixed mass of the lithium salt accounts for 0-5% of the mass of the positive electrode material of the first lithium battery, but does not include 0 ;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为0.1-5℃/min,目标温度为300-950℃,保温时间为12-30h,最终得到第二锂电池正极材料;其中,所述第二锂电池正极材料中的磁性物含量与第一锂电池正极材料相比,降低幅度≥50%;或者,所述第二锂电池正极材料中的磁性物含量≤100ppb。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 0.1-5°C/min, the target The temperature is 300-950°C, the holding time is 12-30h, and finally the second lithium battery positive electrode material is obtained; wherein, the content of magnetic substances in the second lithium battery positive electrode material is lower than that of the first lithium battery positive electrode material. ≥50%; or, the magnetic substance content in the positive electrode material of the second lithium battery is ≤100ppb.
本发明所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The numerical ranges described in the present invention not only include the above-mentioned point values, but also include any point values between the above-mentioned numerical ranges that are not listed. Due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the above-mentioned point values. Specific point values covered by the stated ranges.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本发明通过锂电池正极材料与锂盐混合均匀并进行烧结处理,利用锂盐与正极材料中的弱磁性物质,如Fe、Fe2O3等发生反应,生成无磁性的LizFexCoyO2等物质,从而实现了降低锂电池正极材料中磁性物含量的目的,且磁性物含量降低幅度达50%以上或者磁性物含量降至100ppb以下,对电池性能和安全性能并无不利影响,工艺流程简单,成本低廉,便于大规模推广应用。In the present invention, the cathode material of the lithium battery is uniformly mixed with the lithium salt and sintered, and the lithium salt reacts with the weak magnetic substances in the cathode material, such as Fe, Fe 2 O 3 , etc., to generate non-magnetic Li z F x Co y O2 and other substances, thereby achieving the purpose of reducing the content of magnetic substances in the positive electrode material of lithium batteries, and the reduction of the content of magnetic substances is more than 50% or the content of magnetic substances is reduced to less than 100ppb, and there is no adverse effect on battery performance and safety performance. The technological process is simple, the cost is low, and it is convenient for large-scale popularization and application.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below through specific embodiments.
实施例1Example 1
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将钴酸锂和碳酸锂混合均匀,且所述碳酸锂的混合质量占钴酸锂质量的0.1%,并伴随着速率为200rpm的搅拌,得到正极混料;(1) Lithium cobaltate and lithium carbonate are uniformly mixed, and the mixed mass of lithium carbonate accounts for 0.1% of the mass of lithium cobaltate, and with stirring at a rate of 200rpm, a positive electrode mixture is obtained;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为1℃/min,目标温度为600℃,保温时间为18h,最终得到磁性物含量为30ppb的钴酸锂正极材料。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 1°C/min, and the target temperature is 600°C, the holding time is 18h, and finally a lithium cobalt oxide positive electrode material with a magnetic substance content of 30ppb is obtained.
实施例2Example 2
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将磁性物含量为500ppb的钴酸锂和碳酸锂混合均匀,且所述碳酸锂的混合质量占钴酸锂质量的0.2%,并伴随着速率为100rpm的搅拌,得到正极混料;(1) Mix lithium cobaltate and lithium carbonate with a magnetic content of 500ppb evenly, and the mixed mass of lithium carbonate accounts for 0.2% of the mass of lithium cobaltate, and with stirring at a rate of 100rpm, a positive electrode mixture is obtained;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为1℃/min,目标温度为300℃,保温时间为24h,最终得到磁性物含量为11ppb的钴酸锂正极材料,磁性物含量降低幅度达97.8%。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 1°C/min, and the target temperature is 300°C, the holding time is 24h, and finally a lithium cobalt oxide positive electrode material with a magnetic substance content of 11ppb is obtained, and the magnetic substance content is reduced by 97.8%.
实施例3Example 3
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将钴酸锂和氢氧化锂混合均匀,且所述氢氧化锂的混合质量占钴酸锂质量的0.01%,并伴随着速率为300rpm的搅拌,得到正极混料;(1) Mix lithium cobaltate and lithium hydroxide evenly, and the mixed mass of lithium hydroxide accounts for 0.01% of the mass of lithium cobaltate, and with stirring at a rate of 300rpm, a positive electrode mixture is obtained;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为2℃/min,目标温度为900℃,保温时间为12h,最终得到磁性物含量为50ppb的钴酸锂正极材料。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 2°C/min, and the target temperature is 900°C, the holding time is 12h, and finally a lithium cobaltate cathode material with a magnetic substance content of 50ppb is obtained.
