CN115706656A - 使用片段化和多分区的uwb分组的信令技术 - Google Patents
使用片段化和多分区的uwb分组的信令技术 Download PDFInfo
- Publication number
- CN115706656A CN115706656A CN202210930720.2A CN202210930720A CN115706656A CN 115706656 A CN115706656 A CN 115706656A CN 202210930720 A CN202210930720 A CN 202210930720A CN 115706656 A CN115706656 A CN 115706656A
- Authority
- CN
- China
- Prior art keywords
- uwb
- segments
- packet
- data
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0284—Relative positioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0011—Complementary
- H04J13/0014—Golay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/003—Bistatic radar systems; Multistatic radar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/006—Theoretical aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
- G01S13/765—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning
- G01S5/0263—Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
- G01S7/006—Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/25—Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/7163—Spread spectrum techniques using impulse radio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/7163—Spread spectrum techniques using impulse radio
- H04B1/719—Interference-related aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
- H04B1/715—Interference-related aspects
- H04B2001/7154—Interference-related aspects with means for preventing interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/7163—Orthogonal indexing scheme relating to impulse radio
- H04B2201/71634—Applied to ranging
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及使用片段化和多分区的UWB分组的信令技术。提供了用于利用超宽带(UWB)与窄带(NB)信令的混合来提供更有效的操作范围和操作效率的技术。在一个示例中,第一设备可经由NB信号向第二设备传输第一分组,由此,第一分组包括向第二设备指示用于接收第二UWB分组的时间段的信息。在此示例中,第二分组可包括第一分区和第二分区,由此第一分区包括第一多个片段并且第二分区包括第二多个片段。每多个片段中的相应片段可经由UWB信号来传输。然后,第一设备可传输第一多个片段,并且随后将第二多个片段传输到第二设备,该第一多个片段和第二多个片段分别与不同的片段类型相关联。
Description
相关申请的交叉引用
本申请根据35U.S.C.§119(e)要求于2020年11月2日提交的名称为“TECHNIQUESFOR HYBRIDIZED ULTRA-WIDEBAND AND NARROWBAND SIGNALING”的美国临时申请第63/108862号以及于2021年8月4日提交的名称为“SIGNALING TECHNIQUES USING FRAGMENTEDAND MULTI-PARTITIONED UWB PACKETS”的美国临时申请第63/229482号的优先权。本申请还涉及2021年11月1日提交的名称为“SEQUENCES FOR ULTRA-WIDEBAND RANGING”的美国专利申请第17/453164号(其要求于2021年8月13日提交的名称为“SEQUENCES FOR ULTRA-WIDEBAND RANGING”的美国临时申请第63/233109号的优先权)以及2021年11月1日提交的名称为“ANNOUNCING UWB/NBA-UWB-MMS RANGING ROUNDS VIA NARROWBAND BASEDADVERTISEMENTS”的美国专利申请第17/453163号(其要求于2021年8月16日提交的名称为“ANNOUNCING UWB/NBA-UWB-MMS RANGING ROUNDS VIA NARROWBAND BASEDADVERTISEMENTS”的美国临时申请第63/233598号的优先权),所有所述申请的内容通过引用方式并入本文。
背景技术
无线设备可采用短程无线应用进行许多不同任务。例如,无线设备(例如,密钥卡)可被配置为使得当设备进入车辆(例如,汽车)的一定接近度内时,自动地解锁车辆的门。在许多情况下,监管规则和/或其他技术限制可约束特定类型的无线信令的使用。这些监管规则和/或技术限制可在不同类型的无线信令之间改变。例如,管控超宽带(UWB)信令的监管规则可不同于管控窄带(NB)信令的规则,至少部分原因是它们可利用不同频带。在一些情况下,这些常规规则和/或技术限制使得系统难以实现所需操作范围和/或所需操作效率。
附图说明
图1是根据一些实施方案的示例性配备有UWB的设备的简化框图。
图2是根据一些实施方案的示出用于在配备有UWB的设备之间交换无线消息的示例性技术的另一个简化框图。
图3是根据一些实施方案的示出用于计算信道冲激响应(CIR)的至少一些示例性技术的另一个简化框图。
图4是根据一些实施方案的示出用于格式化UWB分组的至少一些示例性技术的另一个简化框图。
图5是根据一些实施方案的示出用于确定飞行时间(TOF)的至少一些示例性技术的另一个简化框图。
图6是根据某个实施方案的示出与UWB信号的测量相关联的功率谱密度的示例的另一个简化图。
图7是根据一些实施方案的示出用于在UWB框架内传输数据片段的至少一些示例性技术的另一个简化框图。
图8是根据一些实施方案的示出用于传输与UWB分组类型相关联的数据片段的至少一些示例性技术的另一个简化框图。
图9是根据一些实施方案的示出用于在UWB框架内的多个时间间隔内传输数据片段的至少一些示例性技术的另一个简化框图。
图10是根据一些实施方案的示出利用UWB信令和/或NB信令的至少一些无线系统的潜在优点和缺点的另一个简化图。
图11是根据一些实施方案的示出用于利用UWB信令和NB信令的混合的至少一些示例性技术的另一个简化框图。
图12是根据一些实施方案的示出用于利用UWB信令和NB信令的混合的至少一些示例性技术的另一个简化框图。
图13是根据一些实施方案的示出用于经由NB分组格式利用NB信令的至少一些示例性技术的另一个简化框图。
图14是根据一些实施方案的示出分别被配置为利用UWB信令和NB信令的混合来彼此通信的两个设备的另一个简化框图。
图15是根据一些实施方案的示出被配置为利用UWB信令和NB信令的混合来与另一个设备通信的设备的混合无线收发器的另一个简化框图。
图16是根据一些实施方案的示出两个设备之间的信号交换的简化流程图。
图17是根据一些实施方案的示出两个设备之间的信号交换的另一个简化流程图。
图18是根据一些实施方案的示出由发起方设备进行的示例性过程的另一个简化流程图。
图19是根据一些实施方案的示出由响应方设备进行的示例性过程的另一个简化流程图。
图20是根据一些实施方案的示出利用NB信令来传输UWB有效负载数据的另一个简化框图。
图21是根据一些实施方案的示出可包含在由设备的UWB信令层传输的一个或多个片段中的示例性波形的另一个简化框图。
图22是根据一些实施方案的示出由用于混合信令的设备进行的示例性过程的第一部分的另一个简化框图。
图23是根据一些实施方案的示出图22的示例性过程的其余部分的另一个简化框图。
图24是根据一些实施方案的示出利用一个或多个NB信道根据双向冗余分组交换协议的信号传输的另一个简化流程图。
图25是根据一些实施方案的示出利用一个或多个NB信道根据双向冗余分组交换协议在两个设备之间的消息交换的另一个简化流程图。
图26是根据一些实施方案的示出利用一个或多个NB信道根据单向冗余分组传输协议的信号传输的另一个简化流程图。
图27是根据一些实施方案的示出利用一个或多个NB信道根据单向冗余分组传输协议在两个设备之间的消息交换的另一个简化流程图。
图28是根据一些实施方案的示出利用已知固定周转时间的非交错测距协议的信号传输的另一个简化流程图。
图29是根据一些实施方案的示出基于已知固定周转时间的消息交换的另一个简化流程图。
图30是根据一些实施方案的示出非交错测距协议的另一个简化流程图,该非交错测距协议包括在UWB片段的双向交换之后传送往返时间和/或周转时间的NB信号交换。
图31是根据一些实施方案的示出在UWB片段的双向交换之后利用NB信号交换的消息交换的另一个简化流程图。
图32是根据一些实施方案的示出根据单向NB和非交错UWB测距协议的信号交换的另一个简化流程图。
图33是根据一些实施方案的示出根据单向NB和非交错UWB测距协议的消息交换的另一个简化流程图。
图34是根据一些实施方案的示出根据信标协议的信号交换的另一个简化流程图。
图35是根据一些实施方案的示出根据信标协议的消息交换的另一个简化流程图。
图36是根据一些实施方案的示出根据交错测距协议的信号交换的另一个简化流程图。
图37是根据一些实施方案的示出根据交错测距协议的消息交换的另一个简化流程图。
图38是根据一些实施方案的示出单独无线系统用于初始设备发现和连接设置的用途的另一个简化框图。
图39是根据一些实施方案的示出单独无线系统用于初始设备发现和连接设置的用途的另一个简化框图。
图40是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的简化框图。
图41是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的另一个简化框图。
图42是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的另一个简化框图。
图43是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的简化流程图。
图44是根据一些实施方案的示出在链路的两个方向之间传输不对称数量的片段所凭借的技术的另一简化框图。
图45是根据一些实施方案的示出可将多个UWB频率信道可用于片段化传输所凭借的技术的另一简化框图。
图46是根据一些实施方案的示出用于执行天线切换以促进UWB片段化传输的技术的另一简化框图。
图47是根据一些实施方案的示出用于在包括锚定站和客户端站的环境内操作混合(UWB/NB)系统的技术的简化框图。
图48是根据一些实施方案的示出用于经由UWB片段化传输来执行环境感测的技术的另一简化框图。
具体实施方式
在以下描述中,将描述各种示例。为了解释的目的,阐述了很多具体配置和细节以便提供对示例的彻底理解。但是,对本领域的技术人员也将显而易见的是,一些示例可在没有这些具体细节的情况下被实施。此外,可省略或简化熟知的特征部以防止对本文所述的示例造成混淆。
本公开的实施方案可提供用于在执行设备之间的无线通信时利用超宽带(UWB)和窄带(NB)信令的混合来提供改善的操作范围和/或操作效率的技术。例如,本文所公开的技术可使第一设备能够有效地确定第二设备相对于第一设备的定位(位置)和/或有效地确定这两个设备之间的距离估计(例如,范围估计值)。为了说明,考虑第一设备和第二设备这两个设备能够无线通信的示例。在该示例中,可根据涉及第一设备与第二设备之间的双向NB和UWB信令的测距协议来执行混合信令。这两个设备可首先执行初始阶段,在该初始阶段期间可存在初始设备发现以及这两个设备之间的初始(例如,“粗”)同步。在一些示例中,可由例如每个设备的无线系统执行该初始阶段,配备该无线系统以使用低功耗蓝牙(BLE)传输无线信号。在该初始阶段期间,第一设备的无线系统可调度用于经由NB信号向第二设备传输至少一个分组(例如,“NB轮询”分组)的开始时间(例如,离散时刻)。第一设备还可调度用于随后由第一设备从第二设备接收第二分组(例如,经由另一个NB信号传输的“NB响应”分组)的窗口(例如,时间间隔)。
在此初始阶段之后,第一设备随后可在所调度开始时间经由NB信号将所调度NB轮询分组发射到第二设备,其中所述分组可传达(例如指示)一种或多种类型的同步数据以用于这两个设备之间的第二(例如“精细”)同步。例如,该分组可包括同步(“sync”)字段和数据有效负载字段。数据有效负载字段可包括调度数据(例如,其也可称为“调度信息”)。第二设备可通过使用现有技术同步和/或信号采集技术来从与时间和频率同步信息(例如,T/Fsync信息)相对应的sync字段提取一种类型的同步数据。第二设备还可通过使用现有技术解调和解码技术来从与调度数据相对应的数据有效负载字段提取另一种类型的同步数据。第二设备可使用该同步数据来调度和帮助多个数据片段的接收,该多个数据片段随后将由第一设备经由呈短脉冲串形式并分布在多个间隔内的UWB信号传输到第二设备。在该示例中,NB轮询的调度数据还可包括与NB响应分组传输开始时间有关的调度信息,从而使第二设备能够在NB响应开始时间时调度NB响应分组向第一设备的传输。第二设备随后可在所需的开始时间时传输NB响应分组,其中NB响应分组传达第二同步数据,这与如上文相对于从第一设备到第二设备的同步数据所描述的类似。第一设备可使用该第二同步数据来调度和帮助第二多个片段的接收,该第二多个片段随后可由第二设备经由分布在多个间隔内的UWB信号传输到第一设备。这样,每个设备的NB信令层可在同步和其他功能方面帮助相应UWB信令层。需注意,帮助源于经由NB信号传达的同步数据的UWB信号的接收可包括按照相对于相应相关联的(第二或第一)设备的载波频偏和样本频偏来配置UWB接收。
然后第一设备可根据第二设备先前从第一设备获得的同步数据来调度该多个UWB片段并且将该多个UWB片段传输到第二设备以便在第二设备处接收。在该示例中,该多个UWB数据片段可共同表示UWB格式化分组的信道冲激响应训练序列(CIRTS)。在(例如,经由聚合这些片段)从第一设备接收到CIRTS时,第二设备可使用CIRTS来估计信道冲激响应(CIR)和/或确定其他同步信息(例如,时间和频率信息、调度数据等)。在周转时间间隔(在该示例中,其可以是第一设备所知的固定时间间隔)之后,第二设备随后可相应地根据第一设备先前从第二设备的NB传输获得的第二同步数据来调度第二多个UWB片段并且将第二多个UWB片段传输到第一设备以便在第一设备处接收。然后第一设备可类似地计算CIR估计值和/或获得其他同步信息。之后,利用所计算的CIR信息并且考虑(例如,减去)周转时间,第一设备可确定与这两个设备之间的视距(LOS)路径相关联的飞行时间(TOF)。因此,第一设备随后可能能够确定第一设备相对于第二设备的范围和/或位置。这样,通过利用NB和UWB信令的混合,实施方案在经由UWB信令执行测距和/或定位时改善了操作范围和/或效率。
为了进一步说明,考虑第一设备(例如,“发起方”设备)和第二设备(例如,“响应方”设备)分别包括混合无线系统(例如,混合无线收发器)的场景。使用第一设备作为代表性示例性设备时,第一设备的混合无线系统可包括超宽带子系统和窄带子系统。每个子系统可包括无线传输和接收电路以及用于NB和UWB信令的功能。另外,这两个子系统可紧密耦接在一起。例如,混合无线收发器可包括共享时基单元,例如包括晶体振荡器(XO)和/或钟控和记时装置。共享时基单元可确保NB和UWB子系统生成在时间和频率上紧密同步的信号。用于给定设备的子系统还可共享介质访问控制(MAC)功能。MAC功能可利用公共时基(例如,基于共享时基单元)来在给定设备上的子系统之间协调。另外,无线电和物理层(PHY)功能还可基于子系统之间的公共时基来操作。