实施例4Example 4
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将磁性物含量为600ppb的镍钴锰酸锂和氢氧化锂混合均匀,且所述氢氧化锂的混合质量占镍钴锰酸锂质量的2.5%,并伴随着速率为250rpm的搅拌,得到正极混料;(1) Mix nickel-cobalt lithium manganate and lithium hydroxide with a magnetic substance content of 600ppb evenly, and the mixed mass of lithium hydroxide accounts for 2.5% of the mass of nickel-cobalt lithium manganese oxide, accompanied by stirring at a rate of 250rpm , to obtain the positive electrode mixture;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为5℃/min,目标温度为900℃,保温时间为12h,最终得到磁性物含量为15ppb的镍钴锰酸锂正极材料,磁性物含量降低幅度达97.5%。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 5°C/min, and the target temperature is 900°C, the holding time is 12h, and finally a nickel-cobalt-lithium-manganese-manganese cathode material with a magnetic substance content of 15ppb is obtained, and the magnetic substance content is reduced by 97.5%.
实施例5Example 5
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将镍钴铝酸锂和氧化锂混合均匀,且所述氧化锂的混合质量占镍钴铝酸锂质量的4%,并伴随着速率为200rpm的搅拌,得到正极混料;(1) Mix lithium nickel cobalt aluminate and lithium oxide evenly, and the mixed mass of lithium oxide accounts for 4% of the mass of lithium nickel cobalt aluminate, and with stirring at a rate of 200rpm, a positive electrode mixture is obtained;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为3℃/min,目标温度为600℃,保温时间为20h,最终得到磁性物含量为40ppb的镍钴铝酸锂正极材料。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 3°C/min, and the target temperature is 600°C, the holding time is 20h, and finally a nickel-cobalt-lithium-aluminate positive electrode material with a magnetic content of 40ppb is obtained.
实施例6Example 6
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法包括以下步骤:This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery, the method comprising the following steps:
(1)将磁性物含量为650ppb的镍锰酸锂和氧化锂混合均匀,且所述氧化锂的混合质量占镍锰酸锂质量的5%,并伴随着速率为200rpm的搅拌,得到正极混料;(1) Mix lithium nickel manganese oxide and lithium oxide with a magnetic content of 650ppb evenly, and the mixed mass of lithium oxide accounts for 5% of the mass of lithium nickel manganese oxide, and with stirring at a rate of 200rpm, a positive electrode mixture is obtained. material;
(2)将步骤(1)所得正极混料转移至匣钵中,并将所述匣钵置于窑炉内进行烧结处理,且所述烧结处理的升温速率为3℃/min,目标温度为600℃,保温时间为20h,最终得到磁性物含量为80ppb的镍锰酸锂正极材料,磁性物含量降低幅度达87.7%。(2) Transfer the positive electrode mixture obtained in step (1) to a sagger, and place the sagger in a kiln for sintering treatment, and the heating rate of the sintering treatment is 3°C/min, and the target temperature is 600°C, the holding time is 20h, and finally a lithium nickel manganese oxide cathode material with a magnetic substance content of 80ppb is obtained, and the magnetic substance content is reduced by 87.7%.
实施例7Example 7
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(1)中的碳酸锂改为碳酸锂和氢氧化锂的等质量混合物,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the lithium carbonate in step (1) is changed to an equal mass mixture of lithium carbonate and lithium hydroxide, all the other steps and conditions are the same as in Example 1. are the same, so I won’t repeat them here.
本实施例所得锂电池锂正极材料的磁性物含量为28ppb。The magnetic substance content of the lithium cathode material of the lithium battery obtained in this embodiment is 28ppb.
实施例8Example 8
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(1)中的碳酸锂改为氢氧化锂和氧化锂的等质量混合物,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the lithium carbonate in step (1) is changed to an equal mass mixture of lithium hydroxide and lithium oxide, the remaining steps and conditions are the same as in Example 1. are the same, so I won’t repeat them here.
本实施例所得锂电池正极材料的磁性物含量为26ppb。The magnetic substance content of the positive electrode material of the lithium battery obtained in this embodiment is 26 ppb.
实施例9Example 9
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(1)中碳酸锂的混合质量占钴酸锂质量的比例改为0.005%,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the ratio of the mixed mass of lithium carbonate to the mass of lithium cobaltate in step (1) is changed to 0.005%, the remaining steps and conditions are the same as those in the embodiment. 1 are the same, so they will not be repeated here.
本实施例所得钴酸锂正极材料的磁性物含量为50ppb。The magnetic substance content of the lithium cobaltate positive electrode material obtained in this embodiment is 50 ppb.