另外,混合无线收发器可包括混合系统控制器。混合系统控制器可协调NB和UWB子系统两者的传输和接收活动,以及NB和UWB子系统之间的信息交换。例如,混合系统控制器可从NB子系统接收时间和频率同步信息。在一些实施方案中,混合系统控制器还可从NB子系统接收有效负载数据信息。混合系统控制器还可调度由NB子系统进行的数据传输和接收。混合系统控制器还可向UWB子系统提供时间和频率配置信息。这可使UWB子系统接收器能够基于从NB信令提取的时间和频率信息来更精确地配置(例如,同步)。由于NB和UWB子系统之间共享时基单元(包括相对于相关联的设备的任何频偏),因此该配置信息有助于为传入UWB信号(例如,对应于CIRTS片段)定制UWB接收,从而改善接收器效率以及CIR估计的性能。混合系统控制器还可使用接收自NB信号的数据基于某些传输/接收参数(例如,载波频率、UWB带宽等)来调度UWB传输或接收活动。继而,混合系统控制器还可接收UWB接收信息,该UWB接收信息包括同步数据(例如,时间和频率配置信息)和CIR信息。尽管本文所述的实施方案可将混合无线收发器的单独部件称作执行特定操作,但是实施方案不应被解释为受到如此限制。例如,混合系统控制器可驻留在本文所述子系统之一(例如,NB或UWB)内。一个或多个软件和/或硬件部件之间的任何合适的操作划分可适用于执行本文所述的实施方案。
继续上面介绍的说明,考虑第一设备和第二设备进行这两个设备之间的数据(例如,CIRTS片段)的双向交换的场景。如本文所述,这两个设备可执行“粗”初始同步。在一个示例中,在第一设备作为“发起方”设备进行操作并且第二设备作为“响应方”设备进行操作的情况下,第一设备可调度用于经由传达同步数据(例如,包括时间和频率同步信息)的NB信号将分组传输到第二设备的开始时间(例如,离散时间)。第二设备还可相应地调度用于经由NB信号从第一设备接收分组的窗口。应当理解,在一些实施方案中,时间可与特定开始时间(例如,离散时刻)相关联。在一些实施方案中,时间可与时间间隔(例如,窗口和/或时隙)相关联,具体取决于上下文。在一些实施方案中,初始阶段期间交换的数据的信息可使这两个设备能够对准(例如,时钟同步),偏差在这两个设备的时钟装置(例如,由相应共享时基单元管理)之间的大约所需时间增量(例如,1毫秒(ms)增量)以内。在一些实施方案中,初始阶段还可用于执行初始设备发现和其他连接设置操作。在一些实施方案中,可由来自混合无线收发器的单独无线系统对每个设备执行该初始阶段。例如,单独无线系统可利用低功耗蓝牙(BLE)协议和/或驻留在来自混合无线收发器的单独片上系统(SOC)设备上。在一些实施方案中,包括诸如服务通告/发现、连接设置或粗同步之类的操作的初始阶段可由执行本文所述混合无线收发器的操作的相同系统执行,在一些实施方案中特别是由NB子系统执行。
在初始阶段完成时,第一(发起方)设备可在调度的开始时间时经由NB信号将该分组传输到第二设备。如本文所述,NB分组可包括将同步数据传达到第二设备的数据。例如,该分组可包括诸如前导码、帧起始定界符和/或其他同步字段之类的数据。在一些实施方案中,第二设备可使用该分组数据来(例如,从该分组的sync字段)提取例如与时间和/或频率同步信息相对应的同步数据。在一些实施方案中,该分组数据可用于(例如,从该分组的有效负载数据)提取例如与调度信息相对应的其他同步数据。在一个示例中,频率同步信息可对应于相对载波频率(其也可称为“Fsync”信息),所述相对载波频率可用以使本文中进一步描述的两个设备的晶体振荡器(XO)偏移同步。在一些示例中,F sync信息可用于配置一个设备的UWB接收器以优化其频率校正电路,从而为从另一设备接收UWB信号作准备。在一些示例中,设备可使用时间同步信息(其也可称为“T sync”信息)以根据本文中进一步描述的设备的记时装置来“锚定”后续UWB交换。在一些实施方案中,可至少部分地基于检测到模式(例如,与该分组的同步标头相关联的预期信号模式)来提取时间和/或频率信息。如本文所述,在一些实施方案中,同步数据还可对应于从分组有效负载数据提取的调度信息。该调度信息在一个示例中可用于调度设备(例如,第二设备)从另一个设备(例如,第一设备)进行的后续UWB分组(例如,和/或片段)传输的接收。应当理解,分组有效负载数据还可包括其他类型的信息(例如,非同步数据,诸如状态信息、控制信息等)。
应当理解,不同类型的同步数据可包括在设备之间的传输中,具体取决于上下文。在一个非限制性示例中,第一设备(例如,作为发起方设备进行操作)可传输传达(例如,指示和/或能够提取)时间和频率同步信息以及调度信息的数据。在该示例中,第二设备随后可将仅传达时间和/或频率信息的数据传输到第一设备。在另一个示例中,传输到第一设备的数据还可包括调度信息。在又一个示例中,包括在NB分组内的数据不仅可将用于调度NB响应分组的调度信息传达到另一个设备(例如,第二(响应方)设备),而且可传达用于调度第二设备进行的后续UWB响应传输的调度信息。
继续上面的说明,第二设备随后可获得并评估来自该分组的同步数据。第二设备可使用该同步数据来调度经由相应UWB信号从第一设备接收到的多个片段的后续接收。如本文所述,该分组还可包含调度数据,第二设备使用该调度数据来调度用于经由第二NB信号将第二分组传输到第一设备的第二开始时间。相应地,第一设备还可调度用于接收第二分组的时间(例如,和/或时间窗口),该第二分组随后在第二开始时间时从第二设备传输到第一设备。然后第二设备可在第二开始时间时经由第二NB信号将第二分组传输到第一设备。在调度的窗口期间接收到第二分组时,第一设备可从第二分组获得(例如,提取)第二同步数据。然后第一设备可利用从第二分组提取的第二同步数据来调度和帮助待从第二设备接收的第二多个片段的接收。
转到每个设备进行的UWB片段的传输和接收,第一设备可调度该多个片段向第二设备的传输。该多个片段的传输的调度可根据由第一设备经由NB信号传达到第二设备的同步数据。然后第一设备可将该多个片段传输到第二设备。如本文进一步所述,该多个片段中的每个片段可与该多个片段中的其他片段在时间上隔开至少预定义的时间间隔(例如,1ms)。在一个示例中,该多个片段可共同对应于(例如,表示)CIRTS,该CIRTS可操作以计算与第一设备和第二设备之间的无线传播路径相关联的CIR估计值。应当理解,由于CIRTS可分成多个片段(例如,而不是在单个片段内传输作为连续UWB信号传输的一部分),因此在遵循管控给定区域的能量发射的某些区域监管约束时,可由第一设备发射的用于分段UWB传输的能量总量可高于单个UWB传输的能量。另外,用于总体UWB传输的操作范围可大于在CIRTS作为单个数据片段或单个UWB分组传输时原本可能的操作范围。这可能部分是由于使设备能够聚合来自多个片段的能量。在一些实施方案中,如本文进一步所述,该多个片段可对应于特定类型的片段序列(例如,伪随机序列(STS)、周期序列、格雷序列)。还需注意,将UWB限于表示CIRTS的单个片段(而不是多个片段)已经是有益的,因为在常规UWB传输中,可用发射能量需要在SHR(Sync标头)与CIRTS之间共享,而在混合系统中,SHR的功能至少部分地被委托给NB系统,从而减轻UWB系统进行各种同步任务的负担。
在第一设备经由UWB信号传输该多个片段时,第二设备可接收每个片段,然后接下来从该多个片段获得聚合的信息。例如,第二设备可基于在该多个片段内表示的CIRTS来计算估计的CIR。在一些实施方案中,第二设备还可从该多个片段获得其他数据(例如,同步数据、调度数据等)。与第一设备类似,第二设备随后可调度第二多个片段的传输。可根据第一设备先前从第二设备获得(例如,基于由第二设备经由第二NB信号传输到第一设备的第二分组的sync标头信息来提取)的第二同步数据来调度第二多个片段(例如,UWB片段)的传输。在一些实施方案中,该调度还可(和/或另选地)基于从接收自第一设备的该多个片段中的一个或多个片段获得的同步数据。然后第二设备可将第二多个片段传输到第一设备,这与如上文相对于从第一设备传输到第二设备的该多个片段所描述的类似。在接收到第二多个片段时,第一设备可基于由第二多个片段表示的CIRTS来计算估计的CIR。在一些实施方案中,第一设备还可从第二多个片段获得同步数据或其他合适数据。
在第一设备基于第二多个片段来计算估计的CIR时,第一设备可进一步能够部分地基于CIR估计值来计算飞行时间间隔。例如,第一设备可确定往返时间间隔,该往返时间间隔对应于该多个片段(例如,该多个片段中的第一片段)传输到第二设备的第一时间与第一设备从第二设备接收到第二多个片段(例如,第二多个片段中的最后一个片段)的第二时间之间的时间增量。第一设备还可确定周转时间间隔,该周转时间间隔对应于第二设备从第一设备接收到该多个片段的第三时间与第二设备将第二多个片段传输到第一设备的第四时间之间的第二时间增量。然后第一设备可从往返时间间隔减去第二设备处的周转时间间隔以帮助确定飞行时间(TOF)。在一些实施方案中,TOF可表示距离(例如,由穿过这两个设备之间的直接视距(LOS)路径的相应信号所行进的距离)除以光速,这可用于由TOF估计距离。在一些实施方案中,周转时间间隔可以是第一设备(和/或第二设备)(例如,预先)知道的固定时间间隔。在一些实施方案中,第二设备随后可将相关信息(例如,经由另一个NB信号将时间戳信息)传送到第一设备,该相关信息可用于确定第二设备处的周转时间并且基于此来确定TOF。基于确定这两个设备之间的TOF,第一设备可确定这两个设备之间的范围和/或相对定位信息。在一些实施方案中,仅第一设备可决定计算范围/定位信息。在一些实施方案中,第一设备和第二设备均可决定计算范围/定位信息。例如,第二设备可类似地经由NB信号从第一设备接收信息,该信息使其能够计算或利用第一设备处的周转时间间隔,并且随后计算这两个设备之间的TOF/范围信息。在一些实施方案中,如果第二设备需要获知TOF,则第二设备还可获得第一设备所计算的TOF结果作为有效负载数据NB传输。
在一些实施方案中,一个或多个信号(例如,NB信号和/或UWB信号)的交换可根据一个或多个协议。特定协议的使用可取决于例如用于执行信号交换的上下文和/或预期用途。例如,一个协议可对应于NB信号(例如,分组)的双向交换并且可包括联合利用冗余和/或重复NB分组交换与伪随机信道跳变序列。这可在执行NB信令以帮助协调UWB信令时改善对干扰和/或多径衰落现象的可靠性。在该协议的一些实施方案中,可在连接设置期间(例如,在初始阶段期间,如本文所述)预定义或经由带外系统(例如,蓝牙、BLE等)交换NB控制信息(其可对应于使用什么信道和/或使用多少跳变信道)。在协议的另一个示例中,可使用单向NB交换(包括具有信道跳变的冗余传输)。这可用于例如结合利用信标协议来执行UWB片段的单向交换(例如,将多个片段从第一设备传输到第二设备,但不能反过来)。例如,在一个信标协议中,第二(接收器)设备可以是根据信标协议来与第一(发起方)设备交互的若干设备(例如锚定设备)中的一个设备。在一个示例中,第二设备随后部分地基于估计的CIR来执行基于与一个或多个其他设备的三角剖分的测距和/或定位。
在一些实施方案中,如本文所述,可利用协议,通过该协议,第一设备(例如,发起方设备)可基于发起方设备所知的固定周转时间间隔来确定飞行时间间隔和/或范围。在一些实施方案中,在第一设备从响应方设备接收到多个片段之后,第二设备(例如,响应方设备)可经由NB信号将周转时间间隔(例如,包括时间戳和/或状态信息)传输到发起方设备。
在一些实施方案中,可利用协议,在该协议中,单向NB交换后面紧跟着相同方向上的UWB片段。这可通过让多个响应方以已知序列或随机次序作出响应来允许该多个响应方参与测距活动。在又一个协议示例中,可利用交错测距协议,通过该交错测距协议,发起方设备和响应方设备可利用相同预先确定的时间间隔来传输单独片段。在该示例中,并不是让发起方设备向响应方设备传输多个片段、之后响应方设备向发起方设备传输第二多个分组,而是相应多个片段内的片段可交错。这可减少用于执行这两个设备之间的测距的总时间。
在一些实施方案中,可以利用UWB信令协议,由此可以对UWB分组进行分区以包括至少第一分区和第二分区。在一些实施方案中,每个分区可与不同类型的UWB片段(例如,CIRTS、伪随机训练序列(PRTS)、数据有效负载等)相关联。通过使UWB分组能够被分区以发送不同类型的片段,可实现额外的使用情况(例如,除了执行两个设备之间的测距之外)。在一个示例中,第一设备经由NB信号向第二设备传输第一分组,由此,第一分组包括向第二设备指示用于接收第二分组(例如,UWB分组)的时间段的数据。在此示例中,第二分组可被格式化以包括第一分区和第二分区,该第一分区包括第一多个片段(例如,CIRTS类型片段)并且该第二分区包括第二多个片段(例如,PRTS类型片段)。然后,第一设备可经由UWB信号分别传输第二分组的第一多个片段。然后,第一设备可经由UWB信号分别传输第二分组的第二多个片段。在此示例中,第二设备可被使能不仅计算CIR估计并执行传播路径提取(例如,基于第一多个片段)还可以能够部分地基于第二多个片段来认证第一传播路径提取(例如,因为特定PRTS序列可仅在第一设备与第二设备之间共享)。在一些实施方案中,还可以使能其它使用情况,例如包括UWB分组内的音频和/或数据有效负载(例如,除了还包括在分组内的多个CIRTS片段之外)。
本公开的实施方案提供了优于现有技术的若干技术优点。在一个示例中,本公开的实施方案使混合无线系统能够执行包括紧密协调的UWB信令和NB信令的混合的信令。例如,如本文所述,混合无线系统的NB子系统(例如,NB信令层)可用于协助UWB子系统(例如,UWB信令层)的一个或多个功能。这些子系统可基于给定物理设备上的公共(例如,共享)时基和共享MAC功能来紧密耦接,如此处所述。NB信令层的该一个或多个功能可包括例如协调相应设备的UWB信令层之间的时间和频率同步,在这些设备之间执行控制、管理和/或状态信令等。与此同时,UWB信令层可执行分布在一定时间间隔(例如,许多毫秒(MMS))内的短冲激无线电脉冲串。脉冲串可表示(例如,信道冲激响应训练序列(CIRTS)/加扰时间序列(STS)的)分段UWB传输。
在一些实施方案中,混合无线系统可使NB信令层能够负责传达同步数据诸如时间和频率同步信息,例如经由常规UWB分组的sync标头(SHR)来传达,这可比经由UWB信令层将SHR分布在多个SHR片段内更有效。例如,在未预先知道每个片段的到达时间的情况下传输多个SHR片段可需要大量用于缓冲的存储器和/或大量处理功率。因此,可通过利用NB信令层而不利用常规UWB SHR来减少存储器和/或处理功率的量。与此同时,可根据UWB分段协议来对UWB分组的CIRTS/STS部分进行分段。分段分组的接收器可利用经由NB信令传送的同步数据以使得接收器可准确地调度后续接收的UWB片段的接收(例如,到达时间)。通过实现UWB传输的分段,实施方案可在测量用于提取几何和/或定位度量诸如距离(例如,范围)或角度的传播信道时使UWB传输的接收器能够实现更高性能。例如,可将用于给定测量周期的UWB波形分段成短脉冲串(例如,分段多毫秒(MMS)信令)并且分布在多个监管(例如,发射)测试间隔内(例如,根据特定区域的监管规则)。接收器设备可利用从各种间隔(例如,每个短脉冲串内)“敛集”(例如,聚合)的能量,从而实现更准确的CIR估计。部分地基于该CIR估计,可确定飞行时间、范围、位置(定位)和/或到达角(AOA)估计。因此,通过利用能够进行紧密协调的NB和UWB信令的混合无线系统,实施方案至少实现了基于UWB的信令的改善的操作范围和操作效率。
图1是根据一些实施方案的示例性配备有UWB的设备的简化框图。在一些实施方案中,可至少在操作范围、操作效率和/或其他特征增强方面改善各种类型的超宽带(UWB)设备。在本文所述的一些实施方案中,UWB传输分成分布在多个监管/发射测量间隔内的分组片段的短脉冲串以便增加UWB发射器在每次传输时辐射的能量。
由于其500MHz或更多的大带宽(BW),UWB的一个有益用例是“测距”的用例。在一些实施方案中,测距可对应于两个配备有UWB的设备A和B之间的无线电波的飞行时间(TOF)的精确测量和这些设备之间的距离(例如,“范围”)的估计。该大BW可有助于解决可存在于这些设备的附近诸如地板、天花板、墙壁、家具、汽车、植物、电器或者室内或室外环境中的其他人造或自然对象中的密集电磁反射。测量诸如移动电话、无线音频扬声器、TV、台式或膝上型计算机、家用或车用门锁或者其他消费设备之类的设备之间的ToF/范围可有利于实现新奇的用户体验。
图1和图2(下文进一步描述)示出了具有配备有UWB的设备的场景。在图1的示意图100中,手持设备110与其他手持设备、固定设备或物联网(IoT)设备通信以测量距离或其他定位度量诸如设备相对于彼此的外观方向。参与此类通信的设备包括电话(例如,移动设备120)、标签(例如,宠物标签160)、无线扬声器(例如,无线扬声器170a、170b和170c)、电视机、显示器、门(例如,门锁设备140)、汽车、家用电器(例如,智能扬声器130)、恒温器(例如,恒温控制设备150)、台式计算机和膝上型计算机、平板电脑等。
图2是根据一些实施方案的示出用于在配备有UWB的设备(或“站”)之间交换无线消息的示例技术的另一简化框图200。图2的示意图200示出UWB设备A 202和UWB设备B 204可如何随时间以无线分组206a至206c的形式在彼此之间交换无线消息。在脉冲无线电(IR)UWB的情况下,在设备之间交换的波形含有在图2中被展示为p1、p2、p3的UWB脉冲。这可以表示例如响应于从A发射到B的第一脉冲集合而从设备B 204发射到设备A 202的一串脉冲。在一些实施方案中,IR-UWB可用以执行本公开中所描述的技术。
图3是根据一些实施方案的示出用于计算信道冲激响应(CIR)的至少一些示例技术的另一简化框图300。在一些实施方案中,为了使得能够确定设备的相互范围或位置,诸如UWB的无线系统所使用的技术是计算信道冲激响应(CIR)306。CIR 306可表示两个设备(诸如站A 302和站B 304)之间的直接和间接(反射)无线传播路径的概况,每个路径由其传播延迟、量值和射频(RF)相位来表征。由于UWB的大BW,因此可在UWB中以高分辨率级别计算CIR,这继而实现视距(LOS)路径及因此与CIR中的第一路径相对应的TOF/范围的更精确提取。