实施例10Example 10
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(1)中碳酸锂的混合质量占钴酸锂质量的比例改为5.5%,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the ratio of the mixed mass of lithium carbonate to the mass of lithium cobaltate in step (1) is changed to 5.5%, the remaining steps and conditions are the same as those in the embodiment. 1 are the same, so they will not be repeated here.
本实施例所得锂电池正极材料的磁性物含量为22ppb。The magnetic substance content of the positive electrode material of the lithium battery obtained in this embodiment is 22ppb.
实施例11Example 11
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(2)中烧结处理的目标温度改为250℃,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the target temperature of the sintering treatment in step (2) is changed to 250° C., the remaining steps and conditions are the same as in Example 1, so it will not be described here. Do repeat.
本实施例所得锂电池正极材料的磁性物含量为48ppb。The magnetic substance content of the positive electrode material of the lithium battery obtained in this embodiment is 48ppb.
实施例12Example 12
本实施例提供一种降低锂电池正极材料中磁性物含量的方法,除了将步骤(2)中烧结处理的目标温度改为1000℃,其余步骤及条件均与实施例1相同,故在此不做赘述。This embodiment provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. Except that the target temperature of the sintering treatment in step (2) is changed to 1000° C., the remaining steps and conditions are the same as in Embodiment 1, so it will not be described here. Do repeat.
本实施例所得锂电池正极材料的磁性物含量为26ppb。The magnetic substance content of the positive electrode material of the lithium battery obtained in this embodiment is 26 ppb.
对比例1Comparative example 1
本对比例提供一种降低锂电池正极材料中磁性物含量的方法,所述方法为在产线上增设除磁棒和除铁机,以便去除正极材料中微量的磁性物。This comparative example provides a method for reducing the content of magnetic substances in the positive electrode material of a lithium battery. The method is to add a magnetic bar and an iron remover to the production line to remove a small amount of magnetic substances in the positive electrode material.
相较于实施例1,本对比例虽然能够去除磁性物,但是无法完全去除弱磁性物,且需要经过多次重复除磁,工序较为复杂,且设备成本高昂。Compared with Example 1, although this comparative example can remove magnetic substances, it cannot completely remove weak magnetic substances, and needs repeated demagnetization for many times, the process is more complicated, and the equipment cost is high.
由此可见,本发明通过锂电池正极材料与锂盐混合均匀并进行烧结处理,利用锂盐与正极材料中的弱磁性物质,如Fe、Fe2O3等发生反应,生成无磁性的LizFexCoyO2等物质,从而实现了降低锂电池正极材料中磁性物含量的目的,且磁性物含量降低幅度达50%以上或者磁性物含量降至100ppb以下,对电池性能和安全性能并无不利影响,工艺流程简单,成本低廉,便于大规模推广应用。It can be seen that the present invention mixes the positive electrode material of the lithium battery with the lithium salt uniformly and performs sintering treatment, and utilizes the reaction between the lithium salt and the weak magnetic substance in the positive electrode material, such as Fe, Fe2O3 , etc., to generate non-magnetic Li z Fe x Co y O 2 and other substances, so as to achieve the purpose of reducing the content of magnetic substances in the positive electrode material of lithium batteries, and the reduction of the content of magnetic substances can reach more than 50% or the content of magnetic substances can be reduced to below 100ppb, which has no effect on battery performance and safety performance. There is no adverse effect, the process flow is simple, the cost is low, and it is convenient for large-scale popularization and application.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211446826.1A CN115710021A (en) | 2022-11-18 | 2022-11-18 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
PCT/CN2023/086978 WO2024103614A1 (en) | 2022-11-18 | 2023-04-07 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211446826.1A CN115710021A (en) | 2022-11-18 | 2022-11-18 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115710021A true CN115710021A (en) | 2023-02-24 |
Family
ID=85233679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211446826.1A Pending CN115710021A (en) | 2022-11-18 | 2022-11-18 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115710021A (en) |
WO (1) | WO2024103614A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024103614A1 (en) * | 2022-11-18 | 2024-05-23 | 格林美(无锡)能源材料有限公司 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244493A (en) * | 2015-08-27 | 2016-01-13 | 青岛新正锂业有限公司 | Method for removing magnetic substance from lithium ion battery positive electrode material |
CN109728262A (en) * | 2018-11-30 | 2019-05-07 | 高点(深圳)科技有限公司 | Anode material for lithium-ion batteries and its preparation method and application |
CN113113578A (en) * | 2021-03-10 | 2021-07-13 | 欣旺达电动汽车电池有限公司 | Cathode material, preparation method thereof and lithium ion battery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130132897A (en) * | 2010-12-28 | 2013-12-05 | 미쓰이 긴조꾸 고교 가부시키가이샤 | Method of manufacturing a positive electrode active material for lithium secondary batteries |