例如,如图3的示意图300中所示出,在时间t_A1时从站A 302发射脉冲PT 308。在一些实施方案中,就IR-UWB而言,脉冲PT 308可被看作表示一长串脉冲序列。在示意图300的此示例中,脉冲PT 308经由一系列传播路径PP1 310a、PP2 310b、PP3 310c和PP4 310d传播到站B 304。PP1 310a是直接视线路径,而PP2 310b、PP3 310c和PP4 310d是来自环境中的物体Ob2 312a、Ob3 312b和Ob4 312c的反射。在整体延迟“TOF”(飞行时间)314(表示距离除以光速)之后,穿过直接(LOS)路径PP1 310a的信号在时间t_B1时以脉冲PR1 314a形式到达接收站B 304处。对应于反射路径PP2 310b、PP3 310c和PP4 310d的脉冲以PR2 314b、PR3314c和PR4 314d形式比直接路径更晚到达,并且其到达时间将取决于经由每个路径所经历的一个或多个反射器从站A 302到站B 304的行进距离。注意,PR1 314a、PR2 314b、PR3314c和PR4 314d是信道冲激响应(CIR)306的示例。在一些实施方案中,CIR 306可使得设备能够基于TOF(其自身从第一到达路径PR1 314a中导出)来确定诸如距离d_AB的度量。
虽然UWB还可用于更传统的无线发射目的,诸如数据有效负载发射,但对用于ToF/测距/定位的CIR 306的估计是UWB的特定优势。在一些实施方案中,UWB的该优点的部分原因可能是UWB的500MHz或更多的大带宽。
在一些实施方案中,为了估计CIR 306(例如有时称为“信道探测”),包括UWB的无线系统使用所称的“信道冲激响应训练序列”(CIRTS)。CIRTS可以是为发射器(例如设备A202)和接收器(例如设备B 204)两者所知的在两个设备之间的链路中的波形。如果发射器发送出包含具体训练序列1的波形(CIRTS1_TX),则具有其直接和反射传播路径的无线传播信道可使该波形线性失真,从而修改的波形CIRTS1_RX将到达接收器。由于接收器预先获知了CIRTS1_TX,因此其可将传入信号CIRTS1_RX与已知序列CIRTS1_TX进行比较。随后,使用诸如校正的数学算法以及在现有技术中一般被称为“信道估计”的其他算法,接收器可在设备A 202处的发射器与设备B 204处的接收器之间提取CIR。
图4是根据一些实施方案的示出用于格式化UWB分组(例如图2的分组206)的至少一些示例技术的另一简化框图400。图4示出了按照在IEEE 802.15.4z中为UWB定义的国际标准,具有其组成字段及它们的相应目的的一种类型的UWB分组格式的示例。分组开始处的Sync标头(SHR)402由同步(SYNC)前导码404和帧起始定界符(SFD)406组成。SHR 402具有多种目的,包括一般被称为“获取”或“同步”(Sync)的自动增益控制、频偏估计(频率Sync或F-Sync)、定时估计(T-Sync)、初始信道估计等。SFD 406终止SHR 402,并且还参与协调分组定时(例如帧定时估计)。被展示为CIRTS/STS 408的后续字段是指信道冲激响应训练序列,或在802.15.4z的情况下,是指加扰时间戳序列(STS)。STS是指包含仅为给定链路的发射器和接收器所知的伪随机脉冲的CIRTS以确保安全信道估计和安全距离测量。在一些实施方案中,CIRTS/STS 408可用于精确和/或安全的信道估计和/或时间戳验证。图4展示两个额外分组字段,即PHY标头(PHR)410和有效负载数据(例如PHY服务数据单元(PSDU))412。PHR410可含有PHY标头的参数,并且有效负载可含有合适的数据内容。注意,针对UWB定义例如仅由SHR 402和CIRTS/STS 408组成(例如“无数据分组”)的其他分组类型,所述分组类型可用于信道探测,但没有任何有效负载数据传输。还存在由SHR 402和PHR 410/有效负载412字段组成的仅有效负载分组格式,在所述情况下,不需要精确和/或安全信道探测,并且主要目的是数据传输。
图5是根据一些实施方案的示出用于确定飞行时间(TOF)的至少一些示例技术的另一简化框图500。如图5的示意图500中所描绘,基于对TOF的确定,可确定两个站站A 502与站B 504之间的距离。在一些实施方案中,站A 502在时间tA1时发射“轮询”消息(A至B)506a。如站点B基于CIR来确定的LOS路径在tB1时到达,其中tA1和tB1之间的时间增量表示TOF。在站B处的周转时间TB,TO之后,所述站在时间tB2时发射“响应”消息(B至A 506b)。响应消息的LOS路径在时间tA2时到达,以使得TOF再次在示意图500上以tA2和tB2之间的差值的形式可见。通过测量“往返”时间TA,RT并且减去周转时间TB,TO,站A 502可计算TOF。在一些实施方案中,示意图500所示的技术是TOF测量协议(或“测距协议”)的形式。在一些实施方案中,可存在变型,其中涉及三个或更多个分组(例如分组206)以改善针对现实生活无线电损害的稳健性,所述现实生活无线电损害诸如站A 502与站B 504之间的晶体振荡器(XO)偏移。如本文中进一步所描述,实施方案提供利用新的混合无线系统环境的测距协议。
图6是根据一些实施方案的示出与UWB信号的测量相关联的功率谱密度的示例的另一简化图600。在一些实施方案中,本文所述的技术能够改善接收器设备处的CIRTS和相关联的CIR估计步骤跨覆盖多个监管/发射测试间隔的多个片段分布的场景,这可增加用于CIRTS的传输的辐射能量。该分布还可实现操作范围的改善。
使用图6进一步示出此上下文,示意图600示出用于UWB信号的监管测量的功率谱密度(PSD)602。虽然监管规则在各国家和监管区域之间可不同,但在一些区域中,示例性UWB发射限值可要求跨UWB信号带宽(例如,在该示例中为500MHz)的最大PSD为-41.3dB/MHz。此示例中所展示的PSD 602满足对所有频谱分量的此要求,所述频谱分量中的一些频谱分量达到-41.3dBm/MHz的限值。在一些实施方案中,可使用1毫秒(1ms)的平均(频谱分析仪扫描)时间进行该测量。这意味着对于该场景而言,UWB系统每ms可发射的能量最大量大约对应于每500MHz带宽每ms的37e-9焦耳=37纳焦耳(nJ)。这由示意图600的底部附近的曲线图604示出。可用能量(高达37nJ)以更短(“密集”,D)或更长(“平”,F)脉冲串的形式传输。功率(经由y轴示出)相应地更高或更低,因为能量是按照持续时间乘以功率来计算的。在一些实施方案中,可存在由不同区域的UWB监管规则管控的峰值功率约束。因此,向更短持续时间的压缩在某些限值内可起作用并且取决于IR脉冲的密度。
图7是根据一些实施方案的示出用于在UWB框架内发射数据片段的至少一些示例技术的另一简化框图700。在一些实施方案中,至少部分地通过定义分段UWB框架来考虑监管约束,如图7的示意图700所示。
在示意图700中,发射帧(TXF)702被描绘为分成多个片段704a至704c,所述多个片段分布在持续时间T_test_reg 706的多个监管测试间隔内。例如,可在T_test_reg 706的时间间隔期间发射第一片段(“Frag1”)704a。对于图6和图7中所示出的示例,可在每个片段704a至704c上辐射高达37nJ。因此,如果N个片段704用于给定UWB发射,则总发射可辐射高达N*37nJ。应理解,T_test_reg 706的持续时间可以是任何合适的持续时间(例如1毫秒、1.5ms、2ms等)的预定义时间间隔。
图8是根据一些实施方案的示出用于发射与UWB分组类型相关联的数据片段的至少一些示例技术的另一简化框图800。在一些实施方案中,用于执行UWB发射的一个示例UWB分组格式是无数据分组801的分组格式,如示意图800中所展示。还参见上图4。在示意图800的示例中,无数据分组801包括Sync标头(SHR)802和STS/CIRTS 804。注意,Sync标头802可包括SYNC前导码和SFD。
图9是根据一些实施方案的示出用于在UWB框架内的多个时间间隔内发射数据片段的至少一些示例技术的另一简化框图900。在图9的示意图900中,示出无数据分组902(例如类似于图8中所描绘的无数据分组801),所述无数据分组可包括SHR字段904和CIRTS字段906。无数据分组分成SHR片段908和若干(例如在此示例中为两个)CIRTS片段910a至910b。每个CIRTS片段910可在单独的监管测试间隔中发射,以受益于其发射的全能量预算。在一些实施方案中,使这些片段保持较短是有益的,至少是因为UWB信号处理可因无线电和数字调制解调器电路中的高带宽和样本率而消耗大量功率。此外,使用更短片段持续时间(例如,及因此片段之间更长的静默周期)可有助于使利用相同UWB频谱的不同链路之间冲突的机会最小化。
如在图9中,如果CIRTS 906分布在多个间隔内,则UWB链路的接收器侧(站B)将能够在估计CIR时实现较高性能。这至少是因为能量可从CIRTS片段1 910a、CIRTS片段2 910b等各种间隔“敛集”,这使得能够进行对所述片段和/或在更长距离内的更准确分析。与此同时,为了确保CIR估计可靠地工作,Sync/采集步骤的高性能可能是期望的。这可能是因为在SHR 904期间的误同步可使CIRTS 906处理劣化。因为在图9中,SHR 904仅受益于一个间隔的能量,所以可用于SHR 904的能量与可用于CIRTS 906的能量之间存在固有不平衡。一种可能的解决方案可以是使SHR 904分布在多个间隔内,并且因此提高操作性能。然而,这可导致较低效率的解决方案。在一些实施方案中,该分组(例如,分组的片段)的到达时间不能确切地先验已知。因此,在Sync/采集步骤中处理多个SHR片段908可能需要使用用于缓冲的大量存储器和/或大量处理功率。该低效特别是对于手持/便携式设备或物联网设备可能是不期望的。因此,本公开的实施方案提供了用于例如经由混合无线系统来增加操作效率和/或操作范围的技术,如本文进一步所述。
图10是根据一些实施方案的示出利用UWB信令1002和/或NB信令1004的至少一些无线系统的潜在优点和缺点的另一简化图1000。在本文中所描述的一些实施方案中,利用混合无线系统,其中窄带(NB)信令1004和超宽带(UWB)1002信令以一定方式组合,所述方式解决本文中提出的潜在挑战,并且改善UWB系统的操作效率和/或操作范围。在一些实施方案中,执行窄带信令的系统可包括具有显著小于UWB的带宽的无线系统。在一些实施方案中,UWB可具有500MHz的最小带宽,因此NB可指系统表现出该带宽的一小部分,诸如几个100kHz、1MHz或10MHz至20MHz。NB系统的一些非限制性示例将是如在诸如ZigBee或Thread之类的工业标准中所用的蓝牙或IEEE 802.15.4O-QPSK(偏移正交相移键控格式)中利用的窄带GFSK(高斯频移键控)或DPSK(差分相移键控)信令。无线局域网(WLAN)中的更窄带的模式诸如跨越20MHz或40MHz频谱带宽的IEEE 802.11模式还可在本公开的上下文中被分类为NB信令,因为它们具有显著低于UWB的带宽并且往往在不同频谱中操作。在一些实施方案中,它们还由与UWB不同的一组监管约束进行监管。
在更详细地转到图10之前,并且为了提供与监管约束和带宽考虑有关的另一背景,管控UWB部署和相关联辐射发射的国际监管规则可为UWB设备定义低发射限值,因为后者往往在低于10GHz的频带(主要针对点对点或卫星链路、雷达或其他受保护应用的商业或军事操作)中操作。因此UWB发射可被委托以在其他电子设备(例如,移动设备、家用设备等)所允许的杂散发射级别下操作,从而不干扰此类许可使用。用于UWB的传输功率在许多区域中平均可限于-14dBm。
相比之下,存在多种更窄带的系统和相关联的监管规则,它们具有显著更宽松的发射限值,因为它们在针对此类未许可使用的频带中操作。2.4GHz至2.5GHz所谓ISM(工业、科学、医疗)频带是适应NB应用诸如1MHz或2MHz宽的蓝牙(BT)或ZigBee/Thread传输或者具有20MHz或40MHz状态的带宽的无线局域网(WLAN)的最好示例。2.4GHz至2.5GHz频带是全世界大多数监管区域中可用的频带的示例。存在其他与ISM类似的频谱,在许多国家中,该频谱包括5.725GHz至5.875GHz频带。其他频谱(包括5至6GHz频带的大部分)在某些条件下通常也对各种免许可、非UWB使用开放。这些更NB的系统的传输功率(辐射级别)通常在10dBm、20dBm或甚至30dBm区域中。
UWB由于具有大带宽(500MHz、1GHz或以上)而特别有利于高级测距和感测应用,其中相关联的设备之间的传播信道的精确测量允许诸如设备之间的飞行时间(ToF)和对应距离之类的度量的提取。然而,受限的发射给操作范围提出了挑战。相比之下,NB系统的更高发射/传输(Tx)功率允许更好的操作范围,但由于其更为受限的带宽而没有足够的潜力进行高精度估计。
现在更详细地转到图10,示意图1000示出了从无线系统的实施者的角度来看UWB和窄带(NB)无线系统的优点和缺点的比较。UWB信令1002受益于至少500MHz的较大带宽,这非常有利于高分辨率CIR测量,这继而可用于精确定位和测距,如上文所概述。宽带宽也有益于高速率数据传输。与更大UWB带宽相关联的挑战之一是其需要更高复杂性,诸如更高模拟-数字转换器(ADC)样本率和相关联的信号处理工作以及增加的模拟和数字功率消耗。如上文所解释,UWB监管规则也会对允许的发射施加极大的约束,这使得更难以实现所需的操作范围。相比之下,NB信令1004往往需要相当低的复杂度和功率消耗,并且可针对干扰具有较高抗性,尤其是在以频率跳变方式操作时。NB系统在被指定用于NB/ISM使用的频谱中操作时还从显著更大的发射限值中受益。然而,NB系统并不同样适用于高分辨率CIR估计(测距/感测),部分原因是固有受限的带宽及因此传播信道中的多路径的受限可解析性。
图11是根据一些实施方案的示出用于利用UWB信令与NB信令的混合的至少一些示例技术的另一简化框图1100。在图11的示意图1100中,示出经由混合信令来发射无数据分组1102的部分。在此情况下,UWB分组的Sync/采集部分(SHR)1104由NB分组1108替换,同时CIRTS 1106继续使用UWB信令。在适用于NB操作的频带中发射NB分组1108,并且在适用于UWB操作的频带中发射UWB CIRTS 1106。虽然在图1100中,NB分组1108和UWB CIRTS 1106按时间序列(连续地)发生,但它们在不同实施方案中也可同时发生。需注意,这些传输中的每个传输将根据分别管控NB和UWB传输的监管规则。
在一些实施方案中,该NB/UWB混合结构具有某些益处,这可通过利用根据本文所述的实施方案操作的设备来实现。在一些实施方案中,混合分组结构使这些设备能够应对上文就例如具有分段CIRTS的分组格式描述的挑战(例如,参见图9)。这在图12中示出。
图12是根据一些实施方案的示出用于利用UWB信令与NB信令的混合的至少一些示例技术的另一简化框图1200。在图12的示意图1200中,SHR 1202的功能由NB分组1204(例如经由NB信号发射)接管,并且其中CIRTS 1206分成多个(此处为N)片段1208a至1208n。尽管片段1208可在预定时间间隔开始时发射,但实施方案不应被解释为如此受限。例如,在图12的图示中,片段N 1208n的发射稍微偏离特定时间间隔(例如T_test_reg间隔,如针对图9所描述和示出)的起点。在一些实施方案中,发起方和响应方设备可传送配置信息以使得接收器设备(例如,响应方设备)可预先知道何时将传输该片段的参数。可经由NB信号来传送该配置信息。此外,虽然未在图12中示出,但需注意,在混合NB/UWB系统的上下文中发生的分段UWB传输可不仅仅承载CIRTS数据。可基于按照图4中的“数据字段”(PHR和有效负载/PSDU)分配含有数据有效负载的分组来将CIRTS片段1208a至1208n中的一些片段用数据有效负载片段替换。还需注意,混合系统概念有益于包含单个UWB片段(N=1,参见图11)的UWB传输并有益于包含多个UWB片段(N>1,参见图12)的UWB传输,并且具有N=1和N>1的实施方案是可能的。
图13是根据一些实施方案的示出用于经由NB分组格式1302来利用NB信令的至少一些示例技术的另一简化框图1300。图13的示意图1300展示现有技术中已知的两种NB分组格式1304a至1304b:顶部NB分组格式展示由访问代码、标头和有效负载部分组成的蓝牙格式1304a。底部NB分组格式示出来自IEEE 802.15.4(通常用于ZigBee或Thread技术)的O-QPSK分组格式1304b。应理解,其他合适的NB分组格式1302可用以执行本公开的实施方案。
应当理解,如图12或图9所示将分组字段分成片段是出于功能目的。例如,这些片段不一定与初始非分段字段相关。例如,没有必要串接图12和/或图9中的CIRTS片段得到初始非分段CIRTS字段。因此,分段字段分别表示在所需功能(诸如就CIRTS字段分段CIRTS分组结构而言,信道(CIR)估计)方面的初始分组字段的替代。如本文所述,在一些实施方案中,NB分组可包括同步(sync)字段(例如,在分组标头内)和/或数据有效负载字段。在一些实施方案中,sync字段可用于传达同步数据。例如,(例如,在调度的窗口期间)接收NB分组的接收器设备可检测发送器设备和接收器设备之间已知的信号模式。在一些实施方案中,该信号模式可与NB分组的sync字段(例如,sync标头)相关联。在检测到该模式时,接收器设备可能能够以时间和频率信息的形式提取同步数据,如本文所述。在一些实施方案中,接收器设备还可例如以可用于调度一个或多个UWB片段的后续接收的调度信息的形式从NB分组的数据有效负载字段提取同步数据。
图14是根据一些实施方案的示出分别被配置成利用UWB信令与NB信令的混合来彼此通信的两个设备的另一简化框图1400。图14的示意图1400展示根据一些实施方案的根据混合无线系统方法来彼此通信的两个设备(设备A 1402和设备B 1404)的视图。具体地说,每个设备(1402和1404)具有混合无线收发器(HWT)1406a或1406b,所述混合无线收发器包括在每个相应设备中彼此紧密耦合的NB子系统1408a或1408b和UWB子系统1410a或1410b,如本文中进一步所描述。作为设备A与B之间的通信的部分,特别是使用NB与UWB信令之间的“人工划分”,如先前由图11和图12所示出,设备A 1402的NB子系统1408a可与设备B 1404的NB子系统1408b直接通信,并且设备A 1402的UWB子系统1410a可与设备B 1404的UWB子系统1410b直接通信。在图14中,每个设备中的NB子系统1408a至1408b和UWB子系统1410a至1410b被展示为具有其自身物理天线1412a至1412b和1414a至1414b(例如,包括例如窄带系统1408a的第一天线1412a和UWB子系统1410a的第二天线1414a),但应理解,覆盖NB和UWB操作两者的单个共享天线可以是合适的具体实施,并且多天线解决方案可用于这类高级信号处理方案作为天线多样性、空间多路复用或者发射或接收波束成形。
图15是根据一些实施方案的示出被配置成利用UWB信令与NB信令的混合来与另一设备通信的设备的混合无线收发器1502的另一简化框图1500。图15的示意图1500提供每个设备中的HWT 1502的更多细节,并且示出HWT 1502中的NB子系统1504与UWB子系统1506之间的上述紧密耦合的细节和功能部件。每个这种收发器包括NB子系统1504和UWB子系统1506,所述子系统中的每个子系统分别含有无线发射与接收电路系统以及用于NB和UWB信令的功能。HWT 1502还提供有共享时基1508(例如模块或单元),所述共享时基由晶体振荡器(XO)以及任何相关钟控和记时装置组成。共享时基1508可使得NB子系统1504和UWB子系统1506能够形成在时间和频率上紧密同步的信号。也就是说,如果NB信号偏离共享时基操作并且具有某一时钟频率和/或载波频率缺陷(以百万分率[ppm]偏移来测量),则相同HWT1502中的UWB信号可呈现以ppm为单位的相同参考缺陷。由于设备的NB子系统1504和UWB子系统1506的发射和接收元件可能偏离相同共享时基1508操作,因而NB Tx(NB信号发射)、NBRx(NB信号接收)、UWB Tx(UWB信号发射)和UWB Rx(UWB接收)电路系统的时钟/载波偏移(以[ppm]为单位)可基本上类似(例如相同)。
此外,如图15中所描绘,存在管控NB子系统1504和UWB子系统1506两者的发射和接收活动以及NB系统与UWB系统之间的信息交换的接点控制器(混合系统控制器(或控件))1510。在一些实施方案中,混合系统控制器1510可用以协调第一设备的子系统与同第一设备的子系统相同类型的第二设备的另一子系统之间的发射或接收活动。在一些实施方案中,混合系统控制器1510可协调第一设备的窄带子系统与相同(第一)设备的超宽带子系统之间的信息交换。在一些示例中,控制块(例如混合系统控制器1510)可从NB子系统接收时间和频率同步(“T和F Sync”或“同步数据”)信息。F Sync包括与NB估计的相对于相关联的设备的ppm偏移相关的信息。T Sync包括与如由NB子系统1504所测量的空中分组定时相关联的信息。控制块还可从NB子系统1504接收有效负载数据信息(Rx数据)。T和F Sync及Rx数据可一起在本文中称为“NB-Rx-Info”。控制块还对由NB子系统1504进行的发射和接收进行调度,所述发射和接收可包括NB子系统1504所利用的某些Tx(发射)/Rx(接收)参数以及可能的有效负载Tx数据。
控制块还向UWB子系统1506提供时间和频率(T和F)配置信息。这有助于基于从NB信令提取的T和F信息来更精确地设置UWB接收器。由于NB子系统1504与UWB子系统1506之间共享时基1508(包括相对于相关联设备的任何频偏),因而此配置有助于为传入UWB信号定制UWB接收,并且使基于CIRTS片段的CIR估计的性能最大化。控制块还使用NB Rx-Info基于某些Tx/Rx参数(诸如载波频率或UWB带宽)来调度UWB Tx和Rx活动。继而,控制块还接收包括同步(时间/频率Sync)和CIR信息的UWB-Rx-Info。
图16是根据一些实施方案的示出两个设备之间的信号交换的简化流程图1600。图16的示意图1600示出了分别使用本文概述(例如,参考上述图14和图15)的HWT结构的两个相关联的HWT之间的交换的信号和控制流程图。虚线箭头表示设备A 1602与设备B 1604之间的无线交换,而实线箭头表示在(设备A 1602或设备B 1604中的)每个HWT内部交换的信号。需注意,为了说明清楚,未在示意图1600中明确示出控制块。设备A 1602中的NB子系统1606将NB分组“NB-A至B”1610发射到设备B 1602中的NB子系统1612。后者提取T和F Sync信息(例如其可另外被称为“同步数据”),并且将此信息提供给UWB子系统1614以供稍后使用。例如,同步数据可用以调度、配置和/或接收来自设备A 1602的后续UWB片段,如下文进一步描述。设备B 1604的NB子系统1612以其回到设备A 1602的自身NB分组“NB-B至A”1616作出响应,设备A继而从所述NB分组中提取T和F Sync信息,并且将所述信息提供给其本地UWB子系统1618以供稍后使用。随后,设备A 1602中的UWB子系统1618将UWB发射“UWB-A至B”1620(特别是CIRTS或CIRTIS片段系列)发送到设备B 1604中的UWB子系统1614。如上文所描述,设备B 1604可能够部分地基于从NB分组接收中提取的先前存储的T和F sync来有效确定何时预期来自设备A 1602的UWB发射。也就是说,设备B 1604中的UWB子系统1614具有对何时预期来自设备A 1602的UWB信号以及其将具有多少ppm偏移的更准确了解,所述UWB子系统可使用所述理解来使信令处理工作最小化,并且使接收算法和相关联接收电路系统的性能最大化。设备B 1604随后发射UWB响应“UWB-B至A”1622,设备A 1602可基于在“NB-B至A”1616分组的接收期间获得的T和F Sync信息而以较高效率和精度以有针对性的方式接收所述UWB响应。在一些实施方案中,依照图5,交换“UWB-A至B”1620和“UWB-B至A”1622可以是TOF测量。
在一些实施方案中,从相应NB信号提取的T和F同步信息可具有高质量,因为NB信令可受到不太严格的传输发射规则的限制。因此,NB传输的接收器侧处的信噪比(SNR)可更高并且允许更有效且准确的采集。与UWB子系统相比,NB子系统中的T和F处理还是低复杂性的和低功率的,至少是因为样本率大致比UWB子系统中更低。与此同时,UWB CIRTS片段的“NB辅助”接收将因从多个片段聚合能量而为高质量的(和高SNR的),因此使得高精度CIR提取和对应定位/测距功能成为可能。当与其他UWB系统相比时,NB和UWB子系统之间的该“分工”实现了改善的操作范围和操作效率。
应当理解,尽管各种模块(例如,部件和/或相关联的功能)被描述为与其他模块分开,但是实施方案不应被解释为受到如此限制。例如,图15将混合系统控制器描绘为与共享时基单元分开的模块,它们各自既与NB子系统分开,又与UWB子系统分开。然而,在一些实施方案中,共享时基模块和/或混合系统控制模块可驻留在所述子系统中的一个子系统(NB或UWB)内。在这种情况下,相应其他子系统可从作为辅助系统或代理系统(例如,委托系统和/或从属系统)的控制和时基功能中受益。在任何情况下,不同模块之间的特征的不同分布和/或聚合可使混合信令能够被执行,如本文实施方案中所述。还应当理解,图16和图17所示(下文进一步描述)的信号交换示出了由NB和UWB子系统组成的混合无线系统的特定类型的信号交换。本文进一步描述了经由其他混合协议的其他类型的信号交换。这些协议对应于NB和UWB传输的不同布置,同时仍采用利用分别包括HWT的设备(例如,发起方和响应方设备)进行的混合的信令方法。
图17是根据一些实施方案的示出两个设备之间的信号交换的另一简化流程图1700。图17的示意图1700是设备A和B(例如图16的设备A 1602和设备B 1604)中的HWT之间以及之内的示例信号流的更详细示意图。另外,图18和图19示出由相应设备进行的处理步骤的流程图,其中设备A 1602被称为“发起方”设备(或“第一设备”),并且设备B 1604被称为“响应方”设备(或“第二设备”)。因此,由每个设备进行的处理步骤的描述可参考图17以用于进一步说明信号交换过程。应当理解,在一些实施方案中,发起方设备可另选地作为响应方设备进行操作,并且类似地,响应方设备可另选地作为发起方设备进行操作,具体取决于上下文。
更详细地转到如图18的过程1800所描绘的设备A(例如设备A 1602)的处理步骤,在框1802处,第一设备可调度NB-Tx开始时间和NB-Rx窗口。在一些实施方案中,该框的操作可由与HWT分开的第一设备的无线系统进行。例如,无线系统可利用蓝牙/BLE协议。在一些实施方案中,该框的操作可在过程1800的初始阶段内执行。无线系统可负责初始阶段的一个或多个操作,所述一个或多个操作包括处理通告和/或扫描(例如设备发现),执行与响应方设备B(例如设备B 1604)的“粗同步”,以及/或者执行与设备B 1604(例如第二设备)的其他连接设置步骤。如本文进一步所述,在一些实施方案中,单独无线系统可负责传送NB控制信息,包括例如什么信道和/或多少跳变信道将用于NB信令。在一些实施方案中,可调度用于将NB轮询分组传输到第二设备的开始时间(例如,离散时刻),并且可调度用于从第二设备接收NB响应分组的时间窗口。在一些实施方案中,粗同步可使这些设备的相应记时装置能够同步到彼此的大约1ms增量以内。该初始粗同步可实现下文进一步所述的经由NB信号的交换进行的后续“精”同步。
在框1804处,第一设备可在所调度开始时间经由窄带信号将NB轮询分组(在图17中被描绘为NB-Tx A至B 1702)发射到设备B 1604。轮询分组可传达同步数据(例如,时间和频率同步数据),第二设备随后可使用该同步数据来调度分别经由超宽带信号进行的多个片段的接收。
在框1806处,第一设备可等待NB响应分组,例如,其可预期由第一设备在调度的窗口(例如,时间间隔)期间从第二设备接收到。
在框1808处,第一设备可接收NB响应分组(在图17中被描绘为NB-Rx B至A 1704)。例如,第一设备可在调度的窗口期间经由窄带信号发起NB响应分组的接收。
在框1810处,第一设备可从NB响应分组获得NB-Rx-Info。如本文所述,这可包括第二同步数据(例如,时间和频率同步数据),第一设备可使用该第二同步数据来调度第二多个片段的接收,该第二多个片段随后由第一设备从第二设备接收到。
在框1812处,第一设备可对多个片段(UWB-Tx片段1706a至1706n)的发射进行调度。在一些实施方案中,此调度可根据同步数据来进行,所述同步数据被传达到第二设备,并且由第二设备从由第一设备到第二设备的NB发射(例如在框1804处)中获得,所述同步数据继而可由第二设备用以对多个片段1706a至1706n的接收进行调度和辅助。
在框1814处,第一设备可将UWB轮询分组以该多个片段(在图17中被描绘为UWB-TxA至B-1...UWB-Tx A至B-N 1706a至1706n)的形式发射到第二设备。如本文中所描述,多个片段1706a至1706n中的每个片段可与多个片段1706a至1706n中的其他片段在时间上间隔开至少预定义时间间隔。在一些实施方案中,可部分地基于管控信号发射的区域监管规则来确定该时间间隔。
在框1816处,第一设备可基于在框1810处获得的第二同步数据(例如,来自NB-Rx-Info)来调度第二多个片段的接收。
在框1818处,第一设备可从第二设备接收第二多个片段(在图17中被描绘为UWB-Rx B至A-1...UWB-Rx B至A-N 1708a至1708n)。
在框1820处,第一设备可从第二多个片段获得聚合的UWB-Rx-Info。在一些实施方案中,这可包括同步数据和/或其他可用于确定CIR(例如,CIR估计值)的数据。如本文(例如,相对于图3)所述,CIR估计值可与第一设备和第二设备之间的LOS路径相关联。如本文所述,CIR可用于确定TOF间隔,继而可实现可由第一设备(例如,相对于第二设备)确定测距和/或定位。例如,第一设备可确定周转时间间隔,该周转时间间隔表示第二设备接收到该多个片段的时间与第二设备将第二多个片段传输到第一设备的时间之间的时间间隔(参见图5)。在一些实施方案中,第一设备可预先知道该周转时间间隔(例如,固定时间间隔)。在一些实施方案中,第一设备可预先不知道该周转时间间隔,并且可随后从传送该信息的第二设备接收到NB信号。参见例如本文进一步所述的图30。在任何情况下,第一设备可通过从TOF飞行中考虑(例如,减去)周转时间来计算TOF,如相对于图5所述。
如上文所介绍,图19是根据一些实施方案的示出由响应方设备进行的示例性过程的另一个简化流程图。与图18的发起方设备的描述类似,图19中由响应方设备进行的处理步骤的描述可参考图17(例如其中设备B 1604作为响应方设备进行操作)以用于进一步示出信号交换过程。需注意,图19的处理步骤可对应于图18的处理步骤的同等步骤(例如,从响应方设备视角来看)。
更详细地转到如图19的过程1900所描绘的设备B 1602(其可称为“第二设备”)的处理步骤,在框1902处,第二设备可调度NB-Rx时间。在一些实施方案中,框1902的操作可类似于框1802的操作。例如,第二设备的无线系统可执行与第一设备(例如图17和图18的发起方设备A 1602)的粗同步。
在框1904处,第二设备可等待来自第一设备的NB轮询分组。例如,可能已在过程1800的框1804处传输NB轮询分组。
在框1906处,第二设备可从第一设备接收NB轮询分组(在图17中被描绘为NB-Rx A至B 1710)。
在框1908处,第二设备可从NB轮询分组获得NB-Rx-Info。如本文所述,这可包括提取同步数据(例如,时间和频率同步数据和/或调度信息),第二设备可使用该同步数据来调度和/或帮助经由UWB信号进行的多个片段的接收,该多个片段随后由第二设备从第一设备接收到。在一些实施方案中,NB-Rx-Info还可包含用于(例如,在第二开始时间时)调度NB响应分组的传输的数据。在一些实施方案中,来自NB-Rx-Info的数据可用于其他目的(例如,状态报告等)。
在框1910处,第二设备可(例如,在第二开始时间时)调度NB响应分组的传输。如上所述,在一些实施方案中,该调度可基于在框1908处获得的NB-Rx-Info。在一些实施方案中,该调度可独立于NB-Rx-Info中的数据执行。
在框1912处,第二设备可例如在先前调度的第二开始时间将NB响应分组发射到第一设备(在图17中被描绘为NB-Tx B至A 1712)。
在框1914处,第二设备可基于在框1908处接收到的同步数据来为该多个片段的UWB-Rx接收调度和配置UWB接收器(例如,UWB子系统)。此处,NB-Rx-Info还可用以在UWB信号的接收之前并且为UWB信号的接收配置UWB接收器,特别是对载波频偏、采样频偏、载波相位和样本相位的校正中的一者或多者。
在框1916处,第二设备可接收UWB片段(在图17中被描绘为UWB-Rx A至B-1...UWB-Rx A至B-N 1714a至1714n)。这些UWB片段可以是在图18的框1814处传输的UWB轮询分组。
在框1918处,第二设备可获得聚合的UWB-Rx-Info。在一些实施方案中,该框的操作可类似于框1820的操作。在这种情况下,第二设备可获得同步数据和/或其他可用于确定CIR的数据。
在框1920处,第二设备可调度、配置和传输UWB-Tx响应片段(在图17中被描绘为UWB-Tx B至A-1...UWB-Tx B至A-N 1716a至1716n)。在一些实施方案中,响应片段可对应于多个片段(例如,在框1818处由第一设备从第二设备接收到的过程1800的第二多个片段)。在一些实施方案中,调度该多个片段的传输可部分地基于NB-Rx-Info(例如,在框1908处获得)和/或UWB-Rx-Info(例如,在框1918处获得,包括UWB时间/频率同步数据、CIR等)。在一些实施方案中,第二设备还可能能够执行测距和/或定位,这与如相对于第一设备所描述的类似。例如,第二设备可确定周转时间和/或时间戳信息,该周转时间和/或时间戳信息使其能够确定TOF/范围信息(参见本文进一步所述的图28的选项2)。
在一些实施方案中,相对于图17、图18和图19的实施方案而言,正向(A至B“轮询”)方向上的UWB片段的数量可与反向(B至A“响应”)方向上的UWB片段的数量相同,即N。在一些实施方案中,用于正向方向和反向方向的片段的数量可不同,并且可分别为正向方向和反向方向给定为Nf和Nr。
图20是根据一些实施方案的示出利用NB信令来发射UWB有效负载数据的另一简化框图2000。示意图2000描绘如在一些基于标准的UWB分组格式(例如,参见图4)中适用和有益的实施方案,其中UWB有效负载数据2002在由NB信令层处理时连接SHR 2004。在一些实施方案中,具有其相关联的信令的NB子系统可有助于按照各种管理和维护目的诸如状态信息的相互传输来协调设备A和B,如本文进一步所述。在一些实施方案中,还可经由多个片段来发射UWB分组2006的有效负载数据,这与如参考经由UWB片段发射CIRTS所描述的类似。