JP2015060755A (en) * | 2013-09-19 | 2015-03-30 | 日揮触媒化成株式会社 | Method of producing lithium ion secondary battery positive electrode active material |
JP7403946B2 (en) * | 2018-08-20 | 2023-12-25 | 株式会社田中化学研究所 | Method for producing purified lithium compound and method for producing lithium transition metal composite oxide |
CN115710021A (en) * | 2022-11-18 | 2023-02-24 | 格林美(无锡)能源材料有限公司 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
-
2022
- 2022-11-18 CN CN202211446826.1A patent/CN115710021A/en active Pending
-
2023
- 2023-04-07 WO PCT/CN2023/086978 patent/WO2024103614A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244493A (en) * | 2015-08-27 | 2016-01-13 | 青岛新正锂业有限公司 | Method for removing magnetic substance from lithium ion battery positive electrode material |
CN109728262A (en) * | 2018-11-30 | 2019-05-07 | 高点(深圳)科技有限公司 | Anode material for lithium-ion batteries and its preparation method and application |
CN113113578A (en) * | 2021-03-10 | 2021-07-13 | 欣旺达电动汽车电池有限公司 | Cathode material, preparation method thereof and lithium ion battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024103614A1 (en) * | 2022-11-18 | 2024-05-23 | 格林美(无锡)能源材料有限公司 | Method for reducing content of magnetic substances in lithium battery positive electrode material |
Also Published As
Publication number | Publication date |
---|---|
WO2024103614A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104466135B (en) | Method for coating conductive polymer on Ni-Co-Mn acid lithium positive electrode material | |
CN107293713A (en) | A kind of super-low-temperature lithium-ion cell composite positive pole and preparation method thereof | |
CN110240207A (en) | A method of recycling waste lithium battery to prepare ternary cathode material | |
CN103996841B (en) | Lithium ion battery negative material (Mn, Co)3O4And preparation method thereof | |
CN107732193B (en) | An all-solid-state lithium battery using a core-shell structure high-nickel cathode material and a preparation method thereof | |
CN108394919A (en) | Application of the complexing of metal ion agent in waste lithium iron phosphate battery removal process | |
CN106082360B (en) | A kind of lithium ion battery negative material of flower-shaped high power capacity and preparation method and application | |
CN108128814A (en) | A kind of preparation method of ternary anode material precursor | |
CN105244493A (en) | Method for removing magnetic substance from lithium ion battery positive electrode material | |
CN103332753A (en) | Preparation method of high-tap spherical high-manganese ternary anode material precursor | |
CN106486657A (en) | A kind of rich lithium material of surface in situ cladding and preparation method thereof | |
CN113809319B (en) | High-performance lithium nickel cobalt manganese oxide positive electrode material for power battery and preparation method of high-performance lithium nickel cobalt manganese oxide positive electrode material | |
CN105375020A (en) | Preparation method of spherical lithium nickel cobalt manganese oxide precursor mixture | |
CN109742380B (en) | A kind of preparation method of lithium-rich manganese-based cathode material | |
CN116199274A (en) | Porous hollow ternary precursor and preparation method thereof | |
CN117023661A (en) | Sodium ion battery positive electrode material precursor, preparation method thereof and positive electrode material | |
CN107902704A (en) | The method and the preparation method of nickel cobalt manganese persursor material that high magnetic material in being prepared to cathode persursor material is recycled | |
WO2023005227A1 (en) | Layered positive electrode material, and preparation method therefor and use thereof | |
CN115710021A (en) | Method for reducing content of magnetic substances in lithium battery positive electrode material | |
CN105789616B (en) | The method for repairing nickel-cobalt-manganese ternary battery material presoma | |
CN116130818A (en) | A kind of deep eutectic lithium replenishing agent and method for repairing and regenerating waste lithium-ion battery cathode material | |
CN106517343A (en) | Method for preparing δ and γ‑MnO2 from positive electrode waste of lithium ion battery | |
CN112678883B (en) | Preparation method of surface cobalt-rich low-cobalt cathode material | |
CN115924986A (en) | Preparation method of high-nickel ternary precursor material | |
CN117263263A (en) | Small-particle monocrystalline-like cathode material of sodium ion battery, precursor thereof and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230224 |