图21是根据一些实施方案的示出在由设备的UWB信令层发射的一个或多个片段中可含有的示例波形的另一简化框图2100。图21的示意图2100示出在UWB信令层中所用的每个CIRTS片段2102a至2102n中所含有的IR波形的细节。具体地说,所述示意图列出可用以确定每个CIRTS片段2102中的UWB IR脉冲的极性的各种类型的序列。在符合802.15.4z的分组格式(参见图4)中,用于表示CIRTS的脉冲极性序列依据用于该分组的STS部分的基于加密安全伪随机发生器(CSPRNG)的序列。相同CSPRNG类型序列“R”用于每个区段(例如片段2102)的情况在图21中被示出为表格中的行1。行2示出了不同CSPRNG极性序列(“R1”、“R2”…)确定每段的IR脉冲极性的实施方案。行3表示给定CIRTS片段2102由周期性重复短序列构成的实施方案,即用于IEEE 802.15.4 UWB中的传统三进制Ipatov前导序列的概念。注意,这种周期序列“E”可使用Ipatov序列或其中每个CIRTS片段2102由给定基序列的系列(周期性重复)组成的其他周期序列。在表格的行3中,相同周期序列“E”用于每个CIRTS片段2102,而在行4中,每个CIRTS片段2102可使用不同周期序列(“E1”、“E2”、…)。在行5和6中,格雷波形用于每个片段。格雷波形由连续传输的一对序列组成,该对序列一起具有高度准确的自相关特性。一个或多个格雷对(它们之间具有足够长的保护(静默)间隔以覆盖预期CIR的长度)可用以表示每个片段2102中的“G”。格雷对的不同选择(每个片段2102的一个或多个对)可跨N个片段2102使用,诸如“G1”、“G2”、…“GN”。使用格雷序列的一个具体实施方案每个片段2102使用多个格雷对,其中给定片段中的所有对基于相同对,使得片段2102含有周期序列,所述周期序列的每个周期由一个且相同的格雷对给定。在此后一实施方案中,同样,片段2102a至2102n可利用相同周期序列或因片段而异的基于格雷的周期序列。
如本文所述,实施方案描述了NB和UWB子系统的紧密耦接以改善有效操作范围。如本文进一步所述,可存在若干协议变型,这些协议变型经由NB和UWB子系统的紧密耦接来利用混合信令,以实现改善的操作范围和/或效率。
图22是根据一些实施方案的示出由用于混合信令的设备进行的示例性过程的第一部分的另一个简化流程图。在一些实施方案中,图22和图23的过程2200对应于用于由发起方设备确定CIR估计值的过程。(需注意,图23的框是图22的过程2200的延续。)在一些实施方案中,该过程可类似于由发起方执行的图18的过程1800。过程2200(和本文所述的其他过程流)分别被示出为逻辑流程图,其每个操作表示一系列能够在硬件、计算机指令或它们的组合中实现的操作。在计算机指令的上下文中,操作表示存储在一种或多种计算机可读存储介质上的计算机可执行指令,这些计算机可执行指令由一种或多种处理器执行时执行所述操作。一般来讲,计算机可执行指令包括执行特定功能或实现特定数据类型的例程、程序、对象、部件、数据结构等。描述操作的顺序并非旨在被理解为限制,并且任何数量的所述操作均可按照任意顺序和/或平行组合以实现所述过程。在一些实施方案中,本文所述流中的任何一个或多个流可由混合无线系统实现,该混合无线系统例如包括参考图14和/或图15描述的混合无线收发器。
另外,这些过程中的一些、任意者或全部可在被配置为具有可执行指令的一个或多个计算机系统的控制下执行,并且可实现为在一个或多个处理器上、由硬件、或它们的组合共同执行的代码(例如,可执行指令、一个或多个计算机程序、或一个或多个应用程序)。如上所述,代码可存储在计算机可读存储介质上,例如以包括可由一个或多个处理器执行的多个指令的计算机程序的形式存储。计算机可读存储介质是非暂态的。
在一些实施方案中,过程2200可由发起方设备(例如,“第一设备”)执行,该发起方设备与响应方设备(例如,“第二设备”)对方交换一个或多个信号。如本文中所描述,应理解,取决于环境,设备可作为发起方(设备)和/或响应方(设备)进行操作。因此,例如,过程2200的一个或多个操作也可适用(例如,类似)于作为响应方设备进行操作的第一设备。
更详细地转到过程2200,在框2202处,第一设备(发起方)可调度用于经由窄带(NB)信号将分组传输到第二设备(响应方)的开始时间(例如,离散时间)。在一些实施方案中,框2202的一个或多个操作可类似于图18的框1802的操作。
在框2204处,第一设备可调度用于由第二设备经由第二窄带信号传输到第一设备的第二分组的接收的窗口。在一些实施方案中,框2204的一个或多个操作可类似于图18的框1802的操作。
在框2206处,第一设备可在开始时间时经由窄带信号将该分组传输到第二设备。在一些实施方案中,该分组可包括向第二设备指示例如用于多个片段的接收的时间周期的数据。例如,该分组可传达同步数据,该同步数据可由第二设备用来调度和/或帮助分别经由超宽带(UWB)信号进行的多个片段的接收。在一些实施方案中,框2206的一个或多个操作可类似于图18的框1804的操作。
在框2208处,第一设备可在该窗口期间经由第二窄带信号从第二设备接收第二分组。在一些实施方案中,框2208的一个或多个操作可类似于图18的框1808的操作。
在框2210处,第一设备可至少部分地基于第二分组(例如,第二分组的sync标头和/或数据有效负载)来获得(例如,提取)第二同步数据。在一些实施方案中,框2210的一个或多个操作可类似于图18的框1810的操作。
在框2212处,第一设备可调度经由超宽带信号进行的该多个片段的传输。在一些实施方案中,该调度可根据先前传达给第二设备的同步数据(例如,在框2206处,包括调度信息)来执行。在一些实施方案中,框2212的一个或多个操作可类似于图18的框1812的操作。
继续图23中的框2214,第一设备可经由超宽带信号将该多个片段传输到第二设备。在一些实施方案中,该多个片段中的至少一个片段可与该多个片段中的至少一个其他片段在时间上隔开至少预先确定的时间间隔。在一些实施方案中,框2214的一个或多个操作可类似于图18的框1814的操作。
在框2216处,第一设备可至少部分地基于第二同步数据来调度第二多个片段的接收。在一些实施方案中,框2216的一个或多个操作可类似于图18的框1816的操作。
在框2218处,第一设备可分别经由第二超宽带信号从第二设备接收第二多个片段。在一些实施方案中,框2218的一个或多个操作可类似于图18的框1818的操作。
在框2220处,第一设备可至少基于第二多个片段来确定信道冲激响应(CIR)估计值。在一些实施方案中,信道冲激响应估计值可与第一设备和第二设备之间的视距(LOS)路径相关联。在一些实施方案中,框2220的一个或多个操作可类似于图18的框1820的操作。
图24是根据一些实施方案的示出利用一个或多个NB信道根据双向冗余分组交换协议的信号发射的另一简化流程图2400。联合使用冗余/重复NB分组交换(例如,参考例如图18的框1804和/或图19的框1912)与伪随机信道跳变序列可改善对干扰和/或多径衰落现象的可靠性。图24的示意图2400描绘了具有使用伪随机信道的三次冗余传输的该方案的实例。术语“信道”在此是指传输NB时的具体无线频谱位置,诸如以GHz为单位的载波频率(诸如,例如2.450GHz或5.806GHz或5.912GHz),在该载波频率周围,NB信号以其具体频谱带宽(诸如1MHz或2MHz或几百kHz)为中心。某些信道可受到其他无线用户的拥塞或遭受多径环境中的无线通信时常见的信号衰落,并且信道上“跳变”有助于减少因这些现象引起的分组丢失。发起方2402(例如本文中所描述的发起方设备中的一个发起方设备)在发起分组内发起第一消息,并且响应方2404尝试接收所述第一消息。在一些实施方案中,可通过使用以下规则来进一步优化此方案以节省功率:(a)发起方2402在其接收到(2)、(4)和(6)中的任一者时跳过NB交换的其余部分;(b)响应方2404应始终收听(1)、(3)和(5),但仅当其紧接在前的接收成功时才发射(2)、(4)和/或(6)。该方案可称为双向NB交换,这是由于两侧都交换NB分组。如果接下来的紧密耦接的UWB交换也涉及双向消息/片段(例如,如图17所描绘),则该协议可能是有用的。如本文所述,可使用设备射频(RF)协议在带外(OOB)交换NB冗余和信道跳变配置。在一些实施方案中,与设备上的HWT分开的(例如,OOB)无线系统可用于协调NB控制信息(例如,在连接设置期间利用蓝牙/BLE)。
图25是根据一些实施方案的示出利用一个或多个NB信道根据双向冗余分组交换协议在两个设备之间的消息交换的另一个简化流程图。在一些实施方案中,图25的过程2500的消息交换可对应于参考图24描绘的协议。应当理解,可另外在过程2500所描绘的框的操作之前、期间或之后执行与过程2500相关联的一些操作(例如,调度NB信号、UWB片段的传输等)(和/或本文进一步所述的其他过程)。因此,应当理解,过程2500所示出的简化协议(和/或本文所述的其他过程)还可包括本公开的其他操作和/或协议变型(例如,全测距协议、信标协议等)(和/或包括在本公开的其他操作和/或协议变型内)。
转到过程2500,在框2502处,第一设备(例如发起方2402)可经由第一窄带信道将第一发起分组发射到第二设备(例如响应方2404)。如上所述,并且例如,应当理解,在框2502的操作之前,可执行一个或多个操作以调度用于第一发起分组的传输的开始时间(例如,这类似于图18的框1802的一个或多个操作)。
在框2504处,第一设备可经由与第一窄带信道不同的第二窄带信道向第二设备传输第二发起分组。可至少部分地基于响应于第一发起分组而确定第一设备经由第一窄带信道未从第二设备接收到第一响应分组来传输第二发起分组。需注意,如果第二设备已传输第一响应分组,则第一设备可能尚未将第二发起分组传输到第二设备。在一些实施方案中,即使第一设备从第二设备接收到第一响应分组,仍可传输第二发起分组。
在框2506处,第一设备可经由与第一窄带信道和/或第二窄带信道不同的第三窄带信道向第二设备传输第三发起分组。可至少部分地基于响应于第二发起分组而确定第一设备经由第二窄带信道未从第二设备接收到第二响应分组来传输第三发起分组。
在框2508处,第一设备可响应于第三发起分组而经由第三窄带信道从第二设备接收第三响应分组。在该框处,根据参考图24描述的协议,第一设备随后可终止交换NB分组。
图26是根据一些实施方案的示出利用一个或多个NB信道根据单向冗余分组发射协议的信号发射的另一简化流程图2600。图26与图24类似,但在此情况下,仅一侧发射NB分组(例如发起方2602到响应方2604)。采用信标协议的实施方案(例如,本文相对于图34进一步所述)可从该方法中受益。如参考图24所述,在一些实施方案中,OOB系统可用于协调NB控制信息的传输(例如,经由蓝牙/BLE)。
图27是根据一些实施方案的示出利用一个或多个NB信道根据单向冗余分组传输协议在两个设备之间的消息交换的另一个简化流程图。在一些实施方案中,图27的消息交换可对应于参考图26描绘的协议。
在框2702处,第一设备(例如发起方2602)可经由第一窄带信道向第二设备(例如响应方2604)发射第一发起分组。
在框2704处,第一设备可经由可与第一窄带信道不同的第二窄带信道向第二设备传输第二发起分组。
在框2706处,第一设备可经由可与第一窄带信道和第二窄带信道不同的第三窄带信道向第二设备传输第三分组。
图28是根据一些实施方案的示出利用已知固定周转时间的非交错测距协议的信号发射的另一简化流程图2800。图28的示意图2800描绘了利用如本文所述的混合信令的全测距协议。该双向NB交换与图24所示的相同。发起方2802a随后按照通过NB/OOB协议交换的信息来发送UWB片段。在接收到所有UWB片段之后,响应方2804a执行ToA(到达时间)提取,并且从固定精确时间开始发送其响应UWB片段。这可称为固定周转时间间隔(例如,固定时间间隔)并且此类时间的粒度可为数十皮秒。由于该固定周转时间自身隐式地传送响应方UWBRX和TX之间的精确时间增量,因此其消除了经数据分组/有效负载传送该精确时间增量的需要。发起方2802a可在从响应方2804a接收到UWB片段之后计算TOF。相应地,如果响应方2804a确定计算所述范围,则可利用图2800的选项2。例如,可调换UWB片段的交换次序,使得响应方2804b首先发送多个片段,并且随后从发起方2802b接收响应多个片段。在该选项2中,仍采用固定周转时间。
图29是根据一些实施方案的示出基于已知固定周转时间的消息交换的另一个简化流程图。在一些实施方案中,图29的过程2900的消息交换可对应于参考图28描绘的协议。
在过程2900的框2902处,第一设备(例如发起方2802)可经由窄带信号将分组发射到第二设备(例如响应方2804)。在一些实施方案中,该分组可传达同步数据(例如,时间和频率同步数据和/或调度信息)。在一些实施方案中,框2902的一个或多个操作可类似于图18的框1804的操作。如本文所述,第二设备可获得(例如,从该分组的sync标头和/或有效负载数据提取)并利用该同步数据以调度来自第一设备的多个UWB片段的接收。第一设备还可根据该同步数据来调度该多个UWB片段的传输。
在框2904处,第一设备可从第二设备接收第二分组,该第二分组经由第二窄带信号向第一设备传达第二同步数据。在一些实施方案中,框2904的一个或多个操作可类似于图19的框1808的操作。如本文所述,第一设备可获得并利用该第二同步数据以调度来自第二设备的多个UWB片段的接收。第二设备还可根据该第二同步数据来调度第二多个片段的传输。
在一些实施方案中,可按照参考图24和图25所述的方案重复框2902和2904。
在框2906处,第一设备可经由超宽带信号将该多个片段传输到第二设备。在一些实施方案中,该多个片段中的每个片段可与该多个片段中的其他片段在时间上隔开至少预定义的时间间隔(例如,根据用于发射标准的相关监管规则)。
在框2908处,第一设备可分别经由第二超宽带信号从第二设备接收第二多个片段。在一些实施方案中,第二多个片段中的第一片段传输到第一设备的第一时间与该多个片段中的第一片段从第一设备传输到第二设备的第一时间偏移至少第一设备所知的固定时间间隔。在一些实施方案中,固定时间间隔可用于计算范围或飞行时间。例如,第一设备可确定周转时间,然后可使用该周转时间来确定TOF。
在框2910处,第一设备可至少基于第二多个片段来确定信道冲激响应(CIR)估计值。在一些实施方案中,信道冲激响应估计值可与第一设备和第二设备之间的视距(LOS)路径相关联。
图30是根据一些实施方案的示出非交错测距协议的另一简化流程图3000,所述非交错测距协议包括在UWB片段的双向交换之后传送往返时间和/或周转时间的NB信号交换。图30的示意图3000与图28类似,但在于发起方3002与响应方3004之间交换UWB片段之后,使用单向/双向NB分组来传送往返时间和/或周转时间以及任选状态报告。如果设备没有固定周转时间能力或两侧都需要知道该范围/TOF,则这可能是有用的。需注意,可在只有一侧需要知道该范围时使用单向NB交换,并且双向NB交换可使两侧都能够计算该范围。
图31是根据一些实施方案的示出在UWB片段的双向交换之后利用NB信号交换的消息交换的另一个简化流程图。在一些实施方案中,图31的过程3100的消息交换可对应于参考图30描绘的协议。
在过程3100的框3102处,第一设备(例如发起方3002)可经由窄带信号将分组发射到第二设备(例如响应方3004),所述分组传达同步数据。在一些实施方案中,框3102的一个或多个操作可类似于图29的框2902的操作。
在框3104处,第一设备可从第二设备接收第二分组,该第二分组经由第二窄带信号传达第二同步数据。在一些实施方案中,框3104的一个或多个操作可类似于图29的框2904的操作。
在一些实施方案中,可按照参考图24和图25所述的方案重复框3102和3104。
在框3106处,第一设备可经由超宽带信号将多个片段传输到第二设备,该多个片段中的每个片段与该多个片段中的其他片段在时间上隔开至少预定义的时间间隔。在一些实施方案中,框3106的一个或多个操作可类似于图18的框1814的操作。
在框3108处,第一设备可分别经由第二超宽带信号从第二设备接收第二多个片段。在一些实施方案中,框3108的一个或多个操作可类似于图18的框1818的操作。
在框3110处,第一设备可经由第三窄带信号从第二设备接收第三分组。在一些实施方案中,第三分组可包括可用于确定范围或飞行时间的信息。在一些实施方案中,该信息可包括以下的至少一者:(I)往返时间、(II)周转时间或(III)状态报告。在一些实施方案中,如本文所述,第一设备还可经由第四窄带信号向第二设备传输第四分组。该第四分组可传送与包括在第三窄带信号中的信息类似的类型的信息。该数据可允许第二设备也计算该范围。如上所述,如果设备没有固定周转时间能力或两侧都需要知道该范围/TOF,则该技术可能是有用的。
在一些实施方案中,可按照参考图24和图25和/或图26和图27所述的方案重复框3110。
图32是根据一些实施方案的示出根据单向NB和非交错UWB测距协议的信号交换的另一简化流程图3200。图32的示意图3200描绘另一变型,其中发起方3202与响应方3204之间的单向NB交换后面紧接相同方向上的UWB片段。通过让多个响应方3204以已知序列或随机次序作出响应,此方案可允许所述多个响应方参与测距练习。在一些实施方案中,该响应要么可将时间戳包括在响应NB分组中,要么使用固定周转时间方案作出响应(如本文所述)。发起方3202可由此计算相应范围,如本文中所描述。
图33是根据一些实施方案的示出根据单向NB和非交错UWB测距协议的消息交换的另一个简化流程图。在一些实施方案中,图33的过程3300的消息交换可对应于参考图32描绘的协议。
在框3302处,第一设备(例如发起方3202)可经由窄带信号将分组发射到第二设备(例如响应方3204),所述分组传达同步数据。在一些实施方案中,框3302的一个或多个操作可类似于图18的框1804的操作。在一些实施方案中,可按照参考图26和图27所述的方案重复框3302。
在框3304处,第一设备可经由超宽带信号将该多个片段传输到第二设备。在一些实施方案中,框3304的一个或多个操作可类似于图18的框1814的操作。
在框3306处,第一设备可从第二设备接收第二分组,该第二分组经由第二窄带信号传达第二同步数据。在一些实施方案中,框3306的一个或多个操作可类似于图18的框1808的操作。需注意,在这种情况下,第一设备可在框3304处的该多个片段的传输之后接收第二分组。在一些实施方案中,可按照参考图26和图27所述的方案重复框3306。
在框3308处,第一设备可分别经由第二超宽带信号从第二设备接收第二多个片段。在一些实施方案中,框3308的一个或多个操作可类似于图18的框1818的操作。在一些实施方案中,第一设备随后可使用该信息来计算ToF和/或AoA。
图34是根据一些实施方案的示出根据信标协议的信号交换的另一简化流程图3400。如上文所描述,在一些实施方案中,可在仅一侧(诸如发起方3402)发射NB信号(例如NB分组)和UWB信号(例如多个片段)时采用信标协议。例如,如果第二(接收器)设备是根据信标协议来与第一设备交互的若干所关注设备3404中的一个设备,则这可能是有用的。在一个示例中,接收器设备随后部分地基于估计的CIR来执行基于与一个或多个其他设备的三角剖分的测距和/或定位。在一些实施方案中,发起方3402可发送周期信标消息。需注意,信标协议仍利用如本文所述的混合信令方法。
图35是根据一些实施方案的示出根据信标协议的消息交换的另一个简化流程图。在一些实施方案中,图35的过程3500的消息交换可对应于参考图34描绘的协议。
在框3502处,第一设备(例如发起方3402)可调度用于经由窄带(NB)信号将分组发射到一个或多个所关注设备3404的开始时间。在一些实施方案中,框3502的一个或多个操作可类似于图18的框1802的操作。
在框3504处,第一设备可在所调度开始时间经由窄带信号将分组发射到一个或多个所关注设备3404。在一些实施方案中,该分组可传达同步数据,该同步数据由第二设备用来调度分别经由超宽带(UWB)信号进行的多个片段的接收。在一些实施方案中,框3504的一个或多个操作可类似于图18的框1804的操作。
在一些实施方案中,可按照参考图26和图27所述的方案重复框3502和3504。
在框3506处,第一设备可根据同步数据来调度经由超宽带信号进行的该多个片段的传输。在一些实施方案中,框3306的一个或多个操作可类似于图18的框1812的操作。
在框3508处,第一设备可经由超宽带信号将该多个片段传输到第二设备。在一些实施方案中,该多个片段中的每个片段可与该多个片段中的其他片段在时间上隔开至少预定义的时间间隔。在一些实施方案中,框3308的一个或多个操作可类似于图18的框1814的操作。
图36是根据一些实施方案的示出根据交错测距协议的信号交换的另一个简化流程图。在如图36的过程3600中所展示的交错测距协议中,所述协议通过让发起方3602和响应方3604使用相同T_test_reg(参见图7)来平分UWB片段交换时间。在这种情况下,TX和RXUWB片段交错。该交错UWB交换前面是双向NB交换,后面是单向或双向时间戳/状态NB交换(参见图30)。在一些实施方案中,通过使得发起方3602和响应方3604均能够使用相同时间间隔来发射相应UWB片段,此协议可使得总测距交换时间能够显著减少。应当理解,UWB片段自身的传输和/或接收尝试可以以NB分组的成功接收为条件。在一些实施方案中,这可有助于优化功率。
图37是根据一些实施方案的示出根据交错测距协议的消息交换的另一个简化流程图。在一些实施方案中,图37的过程3700的消息交换可对应于参考图36描绘的协议。
在过程3700的框3702处,第一设备(例如发起方3602)可经由窄带信号将分组发射到第二设备(例如响应方3604),所述分组传达同步数据。在一些实施方案中,框3702的一个或多个操作可类似于图29的框2902的操作。
在框3704处,第一设备可从第二设备接收第二分组,该第二分组经由第二窄带信号传达第二同步数据。在一些实施方案中,框3704的一个或多个操作可类似于图29的框2904的操作。
在一些实施方案中,可按照参考图24和图25所述的方案重复框3702和3704。
在框3706处,第一设备可经由超宽带信号将多个片段中的第一片段传输到第二设备。在一些实施方案中,框3706的一个或多个操作可类似于图18的框1814的操作。
在框3708处,第一设备可从第二设备接收第二多个片段中的第一片段。在一些实施方案中,可经由第二超宽带信号传输第二多个片段中的第一片段。在一些实施方案中,由第一设备在预定义的时间间隔内接收第二多个片段中的第一片段,该预定义的时间间隔定义该多个片段中的第一片段和第二片段之间的时间间距。在一些实施方案中,框3708的一个或多个操作可类似于图18的框1818的操作。需注意,在这种情况下,来自各多个片段的单独相应片段在由相应设备传输/接收时交错在一起。
在框3710处,第一设备可在预定义的时间间隔完成之后向第二设备传输该多个片段中的第二片段。
在框3712处,第一设备可从第二设备接收第二多个片段中的第二片段。应当理解,可在这两个设备之间交换交错片段的多轮次(例如,包括框3710和3712的操作的多轮次),直到在这些设备之间交换完整相应多个片段。
在框3714处,第一设备可经由窄带信号从第二设备接收分组,该分组包括可用于确定范围或飞行时间的信息,该信息包括以下的至少一者:(I)往返时间、(II)周转时间或(III)状态报告。在一些实施方案中,框3710的一个或多个操作可类似于图31的框3110的操作。需注意,在一些情况下,第一设备还可(和/或另选地)经由窄带信号传输使第二设备也能够确定测距信息的分组,具体取决于上下文。在一些实施方案中,可按照参考图24和图25和/或图26和图27所述的方案重复框3714的操作。
图38是根据一些实施方案的示出单独的无线系统用于初始设备发现和连接设置的用途的另一简化框图3800。示意图3800描绘了NB辅助概念被扩展到包括可协助如本文所述的初始设备发现和连接设置的另一个无线系统。在此示例中,在将控制移交给混合NB+UWB收发器3804之前,无线系统(例如BLE 3802)可用于设备的初始粗对准。在一些实施方案中,BLE 3802可处理通告/扫描、粗同步和/或连接设置。与此同时,NB子系统可处理精同步以帮助(“锚定”)MMS-UWB(多毫秒)传输。另外,UWB子系统可更有效地从用于TOF/AOA估计的专用片段3806a至3806c“收集”多个毫秒的UWB能量。
图39是根据一些实施方案的示出单独的无线系统用于初始设备发现和连接设置的用途的另一简化框图3900。图39的示意图3900展示其中额外无线系统(诸如BLE 3802)和HWT位于相同设备(分别为设备A 3902或设备B 3904)上的单独片上系统(SOC 3906a至3906b和3908a至3908b)上的具体实施。
图40是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的简化框图4000。示意图4000示出了连续的UWB分组片段的两个分区(两种类型),即第一分区中包含CIRTS(例如,一种片段类型)的N个片段4002a至4002n,然后是第二分区中包含伪随机训练序列(PRTS)(例如,另一种片段类型)的M个片段4004a至4004m。在此类分区的片段化框架结构的一个有利实施方案中,第一分区中的CIRTS片段4002a至4002n中的每一个CIRTS片段由如参考图21所描述的周期性脉冲序列组成。同时,第二分区的片段4004a至4004m中的每一个片段由伪随机脉冲极性的脉冲的不同序列组成。类似于IEEE 802.15.4z中的加扰时间戳序列(STS),PRTS片段4004a至4004m中的脉冲极性是伪随机的,并且仅对在安全测距场景中的相关联设备是已知的。具体地,可由接收设备使用CIRTS片段4002a至4002n来有效地估计信道(CIR)估计并提取第1传播路径。然后,可由接收器站使用PRTS片段4004a至4004m来通过在CIRTS片段4002a至4002n中获得的CIR以及PRTS 4004a至4004m的片段中包含的(秘密但已知)脉冲极性以安全方式验证(例如,认证)该第1路径估计的合法性。使用图21中的可能序列类型的说明和命名法,含有周期性CIRTS序列的N个片段可基于图示表中的第3、4、5和/或6行,而M个PRTS片段4004a至4004m可基于图21中所示的表中的第2行。
图41是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的另一个简化框图4100。图41的示意图4100示出了来自图40的不同分区的片段化UWB分组实施方案。具体地,第一分区包含CIRTS片段4102a至4102n(例如,一种片段类型),而第二分区包含DATA片段4104a至4104m(例如,不同片段类型)。如前所述,可以通过接收器评估该CIRTS片段4102a至4102n以获得CIR和第一路径估计。DATA片段4104a至4104m可用于传输用户有效负载数据4106。此类用户有效负载数据4106可包括传感器数据,例如来自惯性测量单元(IMU)或加速度计模块的读数、控制/管理和状态数据、或用于音频和/或视频目的的数据诸如麦克风数据或音频和/或视频流数据。注意,DATA片段4104a至4104m可包含短的“引导”数据符号,其对发射器和接收器两者是已知的。此类引导数据符号可帮助重新同步和/或细化信道估计(CIR),以便提高DATA有效负载检测的准确性和性能。
图42是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的另一个简化框图4200。示意图4200示出了具有三个分区的片段化UWB分组的示例性实施方案。在此示例中,存在N个CIRTS片段4202a至4202n,随后是M个PRTS片段4204a至4204m和P个DATA片段4206a至4206p。注意N、M和P可以是1、2、3或任何其它整数;还注意,N、M、P可彼此之间不同。
图43是根据一些实施方案的示出包括UWB分组的多个分区的片段化UWB信令的使用的简化流程图。在一些实施方案中,流程图4300的操作中的一个或多个操作可类似于参考图40、图41和/或图42所描述的操作。
在框4302处,第一设备经由窄带信号向第二设备传输第一分组。在一些实施方案中,该第一分组可包括向第二设备指示用于第二分组的接收的时间周期的信息。在一些实施方案中,包括在第一分组内的信息可对应于可以用于将同步数据传送到第二设备的任何合适的信息,如本文所述。例如,这可包括与第一分组的同步字段和/或数据有效负载字段相关联(例如,包含在第一分组的同步字段和/或数据有效负载字段内)的信息。在一些实施方案中,第二设备可由此基于包括在第一分组内的信息获得同步数据(例如,用于调度第二分组的接收)。在一些实施方案中,框4302的一个或多个操作可类似于例如本文参考图22的框2206所描述的操作。在一些实施方案中,第二分组可包括第一分区和第二分区,该第一分区包括第一多个片段并且该第二分区包括第二多个片段,由此经由UWB信号传输每多个片段中的相应片段。在一些实施方案中,第一分区与CIR估计和/或第一传播路径提取相关联,并且第二分区与第一传播路径提取的安全验证相关联。然而,实施方案不应被理解为如此限制。例如,如关于图41所例示,第二分区可与数据有效负载类型相关联(例如,包含视频数据或音频数据)。因此,应理解,多个片段类型中的任何合适的片段类型(例如,CIRTS片段4202a至4202n、Data片段4204a至4204m或PRTS片段4206a至4206p)可用于执行本文的技术。
在一些实施方案中,第二分组可包括多于两个分区,如参考图42所描绘的(例如,分区与特定片段类型相关联)。在一些实施方案中,如参考图21和图40所描述,片段类型可与(例如,对应于)特定序列类型相关联。例如,第一多个片段(例如,包括CIRTS片段4202a至4202n)可分别与周期性序列类型相关联,而第二多个片段(例如,包括PRTS片段4204a至4204m)可分别与伪随机序列类型相关联。在一些实施方案中,第一多个片段的第一数目可与第二多个片段的第二数目相同或不同(例如,参见图42,描绘了N个CIRTS片段4202a至4202n、M个PRTS片段4204a至4204m和P个Data片段4206a至4206p)。在一些实施方案中,第一分组可包括安全参数(例如,多个可配置测距会话参数中的一个),该安全参数指示伪随机序列安全密钥(和/或种子或秘钥索引或密钥索引偏移)。在一些实施方案中,此秘钥或部分密钥可在仅第一设备与第二设备之间共享(例如,秘密密钥),并且秘钥信息可以在连接建立期间分布在第一设备与第二设备之间同意的先验参考秘钥之间,并且部分密钥(或种子或秘钥索引或密钥索引偏移)可包含在第一分组中。
在框4304处,第一设备经由UWB信号将第一多个分组传输到第二设备,该第一多个片段中的相应片段与第一片段类型(例如,用于执行CIR估计的CIRTS类型)相关联。
在框4306处,第一设备经由UWB信号将第二多个分组传输到第二设备,该第二多个片段中的相应片段与第二片段类型(例如,PRTS类型)相关联。在一些实施方案中,第二设备可至少部分地基于第二多个片段来认证第一传播路径提取,如本文所述。在一些实施方案中,第二设备可利用伪随机序列安全密钥(例如,在框4302处传输到第二设备作为会话参数)来执行该认证。
图44是根据一些实施方案的示出在链路的两个方向之间传输不对称数量的片段所凭借的技术的另一简化框图4400。图44的示意图4400示出了一个实施方案,其中用于CIRTS目的的片段的数量在链路的两个方向之间不同。值得注意的是,A到B方向使用N_AB片段4402a至4402n,而B到A方向使用N_BA片段4404a至4404n,其中N_AB和N_BA可以是相同整数,诸如1、2、3或更高,但也可以不同。针对N_AB和N_BA的不对称(不相等)选择可能在以下情景中是有益的,其中链路的一个方向由于相关联设备A或B之一处更高的天线效率或无线电前端信号水平损耗而被更严重施加压力。因此使用更多数量的片段可以用于补偿链路的强度(和操作)范围内的不对称。在一些实施方案中,两个方向上的对称(平衡)链路是有益的,因为较弱链路倾向于主导无线系统中的整体系统性能,从而要求在两个方向上的通信以提取所有期望的量。
图45是根据一些实施方案的示出可将多个UWB频率信道可用于片段化传输所凭借的技术的另一简化框图4500。图45的示意图4500描绘了其中多个UWB频率信道可以有利地用于片段化传输的实施方案。在一些实施方案中,根据国际标准化的UWB信令可使用大约500MHz的光谱带宽以及诸如大约6.5GHz(所谓的UWB信道5)、8GHz(所谓的UWB信道9)或8.5GHz(UWB通道10)的载波频率(中心频率)。在图45的图示中,这可以解释为从站A到站B的UWB传输作为NB辅助片段化UWB交换的一部分,三个UWB信道用于总共N的3倍个片段,其中在三个信道中的每个信道上布置N个片段。三个信道可被称为“UCH1”4502、“UCH2”4504和“UCH3”4506,其中那些标签中的每一个可以与物理光谱相关联。在图示中,UCH1 4502是指以8.5GHz为中心的500MHz信道,UCH2 4504是指8GHz,并且UCH3 4506是指6.5GHz。在图中被描绘为CIRTS片段CIRTS(1,1)、CIRTS(1,2)…CIRTS(1,N)4508a至4508n的在UCH1 4502中传输的片段至少间隔T_reg_test,以便满足监管发射要求。在信道UCH2 4504上传输的片段CIRTS(2,1)、CIRTS(2,2)…CIRTS(2,N)4510a至4510n可在相同周期内发生,因为无线光谱的每个分区由单独发射限制调节。也就是说,如果需要,CIRTS(1,1)4508a和CIRTS(2,1)4510a(都表示信道UCH1 4502和UCH2 4504中的其相应片段序列中的第一片段)可以分别非常快速地连续发生。在一些实施方案中,它们可以同时发生。在一些实施方案中,无线收发器可仅能够在任何给定时间服务一个信道。同样的道理也适用于在UCH3 4506上传输的片段(例如,4512a至4512n),该UCH3 4506是由其自身的发射限制控制的,并且该信道上的片段可在与在信道UCH1 4502或UCH2 4504上传输的片段相同的测试周期T_reg_test内发生。注意,多个信道(例如,如具有3个信道的示例的图45所描绘)上的传输对于频率分集目的可能是有益的。由于天线硬件的现实物理约束,在一个频率信道处沿某些方向的辐射可能由于天线零值(antenna null)而严重衰减,而相同的方向可在另一频率信道上具有强支撑。此外,利用多个信道还可以有益于有效地增加无线交换的带宽,从而允许更好的估计准确度,诸如设备A和B之间的范围(距离)。虽然每个信道中的片段数量N在信道之间可相同,但是如图45所示,其也可以不同,例如用于UCH1 4502的N1个片段、用于UCH2 4504的N2个片段,以及用于UCH3 4506的N3个片段。在一些实施方案中,信道的数量可以是2、3或任何合适的数目。
图46是根据一些实施方案的示出用于执行天线切换以促进UWB片段化传输的技术的另一简化框图4600。图46的示意图4600的上部部分示出了一个实施方案,其中天线切换模块和其在片段化传输期间的控制可能是有益的。如示意图4600的上部部分所描绘的,UWB子系统4602具有单个UWB传输链和两个UWB接收链,该传输链和接收链连接到天线切换模块4604。在此示例实施方案中,后者还连接到各种天线,其中四个标记为Ant0 4606a、Ant14606b、Ant2 4606c和Ant3 4606d。在传输操作中,天线切换模块4604允许根据来自混合系统控制块4608的天线切换控制信号利用这些天线中的一个天线来选择或指派UWB子系统4602的单个传输链。在接收操作中,天线切换模块4604允许选择天线4606中的两个天线,以将它们的信号转发到UWB子系统4602的两个接收链。注意,任何数量的天线4606,1个、2个、3个、4个或更多个天线4606可以是有益的,并且UWB子系统4602可以提供1个或更多个传输链以及1个、2个或更多个接收链。然后,天线切换模块4604的目的是选择用于实际传输和接收操作的天线4606。天线切换可有益于实现天线分集,与信道/频率分集相似,这可帮助克服天线零值或多路径衰落效应。它还可以有益于出发角和到达角估计技术。在本发明的一个实施方案中,天线切换技术可与片段化UWB传输结合使用作为混合NB/UWB无线系统的一部分。这借助于图46的下部部分来说明。图46的下部部分中的实施方案使用N1+N2个CIRTS片段(例如,4610a至4610n和4612a至4612n)。使用两个天线切换配置,分别为在第一N1个片段和第二N2个片段期间的ASC1和ASC2。对于传输操作,ASC1和ASC2可各自指用于传输的4个天线元件Ant0/1/2/3 4606a至4606d中的一个天线元件的选择。例如,ASC1可以指Ant04606a,并且ASC2可以指Ant3 4606d。对于接收操作,ASC1和ASC2可分别表示4个可用天线中的2个天线的选择,诸如(Ant0 4606a,Ant2 4606c)和(Ant0 4606a,Ant1 4606b)。在开始时间t_start和切换时间t_switch之间的时间段期间,使用天线配置ASC1,而时间t_switch之后,天线配置被改变为ASC2。注意,任何数量的切换配置间隔都是可能的,不仅是以ASC1和ASC2为目标的两个间隔,而且是提供更多天线配置ASC1、ASC2、ASC3等的更多间隔。还注意,在图46的下部部分所示的示例性实施方案中,片段表示CIRTS序列,而在其它实施方案中,可以使用其它片段类型,诸如PRTS或DATA,并且不同的天线切换间隔可以使用不同的片段类型。例如,在间隔t_start至t_switch期间,可以使用CIRTS片段,而在t_switch与传输结束之间,可以使用DATA片段。
图47是根据一些实施方案的示出用于在包括锚定站和客户端站的环境内操作混合(UWB/NB)系统的技术的简化框图4700。图47的示意图4700示出了在两个设备类别-锚定站和客户端站中的多个站中的混合系统的实施方案。在一些实施方案中,锚定站A1、A2、…A10 4702a至4702n表示具有合成系统能力的设备,所述具有合成系统能力的设备可以是固定设备,有可能安装在墙壁或天花板上,并且与永久电源(诸如常规110V或220V主系统)连接。在一些实施方案中,客户端站C1、C2、…到C1004704a至4704n可以是移动式电池操作设备,诸如移动电话或腕戴智能手表。可安装在家庭、购物中心或仓库中的锚定站4702a至4702n可向有可能处于室内或室外局部区域的客户端站4704a至4704n提供定位服务。在本发明的这种基础设施类型实施方案中,锚定站4702a至4702n可在彼此偏移的某些时间实例处以同步方式传输根据本发明的由NB和片段化UWB分组组成的混合信号。这允许客户端站4704a至4704n在仅收听模式下使用NB信号来辅助有效接收片段化UWB传输,并且使用三点定位技术来确定其自身在局部地理图像中的位置,假设锚定站4702a至4702n的位置是已知的。可替代地,同样使用NB辅助片段化UWB信令,锚定站4702a至4702n可以点对点或点对多点方式在彼此间主动且双向地通信;在此情况下,客户端站4704a至4704n可收听这些锚对锚通信,并且基于所述锚对锚通信来推导其相应位置。
图48是根据一些实施方案的示出用于经由UWB片段化传输来执行环境感测的技术的另一简化框图4800。图48的示意图4800说明用于环境感测(深度感测和映射,DSM)技术的混合NB/UWB信令的使用。在此实施方案中,站A 4802和站B 4804执行NB和UWB的交换以确定有效的CIR和范围(距离),如本文所述。另外,虽然传输UWB片段,特别是对于CIRTS片段的序列的情况,每个站(站A 4802和站B 4804)也出于信道估计目的接收和关联其自身的传输。从A到B和B到A信令获得的CIR可用于“多静态雷达”DSM,而从A到A和B到B“环回”(LB)操作获得的CIR可用于“单静态雷达”DSM。来自单静态和多静态测量的CIR(后者可能从多个站A、B、C......之间的通信导出)随后可解释用于检测存在、移动或其它环境参数或事件。
上文描述了用于传输NB和UWB无线信号的混合的例示性技术。这些系统和方法中的一部分或全部可以至少部分地通过诸如至少在上述图1至图48中的一者或多者中所示的那些架构的架构来实现,但不是必须通过这些架构来实现。应当理解,任何合适的设备可执行本文所公开的技术。此外,在前文描述中描述了各种非限制性示例。为了解释的目的,阐述了很多具体配置和细节以便提供对示例的彻底理解。但是,对本领域的技术人员也将显而易见的是,一些示例可在没有这些具体细节的情况下被实施。此外,有时省略或简化熟知的特征部以防止对本文所述的示例造成混淆。
虽然可存在本文提出的概念的许多实施方案,但NB和UWB实施方案的一种有益选择可将用于UWB和NB信号的射频(RF)操作频率布置成彼此接近。例如,用于NB信令的合适频率范围可以是5和6GHz范围内的无需许可的国家信息基础设施(UNII)频带,包括从5.725GHz至5.850GHz的UNII-3频带或从5.925GHz至6.425GHz的UNII-5频带。这些频带往往允许高达10dBm或20dBm或更多的功率电平下的NB传输。对于UWB子系统而言,典型RF操作频率将为分别在大约6.5GHz和8.0GHz的中心频率下的所谓UWB信道5和9。使用彼此邻近的NB和UWB频率的益处是更容易在NB和UWB之间共享天线硬件。然而,需注意,用于NB子系统的另一个合适操作范围在2.4至2.5GHz ISM频带内(通常用于ZigBee和蓝牙以及其他消费无线系统),并且从1GHz至10GHz及10GHz以上的多种UWB中心频率可用于混合系统概念。
就混合系统概念的硬件实现而言,应当注意,NB和UWB子系统可驻留在相同片上系统(SOC)上,该SOC也可称为集成电路(例如,包括合适的处理器电路)。它们还可体现为单独SOC、NB SOC和UWB SOC,其中紧密耦接和联合MAC控制处理通过这两个SOC之间交换的直接控制信号来完成。
其他优选和非限制性实施方案或方面将在以下编号条款中予以阐述:
条款1:一种计算机实现的方法,包括:由第一设备经由窄带(NB)信号向第二设备传输第一分组,所述第一分组包括向所述第二设备指示用于接收第二分组的时间段的信息,所述第二分组包括第一分区和第二分区,所述第一分区包括第一多个片段并且所述第二分区包括第二多个片段,并且每多个片段中的相应片段是经由超宽带(UWB)信号传输的;由所述第一设备经由所述超宽带信号将所述第一多个片段传输到所述第二设备,所述第一多个片段中的所述相应片段与第一片段类型相关联;以及由所述第一设备经由所述超宽带信号将所述第二多个片段传输到所述第二设备,所述第二多个片段中的所述相应片段与第二片段类型相关联。
条款2:根据条款1所述的计算机实现的方法,其中所述第一分区与信道冲激响应(CIR)估计和第一传播路径提取相关联,并且所述第二分区与所述第一传播路径提取的安全验证相关联。
条款3:根据条款1至2中任一项所述的计算机实现的方法,其中所述第一多个片段的所述第一片段类型对应于周期性序列,并且其中所述第二片段类型对应于伪随机序列。
条款4:根据条款1至3中任一项所述的计算机实现的方法,其中所述第一多个片段的第一数目和所述第二多个片段的第二数目是不同的数目。
条款5:根据条款1至4中任一项所述的计算机实现的方法,其中所述第二设备至少部分地基于所述第二多个片段来认证所述第一传播路径提取。
条款6:根据条款1至5中任一项所述的计算机实现的方法,其中所述第一分组包括安全参数,所述安全参数指示在仅所述第一设备与所述第二设备之间共享的伪随机序列安全密钥,并且其中所述第二设备至少部分地基于所述安全参数来认证所述第一传播路径提取。
条款7:根据条款1至6中任一项所述的计算机实现的方法,其中所述第二分组与第一测距轮次相关联,并且其中第二分组是分别被划分为包括第一分区和第二分区的一系列分组中的一个分组。
条款8:根据条款1至6中任一项所述的计算机实现的方法,其中所述第二分组进一步被划分为包括与数据有效负载共同关联的第三多个片段。
条款9:根据条款1至8中任一项所述的计算机实现的方法,其中所述数据有效负载包括音频数据或视频数据。
条款10:根据条款1至9中任一项所述的计算机实现的方法,其中所述第一分区与信道冲激响应(CIR)估计相关联,并且所述第二分区与数据有效负载相关联。
本公开的其他实施方案可针对一种装置,所述装置包括:存储器,所述存储器包括计算机可执行指令;和一个或多个处理器,所述一个或多个处理器与所述存储器通信,并且被配置成访问所述存储器,并且执行所述计算机可执行指令以执行根据条款1至10中任一项所述的方法。
本公开的其他实施方案可针对一种或多种计算机可读存储介质,所述计算机可读存储介质包括计算机可执行指令,当由一个或多个处理器执行时,所述计算机可执行指令促使所述一个或多个处理器执行根据条款1至10中任一项所述的方法。
本公开的其他实施方案可涉及一种设备,所述设备包括:处理器电路系统,所述处理器电路系统被配置成执行根据条款1至10中任一项所述的方法。
还可在各种各样的操作环境中实施各种实施方案,在一些情况下,这些操作环境可包括可用于操作多个应用程序中的任一个应用程序的一个或多个用户计算机、计算设备或处理设备。用户设备或客户端设备可包括许多通用个人计算机中的任何一个,诸如运行标准操作系统的台式计算机或膝上型计算机,以及运行移动软件并能够支持多个联网协议和即时消息协议的蜂窝设备、无线设备和手持设备。此系统还可包括运行各种可商购获得的操作系统和用于目的诸如开发和数据库管理等的其他已知应用程序中的任何一者的多个工作站。这些设备还可包括其他电子设备,诸如虚拟终端、瘦客户端、游戏系统以及能够经由网络进行通信的其他设备。
大多数实施方案利用本领域技术人员熟悉的至少一个网络来支持使用各种商用协议诸如TCP/IP、OSI、FTP、UPnP、NFS、CIFS和AppleTalk中的任何协议的通信。网络可以是例如局域网、广域网、虚拟专用网络、互联网、内联网、外联网、公共交换电话网、红外网络、无线网络及其任何组合。
在利用网络服务器的实施方案中,网络服务器可运行各种服务器或中间层应用程序中的任何一者,包括HTTP服务器、FTP服务器、CGI服务器、数据服务器、Java服务器和业务应用程序服务器。一个或多个服务器还可能够响应于来自用户设备的请求而执行程序或脚本,诸如通过执行一个或多个应用程序,所述一个或多个应用程序可被实现为以任何编程语言诸如C、C#或C++或者任何脚本语言诸如Perl、Python或TCL以及它们的组合编写的一个或多个脚本或程序。一个或多个服务器还可包括数据库服务器,包括但不限于可从和商购获得的那些。
环境可包括各种数据存储库和其他存储器和存储介质,如上所述。这些可驻留在各个位置,诸如在一个或多个计算机本地的存储介质上或者远离网络上的任何或全部计算机的存储介质上(和/或驻留在一个或多个计算机中)。在特定的一组实施方案中,信息可驻留在本领域技术人员熟悉的存储区域网络(SAN)中。类似地,用于执行归属于计算机、服务器或其他网络设备的功能的任何必要文件可以根据需要本地存储以及/或者远程存储。当系统包括计算机化设备时,每个此类设备可包括可经由总线电耦接的硬件元件,所述元件包括例如至少一个中央处理单元(CPU)、至少一个输入设备(例如,鼠标、键盘、控制器、触摸屏或小键盘),以及至少一个输出设备(例如,显示设备、打印机或扬声器)。此类系统还可包括一个或多个存储设备,诸如磁盘驱动器、光存储设备和固态存储设备诸如RAM或ROM,以及可移除媒体设备、存储卡、闪存卡,等等。
此类设备还可包括如上所述的计算机可读存储介质读取器、通信设备(例如,调制解调器、网卡(无线或有线)、红外通信设备等)和工作存储器。计算机可读存储介质读取器可连接至或配置为接收表示远程、本地、固定和/或可移除的存储设备的非暂态计算机可读存储介质,以及用于临时和/或更永久地包含、存储、传输和检索计算机可读信息的存储介质。系统和各种设备通常还将包括位于至少一个工作存储器设备内的多个软件应用程序、模块、服务或其他元件,包括操作系统和应用程序,诸如客户端应用程序或浏览器。应当理解的是,另选实施方案可具有根据上文所述的许多变型形式。例如,还可使用定制硬件,和/或可在硬件、软件(包括便携式软件,诸如小应用程序)或两者中实现特定元件。此外,可使用与其他计算设备诸如网络输入/输出设备的连接。
用于包含代码或代码的部分的非暂态存储介质和计算机可读存储介质可包括本领域技术中已知或使用的任何适当的介质,例如但不限于以用于存储信息(如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术实现的易失性和非易失性、可移除和不可移除的介质,包括RAM、ROM、电可擦除可编程只读存储器(EEPROM)、闪存存储器或其他存储器技术、CD-ROM、DVD或其他光学存储器、磁带盒、磁带、磁盘存储装置或其他磁性存储设备,或者可用于存储所需信息并且可由系统设备访问的任何其他介质。至少部分地基于本文所提供的公开和教导内容,本领域的普通技术人员将认识到实现各种实施方案的其他方式和/或方法。然而,计算机可读存储介质不包括暂态介质诸如载波等。
相应地,说明书和附图应被视为具有例示性的而非限制性的意义。然而,显而易见的是,在不脱离权利要求中阐述的本公开的更广泛的实质和范围的情况下,可对其进行各种修改和改变。
其他变型形式在本公开的实质内。因此,尽管所公开的技术容易受到各种修改和另选构造的影响,但是其某些例示的实施方案在附图中示出并且已经在上面详细描述。然而,应当理解,并不旨在将本公开限制于所公开的特定形式,相反,其目的在于覆盖落入由所附权利要求所限定的本公开的实质和范围内的所有修改、另选构造和等同形式。
在描述所公开的实施方案的上下文中(特别是在下面的权利要求书的上下文中)使用术语“一”、“一个”和“该”以及类似的指示词将被解释为覆盖单数和复数,除非另有说明或与上下文明显矛盾。除非另有说明,否则术语“包含”、“具有”、“包括”和“含有”应被解释为开放式术语(即,意思为“包括但不限于”)。术语“连接”被解释为即使有干预的东西,也被部分或全部地包含在内、附接或接合在一起。短语“至少部分地基于”应当被理解为开放式的,并且不以任何方式进行限制,并且旨在在适当的情况下被解释或以其他方式理解为“至少部分地基于”。除非本文另有说明,否则本文中对数值范围的叙述仅仅旨在用作单独提及落入该范围内的每个单独值的简单方法,并且每个单独的值被并入说明书中,如同在本文中单独引用。本文描述的所有方法能够以任何合适的顺序执行,除非本文另有说明或以其他方式与上下文明显矛盾。除非另有声明,否则本文提供的任何和所有示例或示例性语言(例如,“诸如”)的使用仅仅旨在更好地说明本公开的实施方案,并且不会限制本公开的范围。说明书中的任何语言都不应被解释为指示任何未声明的元素对于本公开的实践是必不可少的。
除非另外特别说明,否则析取语言诸如短语“X、Y或Z中的至少一者”在上下文中被理解为通常用于呈现项目、术语等,其可以是X、Y或Z,或它们的任何组合(例如,X、Y和/或Z)。因此,此类析取语言通常不旨在并且不应该暗示某些实施方案要求X中的至少一个、Y中的至少一个或者Z中的至少一个均各自存在。另外,除非另外特别说明,否则诸如短语“X,Y和Z中的至少一者”的联合语言也应理解为意指X、Y、Z或它们的任何组合,包括“X、Y和/或Z”。
本文描述了本公开的优选实施方案,包括已知用于执行本公开的最佳模式。在阅读前面的描述之后,那些优选实施方案的变型形式对于本领域的普通技术人员来说可变得显而易见。期望技术人员适当地采用此类变型形式,并且旨在以不同于本文具体描述的方式来实践这些技术。因此,如适用法律所允许的,本公开包括所附权利要求中记载的主题的所有修改和等同形式。此外,除非在本文中另外指出或者明显与上下文矛盾,否则本公开包含上述元素的所有可能变型形式的任何组合。
本文引用的所有参考文献,包括出版物、专利申请和专利,均据此以引用方式并入本文,正如每篇参考文献被单独且具体地指示为以引用方式并入并且在本文全文阐述。
如上所述,本发明技术的一个方面在于收集和使用数据以无线地传输用于认证的安全框架。本公开预期,在一些实例中,这些所采集的数据可包括唯一地识别或可用于联系或定位特定人员的个人可识别信息(PII)数据。此类个人信息数据可包括人口数据、基于位置的数据(例如,GPS坐标)、电话号码、电子邮件地址、推特ID、家庭地址或任何其他识别或个人信息。
本公开认识到在本发明技术中使用此类个人信息数据可用于使用户受益。例如,个人信息数据可用于获得对访问控制系统所控制的资源的访问。
本公开设想负责采集、分析、公开、传输、存储或其他使用此类个人信息数据的实体将遵守既定的隐私政策和/或隐私实践。具体地,此类实体应当实行并坚持使用被公认为满足或超出对维护个人信息数据的隐私性和安全性的行业或政府要求的隐私政策和实践。此类政策应该能被用户方便地访问,并应随着数据的采集和/或使用变化而被更新。来自用户的个人信息应当被收集用于实体的合法且合理的用途,并且不在这些合法使用之外共享或出售。此外,应在收到用户知情同意后进行此类采集/共享。此外,此类实体应考虑采取任何必要步骤,保卫和保障对此类个人信息数据的访问,并确保有权访问个人信息数据的其他人遵守其隐私政策和流程。另外,这种实体可使其本身经受第三方评估以证明其遵守广泛接受的隐私政策和实践。另外,应当调整政策和实践,以便采集和/或访问的特定类型的个人信息数据,并适用于包括管辖范围的具体考虑的适用法律和标准。例如,在美国,对某些健康数据的收集或获取可能受联邦和/或州法律的管辖,诸如健康保险流通和责任法案(HIPAA);而其他国家的健康数据可能受到其他法规和政策的约束并应相应处理。因此,在每个国家应为不同的个人数据类型保持不同的隐私实践。
不管前述情况如何,本公开还预期用户选择性地阻止使用或访问个人信息数据的实施方案。即本公开预期可提供硬件元件和/或软件元件,以防止或阻止对此类个人信息数据的访问。例如,就与(例如,经由用户的移动设备)跟踪用户的位置相关的服务而言,本发明技术可被配置为在注册服务期间或之后任何时候允许用户选择“选择加入”或“选择退出”参与对个人信息数据的收集。除了提供“选择加入”和“选择退出”选项外,本公开设想提供与访问或使用个人信息相关的通知。例如,可在下载应用时向用户通知其个人信息数据将被访问,然后就在个人信息数据被应用访问之前再次提醒用户。
此外,本公开的目的是应管理和处理个人信息数据以最小化无意或未经授权访问或使用的风险。一旦不再需要数据,通过限制数据收集和删除数据可最小化风险。此外,并且当适用时,包括在某些健康相关应用程序中,数据去标识可用于保护用户的隐私。可在适当时通过移除特定标识符(例如,出生日期等)、控制所存储数据的量或特异性(例如,在城市级别而不是在地址级别收集位置数据)、控制数据如何被存储(例如,在用户之间聚合数据)、和/或其他方法来促进去标识。
因此,虽然本公开广泛地覆盖了使用个人信息数据来实现一个或多个各种所公开的实施方案,但本公开还预期各种实施方案也可在无需访问此类个人信息数据的情况下被实现。即,本发明技术的各种实施方案不会由于缺少此类个人信息数据的全部或一部分而无法正常进行。
Claims (13)
1.一种计算机实现的方法,包括:
由第一设备经由窄带NB信号向第二设备传输第一分组,所述第一分组包括向所述第二设备指示用于接收第二分组的时间段的信息,所述第二分组包括第一分区和第二分区,所述第一分区包括第一多个片段并且所述第二分区包括第二多个片段,并且每多个片段中的相应片段是经由超宽带UWB信号传输的;
由所述第一设备经由所述超宽带信号将所述第一多个片段传输到所述第二设备,所述第一多个片段中的所述相应片段与第一片段类型相关联;以及
由所述第一设备经由所述超宽带信号将所述第二多个片段传输到所述第二设备,所述第二多个片段中的所述相应片段与第二片段类型相关联。
2.根据权利要求1所述的计算机实现的方法,其中所述第一分区与信道冲激响应CIR估计和第一传播路径提取相关联,并且所述第二分区与所述第一传播路径提取的安全验证相关联。
3.根据权利要求1至2中任一项所述的计算机实现的方法,其中所述第一多个片段的所述第一片段类型对应于周期性序列,并且其中所述第二片段类型对应于伪随机序列。
4.根据权利要求1至3中任一项所述的计算机实现的方法,其中所述第一多个片段的第一数目和所述第二多个片段的第二数目是不同的数目。
5.根据权利要求1至4中任一项所述的计算机实现的方法,其中所述第二设备至少部分地基于所述第二多个片段来认证所述第一传播路径提取。
6.根据权利要求1至5中任一项所述的计算机实现的方法,其中所述第一分组包括安全参数,所述安全参数指示在仅所述第一设备与所述第二设备之间共享的伪随机序列安全密钥,并且其中所述第二设备至少部分地基于所述安全参数来认证所述第一传播路径提取。
7.根据权利要求1至6中任一项所述的计算机实现的方法,其中所述第二分组与第一测距轮次相关联,并且其中第二分组是分别被划分为包括第一分区和第二分区的一系列分组中的一个分组。
8.根据权利要求1至6中任一项所述的计算机实现的方法,其中所述第二分组进一步被划分为包括与数据有效负载共同关联的第三多个片段。
9.根据权利要求1至8中任一项所述的计算机实现的方法,其中所述数据有效负载包括音频数据或视频数据。
10.根据权利要求1至9中任一项所述的计算机实现的方法,其中所述第一分区与信道冲激响应CIR估计相关联,并且所述第二分区与数据有效负载相关联。
11.一种装置,包括:
存储器,所述存储器包括计算机可执行指令;以及
一个或多个处理器,所述一个或多个处理器与所述存储器通信并被配置为访问所述存储器并执行所述计算机可执行指令以执行根据权利要求1至10中任一项所述的方法。
12.一种或多种计算机可读存储介质,所述计算机可读存储介质包括计算机可执行指令,所述计算机可执行指令当由一个或多个处理器执行时,使得所述一个或多个处理器执行根据权利要求1至10中任一项所述的方法。
13.一种设备,包括:
处理器电路,所述处理器电路被配置为执行根据权利要求1至10中任一项所述的方法。
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163229482P | 2021-08-04 | 2021-08-04 | |
US63/229,482 | 2021-08-04 | ||
US202163233109P | 2021-08-13 | 2021-08-13 | |
US63/233,109 | 2021-08-13 | ||
US202163233598P | 2021-08-16 | 2021-08-16 | |
US63/233,598 | 2021-08-16 | ||
US17/453,164 US11729037B2 (en) | 2020-11-02 | 2021-11-01 | Sequences for ultra-wideband ranging |
US17/453,164 | 2021-11-01 | ||
US17/453,165 | 2021-11-01 | ||
US17/453,165 US12015916B2 (en) | 2020-11-02 | 2021-11-01 | Signaling techniques using fragmented and multi-partitioned UWB packets |
US17/453,163 US11815616B2 (en) | 2020-11-02 | 2021-11-01 | Announcing UWB / NBA-UWB-MMS ranging rounds via narrowband-based advertisements |
US17/453,163 | 2021-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115706656A true CN115706656A (zh) | 2023-02-17 |
Family
ID=83149183
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210935711.2A Pending CN115706920A (zh) | 2021-08-04 | 2022-08-04 | 用于超宽带测距的序列 |
CN202210930720.2A Pending CN115706656A (zh) | 2021-08-04 | 2022-08-04 | 使用片段化和多分区的uwb分组的信令技术 |
CN202210933682.6A Pending CN115706657A (zh) | 2021-08-04 | 2022-08-04 | 经由基于窄带的通告来宣告uwb/nba-uwb-mms测距轮次 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210935711.2A Pending CN115706920A (zh) | 2021-08-04 | 2022-08-04 | 用于超宽带测距的序列 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210933682.6A Pending CN115706657A (zh) | 2021-08-04 | 2022-08-04 | 经由基于窄带的通告来宣告uwb/nba-uwb-mms测距轮次 |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP4131807A1 (zh) |
KR (1) | KR20230020928A (zh) |
CN (3) | CN115706920A (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024196198A1 (ko) * | 2023-03-23 | 2024-09-26 | 삼성전자 주식회사 | 초광대역 통신을 이용하여 복수의 전자 장치들 간 결제 서비스를 제공하는 방법 및 장치 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070081505A1 (en) * | 2005-10-12 | 2007-04-12 | Harris Corporation | Hybrid RF network with high precision ranging |
KR100906383B1 (ko) * | 2007-07-26 | 2009-07-06 | 인하대학교 산학협력단 | 초광대역 레인징 시스템에서 협대역 간섭제거 방법 |
CN107229047B (zh) * | 2017-05-27 | 2019-12-24 | 西安电子科技大学 | 基于宽带雷达相位测距的目标微动参数估计方法 |
KR20240136465A (ko) * | 2018-09-28 | 2024-09-13 | 애플 인크. | 모바일 디바이스들 사이의 레인징 |
CN108964867B (zh) * | 2018-09-28 | 2021-11-02 | 四川中电昆辰科技有限公司 | 一种测距方法及测距系统 |
US11405894B2 (en) * | 2019-07-09 | 2022-08-02 | Samsung Electronics Co., Ltd. | System and method of establishing communication for exchanging ranging information |
CN110972063B (zh) * | 2019-10-25 | 2020-12-11 | 珠海格力电器股份有限公司 | 一种测距方法、装置、系统及可读介质 |
US11729037B2 (en) * | 2020-11-02 | 2023-08-15 | Apple Inc. | Sequences for ultra-wideband ranging |
US11991107B2 (en) * | 2020-11-02 | 2024-05-21 | Apple Inc. | Techniques for hybridized ultra-wideband and narrowband signaling |
-
2022
- 2022-08-04 EP EP22188647.6A patent/EP4131807A1/en active Pending
- 2022-08-04 CN CN202210935711.2A patent/CN115706920A/zh active Pending
- 2022-08-04 EP EP22188650.0A patent/EP4130791A1/en active Pending
- 2022-08-04 KR KR1020220097256A patent/KR20230020928A/ko unknown
- 2022-08-04 CN CN202210930720.2A patent/CN115706656A/zh active Pending
- 2022-08-04 CN CN202210933682.6A patent/CN115706657A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115706920A (zh) | 2023-02-17 |
KR20230020928A (ko) | 2023-02-13 |
EP4131807A1 (en) | 2023-02-08 |
CN115706657A (zh) | 2023-02-17 |
EP4130791A1 (en) | 2023-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11991107B2 (en) | Techniques for hybridized ultra-wideband and narrowband signaling | |
US11815616B2 (en) | Announcing UWB / NBA-UWB-MMS ranging rounds via narrowband-based advertisements | |
US12015916B2 (en) | Signaling techniques using fragmented and multi-partitioned UWB packets | |
US11729037B2 (en) | Sequences for ultra-wideband ranging | |
ElMossallamy et al. | Noncoherent backscatter communications over ambient OFDM signals | |
CN106160784B (zh) | 蜂窝频带中的通信设备和方法 | |
CN114449660A (zh) | 用于混合的超宽带和窄带信令的技术 | |
Zhang et al. | UWB systems for wireless sensor networks | |
US8208939B2 (en) | Dual bandwidth time difference of arrival (TDOA) system | |
Dardari et al. | Ranging with ultrawide bandwidth signals in multipath environments | |
Celebi et al. | Cognitive positioning systems | |
US7956807B1 (en) | Cognitive positioning system | |
US20080259896A1 (en) | Device, Method And Protocol For Private Uwb Ranging | |
Gadre et al. | Quick (and dirty) aggregate queries on low-power WANs | |
CN111432402B (zh) | 用于安全访问的rf通信 | |
US20140329536A1 (en) | Synthetic wideband ranging design | |
Sun | Collaborative spectrum sensing in cognitive radio networks | |
CN115706656A (zh) | 使用片段化和多分区的uwb分组的信令技术 | |
Pirch et al. | Introduction to impulse radio uwb seamless access systems | |
Keating et al. | Multiuser two-way ranging | |
Molière et al. | Tag signals for early authentication and secret key generation in wireless public networks | |
Lücken | Communication and localization in UWB sensor networks: A synergetic approach | |
Boustani et al. | LocJam: A novel jamming-based approach to secure localization in wireless networks | |
Lee et al. | Comparison of channel state acquisition schemes in cognitive radio environment | |
Stevens | Interweave Cognitive Radio for 4G Long Term Evolution and 5G New Radio Self-Reliant Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |