CN115702043A - 通过提高的捕获物体递送的与高灵敏度数字化测定相关的方法和系统 - Google Patents

通过提高的捕获物体递送的与高灵敏度数字化测定相关的方法和系统 Download PDF

Info

Publication number
CN115702043A
CN115702043A CN202180042598.9A CN202180042598A CN115702043A CN 115702043 A CN115702043 A CN 115702043A CN 202180042598 A CN202180042598 A CN 202180042598A CN 115702043 A CN115702043 A CN 115702043A
Authority
CN
China
Prior art keywords
assay
equal
capture
fluid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180042598.9A
Other languages
English (en)
Inventor
大卫·C·达菲
尼古拉斯·科列尔
图克·W·卡恩
卡门·I·托博什
大卫·M·里森
亚历山大·D·维纳
雷·迈尔
克里斯多佛·沃里克
罗格·米林顿
达尼埃尔·M·什万察拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanterix Corp
Original Assignee
Quanterix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanterix Corp filed Critical Quanterix Corp
Publication of CN115702043A publication Critical patent/CN115702043A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/03Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

描述了用于基于捕获物体的测定的方法和系统,其包括用于确定流体样品中分析物分子或颗粒的浓度的度量值。所述方法和系统可涉及分析物的高灵敏度检测,有时使用这样的测定条件和样品操纵:所述测定条件和样品操纵导致使用相对较少的捕获物体捕获和检测流体样品中高百分比的分析物分子或颗粒。还描述了用于将捕获物体相对于测定位点固定的装置和方法,其在一些情况下具有出乎意料的高效率。一些这样的装置涉及单独或组合地使用力场和流体弯月面力以促进或提高捕获物体的固定。还描述了用于在测定样品中利用相对较高百分比的捕获物体的技术,例如通过使用所公开的可降低捕获物体损失的样品洗涤技术、成像系统和分析程序。

Description

通过提高的捕获物体递送的与高灵敏度数字化测定相关的方 法和系统
相关申请
本申请根据35U.S.C.§119(e)要求于2020年4月15日提交并且标题为“Methodsand Systems Related to Highly Sensitive Assays and Delivering CaptureObjects”的美国临时专利申请序列No.63/010,613和于2020年4月15日提交并且标题为“Methods and Systems Related to Highly Sensitive Assays and DeliveringCapture Objects”的美国临时专利申请序列No.63/010,625的优先权,其各自出于所有目的通过引用整体并入本文中。
技术领域
整体上描述了用于分析物捕获测定的方法和系统,其包括用于确定流体样品中分析物分子或颗粒的浓度的度量值(measure)。
背景技术
精确测量靶标分析物分子(例如,蛋白质和核酸)的能力在许多领域(包括临床诊断、血库测试、生物化学途径的研究和分析)中是重要的。存在用于检测靶标分析物分子的单一分子的测定和相关的系统/装置,其可利用珠或其他捕获物体。一类通常具有高灵敏度的这样的测定是数字化酶联免疫吸附测定(“数字化ELISA”)。某些数字化ELISA测定包括:在微珠(或其他捕获物体)上捕获蛋白质或其他靶标分析物,用酶标记该靶标分析物,将珠分离到小孔阵列中,以及使用荧光成像检测珠缔合的酶活性。单独的珠的空间定位和/或分离(例如,在阵列中)可允许测定与珠相关的单一分子信号,使得能够测量待确定的靶标分析物的数目和/或浓度(处于非常低的值下)。还开发了多种另外的基于分析物捕获的测定以及相关的系统和装置来确定流体样品中分析物分子的数目和/或浓度的度量值,其中分析物分子被捕获在珠或其他捕获物体上。然而,持续需要提高这样的测定的灵敏度的方法、技术和系统。
发明概述
描述了用于基于捕获物体的测定的方法和系统,其包括用于确定流体样品中分析物分子或颗粒的浓度的度量值。所述方法和系统可涉及分析物的高灵敏度检测,有时使用这样的测定条件和样品操纵:所述测定条件和样品操纵导致使用相对较少的捕获物体捕获和检测流体样品中高百分比的分析物分子或颗粒。还描述了用于将捕获物体相对于测定位点固定的装置和方法,其在一些情况下具有出乎意料的高效率。一些这样的装置涉及单独或组合地使用力场和流体弯月面(fluid meniscus)力以促进或提高捕获物体的固定。还描述了用于在测定样品中利用相对较高百分比的捕获物体的技术,例如通过使用所公开的可降低捕获物体损失的样品洗涤技术、成像系统和分析程序。
在一些情况下,本发明的主题涉及相关产品、特定问题的替代解决方案和/或一个或更多个系统和/或制品的多种不同用途。
在一些实施方案中,描述了用于将捕获物体相对于测定位点固定的方法。在一些实施方案中,所述方法包括将捕获物体递送至表面上的测定位点附近;在表面附近产生倾向于作用于捕获物体的力场,使得捕获物体朝向表面移动;使包含捕获物体的流体塞(fluid plug)以第一方向流动,使得流体塞的第一方向后退弯月面(receding meniscus)流动通过至少一些测定位点;使流体塞以不同的第二方向流动,使得流体塞的第二方向后退弯月面流动通过至少一些测定位点;以及将进行了以下步骤的捕获物体中的至少一些相对于测定位点固定:使流体塞以第一方向流动和/或使流体塞以第二方向流动。
在一些实施方案中,所述方法包括将捕获物体递送至表面上的测定位点附近;在表面附近产生倾向于作用于捕获物体的力场,使得捕获物体朝向表面移动;使包含捕获物体的流体塞流动通过至少一些测定位点一次或更多次;以及将进行了所述流动步骤的捕获物体中的至少一些相对于测定位点固定;其中在流动步骤期间,递送至测定位点附近的捕获物体的总数目的至少20%被固定。
在一些实施方案中,描述了用于将捕获物体相对于测定消耗品(assayconsumable)的表面上的测定位点固定的装置。在一些实施方案中,所述装置包含:捕获物体施加器,其被配置成将捕获物体施加至测定消耗品的表面或所述表面附近;力场发生器(force field generator),当存在时,其与测定消耗品相邻,并且被配置成在所述表面附近产生力场;流体注射器,其被配置成产生当在所述测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;流体泵,其能够使流体移动通过所述表面的至少一部分;以及控制器,其包含一个或更多个处理器,所述处理器被配置成调节流体泵以使流体塞双向移动通过所述表面的至少一部分。
在一些实施方案中,描述了用于将捕获物体相对于测定消耗品的表面上的测定位点相关联的装置。在一些实施方案中,所述装置包含:捕获物体施加器,其被配置成将捕获物体施加至测定消耗品的表面或所述表面附近;力场发生器,当存在时,其与测定消耗品相邻,并且被配置成在所述表面附近产生力场,其中所述力场是能够向可极化介电捕获物体施加介电电泳力的非均匀电场;流体注射器,其被配置成产生当在测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;流体泵,其能够使流体移动通过所述表面的至少一部分;以及控制器,其包含一个或更多个处理器,所述处理器被配置成调节流体泵以使流体塞双向移动通过所述表面的至少一部分。
在一些实施方案中,用于使捕获物体与测定消耗品的表面上的测定位点相关联的装置包含:捕获物体施加器,其被配置成将捕获物体施加至测定消耗品的表面或所述表面附近;电源;导电固体,当存在时,其与电源导电地或电感地电连通,与测定消耗品的表面相邻或相对;流体注射器,其被配置成产生流体塞;以及控制器,其包含一个或更多个处理器,所述处理器被配置成启动通过电源向至少一些导电固体施加电压,以(a)在所述表面附近产生能够向可极化介电捕获物体施加介电电泳力的非均匀电场,以及(b)产生使流体塞移动通过所述表面的至少一部分的电场。
在一些实施方案中,描述了用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法。在一些实施方案中,所述方法包括将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;将特定类型的分析物分子或颗粒的分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的捕获物体不与来自流体样品的特定类型的分析物分子或颗粒中的任一个缔合;确定指示与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及至少部分地基于指示被确定为与特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值,确定流体样品中特定类型的分析物分子或颗粒的浓度的度量值。
在一些实施方案中,所述方法包括将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;将特定类型的分析物分子或颗粒的分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合;确定指示与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及基于指示与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值,至少部分地基于指示被确定为与特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值,确定流体样品中特定类型的分析物分子或颗粒的浓度的度量值,或者至少部分地基于指示存在特定类型的分析物分子或颗粒中的多个的所测量信号强度水平,确定流体样品中特定类型的分析物分子或颗粒的浓度的度量值。
在一些实施方案中,所述方法包括将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;将特定类型的分析物分子或颗粒的分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的捕获物体不与来自流体样品的特定类型的分析物分子或颗粒中的任一个缔合;将进行了所述固定步骤的至少25%捕获物体空间分离到多个独立的位置中;对进行了所述空间分离步骤的多个位置中的至少一部分进行寻址(address),以确定指示与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值,确定流体样品中特定类型的分析物分子或颗粒的浓度的度量值。
在一些实施方案中,所述方法包括将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;将特定类型的分析物分子或颗粒的分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的特定类型的分析物分子或颗粒中的至少一个缔合,而统计学上显著分数的捕获物体不与来自流体样品的特定类型的分析物分子或颗粒中的任一个缔合;将至少一个结合配体相对于与捕获物体缔合的特定类型的分析物分子或颗粒中的至少一些固定;将至少一个固定的结合配体暴露于前体标记剂,使得所述前体标记剂被转化为相对于结合配体所固定的捕获物体变得固定的标记剂;确定指示包含至少一个固定的标记剂的捕获物体的数目或分数的度量值;以及至少部分地基于指示被确定为包含至少一个固定的标记剂的捕获物体的数目或分数的度量值,确定流体样品中特定类型的分析物分子或颗粒的浓度的度量值。
在一些实施方案中,描述了用于对测定消耗品的表面上的测定位点阵列进行成像的装置。在一些实施方案中,所述装置包含含有检测器和光学器件的成像系统,其具有比包含测定位点阵列的区域更大的固定视场;计算机实施的控制系统,其被配置成从成像系统接收信息并分析包含测定位点阵列的整个区域;其中测定位点的体积为10阿托升(attoliter)至100皮升(picoliter)。
在一些实施方案中,描述了用于进行用于检测流体样品中分析物分子或颗粒的测定的方法。在一些实施方案中,所述方法包括提供1,000至200,000个捕获物体;通过进行包括以下各项的一个或更多个过程来制备来自流体样品的分析物分子或颗粒和捕获物体以用于检测:(1)将捕获物体和分析物分子或颗粒在液体中混合以形成捕获物体混悬液,以及(2)向捕获物体混悬液施加力以从捕获物体混悬液中去除液体,其中施加力不包括通过将捕获物体混悬液与倾向于使液体移动的真空源流体连接而向捕获物体混悬液施加负压;其中:所述制备步骤产生所制备的捕获物体,所制备的捕获物体中的至少一些与来自流体样品的分析物分子或颗粒缔合,并且统计学上显著分数的所制备的捕获物体不与任何分析物分子或颗粒缔合;并且所制备的捕获物体的总数目大于或等于所述提供步骤中的捕获物体的90%;以及至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值,确定流体样品中分析物分子或颗粒的浓度的度量值。
在一些实施方案中,描述了用于进行测定的装置。在一些实施方案中,所述装置包含:样品洗涤器,其被配置成制备来自流体样品的分析物分子或颗粒和磁珠以用于检测;珠施加器,其被配置成将磁珠施加至测定消耗品的表面或所述表面附近,所述表面包括反应容器;磁场发生器,其被配置成与测定消耗品相邻并且被配置成在所述表面附近产生磁场;以及流体注射器,其被配置成产生当在测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;流体泵,其能够使流体移动通过测定消耗品的表面;成像系统,其包含检测器和光学器件,具有比由反应容器阵列限定的区域更大的固定视场;以及控制器,其包含一个或更多个处理器,所述处理器被配置成调节流体泵以使流体移动通过测定消耗品的表面。
在一些实施方案中,提供了用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法。在一些实施方案中,所述方法包括:将磁珠暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;将分析物分子或颗粒相对于磁珠固定,使得至少一些磁珠与来自流体样品的至少一个分析物分子或颗粒缔合,并且统计学上显著分数的磁珠不与来自流体样品的任何分析物分子或颗粒缔合;从进行了所述固定步骤的磁珠的至少一部分中去除溶液;将磁珠递送至表面上的反应容器附近;在表面附近产生倾向于作用于捕获物体的磁场,使得捕获物体朝向表面移动;使包含磁珠的流体塞流动,使得流体塞的后退弯月面流动通过至少一些反应容器;将至少一部分磁珠插入到反应容器中;在所述插入步骤之后对整个反应容器进行成像;对进行了所述成像步骤的整个反应容器进行分析,以确定指示与来自流体样品的分析物分子或颗粒缔合的磁珠的数目或分数的度量值;以及至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的珠的数目或分数的度量值,确定流体样品中分析物分子或颗粒的浓度的度量值。
在一些实施方案中,所述方法包括:将捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;将分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的捕获物体不与来自流体样品的任何分析物分子或颗粒缔合;从进行了所述固定步骤的捕获物体中的至少一部分中去除溶液,同时保留进行了所述固定步骤的捕获物体中的至少80%;将进行了所述去除步骤的至少80%的捕获物体递送至表面上的测定位点附近;将进行了所述递送步骤的捕获物体中的至少20%相对于测定位点固定;对至少80%的测定位点进行成像;对进行了所述成像步骤的测定位点中的至少75%进行分析,以确定指示与来自流体样品的分析物分子或颗粒缔合的磁性捕获物体的数目或分数的度量值;以及至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值,确定流体样品中分析物分子或颗粒的浓度的度量值。
在一些实施方案中,所述方法包括在小于2×10-18M的检测水平下确定流体样品中分析物分子或颗粒的浓度的度量值。
在一些实施方案中,描述了用于将捕获物体相对于测定位点固定的方法。在一些实施方案中,所述方法包括将捕获物体递送至表面上的测定位点附近;向进行了所述递送步骤的捕获物体施加外力,使得捕获物体与测定位点之间的距离缩短;使包含捕获物体的流体塞流动,使得流体塞的后退弯月面流动通过测定位点;以及通过施加至少部分地由后退弯月面贡献的力将捕获物体相对于测定位点固定。
在一些实施方案中,描述了用于使捕获物体相对于测定位点相关联的方法。在一些实施方案中,所述方法包括将捕获物体递送至表面上的测定位点附近;向进行了所述递送步骤的捕获物体施加外力,使得捕获物体与测定位点之间的距离缩短,其中外力是介电电泳力;使包含捕获物体的流体塞流动,使得流体塞的后退弯月面流动通过测定位点;以及通过施加至少部分地由后退弯月面贡献的力使捕获物体相对于测定位点相关联。
在一些实施方案中,描述了用于使捕获物体与测定位点相关联的方法。在一些实施方案中,所述方法包括:通过使用数字化微流体技术使包含捕获物体的流体塞流动至测定位点来将捕获物体递送至表面上的测定位点附近;产生非均匀电场,以向进行了所述递送步骤的捕获物体施加外部介电电泳力,使得捕获物体与测定位点之间的距离缩短;以及通过施加至少部分地由介电电泳力贡献的力使捕获物体与测定位点相关联。
在一些实施方案中,描述了用于将捕获物体相对于测定位点固定的方法。在一些实施方案中,所述方法包括将包含捕获物体的流体递送至表面上的测定位点附近;在表面附近产生倾向于作用于捕获物体的力场,使得捕获物体朝向表面移动;通过调节力场的横向分布来向捕获物体施加横向力;以及至少部分地通过所施加的横向力将至少一些捕获物体相对于测定位点固定,其中在施加步骤期间,递送至测定位点附近的捕获物体的总数目的至少20%被固定。在一些实施方案中,提供了试剂盒。在一些实施方案中,所述试剂盒包含捕获物体,所述捕获物体包含对分析物分子或颗粒具有亲和力的结合表面,其中使用5,000个与试剂盒中相同的捕获物体的第一测定的检测水平比使用500,000个与试剂盒中相同的捕获物体的第二测定的检测水平低至少50%,其中:第一测定包括将捕获物体与分析物分子或颗粒一起孵育第一时间段的步骤,第二测定包括将捕获物体与分析物分子或颗粒一起孵育第二时间段的步骤,第一时间段是第二时间段的100倍长,并且第一测定和第二测定在其他方面相同的条件下进行。
在一些实施方案中,所述试剂盒包含用于分析物检测测定的包装容器,其包含50,000至5,000,000个捕获物体,所述捕获物体各自包含对分析物具有亲和力的结合表面且平均直径为0.1微米至100微米,其中分析物检测测定可在小于或等于50×10-18M的检测水平下进行。
在一些实施方案中,提供了组合物。在一些实施方案中,所述组合物包含:分离的流体,其体积为10至1000微升;至少一种类型的分析物分子或颗粒,其以0.001aM至10pM的浓度存在;以及100至50,000个捕获物体,其包含对所述至少一种类型的分析物分子或颗粒具有亲和力的结合表面。
当结合附图考虑时,根据以下对本发明的多个非限制性实施方案的详细描述,本发明的其他优点和新特征将变得明显。在本说明书与通过引用并入的文献包括矛盾和/或不一致的公开内容的情况下,应以本说明书为准。
附图简述
将参照附图通过举例的方式来描述本发明的非限制性实施方案,附图是示意性的并且不旨在按比例绘制。在附图中,示出的每个相同或几乎相同的组件通常由单一数字表示。为了清楚起见,不是每个组件在每幅附图中都被标记,在不需要图解来使本领域普通技术人员理解本发明的地方,也不是本发明的每个实施方案的每个组件都被示出。在附图中:
图1是根据某些实施方案的框图,其示出了用于进行测定的至少一部分的装置的一个实施方案的组件,所述装置至少包括测定消耗品操作器、捕获物体施加器、流体注射器、流体泵和控制器;
图2A是根据某些实施方案,将捕获物体相对于表面上的测定位点固定的示例性方法的示意图;
图2B是根据某些实施方案,在力场存在下将捕获物体相对于表面上的测定位点固定的示例性方法的示意图;
图2C是根据某些实施方案的如下示例性方法的示意图:在力场存在下,在包含后退弯月面的流体塞流动的期间,在当后退弯月面开始经过测定位点的时间点,将捕获物体相对于表面上的测定位点固定;
图2D示出了根据某些实施方案,在当后退弯月面已经经过了所有测定位点的时间之后的时间点的图2C的示意图;
图2E是根据某些实施方案的如下示例性方法的示意图:在力场存在下,在包含后退弯月面的流体塞流动期间,将捕获物体相对于表面上的测定位点固定;
图2F是根据某些实施方案,包含后退弯月面的流体塞流动的示意图;
图2G是根据某些实施方案的如下示例性方法的示意图:在力场存在下,在多个流体塞流动期间,将捕获物体相对于表面上的测定位点固定;
图3A至图3B是根据某些实施方案,用于将捕获物体相对于测定消耗品的表面上的测定位点固定的装置的示意图,所述测定消耗品与测定消耗品操作器有效联接;
图3C至图3D示出了根据某些实施方案,在排斥性介电力不存在(图3C)和存在(图3D)的情况下,在包括测定位点的表面附近的捕获物体的俯视示意图,所述测定位点被导电固体网络包围;
图4A至图4F是根据某些实施方案的示出了示例性说明测定消耗品操作器的示意图;
图5是根据某些实施方案,用于对测定消耗品的表面上的测定位点阵列进行成像的装置的示意图;
图6A至图6B是根据某些实施方案的示出了以下的示意性流程图:用于检测分析物分子或颗粒的基于捕获物体的测定的一个实施方案;
图7A至图7B是根据某些实施方案,用于检测分析物分子或颗粒的示例性微流体装置的俯视示意图和透视示意图;
图8是根据某些实施方案的样品洗涤器装置的示意图;
图9是根据某些实施方案的对于如下测定的所捕获蛋白质分子与珠的比率的模拟提高的图,所述测定使用相比于500,000个珠的5,000个珠,假设274,000个捕获抗体/珠,所捕获蛋白质分子与珠的比率为捕获抗体-抗原相互作用的解离常数(KD)的函数;
图10是根据某些实施方案,用于微孔阵列中的珠加载的磁-弯月面扫描(magnetic-meniscus sweeping,MMS)方法的示意图;
图11是根据某些实施方案,在两种珠数目和两个孵育时间下,针对[IL-17A]的AEB的图;
图12是根据某些实施方案,对于珠和样品的4小时孵育,针对[IL-17A]的AEB(作为捕获珠数目的函数)的图;
图13是根据某些实施方案,对于珠数目为4,530至32,000、样品孵育4小时,针对[IL-17A]的AEB的图;
图14A示出了根据某些实施方案,使用15,000个珠在[IL-17A]=1.2fM下的AEB,其作为样品孵育时间的函数;
图14B是根据某些实施方案,使用15,000个珠的针对[IL-17A]的AEB(作为样品孵育时间的函数)的图;
图15是根据某些实施方案,使用15,000个珠和6小时孵育时间,针对[IL-17A]的AEB(作为样品体积的函数)的图;
图16是根据某些实施方案,标准ELISA(500,000个珠;100μL样品;30分钟孵育)和使用低珠数目的数字化ELISA(5,453、2,726或1,363个珠;200μL样品;24小时孵育),针对[IL-17A]的AEB的图;
图17是根据某些实施方案,使用5000个珠和:a)100μL样品,孵育6小时(空心正方形);和b)250μL样品,孵育24小时(实心圆圈),针对[IL-17A]的AEB的图;
图18是根据某些实施方案,来自两个加标浓度下的血清样品的IL-17A的加标回收率(spike recovery)(作为珠数目的函数)的图;
图19A至图19B是根据某些实施方案,在血清和血浆样品中使用标准数字化ELISA或低珠数字化ELISA确定的[IL-17A]的散点图;
图20是示出了根据某些实施方案,使用标准数字化ELISA和低珠/高效数字化ELISA的定量血清和血浆样品的相关性的图;
图21是根据某些实施方案,使用针对低珠数目进行调节的数字化ELISA(空心圆圈)和标准数字化ELISA(实心正方形),针对IL-17A、IL-12p70、p24、IFN-α、IL-4和PSA的浓度的AEB的图;
图22是根据某些实施方案,对于标准ELISA(400,000个珠;100μL样品;30分钟孵育)和针对低珠数目进行调节的数字化ELISA(5,368、2,684或1,342个珠;200μL样品;24小时孵育),针对掺入稀释血清中的IL-12p70的浓度的AEB的图;
图23是根据某些实施方案,对于标准ELISA(300,000个珠;125μL样品;30分钟孵育)和针对低珠数目进行调节的数字化ELISA(5,259、2,625或1,313个珠;125μL样品;24小时孵育),针对掺入稀释血清中的p24的浓度的AEB的图;以及
图24是根据某些实施方案,定位在磁体上方的微孔阵列的图像。
发明详述
描述了用于基于分析物捕获的测定的方法和系统,其包括用于确定流体样品中分析物分子或颗粒的浓度的度量值。所述方法和系统可提供对分析物的高灵敏度检测(例如,在飞母托摩(femtomolar)、阿托摩(attomolar)、仄普托摩(zeptomolar)或更低水平下),在一些情况下,使用这样的测定条件和样品操纵技术:所述测定条件和样品操纵技术导致相对于典型的常规测定,使用相对较少的捕获物体捕获和检测测定样品中高百分比的分析物分子或颗粒。还描述了用于将捕获物体(例如,珠)相对于测定位点(例如,反应容器,例如微孔)固定的装置和方法,其在一些情况下具有出乎意料的高效率。一些这样的装置涉及单独或组合地使用力场(例如,磁场)和流体弯月面力以有助于促进或提高捕获物体的固定。还描述了用于在测定样品中利用相对较高百分比的捕获物体的技术,例如通过使用所描述的可降低捕获物体损失的洗涤技术、成像系统和分析程序。
在一些实施方案中,描述了包含以下的装置:具有包含测定位点的表面的测定消耗品、捕获物体施加器、力场发生器、流体处理组件(例如,流体注射器和泵)、控制器,以及任选地,某些测定消耗品操作器、成像系统和样品洗涤器(例如,基于非真空的样品洗涤器)。该装置可被配置成进行高度灵敏测定(例如,数字化ELISA)。在一些情况下,与典型的常规测定相比,所述装置和相关方法涉及使用更少的捕获物体(例如,少于50,000个、少于10,000个、少于5,000个或更少),其在某些情况下产生出乎意料的优势。所描述的某些方法以及相关的装置组件和配置可为与使用如此少数目的捕获物体相关的挑战提供一些非限制性解决方案。例如,某些所公开的技术和相关的装置涉及保持足够数目的捕获物体以产生足够的信号,并且涉及捕获足够数目的分析物。一种示例性技术涉及促进捕获物体的有效固定(例如,珠的插入),这在所描述的低捕获物体数目方案中可以是重要的。一些实施方案涉及这样的系统配置和方法:所述系统配置和方法包括在靠近测定位点的捕获物体(例如,磁珠)附近产生力场(例如,磁场),以及使包含捕获物体(和塞的后退弯月面)的流体塞(例如,双向)流动通过测定位点。所描述的另一些技术涉及提高测定灵敏度、提高图像检测以及分析和样品操纵(例如,液体去除技术、样品孵育)。
虽然常规的高度灵敏度测定(例如,常规的数字化ELISA)可具有允许测量先前不可检出的分析物的灵敏度,但是甚至更高的灵敏度(例如,低阿托摩或者甚至更低)将是有利且有益的。例如,一些分析物(例如,细胞因子如IL-17A、IL-12p70、干扰素α、干扰素γ、IL-1α、IL-1β)在某些样品介质(例如,血液)中的可检测性有限,因此进行定量需要比常规可获得的更高的分析灵敏度。作为另一个实例,某些复杂的样品介质(例如,粪便、脑脊液)可能需要用缓冲液稀释以降低基质效应,所述基质效应可负面影响可检测性,尤其是对于低丰度的分析物而言。提高可检测性也可有助于感染性疾病的早期检测,例如通过提供对病毒和细菌的蛋白质或其他抗原的更灵敏的检测。对于某些基于捕获物体的测定(例如数字化ELISA),随着每个捕获物体固定的可检测物质数目的提高,提高的灵敏度(例如,检测水平)增加。在使用珠上的酶标记的测定中,这样的比率可表示为每个珠的平均酶数目(AEB),并且假设更大的AEB可导致更高的灵敏度。对于含有分析物的给定样品,每个捕获物体的可检测物质的数目(例如,AEB)可通过降低暴露于样品的捕获物体的数目来提高。然而,使用较少的捕获物体提出了数个技术挑战,所述挑战阻碍了这样的方法并使其不可行。例如,现有的基于捕获物体的测定技术以低的效率检测捕获物体——通常,用于捕获来自样品的分析物的捕获物体中的仅5%得以分析。在如此低的效率下,常规的测定将产生被分析的捕获珠数目不足的情况,并且被认为是不可行的。作为替代,现有技术要么(a)通过使用大量的捕获物体来完全避免这样的问题,要么(b)通过提高检测到的捕获物体的绝对数目而不是检测到的捕获物体的百分比来集中于仅提高灵敏度。后一种方法涉及使用与阵列中的测定位点(例如,孔)的数目相比大量过量的捕获物体,以提高与捕获物体缔合的测定位点的分数(例如,尽可能用珠填充尽可能高分数的孔)。目前所描述的某些方法采用相反的方法,而不是使用与常规测定中的测定位点数目相比相对较少的捕获物体(例如,少于50,000个),并且在一些这样的情况下,集中于分析暴露于样品的高百分比的捕获物体。然而,捕获物体数目的这样的减少会与竞争性考虑因素相冲突。使用较少数目的捕获物体可导致提高数字化ELISA中的泊松噪声(Poisson noise),并可导致动力学变慢和在给定时间段内捕获的分析物较少。然而,出乎意料的是,所描述的某些方法和装置利用这样的条件(例如,样品体积和孵育时间)和技术(例如,高效捕获物体固定):所述条件和技术可由于使用较少的捕获物体而导致灵敏度提高,同时避免或减轻如上所述的竞争性考虑因素中的至少一些或全部至足以提供与典型的现有测定技术相比更高的灵敏度的程度。
描述了用于将捕获物体相对于测定位点固定的装置和方法。一些这样的方法和装置可促进用于检测和/或定量分析物分子的基于捕获物体的测定,包括与现有测定相比使用相对较少的捕获物体的测定。
在一些情况下,描述了用于将捕获物体相对于测定位点固定的装置。该装置可以是包括用于进行测定(例如,用于检测和/或定量分析物分子或颗粒)的自动化装置的较大系统的亚组件。图1示出了一个这样的非限制性系统1的概图(outline),所述系统包括用于固定捕获物体的组件。根据某些实施方案,在图1中,系统1可包括任选的测定消耗品操作器10,其被配置成与测定消耗品5有效联接(其可以是可去除的,并且其存在是任选的,如虚线所示)。这样的一个实施方案可以是例如自动化机器人系统。系统1可包括捕获物体施加器20、力场发生器40、流体注射器50和流体泵60。在一些实施方案中,系统1包括一个或更多个控制器30,所述控制器30包括一个或更多个处理器,所述处理器被配置成控制和操纵装置的某些组件。例如,控制器30可包括一个或更多个处理器,所述处理器被配置成控制和操纵测定消耗品操作器10、捕获物体施加器20、力场发生器40、流体注射器50和流体泵60,以进行将捕获物体相对于测定消耗品5的表面上的测定位点固定的方法。在一些这样的情况下,控制器30被配置成调节流体泵60以使流体(例如,在流体塞中)双向移动通过测定消耗品5的表面。应理解,在一些实施方案中,不需要单独的测定消耗品操作器10。例如,上述组件中的一个或更多个可与测定消耗品集成在一起(例如,作为例如芯片上的微流体系统的一部分)。系统1的其他组件可被配置成进行测定的其他步骤或操作。例如,成像系统70可包括检测器和用于对测定消耗品上的测定位点进行成像的光学器件,并且计算机实施的控制系统80可被配置成从成像系统接收信息并分析测定位点(例如,以确定相对于测定位点固定的捕获物体和/或者分析物分子或颗粒的存在)。在一些但不一定是全部的情况下,系统1还可包括样品洗涤器90,所述样品洗涤器90被配置成制备捕获物体和分析物分子(例如,从流体样品)以用于检测。在另一些实施方案中,这样的制备可单独进行。
测定消耗品操作器、捕获物体施加器、力场发生器、流体注射器和流体泵中的每一个均可与相同或不同的控制器(例如,控制器30)相关联,所述控制器被配置成操纵如本文中所述的组件。控制器可被配置成使得自动进行测定方法和/或捕获物体固定的多个阶段。在某些实施方案中,在图1中独立显示的一个或更多个组件或其功能可被集成到单个组件中。例如,在某些情况下,捕获物体施加器20、流体注射器50和流体泵60中的两种或更多种功能可组合在系统的单个组件中。作为另一个实例,在某些实施方案中,单个计算机实施的控制系统(例如,计算机实施的控制系统80)可控制成像系统70的操作和进行如上所述的控制器30的功能二者。因此,除非特别指出,否则对任何一种组件的提及并不排除这样的组件执行系统的其他功能。类似地,对包括单独列举的组件的系统的提及不要求所述组件是物理上不同的结构元件(例如,多个组件可共享相同的结构元件或具有共同但是被配置成作为整个系统的多个组件发挥功能的结构元件),除非具体地如此示出或照此描述。
将捕获物体递送至测定位点表面
在涉及捕获物体的固定的一些实施方案中,捕获物体被递送至表面上的测定位点附近。例如,图2A示出了根据某些实施方案,递送至表面120上的测定位点110附近的捕获物体100的示意性说明。虽然图2A示出了在表面120中的捕获物体100(为珠)和测定位点110(为反应容器,例如孔),但是其他配置也是可以的,并且将在下面进一步详细描述。在一些情况下,捕获物体通过流体被递送至测定位点附近。流体可以是任何尺寸或体积的塞/团状物(bolus)的形式,在其中两个(至少部分地)不混溶的相经过(至少一些)测定位点,或者作为替代地流体可以是连续的单相流。例如,图2A示出了根据某些实施方案,流体塞130中的捕获物体100向测定位点110的递送。
捕获物体可被递送至测定位点附近,以相对接近测定位点而定位(例如,在10mm内、在5mm内、在1mm内、在500微米内、在100微米内或更近),但是不需要必须被直接递送至测定位点内/上或者在递送之后立即相对于测定位点固定。可通过多种技术中的任一种将捕获物体递送至测定位点附近,所述技术包括手动(例如,通过移液)或通过装置的组件例如下面更详细描述的捕获物体施加器。
被递送的捕获物体可随后相对于测定位点固定。例如,捕获物体100(例如,珠)可被插入测定位点110中。在这种情况下,捕获物体相对于测定位点的固定是指将捕获物体的位置固定在测定位点处,例如将捕获物体插入孔中,将捕获物体包封在静态微滴内,或者将捕获物体限制在限定测定位点的表面特定区域。捕获物体的固定不一定涉及将捕获物体附着至测定位点(例如,化学地、机械地或以其他方式)。如上所述,捕获物体的高效快速固定在一些情况下可促进使用比某些现有的基于捕获物体的技术所使用的更少数目的捕获物体。
捕获物体
捕获物体可具有多种合适形式中的任一种。在一些情况下,捕获物体被配置成能够在空间上彼此分离。捕获物体可以以允许其被空间上地分离到多个位置(例如,测定位点、通道等)中的形式提供。例如,捕获物体可包含珠(其可以是任何形状,例如,球体样、盘、环、立方体样等)、颗粒的分散体或混悬液(例如,在流体中混悬的多个颗粒)、纳米管等。在一些实施方案中,捕获物体不溶于或基本上不溶于测定中使用的溶剂或溶液。在一些情况下,捕获物体是非多孔固体或基本上非多孔固体(例如,基本上没有孔);然而,在一些情况下,捕获物体是多孔的或基本上多孔的、中空的、部分中空的等。其可以是非吸收性的、基本上非吸收性的、基本上吸收性的或吸收性的。在一些情况下,捕获物体包括磁性材料,其可促进测定的某些方面(例如,洗涤步骤、固定/加载步骤)。
捕获物体可具有任何合适的尺寸或形状。合适的形状的一些非限制性实例包括球体、立方体、椭圆体、管状和片状。在某些实施方案中,捕获物体的平均直径(如果基本上为球形的话)或平均最大横截面尺寸(对于其他形状)为大于或等于0.1微米、大于或等于1微米、大于或等于10微米、或者更大。在一些实施方案中,捕获物体的平均直径(如果基本上为球形的话)或平均最大横截面尺寸(对于其他形状)为小于或等于100微米、小于或等于50微米、小于或等于10微米、或者更小。这些范围的组合也是可以的。例如,在一些实施方案中,捕获物体的平均直径或捕获物体在一个维度上的最大尺寸为0.1微米至100微米、1微米至100微米、10微米至100微米、或者1微米至10微米。捕获物体的“平均直径”或“平均最大横截面尺寸”是捕获物体的直径/最大横截面尺寸的算术平均值。本领域普通技术人员可确定捕获物体群体的平均直径/最大横截面尺寸,例如,使用激光光散射、显微术、筛分析或其他已知技术。例如,在一些情况下,可使用Coulter计数器来确定多个珠的平均直径。
在某些实施方案中,捕获物体是珠或者包含珠。珠可以是磁珠。在其中在表面附近产生磁场的一些情况下,磁场可作用于磁珠并导致所述珠相对于测定位点的有效的空间分布(例如,通过以期望的方式使其朝向表面移动)。珠的磁特性也可有助于例如在洗涤步骤期间从流体中分离珠。在一些实施方案中,磁珠是超顺磁性的,而在一些实施方案中,磁珠是铁磁性的。如通常已知的,超顺磁性颗粒具有顺磁性并且具有高磁化率,而铁磁性颗粒可被外部磁场磁化,并且在去除外部磁场之后仍保持磁化。Van Reenen,A.,de Jong,A.M.,den Toonder,J.M.,&Prins,M.W.(2014)中提供了对装置中的超顺磁性和铁磁性颗粒的进一步描述。集成式实验室芯片(lab-on-chip)生物传感系统基于磁性颗粒驱动—综述.Labon a Chip,14(12),1966-1986,其出于所有目的通过引用整体并入本文。潜在合适的珠(包括磁珠)可从数家商业供应商获得。在一些实施方案中,递送至包括测定位点的表面附近的捕获物体中的至少一些与至少一个分析物分子或颗粒缔合。在一些这样的实施方案中,递送至包括测定位点的表面附近的捕获物体中的至少一些与至少一个分析物分子或颗粒以及一个或更多个结合配体缔合(如下面更详细描述的)。
测定位点
测定位点可以是多种合适形式中的任一种。如上所述以及如图2A至图2G所示,测定位点(例如,测定位点110)可以是表面(例如,表面120)中的反应容器的形式。反应容器可以是表面中的孔(例如,微孔),并且可使用下面更详细描述的多种技术中的任一种来形成。在一些实施方案中,测定位点能够在流体学上彼此分离。例如,测定位点(例如,反应容器)可包括连续的外围壁,使得在密封之后,反应容器之间不存在流体连接。其他形式的测定位点包括但不限于空间上固定的微滴(例如,被不混溶流体包围,例如被不混溶油状物包围的水滴),和被疏水区域包围的表面亲水区域。
在一些实施方案中,所有测定位点均具有大致相同的体积。在另一些实施方案中,测定位点可具有不同的体积。每个独立测定位点的体积可被选择成适于促进任何特定的测定方案。例如,在期望限制相对于每个测定位点固定的捕获物体数目的一组实施方案中,测定位点的体积可为阿托升或更小至纳升或更大,这取决于捕获物体的尺寸和形状、所采用的检测技术和设备、表面上测定位点的数目和密度以及递送至包括测定位点的表面的捕获物体的预期浓度。在一些实施方案中,测定位点(例如,反应容器)的尺寸可被选择成使得仅单个用于分析物捕获的珠可被完全包含在测定位点内。在一些实施方案中,测定位点(例如,反应容器)的体积为大于或等于10阿托升、大于或等于50阿托升、大于或等于100阿托升、大于或等于500阿托升、大于或等于1飞母托升、大于或等于10飞母托升、大于或等于50飞母托升、大于或等于100飞母托升、或者更大。在一些实施方案中,测定位点的体积为小于或等于100皮升、小于或等于50皮升、小于或等于10皮升、小于或等于1皮升、小于或等于500飞母托升、或者更小。这些范围的组合也是可以的。例如,在一些实施方案中,测定位点(例如,反应容器)的体积为大于或等于10阿托升且小于或等于100皮升、大于或等于10阿托升且小于或等于50皮升、或者大于或等于1飞母托升且小于或等于1皮升。
在一些实施方案中,测定位点作为阵列存在于表面上。例如,在图2A中,测定位点110可以是布置在表面120上的阵列的一部分。测定位点(例如,反应容器)可被布置成规则的图案或者可随机分布。在一些情况下,阵列在表面(例如,基本上平坦的表面)上以二维阵列布置。然而,在一些实施方案中,测定位点沿单一维度排列。作为一个这样的实例,在一些实施方案中,测定位点沿通道(例如,微通道)的表面成线排列。
在一些实施方案中,测定位点被配置成使得固定的捕获物体被布置在表面(例如,测定消耗品的平坦表面)的平面上。在一些这样的实施方案中,布置在表面的平面上的捕获物体被布置为阵列。然而,在一些实施方案中,固定的捕获物体随机分布在表面(例如,测定消耗品的平坦表面)上,且固定的捕获物体的最终布置确定了表面上测定位点的位置。在一些这样的实施方案中,来自力场的力和/或来自流体塞的流体可导致和/或加速表面上捕获物体的布置,并且来自力场的力和/或流体塞可导致捕获物体形成随机分布之后在表面上停留在适当的位置(例如,用于随后的成像)。
表面上的测定位点的数目可取决于多种考虑因素。在测定位点(例如,反应容器)用于基于捕获物体的测定以检测/定量分析物的一些实施方案中,测定位点的数目可取决于所采用的结合配体和/或分析物分子或颗粒的数目或类型、所怀疑的该测定浓度范围、检测方法、捕获物体的尺寸、检测实体的类型(例如,溶液中的游离标记剂、沉淀标记剂等)。在一些实施方案中,表面包括单个测定位点(例如,通道中的单个反应容器)。然而,在一些实施方案中,表面包括大量的测定位点。在一些实施方案中,表面上的测定位点(为阵列或其他形式)的数目大于或等于1,000、大于或等于10,000、大于或等于100,000、大于或等于200,000、和/或多至500,000、多至1,000,000、多至1,000,000,000、或者更多。
测定消耗品
所描述的测定位点可以是测定消耗品的一部分。图3A示出了根据一个实施方案的测定消耗品5的横截面示意图,所述测定消耗品5包括含有测定位点110的表面120。虽然测定消耗品5示出了一个测定位点组(例如,阵列),但是测定消耗品可包括多于一个测定位点组,每个组存在于空间上分离的室的独立组中。例如,具有包括测定位点的表面的测定消耗品(例如,测定消耗品5)可以是盘的形式。一种这样的盘是可从Quanterix公司商购获得的SimoaTM盘。在一些情况下,包括测定位点(例如,反应容器/孔)的表面周围的区域增大,因此测定位点/孔包含在测定消耗品上的通道中或测定消耗品中的通道中。通道可以是开放的(例如,像槽一样未被覆盖)或封闭的(例如,像管或导管一样封闭)。图3A至图3B中所示的实施方案示出了测定消耗品5,其具有由下部部分6和上部部分7限定的封闭通道,所述通道在测定位点110处具有高度8(被定义为测定消耗品5的表面120与上表面部分9之间的距离)。具有包括测定位点的表面的合适的测定消耗品的实例描述于Fournier et al.的美国专利申请序列No.13/035,472中,其于2011年2月25日提交,公开为US 2012-0196774,标题为“SYSTEMS,DEVICES,AND METHODS FOR ULTRA-SENSITIVE DETECTION OF MOLECULES ORPARTICLE”,其出于所有目的通过引用并入本文。
在一些实施方案中,递送至测定位点附近的捕获物体的总数目小于或等于测定位点的数目。例如,参照图2A,递送的捕获物体100的数目小于或等于表面120上的测定位点110的数目。虽然用于固定捕获物体的典型现有技术(例如,用于基于捕获物体的测定,例如数字化ELISA)采用了相对于测定位点的数目大量过量的捕获物体(例如,过量2倍、5倍、或更多倍),但是本文中的某些实施方案采用了相反的方法。如下面更详细描述的,假如检测到足够的数目,使用少量的捕获物体可以与直觉相反地提高测定灵敏度。在一些实施方案中,递送至反应容器附近的捕获物体的总数目为小于或等于100,000、小于或等于50,000、小于或等于25,000、小于或等于10,000、小于或等于5,000、小于或等于2,000、或者更小。在一些实施方案中,将单个捕获物体递送至测定位点(或单个测定位点)附近。然而,在一些实施方案中,递送至测定位点附近的捕获物体的总数目为大于或等于100、大于或等于200、大于或等于500、大于或等于1,000、或者更大。这些范围的组合也是可以的。例如,在一些实施方案中,递送至测定位点附近的捕获物体的总数目为大于或等于100且小于或等于100,000、或者大于或等于1,000且小于或等于50,000。
如上所述,在一些实施方案中,递送至测定位点附近的捕获物体的总数目小于或等于测定位点的数目。在一些实施方案中,递送至测定位点附近的捕获物体的总数目与测定位点的数目的比率小于或等于1:1、小于或等于1:2、小于或等于1:3、小于或等于1:4、小于或等于1:5、小于或等于1:10、小于或等于1:20、小于或等于1:30、小于或等于1:40、和/或低至1:50、低至1:100、低至1:1,000、低至1:2,000、或者更低。
产生力场/力场发生器
在一些实施方案中,将外力施加至递送至表面上测定位点附近的捕获物体。在一些这样的实施方案中,在包括一个或更多个测定位点的表面附近产生力场。在一些情况下,力场由力场发生器产生。如上所述,装置1可包括力场发生器40(如图1和图3A至图3B中所示)。图2B示出了一个这样的实施方案,其中根据某些实施方案,力场发生器40产生由矢量场45表示的力场。接近表面的力场可作用于递送至测定位点附近的捕获物体,以使所述捕获物体朝向表面移动。例如,在图2B中,由矢量场45表示的力场可作用于捕获物体100,以使捕获物体100以平行于矢量场45的箭头的方向朝向表面120移动。在一些实施方案中,力场是磁场。例如,在图2B中,捕获物体100可以是磁性的(例如,磁珠),并且由磁矢量场45表示的磁场作用于捕获物体100。作为另一个实例,力场可以是电场并且捕获物体可具有静电荷(例如,由于用带电荷部分对捕获物体的功能化)。在这样的情况下,具有指向远离表面的矢量线的所施加电场将使携带负电荷的捕获物体朝向表面移动,而具有指向表面的矢量线的所施加电场将使携带正电荷的捕获物体朝向表面移动。
将来自力场的力以使分量朝向包括测定位点的表面的方向施加至捕获物体可快速缩短捕获物体与测定位点之间的距离。在这种情况下,可降低将捕获物体相对于测定位点固定所需的时间。另外,作用于捕获物体的力场可有助于将捕获物体保持在适当的位置上,并降低其他力(例如,流体动力学力、密封步骤)使捕获物体移动远离表面和测定位点的程度。另外,已经发现,这样的力场的产生可与本公开内容中描述的一种或更多种其他技术(包括与流体流动相关的那些)具有协同效应。
磁场
如上所述,在一些实施方案中,在包括测定位点的表面附近产生的力场是磁场。磁场可根据本领域已知的技术产生。例如,力场发生器可包括永磁体和/或电磁体。永磁体可包括本领域已知的多种材料中的任一种,例如铁磁体或铁磁材料。永磁体可包括过渡金属(例如,铁、钴、镍、钛)及其合金和/或稀土金属(例如,钕、钐)及其合金。电磁体通常通过使电流流经线圈(例如,螺线管)来产生磁场。电磁体可包括围绕铁磁体或铁磁芯(例如,铁)的导电材料(例如,铜、银)的线圈。在图2B中,力场发生器40可以是在包括测定位点110的表面120下方的永磁体和/或电磁体。其中测定位点在力场发生器(例如,磁体)与被递送的捕获物体之间的这样的配置是举例说明性的,因为其他配置也是可以的。例如,在一些实施方案中,力场发生器40可在包含捕获物体100的流体130上方,并且由矢量场45表示的所产生的力场可相对于力场发生器排斥性地作用于捕获物体,从而使捕获物体100朝向包括测定位点110的表面120移动。在一些情况下,产生了磁场,以使磁场的磁场矢量从表面指向测定位点的底部。例如,图2B中为磁矢量场形式的矢量场45可以以从表面120朝向测定位点110的底部的方向指向。根据一些实施方案,磁矢量场的这样的配置可作用于捕获物体100,以使捕获物体100朝向测定位点110的底部移动。
磁场的量值(magnitude)可取决于力场发生器(例如,永磁体、电磁体)的位置。在一些实施方案中,装置被配置成将永磁体和/或电磁体定位在测定消耗品的测定位点下方,以使永磁体和/或电磁体可在测定消耗品的表面处产生期望量值的磁场。在一些实施方案中,测定消耗品的表面处的磁场的量值为0.1至2特斯拉或0.2至1特斯拉。已经观察到,相对于测定消耗品的某些磁体位置(以及某些磁场强度和径向vs.轴向分布)可导致有利地将捕获物体递送至包括测定位点的表面。例如,将力场发生器(例如,永磁体)放置得太靠近测定位点的底部可产生导致捕获物体(例如,磁珠)朝向表面上测定位点的集合(collection)的边缘丸粒化(pellet)的磁场。然而,将力场发生器(例如,永磁体)放置得距离测定位点的底部太远可产生导致珠朝向测定位点的集合的中心丸粒化的磁场。在一些实施方案中,装置被配置成将力场发生器定位在距离测定消耗品的测定位点的底部0mm至5mm。
电场
在一些实施方案中,在包括测定位点的表面附近产生的力场是电场。电场可根据本领域已知的技术产生。例如,力场发生器40可包括一个或更多个与表面120附近的电路耦接的导电固体。作为一个具体实例,力场发生器40可被配置成具有以下的电容器(capacitor):第一导电物品(例如,第一金属层或板),其与定位于测定位点10和表面120下方的电路耦接;和第二导电物品(例如,第二金属层或板)(未示出),其与定位于测定位点上方的电路电耦接并平行于第一导电物品。向电路施加电压可产生这样的电场:具有朝向且垂直于包括测定位点的表面的矢量分量,该矢量分量作用于捕获物体(如果携带电荷的话)以使所述捕获物体朝向表面移动,如上文所述。
介电电泳
在一些实施方案中,在包括测定位点的表面附近产生的力场是非均匀电场。非均匀电场可引起介电电泳力,其作用于递送至测定位点附近(例如,测定位点附近、测定位点处、测定位点上和/或测定位点内)的捕获物体,以使所述捕获物体朝向表面和/或沿着表面的平面移动。介电电泳是指其中可极化介电颗粒(其可用作捕获物体)在经受非均匀电场时受到力的现象,其中力的量值和信号(例如,相对于电场梯度的排斥或吸引)取决于多种因素,包括介质和颗粒的电特性、颗粒的尺寸和形状以及电场的频率(在使用具有该频率的交流电产生非均匀电场的情况下)。颗粒不需要携带静电荷来经历介电电泳力。在某些实施方案中,介电电泳方法可用于利用来自非均匀电场的吸引力和/或排斥力来促进捕获物体(例如,珠)相对于表面上的测定位点的固定。非均匀场可以是交流(alternating current,AC)电场或直流(direct current,DC)电场。微流体应用中的介电电泳的理论和实施描述于Pethig R.“Review article dielectrophoresis:Status of the theory.”Biomicrofluidics.2010;4(2):022811和Pesch GR,et al.,“A review ofdielectrophoretic separation and classification of non-biological particles.”Electrophoresis.2021Jan;42(1-2):134-52中,其各自出于所有目的通过引用整体并入本文。如上所述,在一些实施方案中,力场发生器40包括一个或更多个与表面120附近的电路耦接的导电固体。非均匀电场可由导电固体(例如,电极)产生,所述导电固体与表面120附近的电路耦接以在如下频率下产生非均匀电场,所述频率被选择以使捕获物体朝向表面例如包括测定位点的表面(并且在一些情况下朝向反应容器的底部(当使用这样的测定位点时))移动或者朝向未表征的表面移动以形成包括捕获物体的随机分布的测定位点。
在一些实施方案中,采用负介电电泳,其中来自电场的排斥作用导致可极化介电捕获物体(包括不带电荷的捕获物体)朝向表面上的测定位点(例如,朝向包括测定位点的表面和/或沿着表面朝向测定位点)移动。在一些这样的实施方案中,力场发生器的导电固体位于表面的对面,以使在导电固体与表面之间递送的捕获物体被导电固体排斥,并且因此朝向表面例如包括测定位点(例如,反应容器)的表面。在其中包括测定位点的表面是封闭通道(例如,微流体通道)的一部分的一些实施方案中,通过负介电电泳排斥捕获物体的导电固体位于与测定位点相对的通道的一部分的附近。如上所述,可通过使用适当选择的用于电场的频率来采用负介电电泳,所述用于电场的频率可通过在捕获物体存在下测试多种场直至观察到排斥作用来容易地筛选。在其中采用负介电电泳的一些实施方案中,至少一些导电固体(例如,电极)与表面(例如包括测定位点的表面)相邻(例如,直接相邻)。一些这样的导电固体可围绕表面上的至少一些测定位点在表面上形成电极网络(例如,作为导线)。例如,在一些实施方案中,测定位点是表面中的反应容器,并且围绕反应容器的表面区域中的至少一些包括与力场发生器(例如,与电源)导电地或电感地电连通的导电固体。图3C示出了一个这样的实施方案的俯视示意图:其中表面120包括反应容器(例如,微孔)形式的测定位点110,所述测定位点110被与表面120相邻的线电极形式的导电固体42的网络包围,所述导电固体42通过电连接45与电源44导电地或电感地电连通,并且可极化介电珠形式的捕获物体100在测定位点110附近。来自与表面相邻的这样的导电固体的排斥力可导致位于表面上但未插入到反应容器中的可极化介电捕获物体(例如,以珠的形式)沿着表面朝向反应容器(其不排斥捕获物体)移动。例如,图3D示出了由于来自导电固体42的网络的排斥介电电泳力(例如,在通过施加通过导电固体42的交变电流形成非均匀电场之后),捕获物体100以箭头43表示的方向沿着表面120朝向测定位点110移动,导致捕获物体100插入到测定位点110中。以这样的方式,通过朝向表面和/或沿着表面的介电电泳排斥力,可加速通过插入到反应容器中的捕获物体的固定。
在一些实施方案中,采用正介电电泳,其中来自电场的吸引作用导致捕获物体(包括不带电荷的捕获物体)朝向表面(其可包括测定位点)(例如,朝向包括测定位点的表面和/或沿着表面朝向测定位点)移动。在一些这样的实施方案中,与力场发生器(例如,与电源)导电地或电感地电连通的导电固体的位置与包括测定位点的表面相邻(例如,直接相邻),以使递送至测定位点附近并被吸引至导电固体的捕获物体朝向包括测定位点(例如,反应容器)的表面移动。如上所述,可通过使用适当选择的用于电场的频率来采用正介电电泳,所述用于电场的频率可通过在捕获物体存在下测试多种场直至观察到吸引作用来容易地筛选。在其中采用正介电电泳的一些实施方案中,至少一些导电固体(例如,电极)与表面上的测定位点的底部相邻(例如,直接相邻)。例如,在一些实施方案中,测定位点是表面中的反应容器并且反应容器的底表面(例如,微孔的底表面)的至少一些区域包括与力场发生器(例如,与电源)导电地或电感地电连通的导电固体。测定位点底部处的来自这样的导电固体的吸引力可导致反应容器附近的捕获物体、包括位于表面上但未插入到反应容器中的捕获物体朝向表面和/或沿着表面朝向反应容器移动。以这样的方式,通过朝向表面和/或沿着表面的介电电泳吸引力,可加速通过插入到反应容器中的捕获物体的固定。
虽然本公开内容中用于将捕获物体相对于测定位点固定的一些实施方案涉及来自力场发生器的力场(例如,磁场、电场)与来自流体塞的后退弯月面的力的顺序或同时组合以促进固定,但是另一些实施方案也可涉及通过施加主要(或完全)来自外部施加的力场的力来促进捕获物体的相关联,所述外部施加的力场来自力场发生器。在一些实施方案中,例如在采用数字化微流体用于将捕获物体递送至表面上的测定位点附近的情况下(如与例如下面更详细描述的基本上连续的流对立),由流体塞的后退弯月面贡献的力的量值可能相对较小并且可能不指向促进捕获物体递送至测定位点的方向。在一些这样的实施方案中,来自力场发生器的外部施加的力场可提供主要的或唯一的贡献,以促进在没有来自由后退弯月面产生的力之实质上的另外贡献的情况下将捕获物体递送至测定位点,使得在一些这样的情况下不需要产生第一方向后退弯月面和第二方向后退弯月面。例如,在一些实施方案中,捕获物体可通过以下与表面上的测定位点相关联:使用数字化微流体技术(例如,电介质上电润湿和/或电泳技术),使包含捕获物体的流体塞流至测定位点(例如,以接触测定位点和润湿测定位点);产生非均匀电场,以向进行了递送步骤的捕获物体施加外部介电电泳力,使得捕获物体与测定位点之间的距离缩短;以及通过施加至少部分地由介电电泳力贡献的力使捕获物体相对于测定位点相关联。在一些实施方案中,提供了用于使捕获物体与测定消耗品的表面上的测定位点相关联的装置,其中力场发生器包括电源和与电源导电地或电感地电连通的导电固体(例如,电极),所述导电固体与消耗品的表面相邻或相对,并且所述装置包含含有一个或更多个处理器的控制器,所述处理器被配置成开始通过电源向至少一些导电固体施加电压以产生电场,该电场使流体塞移动通过测定消耗品的表面的至少一部分(例如,至一个或更多个测定位点)。产生使流体塞移动的电场的导电固体可与测定消耗品的表面相邻(例如,在电介质层下方)。所述一个或更多个处理器可被配置成向电源发送信号以向至少一些导电固体施加电压,并随后在稍后的时间,向电源发送信号以向不同的导电固体施加相似或不同的电压。在一些实施方案中,所述一个或更多个处理器被配置成开始通过电源向至少一些导电固体施加电压,以在表面附近产生能够向可极化介电捕获物体施加介电电泳力的非均匀电场。例如,所述一个或更多个处理器可被配置成向电源发送信号以施加电压,产生具有引起介电电泳的频率的交流电。产生非均匀电场的一些这样的导电固体可与用于引起流体塞移动通过表面的至少一部分(例如,通过数字化微流体过程)的那些相同。然而,在另一些实施方案中,所述一个或更多个处理器被配置成开始通过电源向至少一些导电固体施加电压来使用一些导电固体(例如,与表面相邻或相反)产生非均匀电场,并且接收来自电源的电压的另一些导电固体(例如,与表面相邻)被用于使流体塞移动通过表面的至少一部分(例如,使用数字化微流体,例如电介质上电润湿技术)。在一些这样的实施方案中,施加至导电固体以产生能够施加介电电泳力的非均匀电场的电压与施加至导电固体以引起流体塞移动的电压具有不同的量值和/或在不同的时间下施加。产生非均匀电场的导电固体(例如,电极)可与与引起流体塞移动通过表面的至少一部分的导电固体的电源的相同电源供应或者与不同的电供应导电地或电感地电连通。
力场发生器可以是用于固定捕获物体的装置的一个组件。当力场发生器与测定消耗品操作器有效联接时,其可与测定消耗品相邻。应理解,当第一物体与第二物体相邻时,一个或更多个中间物体可存在于第一物体与第二物体之间。在一些实施方案中,当力场发生器与测定消耗品操作器有效联接时,其与测定消耗品直接相邻,使得在力场发生器与测定消耗品之间没有中间组件。再次参照图3A,装置1可包括力场发生器40,并且装置1可具有至少一种这样的配置:其中当存在测定消耗品时,力场发生器40与测定消耗品5相邻并在测定消耗品5下方(例如,与测定消耗品操作器10有效联接)。在一些这样的实施方案中,装置1的力场发生器40包括磁体(例如,永磁体、电磁体)。在一些这样的情况下,力场发生器(例如,力场发生器40)被配置成产生磁场,所述磁场产生从表面朝向测定位点(例如,测定位点110)的底部指向的磁场矢量。
场产生的顺序
在进行所描述的方法期间,可在任何不同的时间在包括测定位点的表面附近产生力场(例如,磁场、电场)。在一些实施方案中,在将捕获物体递送至表面之前产生力场,而在某些实施方案中,在将捕获物体递送至表面期间产生力场,并且在一些实施方案中,在将捕获物体递送至表面之后产生力场。为了举例说明,虽然图2A示出了在不存在力场的情况下,所递送的在流体130中的捕获物体100在测定位点110附近,但是在一些实施方案中,在递送捕获物体之前可存在由矢量场45表示的力场。
流体塞流动
在一些实施方案中,递送的捕获物体包含在流体塞内。例如,图2A中的递送的捕获物体100可包含在流体塞130内。本公开内容中使用的流体塞(或等效的团)是与不混溶相(例如,气相或不混溶液相)而不是与不混溶相所接触的固体通道壁或其他固体表面至少部分接触的独立体积的流体。流体塞不受任何特定体积或形状的限制。例如,虽然一些流体塞相对于包含所述流体塞和所述流体塞在其中流动的通道的尺寸可相对较小(例如,在适于本公开内容某些实施方案的某些流体系统中小于或等于3μL、或者更小),但是其他流体塞可以较大(例如,大于或等于15μL,大于或等于30μL、或者更大)。在一些条件(例如,在流动通过具有圆形、正方形或矩形横截面形状的通道期间)下,一些流体塞可具有与所述流体塞在其中流动的通道的横截面形状基本上一致的形状(例如,具有圆形、正方形或矩形横截面)(尽管下面描述了弯月面)。然而,一些流体塞沿其流动方向在其长度的至少一部分上可具有基本上非圆柱形的形状,并且通常可具有取决于并符合例如在其中流动的通道的形状和构造的形状(例如,由于部分流经通道转弯或交叉点,通道形状或尺寸沿流动长度的变化等)。流经通道的一些流体塞在通道方向上的长度可基本上大于通道的横截面尺寸(例如,大2倍、3倍、5倍、10倍、或者更多),并且可具有总通道长度的任何期望分数的长度,或者在一些情况下甚至更大。虽然在一些实施方案中,通过使包含捕获物体的流体塞至少部分地流动通过测定位点来将捕获物体递送至测定位点附近,但是在另一些实施方案中,捕获物体可与流体塞分开地递送至测定位点附近。例如,捕获物体可在不同流体中或者在不存在流体的情况下沉积在表面附近,随后是在表面附近注射流体以形成流体塞的步骤。
在一些实施方案中,包含捕获物体的流体塞以第一方向流动。例如,图2C示出了其中流体塞130以第一方向150流动的示意性图。如下面更详细描述的,使包含递送至测定位点附近的捕获物体的流体塞流动可有助于捕获物体相对于测定位点的固定(例如,将珠插入到反应容器中)。流体塞通常通过一个或更多个界面与固体物体和/或不混溶流体分开。流体塞与围绕流体塞的不混溶流体之间的界面可形成弯月面,其形状可取决于由与流体塞接触的任何固体表面、不混溶流体和/或流体塞的组分确定的表面张力作用。在一些实施方案中,流体塞包括各自与不混溶流体相邻的第一弯月面和第二弯月面。参照图2A,例如流体塞130可具有与第一不混溶流体134相邻的第一弯月面131并且具有与第二不混溶流体135相邻的第二弯月面132。
在一些实施方案中,包含捕获物体的流体塞包含液体。例如,流体塞可包含水(例如,作为水溶液例如缓冲溶液的溶剂)。在一些实施方案中,流体塞包含含有一种或更多种试剂(例如,可与结合配体反应的物质,所述结合配体可与至少一些捕获物体缔合)的溶液。在某些情况下,流体塞包含有机液体(例如,N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、醇类,例如乙醇或2-丙醇)。多种不混溶流体中的任一种均可与流体塞联合使用。在一些实施方案中,不混溶流体(例如,不混溶流体134或不混溶流体135)是气体或者包含气体。示例性气体包括惰性气体(例如,氮气、氩气)、非惰性气体(例如,氧气)或其混合物(例如,环境空气)。在一些实施方案中,不混溶流体包含与流体塞的流体不混溶的液体。作为一个实例,在其中流体塞包含水(例如,水溶液)的一些实施方案中,与流体塞相邻的一种或更多种不混溶流体包含油(例如,氢氟醚油)。
在一些实施方案中,通过流体注射器将流体塞引入至包括测定位点的表面(例如,在测定消耗品上)。例如,装置1可包括流体注射器50,所述流体注射器50被配置成产生当在测定消耗品的表面上时具有各自与不混溶流体(例如,气体)相邻的第一弯月面和第二弯月面的流体塞。在一些情况下,流体注射器与测定消耗品的通道联接,所述测定消耗品包括含有测定位点的表面。例如,图3A至图3B示出了与测定消耗品5(当与测定消耗品操作器10有效联接时)流体联接的流体注射器50,并且流体注射器50还可与流体泵和流体源(例如,样品源或试剂流体源)流体联接。流体注射器50可注射包括第一弯月面131和第二弯月面132的流体塞130。泵60可引起流体塞130流动通过测定消耗品5的表面120。例如,在一些实施方案中,泵60是相对于流体注射器20/50定位在流体塞130的远侧的空气泵或真空泵(如图3A中所示),并且泵60被配置成提供加压空气源和/或真空源,所述加压空气和/或真空产生导致流体塞130流动通过表面120(例如,至少部分地流动通过测定位点110)的压差。在一些替代实施方案中,流体泵60可泵送与流体塞130不混溶的液体。在某些实施方案中,流体泵60可与流体注射器流体连接,例如,通过与端口20的可切换/可控制的流体连接来进行,以通过选择性地和交替地将压力/真空施加至流体泵60到流体通道的入口(如图3A中所示的塞130的左侧)和流体注射器50到流体通道的入口(如图3A中所示的塞130的右侧)来促进流体塞130的双向流体运动。
使包含捕获物体的流体塞以第一方向流动可产生第一方向前进弯月面(advancing meniscus)和第一方向后退弯月面。参照图2C,例如,使包含捕获物体100的流体塞130以第一方向150(由从右向左指向的箭头定义)流动限定了与不混溶流体135(例如,空气)相邻的第一方向前进弯月面152和与不混溶流体134(例如,空气)相邻的后退弯月面151。在图3A中,流体塞130向左朝向流体泵60(例如,在通过流体泵60施加真空时)流动,第一弯月面131变成后退弯月面并且第二弯月面132变成前进弯月面。
在一些实施方案中,流体塞以第一方向流动,使得第一方向后退弯月面流动通过表面上的至少一些测定位点。这种情况的一个实例在图2C中示出,其中第一方向后退弯月面151流过至少一些测定位点110。使流体塞的后退弯月面流动通过至少一些测定位点可促进流体塞中的捕获物体相对于测定位点的固定。作为一个具体的实例,使包含珠的流体塞的后退弯月面流动通过表面上的反应容器(例如,孔)可促进将珠插入到反应容器中。在本公开内容的上下文中已经发现,这样的流动的某些操作和尺寸参数可有助于相对高效和有效的固定。一些这样的实施方案涉及设定流动以产生能够在捕获物体上施加力的弯月面,所述力具有指向并垂直于表面(例如,朝向反应容器的底部)的分量。在一些实施方案中,在使流体塞以第一方向流动的步骤期间,第一方向后退弯月面流动通过至少10%、至少25%、至少50%、至少75%、至少90%、至少95%、或者更多的测定位点。在一些实施方案中,第一方向后退弯月面流动通过所有测定位点(例如,因此整个流体塞流动通过表面上的测定位点)。例如,图2D示出了已经流动通过表面120的测定位点110的包括第一方向后退弯月面151的整个流体塞130。在第一方向后退弯月面已经流动通过至少一些(或全部)测定位点之后,一些捕获物体可相对于测定位点固定,而一些捕获物体可保留在测定位点附近同时保持未被固定,而另一些捕获物体可保留在流体塞中。返回参照图2D,例如,捕获物体111相对于测定位点110固定,而捕获物体112保留在测定位点110附近而未相对于测定位点110固定,并且即使在整个流体塞130已经流动通过测定位点110之后,捕获物体113仍然包含在流体塞130中。
虽然在一些实施方案中,包含捕获物体的流体塞流动通过表面上的至少一些测定位点一次,但是在某些实施方案中,流体塞流动通过测定位点多次。一些这样的实施方案可包括颠倒流体塞的流动方向。在本公开内容的上下文中已经观察到,使流体塞(例如,包括其后退弯月面)流动通过测定位点多次可导致捕获物体相对于测定位点的出乎意料的高效固定。在一些实施方案中,流体塞以不同的第二方向(相对于第一方向)流动。在一些情况下,第二方向是相对于第一方向相反的方向(例如,相差180度的角度)。例如,图2E示出了以第二方向160流动的流体塞130,所述第二方向160与图2C中所示的第一方向150相反。使流体塞以第二方向流动限定了第二方向前进弯月面和第二方向后退弯月面。例如,图2E中所示的实施方案示出了流体塞130以第二方向前进弯月面162和第二方向后退弯月面161流动。在一些情况下,限定第一方向后退弯月面的流体界面与限定第二方向前进弯月面的流体界面相同,并且限定第一方向前进弯月面的流体界面与限定第二方向后退弯月面的流体界面相同。
在一些实施方案中,流体塞以第二方向流动,因此第二方向后退弯月面流动通过表面上的至少一些测定位点。再次参照图2E,第二方向后退弯月面161流过至少一些测定位点110。这样的流动可导致捕获物体相对于测定位点的进一步固定。例如,再次参照图2E,在流体塞130以第二方向160流动时,第二方向后退弯月面161可有助于将捕获物体114固定在测定位点110之一中。在本公开内容的上下文中已经发现,在一些或全部测定位点上的第二“弯月面扫描”在一些情况下可相对于测定位点高效且快速地固定捕获物体,尤其是在第一方向后退弯月面的流动期间没有被固定的捕获物体。在其中某些尺寸和操作参数导致后退弯月面对捕获物体施加朝向并垂直于表面的力的一些实施方案中,与简单的流动或甚至简单的双向流动方法相比,流体塞弯月面在一些或全部测定位点上的这样的多次扫描可导致出乎意料的大量捕获物体的固定。在一些实施方案中,在使流体塞以第二方向流动的步骤期间,第二方向后退弯月面流动通过至少10%、至少25%、至少50%、至少75%、至少90%、至少95%、或者更多的测定位点。在一些实施方案中,第二方向后退弯月面流动通过整个测定位点(例如,使得整个流体塞完全流动通过表面上的测定位点)。
流体塞可以以所述方式流动通过表面的一种方式是通过流体泵。在一些实施方案中,所述装置(例如,装置1)包括能够使流体移动通过表面的至少一部分的流体泵,以及含有一个或更多个处理器的控制器,所述处理器被配置成调节流体泵以使流体塞双向移动通过表面的至少一部分。例如,参照图3A至图3B,装置1可包括与测定消耗品5(当与测定消耗品操作器10有效联接时)流体连接的流体泵60,并且流体泵60可被配置成以双向方式(如由双向箭头139所示)使流体塞130移动通过测定消耗品5的下部部分6的表面120。流体泵可以以多种方式中的任一种实现使流体双向流动通过表面。例如,流体泵可被配置成在向流体塞施加正压差(例如,通过对流体塞后面的气体加压)和施加负压差(例如,通过施加真空)之间交替。流体泵60的调节可由一个或更多个控制器(例如,控制器30)控制。例如,控制器可包括:一个或更多个处理器,其被编程为向流体泵提供适当顺序的驱动信号;或者一个或更多个处理器,其能够接收来自使用者的指示应该发生的流体泵驱动的输入信号。在一些实施方案中,一个或更多个处理器可调节流体泵以使流体塞以第一方向流动并因此使流体塞的第一方向后退弯月面流动通过一部分或全部反应容器,以及使流体塞以不同的第二方向流动并因此使流体塞的第二方向后退弯月面流动通过一部分或全部反应容器。在一些实施方案中,控制器包括一个或更多个处理器,所述处理器可通过被编程为驱动流体泵以提供正压并随后在稍后的时间驱动流体泵以提供负压来调节流体泵以使流体双向流动。或者,在一些实施方案中,控制器包括一个或更多个处理器,所述处理器可通过被编程为驱动流体泵来以第一方向施加正(或负)压并随后在稍后的时间驱动流体泵以以不同的第二方向施加正(或负)压来调节流体泵以使流体双向流动。
弯月面力和参数
如上所述,在本公开内容的上下文中已经确定了通过流体塞技术影响捕获物体固定的某些操作参数(例如,流型(flow pattern)、流量(flow rate)、接触角)和尺寸参数(例如,流体塞体积、通道尺寸)。在一些情况下,可进行该方法,以使由后退弯月面(例如,第一方向后退弯月面和/或第二方向后退弯月面)贡献的力促进或提高捕获物体的固定。当流体塞流动时,塞的弯月面通常产生流动诱导的毛细管力。图2C示出了从第一方向后退弯月面151和第一方向前进弯月面152发出的示例性毛细管力(如箭头153)。用于产生这样的力的一种方式是通过使流体塞流动,以使后退弯月面以朝向并垂直于包括测定位点的表面的分量施加毛细管力。再次参照图2C,流体塞130可以流动,以使第一方向后退弯月面151以垂直于表面120的分量155施加毛细管力。在一些实施方案(例如涉及将珠插入到反应容器中的那些)中,这样的朝向表面(并且垂直于反应容器的底部)的毛细管力可作用于珠以将其推入孔中。例如,具有垂直于表面120的分量155的毛细管力可将捕获物体111推入测定位点110之一中,使得捕获物体111被固定,如图2C中所示。在一些实施方案中,这样的动作可导致相对高效的珠插入。应理解,以下并不是固有的:任何任意的后退弯月面必然具有毛细管力(具有朝向且垂直于表面的分量),或者任何这样的力的量值足以有助于捕获物体的固定。相反,这样的力可能需要提供在本公开内容的上下文中所述的特定操作参数和尺寸参数。发明人已经确定了某些合适的参数。在这样的参数之外的操作可导致缺乏来自后退弯月面的“向下”毛细管力,并且与如上所述产生有助于捕获物体固定的力相反,在这样的参数之外的操作可反而主要导致这样的毛细管力:该毛细管力倾向于以平行于包括测定位点的表面的方向或者甚至远离测定位点的方向使捕获物体移动,从而破坏捕获物体的固定。
可使用多种技术中的任一种使流体塞流动。例如,在一些实施方案中,流体塞受到正压源(例如,流体泵、移液器或注射器)和/或负压源(例如,真空源、移液器或注射器)的作用。一些这样的实施方案可包括被配置成向流体塞施加正压差和/或负压差的装置(例如,装置1)。在图3A中,装置1包括流体泵60,其与测定消耗品5的表面120上的流体塞130流体连接,被配置成施加这样的正压差和/或负压差。在一些实施方案中,可采用另一些流体技术,例如毛细管力驱动的流动、电介质上电润湿(electrowetting-on-dielectric,EWOD)技术、电泳技术等。可使用EWOD技术的一种方式是通过在与测定消耗品相关联的两个或更多个电极之间施加电势来配置流体泵以使流体在通道中移动。在一些情况下,表面本身可被定位成使得可发生重力引起的流体塞流动。
接触角
可有助于后退弯月面促进或提高捕获物体的固定(例如,通过具有垂直于且朝向包括捕获物体的表面的分量的毛细管力)的一个参数是流动期间后退弯月面的接触角。后退弯月面的接触角是指当流体塞流动时,包括测定位点的表面与后退接触线之间的角度。作为举例说明,图2F示出了根据某些实施方案,当流体塞130以第一方向150流动时表面120与后退弯月面151的后退接触线156之间的接触角θ。在本公开内容的上下文中已经确定,后退弯月面具有相对较小的接触角可有助于来自后退弯月面的毛细管力,从而有助于捕获物体固定。流体塞的后退弯月面的接触角可例如通过使用测角仪或成像设备的等效构件来确定,这对本领域普通技术人员而言是明显的。可使用多种参数来影响和调节流动期间的接触角,所述参数包括流型(例如,基本上连续的vs.其他的)、流量、流体塞组成(例如,液体类型)、不混溶流体组成(例如,气体类型)和表面组成。例如,可选择流体塞组成与表面组成之间的分子间相互作用的强度(例如,基于流体塞的极性和/或表面的疏水性/亲水性),从而获得期望的接触角。在一些实施方案中,包括测定位点的表面是疏水性物质(例如,疏水性聚合材料)或者包含疏水性物质(例如,疏水性聚合材料),其实例在下面测定消耗品的上下文中更详细地描述。参数(例如,流量、表面张力、黏度)的某些组合可表示为无量纲量,例如毛细管数(下面更详细地描述)。在一些但不一定是全部实施方案中,产生这样的无量纲量(例如,毛细管数)的特定范围的操作可提供后退弯月面的接触角,所述接触角导致有助于捕获物体相对于测定位点固定的具有方向性和量值的毛细管力。
在一些实施方案中,在使流体塞流动通过测定位点(例如,以第一方向)的至少一些步骤期间,后退弯月面(例如,第一方向后退弯月面)与表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、小于或等于15度、或者更小。在某些实施方案中,可在使流体塞流动的整个步骤期间保持这样的小接触角(例如,以第一方向流动时恒定的接触角)。在某些实施方案中,在使流体塞流动通过测定位点(例如,以第一方向)的整个步骤期间,后退弯月面(例如,第一方向后退弯月面)与表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、小于或等于15度、或者更小。可使流体塞以不同的第二方向流动,使得第二方向后退弯月面也具有在这些范围内的接触角。这种类型的流动可例如使用连续流动技术来实现。这种类型的流动与微流体系统中使用的某些常规的流动技术(例如常规的分段流动技术)形成对比,所述常规的流动技术可在流动的不同部分期间引起后退弯月面接触角的变化(例如,运动时的第一接触角,以及流体塞静止时的不同的第二接触角)。在一些实施方案中,所述装置包含一个或更多个处理器,所述处理器被配置成调节流体泵(例如,图3A至图3B中的流体泵60)以使流体塞流动,从而使接触角保持在上述范围内。例如,一个或更多个处理器可被编程为驱动泵来向(例如,通道中的)流体塞施加适当的正压和/或负压,以实现产生所述接触角的流量。流体泵的调节可考虑适当编程的测定消耗品尺寸(例如,通道高度)、流体塞和测定消耗品表面材料属性(例如,相对疏水性/亲水性)以实现这样的结果。
流型
如上所述,在一些实施方案中,使包含捕获物体的流体塞流动,以使其具有基本上连续的流型。如本领域中已知的,连续流是指充分发展(例如,稳态)流(例如,充分发展层流,其通过具有抛物线型速度剖面的狭窄通道),其中该流主要由具有足够的一致性和持续时间的驱动力——例如外部压力源例如泵源和真空源、毛细管力等——来驱动,以实现充分发展的流型。例如,图2C中流体塞130右侧的正压源(或左侧的负压源)可导致流体塞130以第一方向150流动。装置1的流体泵60可提供这样的正压。流体塞的基本上连续的流动是在一定条件(足够大的流体塞尺寸、足够高的流量、足够连续的驱动力)下进行的,以建立塞的充分发展层流。在一些这样的情况下,可使流体塞基本上连续地流动,并且取自平面中的流体塞的速度剖面平行于基本上为抛物线型(为连续层流剖面的特征)的方向。产生流体塞的层流和抛物线型流的基本上连续的流型的提供与其他流体(例如,微流体)系统的流型(例如分段流动)形成对比,在后者中,第一相流中的流体的小单元完全被不混溶流体相包围,并且因此不接触通道壁,从而允许产生具有抛物线型流动剖面的上述充分发展流型。在分段流动中,流体的小液滴以基本上静止的状态平移通过不混溶流体,所述小液滴混悬在不混溶流体中(例如,水滴混悬在不混溶油中而流经通道)。流体塞的基本上连续的流也与数字化微流体形成对比,在数字化微流体中,在持续时间、一致性和/或量值不足以产生充分发展流型的离散驱动事件(例如,电介质上电润湿技术)——这与如上文所述的适合于所公开的某些实施方案中的连续驱动力(例如,来自压力源的)相反——之后,流体的小液滴在通道内平移通过小的固定距离。在许多常规的微流体系统和技术中,由于潜在的问题,例如泰勒分散(Taylor dispersion)、溶质表面相互作用、交叉污染以及需要大量试剂和相对较长的通道长度,具有层型、抛物线型流的基本上连续的流形式不受欢迎并且被认为与其他技术(例如分段流动或数字化微流体)相比不太合适或实用(参见,例如Solvas,X.C.,&DeMello,A.(2011).Droplet microfluidics:recent developments and futureapplications.Chemical Communications,47(7),1936-1942,其出于所有目的通过引用并入本文)。然而,在某些公开的实施方案的上下文中已经确定,流体塞在某些条件下的基本上连续的流动可有效地用于促进或提高捕获物体相对于测定位点的固定。例如,对于层流下的流体塞,保持基本上抛物线型速度剖面可产生基本上为抛物线型后退弯月面的形状。这样的形状可提供具有合适方向性的毛细管力,以用于促进捕获物体固定。
通道尺寸
在一些但不一定是全部实施方案中,流体塞流动通过的表面是通道的一部分。通道可以是开放通道(例如,包括底部和两侧)或封闭通道。例如,参照图2F,根据某些实施方案,表面120可以是至少部分地由表面120和上表面122限定的封闭通道的一部分。流体塞130流动通过由表面120和上表面122限定的通道。如上所述,通道可以是包括测定位点的测定消耗品的一部分。流体塞流动通过的通道的尺寸可影响由流体塞施加至捕获物体的毛细管力。例如,由表面120和上表面122限定的通道高度148可影响当流体塞130以第一方向150流动时表面120与后退弯月面151的后退接触线156之间的接触角(接触角θ)。例如,相对于流体塞体积的一定通道高度可促进具有抛物线型后退弯月面的基本上连续的层流。这样的抛物线型后退弯月面与其他流型(例如,分段和/或数字化微流体流中的微滴)的后退弯月面形状特征相比可具有较小的接触角。接触角进而如所述地影响对捕获物体的力的施加以及其相对于测定位点的固定。在一些实施方案中,与常规微流体相比,通道的高度相对较大。在一些实施方案中,通道在测定位点处的高度为大于或等于100微米、大于或等于150微米、大于或等于200微米、大于或等于250微米、大于或等于350微米、大于或等于400微米、大于或等于450微米、和/或多至500微米、多至600微米、多至800微米、多至1mm、或者更大。
流量
如上所述,流体塞通过测定位点(例如,反应容器)的流量是可影响流体塞行为和捕获物体固定的潜在操作参数。在一些实施方案中,选择用于使流体塞(例如,以第一方向、第二方向)流动的流量,以使由后退弯月面(例如,第一方向后退弯月面和/或第二方向后退弯月面)贡献的力导致相对于包括测定位点的表面的对捕获物体的向下的力。向下的力可具有朝向且垂直于表面的分量。导致这样的向下的力的弯月面形状可以是上述基本上连续的流型的特征(与其他流型例如湍流或数字化微流体的那些特征相反)。可选择流体塞的流量以有助于这样的基本上连续的流。流量可有助于捕获物体固定(包括在一些情况下相对高效且快速的固定)的一种方式是由于其对后退弯月面接触角的作用。在本公开内容的上下文中已经确定,后退弯月面的接触角通常随着流体塞的流量(例如,体积流量)的提高而减小。还已经确定,使流体塞以足够高的流量流动可导致充分足够低的后退弯月面接触角,以使毛细管力有助于捕获物体的固定,而不是例如仅仅使捕获物体横向平移或远离测定位点。
在一些实施方案中,使流体塞以大于或等于1μL/秒、大于或等于2μL/秒、大于或等于5μL/秒、大于或等于10μL/秒、大于或等于15μL/秒、大于或等于20μL/秒、大于或等于25μL/秒、大于或等于30μL/秒、大于或等于40μL/秒、或者更大的流量流动(例如,以第一方向、以第二方向)。在一些实施方案中,流体塞以小于或等于100μL/秒、小于或等于80μL/秒、小于或等于60μL/秒、小于或等于50μL/秒、小于或等于45μL/秒、或者更小的流量流动(例如,以第一方向、以第二方向)。这些范围的组合也是可以的。例如,在一些实施方案中,流体塞以大于或等于1μL/秒且小于或等于100μL/秒、大于或等于20μL/秒且小于或等于100μL/秒、或者大于或等于40μL/秒且小于或等于50μL/秒的流量流动(例如,以第一方向、以第二方向)。这些流量与微流体领域中提倡较低流量的某些常规流体塞流动实践相反。某些常规微流体流体塞/微滴流动技术通常使用较低的流量(例如,小于或等于10μL/秒)的一个原因是因为认为微滴在这样的流量下更稳定。已经在例如Guan,Y.,Li,B.,Zhu,M.,Cheng,S.,&Tu,J.(2019).Deformation,speed,and stability of droplet motion in closedelectrowetting-based digital microfluidics.Physics of Fluids,31(6),062002中(其出于所有目的通过引用并入本文)报道,塞在较高的流体塞速率下不稳定。但是基于文献出人意料的是,在本公开内容的上下文中已经确定,这样的高流量可在所选择的条件下提高捕获物体固定的速度和效率。在一些实施方案中,所述装置包含一个或更多个处理器,所述处理器被配置成调节流体泵(例如,图3A至图3B中的流体泵60)以使流体塞在上述非常规的高流量范围内流动。例如,一个或更多个处理器可被编程成驱动泵以向(例如,通道中的)流体塞施加适当的正压和/或负压,以实现这样的流量(例如,使得由流体塞的弯月面——例如,第一弯月面或第二弯月面——贡献的力导致相对于测定消耗品的表面的对捕获物体的向下的力)。
塞的体积
在一些实施方案中,流体塞相对较大。虽然典型的常规微流体流体流动技术采用相对较小的液滴,例如用于递送混悬的物体,但是在本公开内容的上下文中已经出人意料地确定,具有较大体积的流体塞相对于具有较小体积的流体塞可更稳定并且能够实现本文中所述的期望的流型。作为一个实例,使相对较小的流体塞(例如,小于或等于3μL)以相对较高的流量(例如,40μL/秒)流动可能在某些环境例如相对较小的通道(例如,垂直于流动方向的最大横截面尺寸小于或等于2mm、小于或等于1mm、小于或等于500微米、或者更小的通道)中导致不稳定的流。例如,这样的不稳定的流可表现为接触角的大幅波动。相比之下,使相对较大的流体塞(例如,相对于通道尺寸)以类似的高流量流动可出人意料地导致稳定的流,其更适于捕获物体固定。流体塞的体积,结合其他因素(例如流量和流动驱动力的性质),可有助于实现在此讨论的流型,例如基本上连续的抛物线型流。然后,流型可促成例如后退弯月面形状和接触角的因素。在某些情况下,使用具有相对较大体积的流体塞可允许以足够高的流量流动,以实现上述范围内的后退弯月面接触角,同时维持令人满意的稳定性。在一些实施方案中,包含捕获物体(例如,珠)的流体塞的体积为大于或等于3μL、大于或等于10μL、大于或等于15μL、大于或等于20μL、大于或等于25μL、大于或等于30μL、或者更大。在一些实施方案中,包含捕获物体(例如,珠)的流体塞的体积为小于或等于100μL、小于或等于80μL、小于或等于60μL、小于或等于40μL、或者小于或等于35μL。这些范围的组合也是可以的。例如,在一些实施方案中,包含捕获物体(例如,珠)的流体塞的体积为大于或等于3μL且小于或等于100μL、或者大于或等于20μL且小于或等于50μL。
毛细管数
如上所述,本文中所述的参数(例如,流量、通道尺寸、流体塞/不混溶流体组分)的某些组合可促进捕获物体相对于测定位点的固定。参数的一些这样的组合可表示为无量纲量。作为一个非限制性实例,在一些实施方案中,使流体塞在导致毛细管数在一定范围内的条件下流动。毛细管数(Ca)是表示流体流动期间黏性力与表面张力(在流体-流体界面处)的比率的无量纲量,并且表示为:
Figure BDA0003998994720000361
其中μ是流体的动态黏度,V是流体的速度,并且σ是在流体之间的界面处的表面张力并且是流体与不混溶相(例如气体,例如空气)之间的界面表面张力。流动期间的毛细管数可与流动期间的流体与不混溶相的接触角相关。因此,对系统的使得流体塞在一定的毛细管数范围内流动的操作可产生某些期望的接触角,包括在后退弯月面处产生毛细管力的那些,其中力分量指向下并指向测定位点,并且有助于捕获物体固定。在一些情况下,选择合适的流量、流体塞组成(例如,溶剂选择)和/或通道配置(例如,通道高度、通道横截面积)可产生这样的毛细管数:该毛细管数促进朝向孔的弯月面力的显著分量和相对高效的捕获物体固定。在一些实施方案中,使流体塞在25℃下在导致毛细管数大于或等于1×10-6、大于或等于2×10-6、大于或等于5×10-6、大于或等于1×10-5、大于或等于2×10-5、大于或等于5×10-5、大于或等于1×10-4、大于或等于2×10-4、大于或等于5×10-4、和/或高至1×10-3、高至2×10-3、高至5×10-3、或高至1×10-2的条件下流动。这些范围的组合也是可以的(例如,大于或等于1×10-6且小于或等于1×10-2、大于或等于1×10-4且小于或等于1×10-3)。应理解,与以无量纲参数(例如毛细管数)表示的变量相关或无关的其他考虑因素可影响捕获物体的固定,并且在所述范围内的操作在某些实施方案中可能不是严格必需的。
流体塞捕获物体浓度
对于每单位体积的流体塞,每份流体塞可具有相对较少数目的混悬在其中的捕获物体(例如,在使流体塞流动通过至少一些测定位点之前)。一些这样的“稀释的”流体塞可用于将相对较少数目的捕获物体递送至捕获位点附近,同时仍然使用如上所述的相对较大的流体塞(例如,为了更高的流动稳定性)。这也与常规的微流体加载技术形成对比,所述常规的微流体加载技术通常在微滴中使用相对较大数目的珠(例如,大于200,000个)以用于将珠递送至测定位点。在一些实施方案中,流体塞中捕获物体的数目为每μL少于或等于50,000个捕获物体、少于或等于10,000个捕获物体、少于或等于5,000个捕获物体、少于或等于1,000个捕获物体、少于或等于500个捕获物体、少于或等于200个捕获物体、和/或少至150个、少至100个、少至50个、少至10个、少至5个、少至1个、或者更少。
捕获物体的固定
如上所述,在一些实施方案中,进行了使流体塞以第一方向流动和/或使流体塞以第二方向流动的步骤的捕获物体中的至少一些相对于测定位点变得固定。在某些这样的实施方案中,测定位点包括反应容器并且捕获物体是珠,其中至少一些珠通过被插入到反应容器中而被固定。图2C示出了一个这样的实施方案,其中流体塞130以第一方向150流动导致了至少一些珠形式的捕获物体100被插入到反应容器形式的测定位点110中。类似地,图3A至图3B中的捕获物体100可以是珠(例如,磁珠),并且装置1可被配置成将珠100插入到测定消耗品5的表面120中的反应容器形式的测定位点110中。如上所述,由后退弯月面产生的力可有助于捕获物体的高效且快速的固定,这可有助于在基于捕获物体的测定中使用相对较少数目的捕获物体。在一些实施方案中,测定位点在表面上的多个独立的位置处(例如,作为阵列),并且进行固定至少一些捕获物体的步骤,以使至少一些捕获物体被分离在多个独立的位置上。一些这样的实施方案可用于进行某些类型的数字化ELISA技术。
场强调节与流体流动之间的协同作用
在本公开内容的上下文中已经确定,虽然(1)在测定位点附近产生力场(例如,磁场)和(2)使包含捕获物体的流体塞的后退弯月面流动通过测定位点可各自单独地有助于高效的捕获物体固定,但是(1)与(2)的组合可表现出出乎意料的协同作用和提高的性能。不希望受到任何特定理论的束缚,认为所产生的力场可快速地将捕获物体定位至测定位点附近(例如,靠近反应容器的开口)。然后,由后退弯月面产生的向下的力可遇到相对靠近测定位点的捕获物体,使得由后退弯月面和场产生的力高效地固定捕获物体。在其中使用磁场的一些情况下(例如,在测定位点下方存在永磁体的情况下),磁珠可形成链。在一些这样的情况下,后退弯月面可遇到链并使其断裂,从而分散磁珠以促进珠的插入(在反应容器的情况下)。此外,力矢量场和由后退弯月面施加的力的组合量值可提高捕获物体朝向测定位点移动的趋势。
在一些实施方案中,在使流体塞流动(例如,以第一方向、以第二方向)的至少一部分步骤期间存在力场(例如,磁场)。然而,在一些实施方案中,在使流体塞流动(例如,以第一方向)的步骤之前,力场的量值降低或终止。作为一个实例,虽然图2C至图2E示出了当流体塞130以第一方向150或第二方向160流动时存在的由矢量场45表示的力场,但一些实施方案包括在使流体塞以第一方向150和/或第二方向160流动之前移除力场或使力场降低。力场的这样的调节在一些如下的情况下可以是有用的:在所述情况下,不期望在后退弯月面流动通过测定位点期间发生力场诱导现象,例如捕获物体成链。作为一个实例,磁场(例如,来自永磁体和/或电磁体的)可将磁珠拉向包括反应容器的表面,这可导致一些量的磁链(magnetic chaining)。磁场量值可被降低或完全移除,从而释放链。最后,一旦磁珠被解链,就可使流体塞的后退弯月面流动通过至少一些(或全部)测定位点,以迫使至少一些未解链的磁珠进入反应容器中。在永磁体的情况下,可通过例如引起永磁体与表面之间的相对运动来降低磁场的量值。例如,参照图2E,当力发生器40是永磁体时,可通过以方向146移动力场发生器40并增大力场发生器40与测定位点110底部之间的距离147来降低磁矢量场45的量值(例如,降低至零)。
在一些情况下,所述装置可被配置成调节力场的量值,例如通过引起力场发生器(例如,永磁体)与测定消耗品(包括含有测定位点的表面)之间的相对运动来调节。例如,图3A示出了在包括表面120的测定消耗品5下方的第一位置的力场发生器40,而图3B示出了在距离测定消耗品5更远距离的第二位置的力场发生器40。力场发生器与测定位点之间的距离的这样的提高可降低测定位点处力场的量值或者基本上消除该力场。作为替代,或者除了增大力场发生器与消耗品测定位点之间的距离的线性相对运动之外,还可使用横向和/或旋转运动。例如,力场发生器可在平面内旋转,使得在第一径向位置处,力场发生器定位于测定消耗品的测定位点附近,而在第二径向位置处,力场发生器定位于远离测定消耗品的测定位点。力场发生器的重新定位(或移除)可人工完成,或者使用例如装置的自动平移台来完成。例如,图3A至图3B示出了在一些实施方案中可由控制器30控制的自动平移台41。可用电磁体通过例如调节流经电磁体的电流的量值来调整(例如,降低)磁场的量值。
在一些实施方案中,在方法的稍后时间点(例如,在捕获物体固定之后),可提高力场的量值。例如,先前移除的磁体可在珠插入之后被重新引入,以使固定的珠在后续步骤(例如密封步骤)期间保持在适当的位置。
固定的捕获物体的百分比
在一些实施方案中,相对较大百分比的所递送捕获物体被固定(例如,在流动步骤(例如以第一方向和/或第二方向)期间)。虽然用于固定捕获物体的某些现有技术(例如,用于基于捕获物体的测定,例如数字化ELISA)采用相对于测定位点的数目大量过量的捕获物体(例如,过量5倍、6倍、或更多),但是本文中的某些实施方案使用相反的方法。在本公开内容的上下文中已经确定,在一些情况下,递送相对较少数目的捕获物体并固定高百分比的捕获物体可实现具有高灵敏度的测定(由于如下所述的珠的总数目低)同时从捕获物体产生足够的信号以用于充分的检测。在一些实施方案中,在流动步骤期间,至少20%、至少25%、至少40%、至少50%、至少60%、至少75%、至少90%、至少95%、至少99%、或全部的递送至测定位点附近的捕获物体被固定。
被占据的捕获位点的百分比
在一些实施方案中,表面上的相对较小百分比的测定位点固定有捕获物体。这种方法与常规方法形成对比,所述常规方法例如尽可能努力地用珠填充阵列中的大量孔(例如,多至100%的孔被珠填充)。在本公开内容的上下文中已经确定,确保尽可能多的捕获物体被固定而不是占据尽可能多的测定位点可以是有利的。用于这样做的一种方法是相对于捕获物体的数目具有显著过量的测定位点,这可导致捕获物体相对于仅相对较小百分比的测定位点被固定。在一些实施方案中,捕获物体相对于少于或等于20%、少于或等于15%、少于或等于10%、少于或等于5%、少于或等于2%、和/或少至1%、少至0.5%、少至0.1%、少至0.01%的测定位点、或更少的测定位点而被固定。作为一个说明性实例,在图2A至图2G中,表面120可包括200,000个反应容器形式的测定位点110,并且该方法可导致仅2,000个珠形式的捕获物体100的插入,这意味着1%的测定位点110具有相对于其固定的捕获物体100。
交替加载方法
虽然上述的某些实施方案涉及在力场产生的同时或随后通过流体塞的流动来相对于测定位点固定捕获物体,但是其他形式也是可以的。这些其他形式也可提供相对迅速和/或高效的捕获物体固定。例如,在一些实施方案中,将横向移动的力场施加至在测定位点附近的所递送的捕获物体。这样的横向力可促进捕获物体移动通过表面上的测定位点周围的横向空间,从而提高捕获物体与测定位点相互作用的速率。一个这样的实施方案包括通过调节力场的横向分布来向捕获物体施加横向力,以及通过所施加的横向力将至少一些捕获物体相对于测定位点固定。图2B示出了一个这样的任选实施方案的举例说明,其中在永磁体形式的力场发生器40与表面120之间产生相对横向运动,如箭头149a和箭头149b所示。根据一些实施方案,力场发生器40的这样的运动可使由磁矢量场45表示的磁场横向移动,这可在捕获物体100具有磁性(例如,磁珠)时作用于捕获物体100。这可导致珠100相对于表面120的横向运动,以使珠100遇到测定位点110并被插入到其中。力场横向分布的调节可当流体130(例如,流体塞)静止时或者当其流动时发生。
一些实施方案可包括使多个流体塞流动通过至少一些测定位点。例如,在一些实施方案中,包含捕获物体的第一流体塞流动通过测定位点,随后是通过不混溶流体与第一流体塞分开的第二流体塞,该第二流体塞流动通过至少一些测定位点以使至少一些捕获物体相对于测定位点固定。图2G示出了一个这样的实施方案,其中包含捕获物体100的第一流体塞130以第一方向150流动通过测定位点110,并且包含捕获物体100的第二流体塞230在第一流体塞130之后也以第一方向150流动。第一流体塞130和第二流体塞230可被不混溶流体134(例如,气体例如空气)分开。在一些情况下,顺序地使塞流动通过测定位点的这样的方法可允许使用具有较少捕获物体(例如,珠)的流体塞,并且可在存在或不存在作用于捕获物体的力场(例如,磁场)的情况下进行。
用于固定捕获物体的装置
如上所述,还描述了用于将捕获物体相对于测定位点固定的装置。这样的装置可被配置成进行上述用于固定的某些方法(例如,涉及力场产生与流体塞流动的组合)。在一些实施方案中,被配置成进行用于捕获物体固定的方法的装置还可被配置成进行用于检测和/或定量流体样品中分析物分子或颗粒的测定(例如下面描述的测定)。例如,用于将捕获物体相对于测定位点固定的装置可包括一个或更多个用于制备捕获物体以进行检测的组件(例如,样品洗涤器、一个或更多个用于孵育的组件等)或者用于检测或分析的组件(例如,成像系统、计算机实施的控制系统)。虽然在一些实施方案中,组件的这样的组合可被集成在机器人系统中,但是在一些实施方案中,用于样品制备、捕获物体固定(例如,相对于测定位点)和图像获取/分析的这些组件中的一些或全部被集成为例如单个芯片上的微流体系统。
测定消耗品操作器
在一些情况下,所述装置可包括测定消耗品操作器,其被配置成与具有包括测定位点的表面的测定消耗品有效联接。图3A至图3B示出了一个这样的测定消耗品操作器10的示意图。测定消耗品操作器可支持和促进装置对测定消耗品的操纵和/或定位或者装置内的测定消耗品的操纵和/或定位。
测定消耗品操作器可以是固定的或可以是可移动的,或者其至少一部分可以是可移动的。例如,测定消耗品操作器可与工作台(stage)可操作地相关联或者包括工作台,其中工作台是可移动的。工作台可与被配置成使工作台和/或测定消耗品操作器自动移动的控制器相关联。在某些实施方案中,可确定测定消耗品操作器的尺寸和/或形状以与测定消耗品匹配。例如,测定消耗品操作器可包括凹陷区域(depressed area),测定消耗品可位于其中并被固定。或者,测定消耗品操作器可包括将测定消耗品放置在其上的基本上平坦的表面。在一些实施方案中,测定消耗品操作器包括紧固件(例如,子母扣(snap)、夹子(clip)、夹具(clamp)、环形夹具等),其有助于将测定消耗品附至测定消耗品操作器,以使在系统的至少某些操作时期期间,在消耗品与消耗品操作器之间几乎没有或没有移动。作为另一个实例,测定消耗品操作器可利用真空或气动系统以用于固定测定消耗品。在某些实施方案中,测定消耗品操作器可包括与测定消耗品的识别元件互补的识别元件,以促进正确的定位和/或防止使用不正确配置的或伪造的测定消耗品。例如,测定消耗品可包括多个凹口(notch)并且测定消耗品操作器可包括多个互补的凹陷(indentation)。作为另一个实例,测定消耗品可包括RFID芯片或条码读取器,并且测定消耗品可被要求包括授权的RFID芯片或条码,以允许将测定消耗品与测定消耗品操作器联接,而不触发警报条件或导致控制器关闭系统操作。
在图4A至图4F中示出了测定消耗品操作器的一些非限制性实例。图4A示出了测定消耗品500和测定消耗品操作器502。该装置包含能够使测定消耗品500从不与测定消耗品操作器相关联的第一位置移动至与测定消耗品操作器相关联的位置的组件(例如,臂501)。在该实例中,测定消耗品500包括至少一个凹口或识别元件(例如,凹口508),其与测定消耗品操作器502上的键或识别元件(例如,键506)特定地相互作用。测定消耗品操作器502还包括多个孔504,通过所述孔可向测定消耗品施加真空。一旦测定消耗品被降低至凹口508与键506对齐的位置(例如,如图5B中所示),就可向孔504施加真空,这导致测定消耗品500平放在测定消耗品操作器上的固定位置。在将测定消耗品加载至测定消耗品操作器上之后,操作器可被定位成使得装置的组件(例如,样品加载器、珠加载器、密封器、擦拭器、成像系统等)都处于合适的位置。可保持真空直至期望数目的独立的测定位点组已被分析。图4C示出了通过中置夹具510与测定消耗品操作器相关联的测定消耗品。中置夹具510固定测定消耗品并使其保持平整。图4D示出了通过第一环形夹具512和第二环形夹具516与测定消耗品操作器相关联的测定消耗品。环形夹具被配置和定位成通过夹持测定消耗品的外部边缘来将测定消耗品保持到测定消耗品操作器。
图4E和图4F示出了测定消耗品操作器的另一个实例,其包括操作器抓持臂556、与装置的一部分(未示出)有效连接的横臂553、测定消耗品操作器工作台555和测定消耗品附件558。图中还示出了成像系统560。在图5E中,单个测定消耗品550被配置成从堆叠体(stack)552移动至测定消耗品工作台555。臂556处于位置A以使臂556被定位在堆叠体552上方。测定消耗品附件558(例如,吸盘(suction cup)、夹子等)被降低以抓持测定消耗品550。操作器臂556沿横臂553从图4E中的位置A移动至图4F中的位置B,以使测定消耗品550定位于测定消耗品工作台555上方。图4F示出了测定消耗品被降低以连接测定消耗品550与测定消耗品工作台555。在该图中,测定消耗品工作台555包括与真空源流体连接的孔554,以使真空可被施加至测定消耗品550的下侧以将其保持在其位置处,如本文中所述(例如,类似的,另参见图4A(孔504))。在一些情况下,测定消耗品操作器可包括传送带类型的组件。
捕获物体施加器
在一些实施方案中,装置包含捕获物体施加器。捕获物体施加器可单独或与流体注射器和/或流体泵联合来发挥功能,以将施加的捕获物体递送至测定消耗品的表面。图3A至图3B示意性地示出了装置1的捕获物体施加器20。虽然图1和图3A至图3B将捕获物体施加器20表示为在流体注射器50和/或流体泵60情况下的单独组件,但是在一些实施方案中,这些组件是相同的(例如,流体注射器可通过由流体泵60提供的正压将包含捕获物体的流体塞注射至测定消耗品5的表面120上)。在另一个实例中,捕获物体施加器包括用于将捕获物体(例如,珠)递送至通道(例如,微流体通道)的入口端以使其相对于测定消耗品分配的移液器。捕获物体施加器的另一些非限制性实例包括与流体泵(例如,注射泵、活塞-作用泵、膜泵等)相关联的自动移液器和微流体注射器。与其他组件一样,捕获物体施加器可与被配置成自动操作捕获物体施加器的控制器相关联。
在一些实施方案中,捕获物体施加器被配置成将相对较少数目的捕获物体施加至测定消耗品的表面或所述表面附近。例如,捕获物体施加器可与适于产生相对较小体积的包含捕获物体(例如,珠)的流体或者适于产生相对较稀释的包含捕获物体的流体塞的流体注射器和/或流体泵相关联。在一些实施方案中,捕获物体施加器被配置成将少于或等于100,000、少于或等于50,000、少于或等于25,000、少于或等于10,000、少于或等于5,000、少于或等于2,000、少于或等于1,000、少于或等于500、少于或等于200、少于或等于100、或者甚少至50、少至20、少至10、少至5个捕获物体、或者单个捕获物体施加至测定消耗品的表面或所述表面附近。具有固定视场的成像系统和检测
还公开了用于对测定位点(例如,为测定消耗品的表面上的阵列的形式)进行成像和/或分析的装置和方法。在本公开内容的上下文中已经确定,用于对测定位点进行成像的某些现有技术不分析包括测定位点的整个区域,而是分析子集。通过分析仅测定位点子集(例如,在确定捕获物体和/或相关分析物的存在或不存在时),所分析的固定的捕获物体的绝对数目比实际固定的捕获物体的绝对数目小。在使用相对较大数目的捕获物体(例如,大于100,000、大于200,000、或者更大)的现有测定中,捕获物体的这样的损失可忽略不计。然而,对于目前公开的可使用相对较少捕获物体(例如,少于或等于50,000、少于或等于10,000、少于或等于5,000、或者更少)的测定,捕获物体的这样的损失可对来自捕获物体的适当信号的检测具有显著影响。所述的一些装置被配置成通过分析包括测定位点(例如,测定位点阵列)的整个区域来降低或限制这样的损失。
在一些实施方案中,提供了用于对测定位点阵列进行成像的装置,并且该装置可以是用于检测和/或定量分析物的整个系统的一部分。例如,根据一些实施方案,图1中的装置1可包括成像系统70和计算机实施的控制系统80。成像系统70可被配置成捕获测定消耗品5上的测定位点阵列的图像,所述测定消耗品5可通过测定消耗品操作器10相对于成像系统70定向。然而,应理解,独立的测定消耗品操作器的存在是任选的,并且一些实施方案可涉及直接连接成像系统与测定消耗品,而不通过测定消耗品操作器来操纵测定消耗品。一个这样的实施方案可涉及用于对微流体芯片上的阵列进行成像的装置,所述微流体芯片可手动操作地与成像系统联接。在一些实施方案中,所述装置可被配置成使得在将捕获物体相对于测定消耗品的表面上的测定位点固定之后,成像系统可捕获阵列的图像,而不颠倒测定消耗品。例如,在捕获物体的固定(例如,珠的插入)之后,测定消耗品操作器可操纵测定消耗品(例如,通过旋转或平移相对运动),以使其与成像系统的视场对齐,而不颠倒测定消耗品(例如,翻转测定消耗品)。
成像系统可包括检测器和光学器件。多种检测器类型和光学器件配置中的任一种是可以的,并且示例性配置将在下面更详细地描述。包括检测器和光学器件的成像系统可具有比包括测定位点阵列的区域更大的固定视场。在一些这样的情况下,所述装置可被配置成使测定消耗品上的测定位点阵列可完全定位在成像系统的固定视场内。图5示出了一个这样的实施方案的示意图。在图5中,成像系统70包括检测器71和光学器件72,并且定位于在与测定消耗品操作器10有效联接的测定消耗品5的上方。成像系统70具有固定的视场73,该视场大于包含测定消耗品5的表面120上的测定位点110的阵列的面积。在该上下文中,成像系统与位点阵列之间的固定视场是指在视场与阵列之间不存在显著的相对运动(尽管具有微小可忽略不计的运动)的情况下成像系统捕获测定位点阵列的图像以用于后续分析。这样的固定视场成像系统可如“单景照相(single shot)”一样捕获阵列的图像,而不是扫描通过阵列并生成如下图像:所述图像作为在检测器/光学器件和阵列的多个不同相对方位处捕获的多个图像的合成图像。
在一些实施方案中,所述装置包含计算机实施的控制系统,其被配置成从成像系统接收信息。在一些这样的实施方案中,计算机实施的控制系统被配置成分析包括测定位点阵列的整个区域。再次参照图5,计算机实施的控制系统80可被配置成从成像系统70接收信息。该信息可涉及测定消耗品5的表面120上的测定位点110的阵列的图像(例如,在用于检测和/或定量样品中的分析物的测定的检测步骤期间)。在一些实施方案中,计算机实施的控制系统80被配置成分析包括测定位点110的阵列的整个区域。这样的配置相比于仅分析捕获图像子集的某些现有技术可允许检测更多数目的相对于测定位点固定的捕获物体。计算机实施的控制系统还可被配置成基于所分析的整个测定位点阵列来确定测定样品中分析物分子或颗粒的未知浓度的度量值。在一些实施方案中,计算机实施的控制系统被配置成分析相对较大的区域。例如,在一些实施方案中,计算机实施的控制系统被配置成分析至少2mm2、至少5mm2、至少10mm2、和/或多至15mm2、多至20mm2、或更大的区域。例如,在一些实施方案中,计算机实施的控制系统被配置成分析至少100,000个测定位点、至少200,000个测定位点、至少500,000个测定位点、或至少1,000,000个测定位点、或者更多。
潜在地可用于实施本文中的某些实施方案的多种成像系统是本领域已知且可商购获得的。这样的系统和组件可基于由该系统进行的所选择的测定方法的需要和要求以及用于检测分析物分子和/或颗粒的技术进行调整。例如,在一些测定中,分析物分子和/或颗粒不可直接检出并且使用另外的试剂(例如,可检测标记)辅助检测。在这样的情况下,成像系统的组件将被选择成检测这样的试剂。
在某些实施方案中,成像系统被配置成光学地查询(interrogate)测定位点。在其光学特征方面表现出变化的位点可通过常规的光具组和光学检测系统来鉴定。根据待检测的物质和有效波长,针对特定波长设计的滤光器可被用于进行位置的光学查询(opticalinterrogation),如本领域普通技术人员所理解的。
在其中使用光学查询的一些实施方案中,成像系统可包括多于一个光源和/或多个过滤器以调节光源的波长和/或强度。光源的一些实例包括激光器、连续光谱灯(例如,汞蒸气灯、卤素灯、钨灯)和发光二极管(light-emitting diode,LED)。例如,在一些情况下,可使用第一波长范围的光进行测定位点的第一查询,而使用不同的第二波长范围的光进行第二查询,因此多种可检测的分子发荧光。
在一些实施方案中,使用电荷耦合器件(charge coupled device,CCD)照相机捕获来自多个测定位点的光学信号。可用于捕获图像的器件的另一些非限制性实例包括电荷注入器件(charge injection device,CID)、互补金属氧化物半导体(complementarymetal oxide semiconductor,CMOS)器件、科学CMOS(scientific CMOS,sCMOS)器件、时间延迟积分(time delay integration,TDI)器件、光电倍增管(photomultiplier tube,PMT)和雪崩光电二极管(avalanche photodiode,APD)。这样的器件的照相机种类可从数个商业供应商获得。
在一个实施方案中,测定消耗品包括光纤束(fiber optic bundle),并且反应容器形式的多个测定位点在光纤束的端部形成。根据一个实施方案,用于本发明的测定位点阵列可与光学检测系统(例如在美国公开No.2003/0027126中描述的系统,其出于所有目的通过引用并入本文)联合使用。
本领域普通技术人员将意识到,成像系统的多种组件可被调整和/或配置成提供良好的图像。例如,在一些情况下,测定消耗品通过密封组件成像,并且因此,成像系统可被调整和/或配置成考虑光路中密封组件的存在。如本领域普通技术人员已知的,一定厚度的材料可导致球面像差(spherical aberration)和阵列分辨率损失。因此,如果密封组件具有发生这样的像差的厚度,则成像系统的光学部分可被设计成校正这种增加的厚度。将光学器件设计成使得与密封材料的指数相匹配的流体可被置于物镜与测定消耗品之间,这可确保物镜材料与密封材料之间的差异不会导致模糊。
可被配置和/或调整成提高性能的成像系统的特征的另一个实例是成像系统的聚焦能力的速度和品质。在一些情况下,聚焦可涉及使用基于测定消耗品表面的反射的激光聚焦系统。激光聚焦系统可商购获得。在另一些情况下,包括测定位点(其大小可与被处理的光的波长类似)的测定消耗品的表面可包括测定消耗品内置的结构/基准,所述结构/基准可用于通过衍射、折射、吸收、反射、荧光或者这些和另一些光学现象的组合来聚焦图像。
如上所述,所述系统和装置的某些实施方案包括一个或更多个控制器和/或计算机实施的控制系统,以用于操纵系统的多种组件/子系统,进行数据/图像分析等(例如,图1中所示的控制器30/计算机实施的控制系统80)。所述的任何计算方法、步骤、模拟、算法、系统和系统元件可使用一个或更多个计算机实施的控制系统(例如下面描述的计算机实施的系统的一些实施方案)来实施和/或控制。所述的方法、步骤、控制系统和控制系统元件其实施不限于所述的任何特定计算机系统,因为可使用许多其他不同的机器。
计算机实施的控制系统可以是图像分析系统和/或其他自动化系统组件的一部分或者与图像分析系统和/或其他自动化系统组件在操作上相关联,并且在一些实施方案中,计算机实施的控制系统被配置和/或编程为控制和调节操作参数以及分析和计算值,例如如上所述的分析物分子或颗粒浓度。在一些实施方案中,计算机实施的控制系统可发送和接收参照信号以设定和/或控制系统设备的操作参数。在另一些实施方案中,计算机实施的系统可与其他系统组件分开和/或相对于其他系统组件远程定位,并且可被配置成通过间接和/或便携式手段(例如通过便携式电子数据存储装置例如磁盘,或通过经由计算机网络(例如因特网或本地内联网)的通信)接收来自本发明的一个或更多个远程测定系统的数据。
计算机实施的控制系统可包括数个已知的组件和电路,包括处理单元(即一个或更多个处理器)、存储器系统、输入装置和输出装置和接口(例如,互连机制),以及其他组件,例如传输电路(例如,一个或更多个总线(busses))、视频和音频数据输入/输出(I/O)子系统、专用硬件,以及其他组件和电路,如下面更详细描述的。此外,计算机系统可以是多处理器计算机系统,或者可包括经由计算机网络连接的多个计算机。
计算机实施的控制系统可包括一个或更多个处理器,例如,可商购获得的处理器,例如可从Intel获得的x86系列之一(赛扬(Celeron)和奔腾(Pentium)处理器)、来自AMD和Cyrix的类似装置、可从摩托罗拉(Motorola)获得的680X0系列微处理器和来自IBM的PowerPC微处理器。许多其他处理器是可获得的,并且计算机系统不限于特定处理器。
处理器通常执行称为操作系统的程序,所述操作系统的一些实例为Windows NT、Windows 95或Windows 98、Windows XP、Windows Vista、Windows 7、Windows 10、UNIX、Linux、DOS、VMS和MacOS,其控制其他计算机程序的执行,并且提供调度、调试、输入/输出控制、计算、编译、存储分配、数据管理和存储器管理、通信控制和相关服务。处理器和操作系统一起定义了计算机平台,所述计算机平台的应用程序以高级编程语言编写。计算机实施的控制系统不限于特定的计算机平台。
计算机实施的控制系统可包括存储器系统,所述存储器系统通常包括计算机可读和可写的非易失性记录介质,其一些实例为磁盘、光盘、闪存存储器和磁带。这样的记录介质可以是可移动的,例如,软盘、读/写CD或记忆棒;或者可以是永久性的,例如硬盘驱动器。
这样的记录介质通常以二进制形式(即,被解释为1和0的序列的形式)存储信号。盘(例如,磁盘或光盘)具有多个道,在所述道上可通常以二进制形式(即,被解释为1和0的序列的形式)存储这样的信号。这样的信号可定义由微处理器执行的软件程序(例如,应用程序)或者由应用程序处理的信息。
计算机实施的控制系统的存储器系统还可包括集成电路存储器元件,其通常是易失性随机存取存储器,例如动态随机存取存储器(dynamic random access memory,DRAM)或静态存储器(SRAM)。通常来说,在操作中,处理器使程序和数据从非易失性记录介质被读取到集成电路存储器元件中,相比于非易失性记录介质,这通常允许处理器更快地访问程序指令和数据。
处理器通常根据程序指令操纵集成电路存储器元件内的数据,并随后在完成处理之后将经操纵的数据拷贝至非易失性记录介质。已知多种用于管理非易失性记录介质与集成电路存储器元件之间的数据移动的机制,并且实施上述方法、步骤、系统控制和系统元件控制的计算机实施的控制系统不限于此。计算机实施的控制系统不限于特定的存储器系统。
上述这样的存储器系统的至少一部分可存储一个或更多个数据结构(例如,查找表(look-up table))或方程例如校准曲线方程。例如,至少部分非易失性记录介质可存储包括一个或更多个这样的数据结构的数据库的至少一部分。这样的数据库可以是多种类型的数据库中的任一种,例如:包括一个或更多个平面文件(flat-file)数据结构的文件系统,其中数据被组织成由分隔符分隔的数据单元;关系数据库,其中数据被组织成存储在表中的数据单元;面向对象数据库,其中数据被组织成作为对象存储的数据单元;其他类型的数据库;或其任何组合。
计算机实施的控制系统可包括视频和音频数据I/O子系统。子系统的音频部分可包括模-数(analog-to-digital,A/D)转换器,其接收模拟音频信息并将其转换成数字信息。可使用已知的压缩系统将数字信息压缩以用于存储在硬盘上以在其他时间使用。I/O子系统的典型视频部分可包括视频图像压缩器/解压缩器,其中的许多是本领域已知的。这样的压缩器/解压缩器将模拟视频信息转换成压缩的数字信息,反之亦然。压缩的数字信息可被存储在硬盘上以便稍后使用。
计算机实施的控制系统可包括一个或更多个输出装置。示例性输出装置包含阴极射线管(cathode ray tube,CRT)显示器、液晶显示器(liquid crystal display,LCD)、发光二极管(LED)显示器和其他视频输出装置、打印机、通信装置(例如调制解调器或网络接口)、存储装置(例如磁盘或磁带)、以及音频输出装置(例如扬声器)。
计算机实施的控制系统还可包括一个或更多个输入装置。示例性输入装置包含键盘、小键盘、跟踪球(track ball)、鼠标、笔和输入板(tablet)、通信装置(例如上述的那些)、以及数据输入装置(例如音频和视频捕获装置和传感器)。计算机实施的控制系统不限于所述的特定输入或输出装置。
应理解,可使用任何类型的计算机实施的控制系统中的一个或更多个来实施所述的多个实施方案。本发明的一些方面可用软件、硬件或固件或者其任何组合来实施。计算机实施的控制系统可包括专门编程的专用硬件,例如专用集成电路(application-specificintegrated circuit,ASIC)。这样的专用硬件可被配置成实施作为上述计算机实施的控制系统的一部分或作为独立组件的上述一种或更多种方法、步骤、模拟、算法、系统控制和系统元件控制。
计算机实施的控制系统及其组件可使用不同的一种或更多种合适的计算机编程语言中的任一种来编程。这样的语言可包括:过程编程语言,例如Lab View、C、Pascal、Fortran和BASIC;面向对象的语言,例如C++、Java和Eiffel;以及其他语言,例如脚本语言或甚至汇编语言。
可使用多种合适的编程语言中的任一种来实施方法、步骤、模拟、算法、系统控制和系统元件控制,所述编程语言包括可通过这样的计算机系统执行的过程编程语言、面向对象的编程语言、其他语言及其组合。这样的方法、步骤、模拟、算法、系统控制和系统元件控制可作为计算机程序的独立模块实施,或者可作为独立的计算机程序单独实施。这样的模块和程序可在独立的计算机上执行。
这样的方法、步骤、模拟、算法、系统控制和系统元件控制可以单独地或组合地作为计算机程序产品实现,所述计算机程序产品作为计算机可读介质(例如,非易失性记录介质、集成电路存储器元件或其组合)上的计算机可读信号有形地实施。对于每个这样的方法、步骤、模拟、算法、系统控制或系统元件控制,这样的计算机程序产品可包括在计算机可读介质上有形地实施的计算机可读信号,其将指令定义为例如一个或更多个程序的一部分,即,作为由计算机执行的结果,指示计算机执行方法、步骤、模拟、算法、系统控制或系统元件控制。
测定,包括具有少量珠和高效加载的测定
现在描述用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法(例如,测定)。如上所述,在本公开内容的上下文中已经出乎意料地确定,与典型的常规方法(例如,某些现有的数字化ELISA技术)相比,通过在测定中使用较少的捕获物体,可实现分析物检测的高灵敏度(例如,低检测极限)。与直觉相反,已经确定了,由于每个的酶(AEB)提高,使用相对于分析物分子或颗粒的数目更少的捕获物体实现的灵敏度增加可超过灵敏度的潜在损失(例如,由于背景信号(例如来自泊松噪声)的提高或更低效率的分析物捕获)。所述用于制备样品和捕获物体、分配(例如,加载/空间分离)捕获物体和/或检测/分析捕获物体的某些方法和系统可单独或累加地有助于使用这样的少量的珠的能力。
一种示例性的测定形式/方案包括将被配置成捕获特定类型的分析物分子或颗粒的捕获物体(例如,珠)暴露于含有或怀疑含有这样的分析物分子(或颗粒)的溶液(例如,流体样品)。至少一些分析物分子相对于捕获物体变得固定。捕获物体可各自对特定类型的分析物分子或颗粒具有亲和力。捕获物体可各自包括对至少一种类型的分析物分子(例如,特定类型的分析物分子或颗粒)具有亲和力的结合表面。在一些情况下,结合表面可包括多种捕获组分。本文中使用的“捕获组分”是置于固体支持物上的任何分子、另一些化学/生物实体或固体支持物修饰物,其可特异性地附着、结合或以其他方式捕获靶分子或颗粒(例如,分析物分子),使得靶分子/颗粒相对于捕获物体变得固定。固定可由分析物分子与捕获物体表面上的捕获组分缔合引起。在将分析物分子或颗粒相对于捕获物体固定的上下文中,“固定的”意指捕获的、附着的、结合的或黏着的,以防止靶分子/颗粒的解离或损失,但不要求相对于捕获组分或捕获物体绝对固定。
相对于捕获物体固定的分析物分子的数目可取决于样品中分析物分子的总数目相比于所提供的捕获物体的捕获组分的总数目、尺寸和/或表面密度中的至少一者的比率。在一些实施方案中,相对于单个捕获物体固定的分子或颗粒的数目可遵循标准泊松分布(Poisson distribution)。在一些情况下,统计学上显著数目的捕获物体与来自流体样品的单个分析物分子或颗粒缔合并且统计学上显著数目的捕获物体不与来自流体样品的任何分析物分子或颗粒缔合。在一些实施方案中,与至少一个分析物分子(例如,特定类型的分析物分子或颗粒的至少一个分析物分子)缔合的捕获物体的百分比为捕获物体总数目的小于或等于99.999%、小于或等于99.99%、小于或等于99.9%、小于或等于99%、小于或等于98%、小于或等于95%、小于或等于90%、小于或等于80%、小于或等于70%、小于或等于60%、小于或等于50%、小于或等于40%、小于或等于30%、小于或等于20%、小于或等于10%、小于或等于5%、小于或等于1%、小于或等于0.5%、小于或等于0.1%、或者更小。
暴露于样品溶液的少量捕获物体
在一些实施方案中,暴露于含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目相对较少。如上所述,相对较少数目的捕获物体的非常规使用(例如,在暴露于分析物分子或颗粒期间和/或在下游分析和检测步骤期间)在一些情况下可以带来灵敏度(例如,检测水平)的出乎意料且在其他方面不被重视的提高。本公开内容的与捕获物体的高效处理相关的某些教导可帮助克服与处理和检测这样的少量捕获物体相关的已知挑战,所述挑战已经劝阻了他人使用这样的少量捕获物体(例如,在超灵敏数字化ELISA测定中)。在一些实施方案中,暴露于含有或怀疑含有分析物分子或颗粒的溶液的捕获物体(例如,对特定类型的分析物分子或颗粒具有亲和力)的数目小于或等于50,000、小于或等于7,500、小于或等于5,000、小于或等于4,000、小于或等于3,000、小于或等于2,000、或者更少。在一些实施方案中,暴露于含有或怀疑含有分析物分子或颗粒的溶液的捕获物体(例如,对特定类型的分析物分子或颗粒具有亲和力)的数目大于或等于100、大于或等于200、大于或等于500、大于或等于1,000、或者更多。在一些实施方案中,暴露于含有或怀疑含有分析物分子或颗粒的溶液的捕获物体(例如,对特定类型的分析物分子或颗粒具有亲和力)的数目小于或等于10,000。这些范围的组合也是可以的。例如,在一些实施方案中,暴露于含有或怀疑含有分析物分子或颗粒的溶液的捕获物体(例如,对特定类型的分析物分子或颗粒具有亲和力)的数目大于或等于100且小于或等于50,000、大于或等于100且小于或等于10,000、或者大于或等于100且小于或等于5,000。
在一些实施方案中,可使用具有相对较少数目的捕获物体和相对较低浓度的分析物的组合物。这样的组合物可在所述的数个方法步骤中的任一个期间产生,或者可单独提供。在本公开内容的上下文中已经出乎意料地确定,具有相对较少捕获物体的组合物可在用于检测低浓度分析物的测定中使用。这样的组合物的制备与常规观点背道而驰,所述常规观点通常提倡使用大量的捕获物体(以增加分析物捕获的机会,或避免处理/检测的挑战)。在一些实施方案中,组合物是体积为10至1000微升、50至500微升、或100至350微升的单独的流体。一些这样的组合物具有以以下浓度存在的至少一种类型的分析物分子或颗粒:0.001阿托摩(aM)至10皮摩(pM)、0.01aM至1pM、0.1aM至100飞母托摩(fM)、或者1至10fM。在一些实施方案中,组合物包含100至10,000、或1,000至5,000个捕获物体(例如,珠),所述捕获物体包含对至少一种类型的分析物分子或颗粒具有亲和力的结合表面。
孵育持续时间
在本公开内容的上下文中已经确定,捕获物体暴露于含有或怀疑含有分析物分子或颗粒的溶液的持续时间会影响将分析物分子相对于捕获物体固定的程度。将捕获物体暴露于溶液(例如,在孵育步骤中)持续相对较长的时间段可导致溶液中较高百分比的分析物分子或颗粒相对于捕获物体被固定;出人意料的是,即使在存在相对较少捕获物体的情况下(例如,少于或等于10,000个、少于或等于5,000个、或者更少)也是如此。认为相对较长的暴露(例如,孵育)可克服由存在较少捕获物体所带来的动力学限制(例如,在一些情况下,当固定是由双分子反应动力学控制时)。在一些实施方案中,将捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液(例如,流体样品)持续大于或等于15分钟、大于或等于30分钟、大于或等于1小时、大于或等于2小时、大于或等于4小时、大于或等于6小时、大于或等于8小时、大于或等于10小时、大于或等于12小时、和/或多至18小时、多至24小时、多至30小时、或者更长时间。
样品体积
在本公开内容的上下文中已经确定,捕获物体暴露于其中的溶液(例如,流体样品)的体积可影响分析物分子相对于捕获物体变得固定的程度。将捕获物体暴露于相对较大体积的溶液(例如,在孵育步骤中)可提供一种使用具有相对较少捕获物体(例如,少于或等于50,000个、少于或等于10,000个、少于或等于5,000个、或者更少)的相对较稀的溶液(例如,来自稀释样品)的方法。认为在一些情况下,在暴露步骤期间较大体积的溶液可通过提供较大数目的可相对于捕获物体固定的分析物分子或颗粒而导致相对较高的测定灵敏度(例如,与使用较小体积的另一些等同测定相比)。然后,较大数目的分析物可提高在测定期间的可检测物质/捕获物体的比率(例如,每个珠的平均酶),并且潜在地提高测定灵敏度。在一些实施方案中,含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液(例如,流体样品)的体积为大于或等于50微升、大于或等于100微升、大于或等于200微升、大于或等于300微升、和/或大至400微升、大至500微升、大至1mL、或者更大。
空间分离捕获物体和对捕获物体寻址
在一些实施方案中,测定方法采用将捕获物体空间分离到多个独立位置的步骤以便于检测/定量。在一些这样的实施方案中,进行分离以使每个位置包括/包含来自流体样品的零个或者一个或更多个分析物分子或颗粒。另外,在一些实施方案中,可以以使得每个位置可被单独寻址的方式配置位置。在一些实施方案中,可通过检测相对于对至少一种类型的分析物分子或颗粒(例如,特定类型的分子或颗粒)具有亲和力的结合表面固定的分析物分子或颗粒来确定流体样品中分析物分子或颗粒的浓度的度量值。在某些实施方案中,结合表面(例如,基底上的测定位点(例如孔/反应容器)的表面)可形成以下或者包含在以下中:基底(例如,板、皿、芯片、光纤末端、通道表面、盘、测定消耗品表面等)上的多个位置(例如,测定位点例如孔/反应容器)中的一个位置(例如,相对于测定位点(例如孔)固定的捕获物体(例如珠)的表面)。可对至少一部分位置进行寻址并且可产生指示与来自流体样品的至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值。在一些情况下,至少部分地基于指示所述数目或分数的度量值,可确定流体样品中分析物分子或颗粒的浓度的度量值。在一些情况下,浓度的度量值可至少部分地基于被确定为包含正与或曾与至少一个分析物分子或颗粒缔合的捕获物体的位置的数目或分数。如本领域普通技术人员已知的,流体样品中分析物分子或颗粒的浓度的度量值可通过数字化分析方法/系统来确定,所述数字化分析方法/系统任选地采用泊松分布调节和/或至少部分地基于测量的信号强度。例如,在其中指示被确定为与分析物分子或颗粒缔合的捕获物体的数目或分数的度量值表示相对较低的百分比(例如,小于或等于80%、小于或等于70%、小于或等于50%、或者更小)的一些实施方案中,可至少部分地使用数字化分析方法(任选地采用泊松分布调节)来确定流体样品中分析物分子或颗粒的浓度的度量值。然而,在其中指示被确定为与分析物分子或颗粒缔合的捕获物体的数目或分数的度量值被确定为表示相对较高的百分比(例如,大于或等于50%、大于或等于60%、大于或等于70%、大于或等于80%、大于或等于90%)的一些实施方案中,可至少部分地基于指示存在分析物分子或颗粒的至少一种信号(例如,荧光信号)的强度水平的测量来确定指示流体样品中分析物分子或颗粒的浓度的度量值。在一些实施方案中,该方法包括,基于指示与来自流体样品的至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值,至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值来确定流体样品中分析物分子或颗粒的浓度的度量值,或者至少部分地基于指示存在多种分析物分子或颗粒的信号的测量强度水平来确定流体样品中分析物分子或颗粒的浓度的度量值。在某些实施方案中,被配置和编程为进行该测定并确定指示流体样品中分析物分子或颗粒的浓度的度量值的自动化系统可被编程为:首先确定指示被确定与分析物分子或颗粒缔合的捕获物体的分数——例如显示阳性信号传导状态和/或捕获位点平均强度水平的测定位点分数——的度量值,并且自动地(或手动地响应于提供给使用者的提示)切换采用哪种测量和定量技术(即,数字化分析方法——任选地采用泊松分布调节,或基于模拟强度水平的方法)。例如,Rissinet al.的美国专利申请序列No.13/037,987中描述了单独或组合使用这样的数字化和/或“模拟”方法来用于确定指示分析物分子或颗粒的浓度的度量值,所述专利申请于2011年3月1日提交,在2011年10月6日作为US-2011-0245097公布,标题为“METHODS AND SYSTEMSFOR EXTENDING DYNAMIC RANGE IN ASSAYS FOR THE DETECTION OF MOLECULES ORPARTICLES”,其出于所有目的通过引用整体并入本文。在一些情况下,测定方法和/或系统可以是自动化的。
应理解,尽管在一些情况下,指示与至少一个分析物或分子缔合的捕获物体的数目或分数的度量值可至少部分地通过对独立的位置(例如,测定位点)进行寻址来确定,但是确定指示所述数目或分数的度量值的另一些技术也是可以的。例如,在一些实施方案中,进行了暴露和固定步骤的捕获物体中的至少一些被单独寻址(例如,通过与剩余的捕获物体单独分离)。单独对捕获物体寻址而不必将捕获物体空间分离到多个独立位置中的一种非限制性方式是通过使至少一些捕获物体流动通过通道(例如,相对于流动方向具有小于或等于1mm、小于或等于500微米或者更小的最大横截面尺寸的微通道)并对流动的捕获物体进行寻址。例如,捕获物体可流动通过检测器(例如,光学检测器)并被相应地寻址。
在一些实施方案中,捕获物体(例如,其中一些可与至少一个分析物分子或颗粒缔合,并且任选地)可作为独立的微滴或作为包含在微滴内的物体(例如,通过使用流体技术例如微流体技术进行分离)来提供。在一些这样的实施方案中,捕获物体包括液滴或者各自包含在液滴内,所述液滴混悬在与液滴不混溶的流体中。至少在对捕获物体单独寻址(例如,通过检测器)的步骤期间,液滴可混悬在与液滴不混溶的流体中。在一些情况下,液滴可作为阵列提供(例如,通过如在基本上平坦的表面上进行空间分离)。然而,在一些情况下,液滴可通过流动通过通道(例如,微通道)并且在流动通过通道的同时被查询来被单独寻址。可查询微滴的一种方法是使微滴流动通过检测器。例如,检测器可以是光学检测器。在一些这样的实施方案中,微滴相对于固定的检测位置被暂时分离,例如通过流动通过通道(例如,在寻址步骤期间)经过这样的检测位置。尽管在一些情况下微滴可以以单行流动,但单行流动并不是在所有情况下必需的。例如,微滴可被收集在层中并且所有微滴基本上同时成像。
空间分离高百分比的捕获物体
在一些实施方案中,相对较高百分比的捕获物体被空间分离到多个独立的位置(例如,测定位点如反应容器)中。这样的方法与超灵敏检测领域中普遍存在的实践相反,在普遍存在的实践中,暴露于分析物分子或颗粒的捕获物体(例如,对特定类型的分子或颗粒具有亲和力)的总数目的通常相对较小百分比(例如,小于20%)的捕获物体被分离到独立的位置中(例如,通过相对于测定位点被固定)并且大量过量的捕获物体被丢弃。因此,普遍存在的方法集中于相对于高百分比的位置来固定捕获物体,代价是使用大量过量的捕获物体。相反,在一些情况下,通过将高百分比的捕获物体空间分离到独立的位置中,可以在测定中使用相对较小总数目的捕获物体,从而提高了灵敏度。在一些实施方案中,进行了上述暴露和固定步骤的至少25%、至少30%、至少50%、至少60%、至少75%、至少90%、至少95%、至少99%、或全部的捕获物体(例如,对特定类型的分子或颗粒具有亲和力)被空间分离到多个独立的位置(例如,测定位点如反应容器)中。
采用空间分离分析物分子或颗粒的某些方法和系统是本领域已知并且可被采用(在根据本公开内容进行适当修改的情况下),并且在以下中进行了描述:Walt et al.的美国专利申请公开No.US-2007-0259448(序列No.11/707,385),其于2007年2月16日提交,标题为“METHODS AND ARRAYS FOR TARGET ANALYTE DETECTION AND DETERMINATION OFTARGET ANALYTE CONCENTRATION IN SOLUTION”;Walt et al.的美国专利申请公开No.US-2007-0259385(序列No.11/707,383),其于2007年2月16日提交,标题为“METHODS ANDARRAYS FOR DETECTING CELLS AND CELLULAR COMPONENTS IN SMALL DEFINED VOLUMES”;Walt et al.的美国专利申请公开No.US-2007-0259381(序列No.11/707,384),其于2007年2月16日提交,标题为“METHODS AND ARRAYS FOR TARGET ANALYTE DETECTION ANDDETERMINATION OF REACTION COMPONENTS THAT AFFECT A REACTION”;Walt et al.的国际专利公开No.WO 2009/029073(国际专利申请No.PCT/US2007/019184),其于2007年8月30日提交,标题为“METHODS OF DETERMINING THE CONCENTRATION OF AN ANALYTE INSOLUTION”;Duffy et al.的美国专利申请公开No.US-2010-0075862(序列No.12/236484),其于2008年9月23日提交,标题为“HIGH SENSITIVITY DETERMINATION OF THECONCENTRATION OF ANALYTE MOLECULES OR PARTICLES IN A FLUID SAMPLE”;Duffy etal.的美国专利申请公开No.US-2010-00754072(序列No.12/236,486),其于2008年9月23日提交,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES ON SINGLE MOLECULEARRAYS”;Duffy et al.的美国专利申请公开No.US-2010-0075439(序列No.12/236488),其于2008年9月23日提交,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES BY CAPTURE-AND-RELEASE USING REDUCING AGENTS FOLLOWED BY QUANTIFICATION”;Duffy et al.的国际专利公开No.WO2010/039179(国际专利申请No.PCT/US2009/005248),其于2009年9月22日提交,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES OR ENZYMES”;Duffy etal.的美国专利申请公开No.US-2010-0075355(序列No.12/236490),其于2008年9月23日提交,标题为“ULTRA-SENSITIVE DETECTION OF ENZYMES BY CAPTURE-AND-RELEASEFOLLOWED BY QUANTIFICATION”;Duffy et al.的美国专利申请序列No.12/731,130,其于2010年3月24日提交,在2011年9月1日公开为US-2011-0212848,标题为“ULTRA-SENSITIVEDETECTION OF MOLECULES OR PARTICLES USING BEADS OR OTHER CAPTURE OBJECTS”;Duffy etal.的国际专利申请No.PCT/US2011/026645,其于2011年3月1日提交,在2011年9月9日公开为WO 2011/109364,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES ORPARTICLES USING BEADS OR OTHER CAPTURE OBJECTS”;Duffy et al.的国际专利申请No.PCT/US2011/026657,其于2011年3月1日提交,在2011年9月9日公开为WO 2011/109372,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES USING DUAL DETECTION METHODS”;Duffy et al.的美国专利申请序列No.12/731135,其于2010年3月24日提交,在2011年9月1日公开为US-2011-0212462,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES USINGDUAL DETECTION METHODS”;Rissin et al.的国际专利申请No.PCT/US2011/026665,其于2011年3月1日提交,在2011年9月9日公开为WO 2011/109379,标题为“METHODS ANDSYSTEMS FOR EXTENDING DYNAMIC RANGE IN ASSAYS FOR THE DETECTION OF MOLECULESOR PARTICLES”;Duffy et al.的美国专利申请序列No.12/731136,其于2010年3月24日提交,在2011年9月1日公开为US-2011-0212537,标题为“METHODS AND SYSTEMS FOREXTENDING DYNAMIC RANGE IN ASSAYS FOR THE DETECTION OF MOLECULES ORPARTICLES”;Fournier et al.的美国专利申请序列No.13/035,472,其于2011年2月25日提交,公开为US 2012-0196774,标题为“SYSTEMS,DEVICES,AND METHODS FOR ULTRA-SENSITIVE DETECTION OF MOLECULES OR PARTICLES”;Rissin et al.的美国专利申请序列No.13/037,987,其于2011年3月1日提交,在2011年10月6日公开为US-2011-0245097,标题为“METHODS AND SYSTEMS FOR EXTENDING DYNAMIC RANGE IN ASSAYS FOR THEDETECTION OF MOLECULES OR PARTICLES”;其各自出于所有目的通过引用整体并入本文。
在一些实施方案中,还确定了指示包含捕获物体但所述捕获物体不与分析物分子或颗粒缔合的位置的数目或分数的度量值,和/或还确定了指示不包含任何捕获物体的位置的数目或分数的度量值。在一些这样的实施方案中,流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于被确定为包含与分析物分子或颗粒缔合的捕获物体的位置的数目与被确定为包含不与分析物分子或颗粒缔合的捕获物体的位置的总数目的比率,和/或流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于被确定为包含与分析物分子或颗粒缔合的捕获物体的位置的数目与被确定为不包含任何捕获物体的位置的数目的比率,和/或流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于被确定为包含与分析物分子或颗粒缔合的捕获物体的位置的数目与被确定为包含捕获物体的位置的数目的比率。在另一些实施方案中,流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于被确定为包含捕获物体和分析物分子或颗粒的位置的数目与被寻址和/或分析的位置的总数目的比率。
在某些实施方案中,至少一些捕获物体(例如,与来自流体样品的至少一个分析物分子或颗粒缔合的至少一些捕获物体)被空间分离到多个位置(例如,阵列形式的测定位点如反应容器)中。反应容器可在任何合适的材料中形成、在其上形成和/或由其形成,并且在一些情况下,反应容器可被密封或者可在使基底与密封组件配对之后形成,如下面更详细讨论的。在某些实施方案中,尤其是在期望对与至少一个分析物分子或颗粒缔合的捕获物体进行定量的情况下,可进行捕获物体的划分(partitioning),以使至少一些(例如,统计学上显著分数;例如,如Duffy et al.的国际专利申请No.PCT/US2011/026645中所述的,其于2011年3月1日提交,在2011年9月9日公开为WO 2011/109364,标题为“ULTRA-SENSITIVEDETECTION OF MOLECULES OR PARTICLES USING BEADS OR OTHER CAPTURE OBJECTS”,其出于所有目的通过引用并入本文)的反应容器包括至少一个或在某些情况下仅一个与至少一个分析物分子或颗粒缔合的捕获物体,以及至少一些(例如,统计学上显著分数)的反应容器包括不与任何分析物分子或颗粒缔合的捕获物体。在某些实施方案中,可对与至少一个分析物分子或颗粒缔合的捕获物体进行定量,从而允许通过本文中更详细描述的技术对流体样品中分析物分子或颗粒进行检测和/或定量。
示例性的测定方法可如下进行。提供了含有或怀疑含有分析物分子或颗粒的溶液。该溶液可以是流体样品(例如,生物流体或来源于生物流体)。包括测定位点(例如,以阵列形式)的测定消耗品暴露于该溶液。在一些情况下,分析物分子或颗粒以这样的方式(例如,浓度)提供:所述方式(例如,浓度)使得至少一些(例如,统计学上显著分数)的测定位点包含单个分析物分子或颗粒,并且统计学上显著分数的测定位点不包含任何分析物分子或颗粒。测定位点可任选地暴露于多种试剂(例如,使用试剂加载器)和/或冲洗。然后可任选地密封测定位点并成像(使用在本公开内容中或在例如Fournier et al.的美国专利申请序列No.13/035,472中所述的系统或方法,所述专利申请于2011年2月25日提交,公开为US2012-0196774,标题为“SYSTEMS,DEVICES,AND METHODS FOR ULTRA-SENSITIVEDETECTION OF MOLECULES OR PARTICLES”)。然后对图像进行分析(例如,使用计算机实施的控制系统),以使流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于包含分析物分子或颗粒的测定位点的数目或分数和/或不包含任何分析物分子或颗粒的数目或分数的度量值的确定来获得。在一些情况下,分析物分子或颗粒以这样的方式(例如,浓度)提供:所述方式(例如,浓度)使得至少一些测定位点包含多于一个分析物分子或颗粒。在一些这样的实施方案中,流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于指示在一个或更多个测定位点处存在多个分析物分子或颗粒的至少一种信号的强度水平来获得。
在一些情况下,该方法任选地包括将流体样品暴露于珠(例如,对特定类型的分子或颗粒具有亲和力)(例如,磁珠)。如上所述,珠(例如,对特定类型的分子或颗粒具有亲和力)的总数目可相对较小(例如,小于或等于50,000)。至少一些分析物分子或颗粒相对于珠被固定。在一些情况下,分析物分子或颗粒以这样的方式(例如,浓度)提供:所述方式(例如,浓度)使得统计学上显著分数的珠与单个分析物分子或颗粒缔合并且统计学上显著分数的珠不与任何分析物分子或颗粒缔合。然后,可将至少一些珠(例如,与单个分析物分子或颗粒缔合或者不与任何分析物分子或颗粒缔合的那些)空间分离/隔离,使得其相对于测定位点(例如,测定消耗品的测定位点)被固定。测定位点(例如,包括反应容器)可任选地暴露于多种试剂和/或冲洗。然后,可对至少一些测定位点进行寻址,以确定包含分析物分子或颗粒的测定位点的数目。在一些情况下,还可确定包含不与分析物分子或颗粒缔合的珠的测定位点的数目、不包含珠的测定位点的数目和/或被寻址的测定位点的总数目。然后,一些这样的测定可用于确定流体样品中分析物分子或颗粒的浓度的度量值。在一些情况下,多于一个分析物分子或颗粒可与珠缔合和/或多于一个珠可存在于测定位点中。在一些情况下,在空间分离至少一些分析物分子或颗粒之前、在该空间分离的同时和/或在该空间分离之后,将分析物分子或颗粒暴露于至少一种另外的反应组分,使得它们相对于测定位点固定。
可直接检测或间接检测分析物分子或颗粒。在直接检测的情况下,分析物分子或颗粒可包含可直接查询和/或检测的分子或部分(例如,荧光实体)。在间接检测的情况下,使用另外的组分用于确定分析物分子或颗粒的存在。例如,分析物分子或颗粒(例如,任选地与珠缔合)可暴露于至少一种类型的结合配体。在某些实施方案中,结合配体可适于被直接检测(例如,结合配体包含可检测分子或部分)或可适于被间接检测(例如,包括可将前体标记剂转化为标记剂的组分)。在其中结合配体的组分包含可测量特性(例如,荧光发射、颜色等)的一些实施方案中,所述组分可适于被直接检测。结合配体的组分可促进间接检测,例如,通过将前体标记剂转化为标记剂(例如,在测定中检出的试剂)。“前体标记剂”是在暴露于合适的转化剂(例如,酶组分)之后可转化为标记剂的任何分子、颗粒等。“标记剂”是通过充当被检测实体使用所选择的检测技术促进检测的任何分子、颗粒等。在一些实施方案中,结合配体可包含酶组分(例如,辣根过氧化物酶、β-半乳糖苷酶、碱性磷酸酶等)。第一类型的结合配体可与或可不与另外的结合配体(例如,第二类型等)联合使用。
可在任何测定方法中采用多于一种类型的结合,例如,第一类型的结合配体和第二类型的结合配体。在一个实例中,第一类型的结合配体能够与第一类型的分析物分子或颗粒缔合并且第二类型的结合配体能够与第一结合配体缔合。在另一个实例中,第一类型的结合配体和第二类型的结合配体二者均可与分析物分子或颗粒的相同或不同的表位缔合。
在一些实施方案中,结合配体和/或分析物分子或颗粒可包含酶组分。酶组分可将前体标记剂(例如,酶底物)转化为标记剂(例如,可检测产物)。然后,流体样品中分析物分子或颗粒的浓度的度量值可至少部分地基于确定与标记剂缔合的捕获物体的数目或分数(例如,通过将包含标记剂的位置的数目与包含捕获物体的位置的数目相关联)来确定。用于检测的系统或方法的另一些非限制性实例包括如下的一些实施方案:其中核酸前体被复制成多个拷贝或被转化为可容易检测的核酸(例如,通过引入可检测部分(例如荧光部分))。一些这样的方法包括聚合酶链式反应(polymerase chain reaction,PCR)、滚环扩增(rolling circle amplification,RCA)、连接、环介导等温扩增(LAMP)等。这样的系统和方法是本领域普通技术人员已知的,例如,如在“DNA Amplification:Current Technologiesand Applications,”Vadim Demidov et al.,2004中所述。
在一些实施方案中,结合配体包含颗粒。例如,结合配体可包含具有对特定类型分析物分子或颗粒具有亲和力的表面的颗粒(例如,通过具有如下的分子来进行:所述分子固定至对特定类型分析物分子或颗粒具有亲和力的表面),所述特定类型分析物分子或颗粒与捕获物体针对其具有亲和力的那些特定类型分析物分子或颗粒相同。在一些实施方案中,将分析物分子或颗粒相对于具有对所述特定分析物分子或颗粒具有亲和力的表面的捕获物体固定,并且包含对所述相同分析物分子或颗粒具有亲和力的颗粒的结合配体相对于所固定的分析物分子或颗粒变得固定,导致包含捕获物体和结合配体的复合体各自与分析物分子或颗粒缔合。在一些实施方案中,第一结合配体相对于所固定的分析物分子或颗粒变得固定,并且包含颗粒的第二结合配体相对于所固定的第一结合配体变得固定。在一些实施方案中,可检测与结合配体缔合的颗粒。可通过多种技术中的任一种来检测与结合配体缔合的颗粒。例如,检测包含颗粒的结合配体的存在(并且因此检测固定的分析物分子或颗粒的存在)可包括检测来自该颗粒的电磁辐射的发射。作为一个这样的实例,与结合配体缔合的颗粒可通过光照射被激发,并且颗粒可通过可被检测的荧光来发射电磁辐射。量子点和半导体聚合物点(Pdot)是可采用的荧光颗粒类型的实例。在一些实施方案中,颗粒通过光子升频转换来发射电磁辐射,其中两个或更多个较低能量的入射光子被颗粒(例如,纳米尺寸的纳米粒)吸收并转换成一个具有较高能量(较短波长)的发射光子。这样的升频转换纳米粒是已知的,并且包括例如包含掺杂的镧系元素和锕系元素的过渡金属的纳米粒。在一些实施方案中,包含颗粒的结合配体的存在可通过电磁辐射散射(例如,光散射)来检测,例如通过使用与结合配体缔合的等离子体颗粒。作为一个具体的这样的实例,等离子体颗粒可以是金纳米粒,其光散射可受到与其他物质(例如分析物分子或颗粒)结合的影响。在一些实施方案中,结合配体可与磁性(例如,超顺磁性或铁磁性)颗粒缔合,并且检测存在所述颗粒可涉及与颗粒相关的磁现象(例如,检测来自磁性颗粒或受磁性颗粒影响的磁场)。根据例如所采用的检测技术可使用多种类型和/或尺寸的颗粒中的任一种。颗粒可以是例如最大横截面尺寸小于或等于100nm的纳米粒,或者所述颗粒可以更大(例如,横截面尺寸大于或等于100nm且小于或等于100微米的珠)。
间接检测的另一个示例性实施方案如下。在一些情况下,将分析物分子或颗粒暴露于前体标记剂(例如,酶底物)并且酶底物在暴露于分析物分子或颗粒之后被转化为可检测产物(例如,荧光分子)。
测定方法和系统可采用本领域普通技术人员已知和理解的多种组件、步骤和/或其他方面。例如,方法还可包括确定至少一个背景信号测定(例如,并且还包括从其他测定结果中减去背景信号)、洗涤步骤等。在一些情况下,测定或系统可包括使用至少一种结合配体,如本文中所述。在一些情况下,流体样品中分析物分子或颗粒的浓度的度量值至少部分地基于所测量的参数与校准曲线的比较。可使用包含已知浓度的靶标分析物分子或颗粒的样品来绘制校准曲线。在一些情况下,校准曲线至少部分地通过确定至少一个校准因子来形成。
在某些实施方案中,可采用溶解的或混悬的前体标记剂,其中前体标记剂被转化为不溶于液体和/或在该位置内/附近(例如,在测定位点(标记剂形成在其中)如反应容器内)变得固定的标记剂。一些这样的前体标记剂和标记剂及其用途描述于Duffy et al.共同拥有的美国专利申请公开No.US-2010-0075862(序列No.12/236484)中,其于2008年9月23日提交,标题为“HIGH SENSITIVITY DETERMINATION OF THE CONCENTRATION OFANALYTE MOLECULES OR PARTICLES IN A FLUID SAMPLE”,其出于所有目的通过引用并入本文。
可用于本发明的某些实施方案中的测定方法的一个示例性实施方案在图6A中示出。提供了捕获物体202(步骤(A))。在该实例中,捕获物体包含多个珠。珠被暴露于含有分析物分子203的流体样品(例如,珠202与分析物分子203一起孵育)。至少一些分析物分子相对于珠被固定。在该实例中,分析物分子以这样的方式(例如,浓度)提供:所述方式(例如,浓度)使得统计学上显著分数的珠与单个分析物分子缔合并且统计学上显著分数的珠不与任何分析物分子缔合。例如,如步骤(B)中所示,分析物分子204相对于珠205被固定,从而形成复合体206,而一些珠207不与任何分析物分子缔合。应理解,在一些实施方案中,多于一个分析物分子可与至少一些珠缔合,如本文中所述。然后,可将多个珠(例如,与单个分析物分子缔合或不与任何分析物分子缔合的那些)中的至少一些空间分离/隔离到多个独立的位置中。如步骤(C)中所示,多个位置被示出为包括多个为孔/反应容器209形式的测定位点的基底208。在该实例中,每个反应容器包含零个或一个珠。然后,可对至少一些反应容器进行寻址(例如,光学地或通过其他检测手段)以确定包含与分析物分子缔合的珠的位置的数目。例如,如步骤(D)中所示,使用光源215光学地查询多个反应容器,其中每个反应容器被暴露于来自光源215的电磁辐射(由箭头10表示)。从每个反应容器发射的光(由箭头211表示)通过检测器215(在该实例中,与光源215位于同一系统中)来确定(和/或记录)。基于从反应容器检测到的光,确定指示包含与分析物分子缔合的珠的反应容器(例如,反应容器212)的数目或分数的度量值。在一些情况下,还可确定指示包含不与分析物分子缔合的珠的反应容器(例如,反应容器213)的数目或分数的度量值、指示不包含珠(例如,反应容器214)的孔的数目或分数的度量值和/或指示被寻址的孔的总数目的度量值。然后,这样的测定结果可用于确定流体样品中分析物分子的浓度的度量值。
图6B中示出了一个其中捕获物体与多于一个分析物分子缔合的实施方案的非限制性实例。提供了捕获物体220(步骤(A))。在该实例中,捕获物体包含珠。珠被暴露于包含分析物分子221的流体样品(例如,珠220与分析物分子221一起孵育)。至少一些分析物分子相对于珠被固定。例如,如步骤(B)中所示,分析物分子222相对于珠224被固定,从而形成复合体226。还示出了包含相对于三个分析物分子被固定的珠的复合体230和包含相对于两个分析物分子被固定的珠的复合体232。另外,在一些情况下,一些珠可不与任何分析物分子缔合(例如,珠228)。来自步骤(B)的珠被暴露于结合配体231。如步骤(C)中所示,结合配体与相对于珠固定的一些分析物分子缔合。例如,复合体240包含珠234、分析物分子236和结合配体238。结合配体以这样的方式提供:所述方式使得统计学上显著分数的、包含至少一个分析物分子的珠与至少一个结合配体(例如,一个、两个、三个等)缔合,并且统计学上显著分数的、包含至少一个分析物分子的珠不与任何结合配体缔合。然后,将来自步骤(C)的多个珠中的至少一些空间分离到多个独立的位置中。如步骤(D)中所示,在该实例中,所述位置包括在基底242上的反应容器241形式的测定位点。可将多个反应容器暴露于来自步骤(C)的珠,以使每个反应容器包含零个或一个珠。然后可对基底进行分析以确定指示包含结合配体的反应容器(例如,反应容器243)的数目或分数的度量值,其中该数目或分数可与流体样品中分析物分子的浓度的度量值相关联。在一些情况下,还可确定指示包含珠但不包含结合配体的反应容器(例如,反应容器244)的数目或分数的度量值、指示不包含珠的反应容器(例如,反应容器245)的数目或分数的度量值、和/或被寻址/分析的反应容器的总数目。然后,一些这样的测定结果可用于确定流体样品中分析物分子的浓度的度量值。
多路测定
应理解,虽然在一些实施方案中,检测/定量了单一类型的分析物分子或颗粒(“单路(singleplex)”),但是在另一些实施方案中,检测/定量了多于一种类型的分析物分子或颗粒(“多路(multiplex)”)。所述的涉及在分析物暴露期间使用相对较少数目的捕获物体和/或空间分离相对较高百分比的捕获物体的某些方法在这样的多路测定中可以是特别有利的。例如,涉及检测或确定第一类型的分析物分子或颗粒和第二类型的分析物分子或颗粒二者的浓度的常规多路测定可涉及使用比单路测定中更大数目的捕获物体。当相对较大数目的捕获物体被用于第一类型的分析物分子或颗粒和第二类型的分析物分子或颗粒中的每一者时,参与多路测定的另一些捕获物体可导致非常大总数目的对任何类型的分析物分子或颗粒具有亲和力的捕获物体,这可使得在测定位点中加载和密封捕获物体变得困难或不切实际(由于高的固体质量不能容易地用油推离表面),或者可导致高水平的捕获物体聚集(例如,在测定装置中)。然而,在对每种类型的分析物分子或颗粒具有亲和力的捕获物体的数目相对较少(例如,少于或等于50,000、少于或等于10,000、或更少)的情况下,涉及的总捕获物体较少,因此例如将捕获物体密封在测定位点中的步骤可用油来实现并且具有极少或没有聚集。另外,已知与不同分析物或颗粒相关的信号和结合事件可由于“串流(cross-talk)”(例如,在测定位点阵列中基本上同时检测期间)而使不同分析物的检测复杂化。在本公开内容的上下文中已经认识到,使用相对较少数目的捕获物体可降低或消除这样的串流(例如,通过在固定的捕获物体之间产生更大的距离)。一些这样的多路测定还受益于灵敏度的提高,由于使用较少数目的捕获物体(例如,珠)用于捕获每一单独的分析物。
在一些实施方案中,可采用用于不同分析物靶标之分析物捕获的不同的捕获物体。在一些情况下,捕获物体的总组的不同亚组具有不同的结合特异性(例如,通过包括具有不同结合特异性的表面)。在这些实施方案中,可在单个多路测定方法中定量和/或检测多于一种类型的分析物分子。例如,上述捕获物体可以是各自对第一类型的分析物分子或颗粒具有亲和力的第一捕获物体,该方法还可包括将各自对第二类型的分析物分子具有亲和力的第二捕获物体暴露于溶液。在暴露于包含第一类型的分析物分子和第二类型的分析物分子的样品之后,第一类型的分析物分子相对于第一捕获物体变得固定,并且第二类型的分析物分子相对于第二捕获物体变得固定。第一捕获物体和第二捕获物体可通过包括不同的可检测特性而被编码成可彼此区分(例如,以便于在检测时区分)。例如,捕获物体的每个亚组可具有不同的荧光发射、光谱反射率、形状、光谱吸收或者FTIR发射或吸收。在一些具体实施方案中,捕获物体的总组的每个亚组包含一种或更多种染料化合物(例如,荧光染料)但处于不同的浓度水平,使得捕获物体的每个亚组具有独特的信号(例如,基于荧光发射的强度)。在涉及空间分离的一些实施方案中,在捕获步骤之后将捕获物体空间分离到多个用于检测的位置中之后,通过检测不同的特性,可将包含与第一类型的分析物分子缔合的第一捕获物体的位置与包含与第二类型的分析物分子缔合的第二捕获物体的位置区分开。可确定包含捕获物体的每个亚组的位置的数目和/或与分析物分子缔合的捕获物体的数目,从而允许至少部分地基于这些数目来确定流体样品中第一类型的分析物分子和第二类型的分析物分子二者的浓度的度量值。应理解,虽然一些多路方法可涉及检测两种不同类型的分析物分子或颗粒(例如,第一类型的分析物分子或颗粒和第二类型的分析物分子),但是一些方法还包括检测较大数目的不同类型的分析物分子或颗粒(例如,第三类型的分析物分子或颗粒、第四类型的分析物分子或颗粒,等等)。多路测定可涉及检测至少1、至少2、至少3、至少4、至少5、至少10、至少20、至少50、和/或多至100、多至120、多至150种、或者更多种不同类型的分析物分子或颗粒。测定中采用的对任何类型的分析物分子或颗粒具有亲和力的捕获物体的总数目可与待检测的不同类型的分析物分子或颗粒的数目成比例。例如,单路测定可涉及50,000或更少的总捕获物体(各自对特定类型的分析物分子或颗粒具有亲和力),而“双路(duplex)”测定可涉及100,000或更少的总捕获物体(50,000或更少的对第一类型的分析物分子或颗粒具有亲和力的捕获物体和50,000或更少的对第二类型的分析物分子或颗粒具有亲和力的捕获物体)。在一些多路测定中,在暴露于溶液的步骤期间,捕获物体的每个亚组(对不同类型的分析物分子或颗粒具有亲和力的每个亚组)中的捕获物体的数目小于或等于50,000、小于或等于25,000、小于或等于10,000、小于或等于5,000、小于或等于2,000、和/或低至1,000、低至500、低至200、低至100、或者更低)。在一些实施方案中,在暴露于溶液的步骤期间,对任何类型的分析物分子或颗粒具有亲和力的捕获物体的总数目小于或等于100,000、小于或等于80,000、小于或等于60,000、小于或等于50,000、小于或等于25,000、小于或等于10,000、小于或等于5,000、和/或低至2,000、低至1,000、低至500、低至200、低至100、或者更低。
在一些实施方案中,可基本上同时寻址多个位置和/或可基本上同时检测多个目标捕获物体和/或物质/分子/颗粒。当在上下文中使用时,“基本上同时”是指在大约相同的时间寻址/检测目标位置/捕获物体/物质/分子/颗粒,使得寻址/检测至少两个目标位置/捕获物体/物质/分子/颗粒期间的时间段重叠,这与顺序寻址/检测相反,在这种情况下时间段不重叠。通过使用多种技术,包括光学技术(例如,CCD或CMOS检测器),可实现同时寻址/检测。根据一些实施方案,将捕获物体和分析物分子或颗粒空间分离到多个离散的、可分辨的位置中通过允许多个位置被基本上同时地寻址而促进了基本上同时的检测。例如,对于其中单个分析物分子或颗粒与在检测期间相对于其他捕获物体被空间分离到多个离散的、可单独分辨的位置中的捕获物体缔合的一些实施方案,基本上同时寻址多个离散的、可单独分辨的位置允许单个捕获物体被分辨,并由此单个分析物分子或颗粒被分辨。例如,在某些实施方案中,多个分析物分子/颗粒中的单个分析物分子/颗粒被划分到多个反应容器中,以使每个反应容器包含零个或仅一个物质/分子/颗粒。在一些情况下,全部分析物分子或颗粒的至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%、至少99.5%相对于其他分析物分子或颗粒被空间分离。可在以下时间段内基本上同时地检测多个分析物分子或颗粒:小于或等于1秒、小于或等于500毫秒、小于或等于100毫秒、小于或等于50毫秒、小于或等于10毫秒、小于或等于1毫秒、小于或等于500微秒、小于或等于100微秒、小于或等于50微秒、小于或等于10微秒、小于或等于1微秒、小于或等于0.5微秒、小于或等于0.1微秒、小于或等于0.01微秒、小于或等于0.001微秒、或者更短。在一些实施方案中,可在以下时间段内基本上同时地检测多个分析物分子或颗粒:约100微秒至约0.001微秒、约10微秒至约0.01微秒、或者更短。
在一些实施方案中,捕获物体和/或位置被光学查询。表现出其光学特征的变化的捕获物体和/或位置可通过常规的光学系统和光学检测系统来鉴定。根据所检测的物质(例如,荧光实体的类型等)和有效波长,针对特定波长设计的滤光器可被用于位置的光学查询。在其中使用光学查询的一些实施方案中,系统可包括多于一个光源和/或多个过滤器,以调节光源的波长和/或强度。在一些实施方案中,使用CCD或CMOS照相机捕获来自多个位置的光学信号。
在本发明的一些实施方案中,测定位点(例如,反应容器)可例如通过使基底和密封组件配对而被密封(例如,在引入捕获物体、分析物分子或颗粒、结合配体和/或前体标记剂之后)。密封测定位点(例如,反应容器)可使得每个测定位点的内容物在测定的剩余时间内不会从测定位点逃逸。在一些情况下,可在添加捕获物体以及任选地至少一种类型的前体标记剂之后密封测定位点(例如,反应容器),以便于检测分析物分子或颗粒。对于采用前体标记剂的一些实施方案,通过密封一些或每个测定位点(例如,反应容器)中的内容物,可在测定位点(例如,反应容器)内进行产生可检测标记剂的反应,从而产生可检测量的标记剂,所述标记剂保留在测定位点中用于检测。
在一些实施方案中,至少一些(例如,子集或全部)测定位点不被密封(例如,在引入捕获物体、分析物分子或颗粒、结合配体和/或前体标记剂之后)。在一些这样的情况下,测定的检测信号产生过程不产生自由扩散的可检测分子(例如,标记剂),从而避免了由于标记剂扩散离开其他捕获物体而导致在捕获物体处的信号的扩散相关干扰(这可降低测定的准确性)。例如,在一些实施方案中,标记剂由前体标记剂产生并相对于捕获物体和/或捕获物体处或其附近的其他表面固定(例如,通过化学键或沉淀),如下面更详细描述的。标记剂的这样的固定可在产生信号的捕获物体上或其附近产生空间上固定的可检测信号,所述信号不从产生分析物信号的捕获物体(例如,与分析物分子或颗粒缔合的那些)明显扩散到产生无分析物信号的捕获物体(例如,不与任何分析物分子或颗粒缔合的那些)。在一些实施方案中,在测定或测定的某些步骤期间(例如,在寻址步骤期间)小于或等于50%、小于或等于25%、小于或等于10%、小于或等于5%、小于或等于2%、小于或等于1%、或者没有测定位点被密封。因此,在一些实施方案中,用于固定捕获物体和/或进行本文中所述测定的装置不需要包括密封器。
可使用多种方法和/或材料形成多个位置(例如,测定位点)。在一些实施方案中,多个位置包括基底上反应容器/孔形式的测定位点。在一些情况下,反应容器在一些情况下可形成为第一表面上的凹陷阵列。然而,在另一些情况下,反应容器可通过使包括多个凹陷的密封组件与基底配对来形成,所述基底可具有无特征的表面或者包括与密封组件上的凹陷对齐的凹陷。任何装置组件,例如基底或密封组件,可由柔顺材料(compliant material)例如弹性聚合物材料制成,以有助于密封。表面可以是或被制成疏水性的或者包含疏水性区域。在一些情况下,疏水性可降低水性样品从反应容器(例如,微孔)泄漏。在某些实施方案中,反应容器可被配置成仅接收和容纳单个捕获物体(例如,珠)。
在一些实施方案中,测定位点(例如,反应容器)可全部具有大致相同的体积。在另一些实施方案中,测定位点(例如,反应容器)可具有不同的体积。每个单独的测定位点(例如,反应容器)的体积可被选择成适于促进任何特定的测定方案。例如,在其中期望将相对于每个位点固定的用于分析物捕获的捕获物体的数目限制至小数目的一组实施方案中,测定位点(例如,反应容器)的体积可为阿托升或更小至纳升或更大,这取决于捕获物体的性质、所采用的检测技术和设备、基底上测定位点(例如,反应容器)的数目和密度以及施加至包含孔的基底的流体中捕获物体的预期浓度。在一个实施方案中,可选择测定位点(例如,反应容器)的尺寸,使得用于分析物分子或颗粒捕获的仅单个捕获物体可完全包含在测定位点(例如,反应容器)内(参见,例如,Duffy et al.的美国专利申请序列No.12/731,130,其于2010年3月24日提交,在2011年9月1日公开为US-2011-0212848,标题为“ULTRA-SENSITIVE DETECTION OF MOLECULES OR PARTICLES USING BEADS OR OTHER CAPTUREOBJECTS”;Duffy et al.的国际专利申请No.PCT/US2011/026645,其于2011年3月1日提交,在2011年9月9日公开为WO 2011/109364,标题为“ULTRA-SENSITIVE DETECTION OFMOLECULES OR PARTICLES USING BEADS OR OTHER CAPTURE OBJECTS”,其各自出于所有目的通过引用并入本文)。
测定中采用的位置的总数目和/或位置的密度(例如,阵列中反应容器的数目/密度)可取决于阵列的组成和最终用途。如上所述,所采用的测定位点(例如,反应容器)的数目可取决于所采用的分析物分子或颗粒和/或结合配体的类型或数目、测定的所怀疑浓度范围、检测方法、捕获物体的尺寸、检测实体(例如,溶液中的游离标记剂、沉淀标记剂等)的类型。在一些实施方案中,暴露于含有或怀疑含有至少一种分析物分子或颗粒的溶液的捕获物体的数目小于或等于测定中采用的位置的数目(例如,表面上的测定位点(例如为阵列形式)的数目)。在一些实施方案中,暴露于含有或怀疑含有至少一种分析物分子或颗粒的溶液的捕获物体的数目与测定中采用的单独位置(例如,测定位点)的数目的比率小于或等于1:1、小于或等于1:2、小于或等于1:3、小于或等于1:4、小于或等于1:5、小于或等于1:10、小于或等于1:20、小于或等于1:30、小于或等于1:40、和/或低至1:50、低至1:100、低至1:1000、低至1:2000、低至1:5000、或者更低。
可通过利用多种技术和材料来制成包含约20亿至数十亿个测定位点(例如,反应容器)(或反应容器的总数目)的阵列。提高测定位点(例如,反应容器,任选地为阵列形式的反应容器)的数目可提高测定的动态范围或者允许平行地测定多个样品或多种类型的分析物。对于每个待分析的样品,阵列可包括一千至一百万个测定位点(例如,反应容器)。在一些情况下,阵列包括大于一百万个测定位点(例如,反应容器)。在一些实施方案中,阵列包括1,000至约50,000、1,000至1,000,000、1,000至10,000、10,000至100,000、100,000至1,000,000、100,000至500,000、1,000至100,000、50,000至100,000、20,000至80,000、30,000至70,000、40,000至60,000个测定位点(例如,反应容器)。在一些实施方案中,阵列包括10,000、20,000、50,000、100,000、150,000、200,000、300,000、500,000、1,000,000、或者更多个测定位点(例如,反应容器)。测定位点(例如,反应容器)可具有在上述任何范围内的体积(例如,大于或等于10阿托升且小于或等于100皮升、大于或等于1飞母托升且小于或等于1皮升)。
任选地为阵列形式的测定位点(例如,反应容器)可布置在基本上平坦的表面上或在非平面三维排列中。测定位点(例如,反应容器)可以以规则图案排列或者可随机分布。在一个具体实施方案中,阵列是在允许位点以X-Y坐标平面被寻址的基本上平坦的表面上的规则图案的位点。
在一些实施方案中,在固体材料上和/或固体材料中形成测定位点(例如,反应容器)。固体材料可以是例如本文中所述的测定消耗品的一部分。这样的固体材料可以是疏水性物质或者包含疏水性物质。如本领域技术人员所理解的,可在其中形成反应容器的潜在合适材料的数目非常多,并且包括但不限于玻璃(包括改性和/或功能化玻璃)、塑料(包括丙烯酸、聚苯乙烯和苯乙烯与其他材料的共聚物、聚丙烯、聚乙烯、聚丁烯、聚氨酯、环烯烃共聚物(cyclic olefin copolymer,COC)、环烯烃聚合物(cyclic olefin polymer,COP)、
Figure BDA0003998994720000691
多糖、尼龙或硝化纤维素等)、弹性体(例如聚(二甲基硅氧烷)和聚氨基甲酸乙酯)、复合材料、陶瓷、二氧化硅或二氧化硅基材料(包括硅和改性硅)、碳、金属、光纤束等。可选择基底材料以允许光学检测而没有可感知的自体荧光。在某些实施方案中,测定位点(例如,反应容器)可由柔性材料形成。
表面(例如,基底或密封组件)中的反应容器可使用本领域已知的多种技术包括但不限于光刻(photolithography)、冲压技术、成型技术、蚀刻技术等形成。如本领域普通技术人员所理解的,所使用的技术可取决于支持材料的组成和形状以及反应容器的尺寸和数目。在一个具体实施方案中,通过在光纤束的一端产生微孔并利用平坦的柔顺表面作为密封组件来形成反应容器的阵列。
在一些实施方案中,所述的测定和方法可在市售系统例如Simoa HD-1AnalyzerTM、Simoa HD-X AnalyzerTM和Quanterix SR-XTM(QuanterixTM,Lexington,Massachusetts)上进行。另参见Fournier et al.的美国专利申请序列No.13/035,472,其于2011年2月25日提交,公开为US 2012-0196774,标题为“SYSTEMS,DEVICES,AND METHODS FOR ULTRA-SENSITIVE DETECTION OF MOLECULES OR PARTICLES”,其通过引用并入本文。在一些情况下,可对Simoa HD-1AnalyzerTM和Quanterix SR-XTM进行修改,以促进上述关于力场的产生和使流体塞流动的某些方法和系统。
或者,可使用不利用光纤束的末端作为基底的其他方法和材料来制造反应容器的等效结构。例如,阵列可以是通过本领域已知技术产生的点样、印刷或光刻制造的基底;参见例如WO95/25116;WO95/35505;PCT US98/09163;美国专利No.5,700,637、5,807,522、5,445,934、6,406,845、和6,482,593,其各自出于所有目的通过引用并入本文。在一些情况下,可使用本领域普通技术人员已知的成型、压花和/或蚀刻技术来产生阵列。
在一些实施方案中,多个位置包括不是多个反应容器/孔的测定位点。例如,在其中采用捕获物体的一些实施方案中,可采用图案化的基本上平坦的表面,并且图案化的区域形成多个位置。在一些情况下,图案化的区域可包括基本上亲水的表面,所述表面主要被基本上疏水的表面包围。在某些实施方案中,捕获物体(例如,珠)可主要被基本上亲水的介质(例如,包含水)包围,并且捕获物体可暴露于图案化的表面,以使捕获物体在图案化的区域(例如,表面上的亲水位置)中相关联,从而使珠空间分离。例如,在一个这样的实施方案中,基底可以是或者包括能够对质量运输提供足够屏障(例如,对流屏障和/或扩散屏障)的凝胶或其他材料,以防止用于分析物捕获的捕获物体和/或前体标记剂和/或标记剂从材料上或材料中的一个位置移动至另一位置,从而在寻址位置和完成测定所需的时间框架期间引起包含不同捕获物体的空间位置之间的干扰或串流。例如,在一个实施方案中,通过将捕获物体分散在水凝胶材料上和/或水凝胶材料中来空间分离捕获物体。在一些情况下,前体标记剂可能已经存在于水凝胶中,从而促进标记剂局部浓度的形成(例如,在暴露于携带酶组分的结合配体或分析物分子之后)。作为另一个实施方案,捕获物体可被限制在一个或更多个毛细管中。在一些情况下,捕获物体可被吸收或定位在多孔或纤维基底(例如滤纸)上。在一些实施方案中,捕获物体可被空间分离到均匀表面(例如,平坦表面)上,并且可使用前体标记剂来检测捕获物体,所述前体标记剂被转化为基本上不溶的或沉淀的标记剂,所述标记剂保持定位在相应捕获物体所定位的位置处或其附近。在一些情况下,单个分析物分子或颗粒可被空间分离到多个液滴中。也就是说,单个分析物分子或颗粒可基本上包含在包含第一流体的液滴中。液滴可基本上被第二流体包围,其中第二流体基本上不与第一流体混溶。
相对于捕获物体的固定标记剂
在一些实施方案中,前体标记剂被转换成相对于捕获物体变得固定的标记剂。作为一个实例,可将可自由扩散的前体试剂暴露于相对于分析物分子或颗粒固定的结合配体,所述分析物分子或颗粒本身相对于捕获物体(例如,珠)被固定。所述可自由扩散的前体试剂可进行由结合配体的组分(例如,酶组分)促进的化学反应以形成这样的标记剂:其在形成之后或在进一步的化学或物理转化和/或易位(例如,进一步的化学反应和/或沉积)之后,相对于这样的捕获物体(例如,珠)变得固定,使得该标记剂不从捕获物体自由扩散。固定的标记剂可在捕获物体处(例如,在捕获物体上)产生指示存在与捕获物体缔合的至少一个分析物分子或颗粒的可检测信号(例如,发射电磁辐射,例如来自荧光)。在一些这样的实施方案中,然后可确定指示具有至少一个固定的标记剂的捕获物体的数目或分数的度量值。然后,可至少部分地基于指示被确定为具有至少一个固定的标记剂的捕获物体的数目或分数的度量值,确定特定分析物分子或颗粒的浓度的度量值。
在本公开内容的上下文中已经认识到,固定的标记剂(与可自由扩散的标记剂相反)可允许简化样品操纵和/或检测方案。例如,缺乏可自由扩散的标记剂可有助于不涉及将捕获物体和标记剂密封在空间上和流上体分离的测定位点(例如,密封的反应容器,例如密封的微孔)中的捕获物体检测方法,因为,至少部分地,固定的标记剂不会可感知地从与其缔合的捕获物体扩散开从而干扰来自不与任何分析物分子或颗粒缔合的捕获物体的信号检测(所述干扰可导致指示与分析物分子或颗粒缔合的捕获物体的数目或分数的不准确度量值,并因此导致如上所述的分析物分子或颗粒的浓度的不准确度量值)。
在一些实施方案中,将前体标记剂转换成相对于与分析物分子或颗粒缔合的捕获物体固定的标记剂的过程发生在将捕获物体空间分离到多个独立的位置(例如,独立的测定位点,例如独立的反应容器)中之前。在一些实施方案中,将前体标记剂转换成相对于与分析物分子或颗粒缔合的捕获物体固定的标记剂的过程发生在将捕获物体空间分离到多个独立的位置(例如,平坦表面上的独立的测定位点,例如独立的反应容器或独立的位置)中之后。
由前体标记剂产生的标记剂可以以多种方式中的任一种相对于捕获物体变得固定。例如,捕获物体可具有这样的固体表面:在其上在由前体标记剂形成标记剂时或之后标记剂可变得固定。这样的固定可通过在标记剂与附着于捕获物体的官能团(例如,附着于珠表面的官能团)之间形成化学键来发生。这样的化学键可以是共价键。在一些实施方案中,标记剂相对于捕获物体的固定通过非共价相互作用发生。一个这样的实例是标记剂与附着于捕获物体表面的物质(例如,生物分子、官能团)之间基于亲和力的特异性结合相互作用。在一些实施方案中,在标记剂和与捕获物体缔合的物质之间形成化学键之后,可检测部分相对于标记剂被固定。例如,在固定标记剂期间和/或之后,添加的可检测部分可通过共价键或非共价相互作用(例如,杂交或非共价特异性亲和缔合)与固定的标记剂缔合。在一些实施方案中,标记剂通过与捕获物体表面的非特异性化学或物理相互作用来被固定。例如,在一些实施方案中,标记剂通过形成与捕获物体结合或以其他方式与捕获物体缔合的基本上不溶的或沉淀的物质来被固定。例如,标记剂可基本上不溶于捕获物体存在于其中的液体,或者标记剂可以以高于标记剂溶解极限的局部浓度存在,使得标记剂沉淀或以其他方式沉积在捕获物体上(例如,作为捕获物体表面上的膜或颗粒沉淀物)。
作为涉及通过结合配体的酶组分将前体标记剂转化为相对于捕获物体固定的标记剂的一些实施方案的一组具体说明性实例,将讨论具有包含辣根过氧化物酶(horseradish peroxidase,HRP)的组分的结合配体。HRP是用于多种测定的常见酶组分并且是本领域普通技术人员已知的。HRP可以是能够与分析物分子或颗粒缔合的结合配体和/或另外的结合配体(其可进而能够与分析物分子或颗粒缔合)的酶组分。作为一个非限制性实例,其中分析物分子是抗原,结合配体可以是HRP标记的抗体或链霉抗生物素蛋白缀合物。在一些情况下,HRP将前体标记剂分子转化为在操作条件下基本上不溶的标记剂分子,并沉淀到捕获物体上。前体标记剂的许多实例是已知的并且包括通常用于Western印迹应用的那些,例如氯萘酚和/或二氨基联苯胺。在一些情况下,沉淀物是允许该沉淀物被光学检测的深色分子。例如,当深色沉淀物与缺乏这样的深色沉淀物的捕获物体的表面吸收不同的光时,可使用光来检测该沉淀物。
包含酶组分(例如,HRP)的结合配体可与前体标记剂分子(例如,酶底物)联合使用,所述前体标记剂分子在转化为标记剂分子(例如,可检测产物)时可被固定(例如,通过与附着于捕获物体表面的官能团形成化学键)。例如,HRP在过氧化氢存在下催化酪胺转化为可相对于某些捕获物体的材料变得固定的活化的酪胺(例如,作为自由基)。例如,捕获物体可具有包含官能团(例如,含羟基的基团,例如酚基)的表面,所述官能团可与活性酪胺的自由基反应以形成将酪胺连接至捕获物体表面的共价键。典型地,短寿命(<1毫秒)的活化的酪胺可阻止活化的酪胺显著扩散远离其形成位点(例如,在一些情况下,标记半径被限制为20nm)。以这样的方式,大多数或全部酪胺分子将倾向于相对于与具有辣根过氧化物酶组分的结合配体缔合的捕获物体局部固定。在一些实施方案中,前体标记剂例如酪胺分子被附着至便于检测的任何种类的分子或颗粒。例如,酪胺分子可附着至染料(例如,荧光染料)。因此,相对于捕获物体固定(例如,通过固定的标记剂)的染料的存在可用于检测与这样的捕获物体缔合的分析物分子的存在。在一些情况下,酪胺向活化的酪胺的转化可导致与酪胺缔合的组分变得可检测(例如,可导致非荧光组分在活化之后发荧光)。因为HRP催化性地激活酪胺分子,所以如果提供足够量的反应物,则相对于捕获物体固定(例如,通过分析物分子或颗粒)的单个结合配体的HRP组分可产生许多激活的酪胺分子(其中一些或全部可与捕获物体形成共价键,或者以其他方式相对于捕获物体变得固定),这可在捕获物体处形成放大的信号。作为补充或替代,固定的酪胺可形成用于固定另外的结合配体的位点,所述另外的结合配体包含对酪胺具有亲和力的HRP组分。另外结合的HRP组分可进一步激活变得附着于捕获物体的酪胺分子,从而进一步放大信号。例如,酪胺-生物素可用于标记捕获物体,随后用与染料缔合的链霉抗生物素蛋白进行标记,以用于荧光检测。
涉及通过结合配体的酶组分将前体标记剂转化为相对于捕获物体固定的标记剂的一些实施方案的另一个具体说明性实例涉及具有包含磷酸酶的组分的结合配体。作为其中分析物分子是抗原的一个非限制性实例,结合配体可以是磷酸酶标记的抗体或链霉抗生物素蛋白缀合物。磷酸酶组分可用于例如介导酶标记的荧光(Enzyme-LabeledFluorescence,ELF)信号放大。在ELF检测中,结合配体可具有碱性磷酸酶或酸性磷酸酶组分,并且前体标记剂包含ELF 97磷酸分子(2-(5’-氯-2-磷酰基氧基苯基)-6-氯-4(3H)-喹唑啉酮)。暴露于磷酸酶组分可将ELF 97磷酸(其是具有淡蓝色荧光信号的水溶性分子)转化为具有明亮黄绿色荧光的水不溶性ELF 97醇。水不溶性ELF 97可通过形成荧光沉淀物而充当标记剂,所述荧光沉淀物可相对于捕获物体变得固定(例如,在ELF 97醇沉淀物沉积在捕获物体上之后)。来自捕获物体上(或靠近捕获物体)的ELF 97沉淀物的荧光可指示至少一个分析物分子或颗粒与该捕获物体缔合。
将前体标记剂转化为固定的标记剂的另一个说明性实例是使用滚环扩增(RCA)。在一些这样的实施方案中,包含寡核苷酸引物的结合配体(例如,抗体)能够与分析物分子或颗粒结合(例如,与捕获物体(例如珠)缔合)。这样的结合配体可以是例如具有与抗体连接的单链DNA寡核苷酸引物(例如,在抗体重链的末端)的抗体。包含寡核苷酸引物的结合配体在相对于捕获物体固定时可暴露于具有与该引物互补的序列的环状DNA模板。环状DNA模板的互补序列可通过将引入的所添加核苷酸(前体标记剂)转化成互补序列的拷贝(例如,在DNA聚合酶存在下)而被拷贝,所述互补序列作为延伸的寡核苷酸(或多核苷酸)链变得与结合配体连接。使用环状DNA模板可制备大量(例如数百个)这样的互补序列拷贝,导致相对于捕获物体固定相对较长的多核苷酸链(例如,通过结合配体)。可通过具有与所添加的互补核苷酸连接的可检测部分(在一些情况下,许多可检测部分)例如荧光探针,所得单链多核苷酸链可用作标记剂,所述所添加的互补核苷酸与延伸的多核苷酸链中的一些或全部拷贝核苷酸序列结合。
在一些实施方案中,与固定的标记剂缔合的捕获物体被空间分离(例如,通过被划分)。在某些情况下,捕获物体被划分到反应容器(例如,微孔)形式的多个测定位点中。这样的空间分离可发生在固定标记剂之前或之后。在一些实施方案中,反应容器可以是密封的,但是在另一些实施方案中可保持未密封。在一些实施方案中,与固定的标记剂缔合的捕获物体被限制在液滴中。在一些这样的实施方案中,液滴被空间分离。在一些这样的情况下,液滴被布置在平坦表面上。在一些这样的实施方案中,液滴相对于固定的检测位置暂时分离,例如通过流动通过通道(例如,在寻址步骤期间)经过这样的检测位置。在一些实施方案中,将与固定的标记剂缔合的捕获物体空间分离到平坦表面上(例如,以形成捕获物体的有序阵列或随机分布,这取决于测定的具体形式)。
流体样品中分析物分子或颗粒的浓度以及测定的灵敏度
所述方法和系统可提供用于检测或定量具有相对较低浓度的分析物分子或颗粒的流体样品中分析物分子或颗粒的技术。在一些实施方案中,流体样品中分子或颗粒(例如,特定类型的分子或颗粒)的浓度小于或等于50×10-15M、小于或等于10×10-15M、小于或等于5×10-15M、小于或等于1×10-15M、小于或等于500×10-18M、小于或等于100×10-18M、小于或等于50×10-18M、小于或等于10×10-18M、小于或等于5×10-18M、小于或等于2×10-18M、和/或低至1×10-18M、低至500×10-21M、低至100×10-21M、低至50×10-21M、低至40×10-21M、或者更低。
本文中所述的方法或系统可提供用于检测或定量流体样品中分析物分子或颗粒的测定,其特征在于对分析物分子或颗粒的检测水平(level of detection,LOD)相对较低。测定的LOD通常是指分析物分子或颗粒的这样的浓度:在所述浓度下,产生相对于背景高出三个标准偏差的信号。在一些实施方案中,测定方法的特征在于对于分析物分子或颗粒(例如,特定类型的分子或颗粒)的检测水平小于或等于50×10-15M、小于或等于10×10- 15M、小于或等于5×10-15M、小于或等于1×10-15M、小于或等于500×10-18M、小于或等于100×10-18M、小于或等于50×10-18M、小于或等于10×10-18M、小于或等于5×10-18M、小于或等于2×10-18M、和/或低至1×10-18M、低至500×10-21M、低至100×10-21M、低至50×10-21M、低至40×10-21M、或者更低。
如本领域技术人员将理解的,可使用所述方法和系统来检测以及任选地定量许多类型的分析物分子和颗粒;基本上,可使用这些方法和系统中的至少一些来潜在地研究能够被相对于捕获物体变得固定的任何分析物分子。下面提到了可包含分析物分子的某些更具体的潜在感兴趣的靶标。下面的列表是示例性的且非限制性的。
在一些实施方案中,分析物分子是蛋白质或者包括蛋白质。例如,分析物分子可以是酶。酶的一些非限制性实例包括氧化还原酶、转移酶、激酶、水解酶、裂解酶、异构酶、连接酶等。酶的另一些实例包括但不限于聚合酶、组织蛋白酶、钙蛋白酶、氨基转移酶例如如AST和ALT、蛋白酶例如如胱天蛋白酶、核苷酸环化酶、转移酶、脂肪酶、与心脏病发作相关的酶等。当本文中的系统/方法用于检测病毒或细菌物质时,合适的靶标酶包括病毒或细菌聚合酶和另一些这样的酶,包括病毒或细菌蛋白酶等。
在另一些实施方案中,分析物分子包含酶组分。例如,分析物颗粒可以是具有存在于其胞外表面上的酶或酶组分的细胞。或者,分析物颗粒是在其表面上没有酶组分的细胞。这样的细胞通常使用下面所述的间接测定方法来鉴定。酶组分的一些非限制性实例是辣根过氧化物酶、β-半乳糖苷酶和碱性磷酸酶。
在一些实施方案中,分析物分子包含生物分子。生物分子的一些非限制性实例包括激素、抗体、细胞因子、蛋白质、核酸、脂质、碳水化合物、脂质细胞膜抗原和受体(神经受体、激素受体、营养素受体和细胞表面受体)或其配体,或这些的组合。蛋白质的一些非限制性实施方案包括肽、多肽、蛋白质片段、蛋白质复合物、融合蛋白、重组蛋白、磷蛋白、糖蛋白、脂蛋白等。如本领域技术人员将理解的,使用本发明可检测或评价大量可能的蛋白质分析物分子的结合配偶体。除了以上讨论的酶之外,合适的蛋白质分析物分子包括但不限于免疫球蛋白、激素、生长因子、细胞因子(其中许多用作细胞受体的配体)、癌症标志物等。生物分子的一些非限制性实例包括PSA、TNF-α、肌钙蛋白和p24、IL-17A、IL-12p70和干扰素α(IFN-α)。
在一些实施方案中,分析物分子是生物标志物或者包含生物标志物。例如,分析物可以是神经学生物标志物或者包含神经学生物标志物。合适的神经生物学生物标志物的一些实例包括但不限于tau蛋白、神经原纤维素(neurofilament light,NF-L)、胶质细胞原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)和泛素羧基端水解酶L1(UCH-L1)。
在某些实施方案中,分析物分子是翻译后修饰蛋白质(例如,磷酸化、甲基化、糖基化)或者包含翻译后修饰蛋白质(例如,磷酸化、甲基化、糖基化)并且捕获组分包含对翻译后修饰具有特异性的抗体。经修饰蛋白质可用包含多种特异性抗体的捕获组分捕获,并随后捕获的蛋白质可进一步与包含对翻译后修饰具有特异性的二抗的结合配体结合。或者,可用包含对翻译后修饰具有特异性的抗体的捕获组分捕获经修饰蛋白质,并随后捕获的蛋白质可进一步与包含对每种经修饰蛋白质具有特异性的抗体的结合配体结合。
在一些实施方案中,分析物分子是核酸或者包含核酸。核酸可用互补核酸片段(例如,寡核苷酸)捕获,并随后任选地随后用包含不同互补寡核苷酸的结合配体标记。
合适的分析物分子和颗粒包括但不限于小分子(包括有机化合物和无机化合物)、环境污染物(包括农药(pesticide)、杀虫剂(insecticide)、毒素等)、治疗性分子(包括治疗性和滥用性药物、抗生素等)、生物分子(包括激素、细胞因子、蛋白质、核酸、脂质、碳水化合物、细胞膜抗原和受体(神经受体、激素受体、营养素受体和细胞表面受体)或其配体等)、全细胞(包括原核细胞(例如致病菌)和真核细胞,包括哺乳动物肿瘤细胞)、病毒(包括逆转录病毒、疱疹病毒、腺病毒、慢病毒等)、孢子等。
含有或怀疑含有分析物分子的流体样品可来源于任何合适的来源。在一些情况下,样品可包含液体、流动的微粒状固体、固体颗粒的流体混悬液、超临界流体和/或气体。在一些情况下,分析物分子可在测定前从其来源分离或纯化;然而,在某些实施方案中,可直接测试包含分析物分子的未处理样品。分析物分子的来源可以是合成的(例如,在实验室中产生)、环境(例如,空气、土壤等)、哺乳动物、动物、植物、或其任意组合。在一个具体实例中,分析物分子的来源是人体物质(例如,血液、血清、血浆、尿、唾液、粪便、组织、器官等)。所分析的流体样品的体积可以是宽体积范围内的任何合适的量,这取决于以下因素:例如如使用/可用的捕获物体的数目、使用/可用的位置的数目等。如上所述,在一些实施方案中,使用与现有方法相比相对较大的样品体积。
集成微流体消耗品和系统
如上所述,用于进行测定的装置可集成一些或全部所描述的组件。例如,装置可包括样品输入组件和捕获物体储存器(例如,容器、室)。该装置还可包括一个或更多个试剂储存器,例如用于包含一种或更多种结合配体的溶液的储存器(例如,容器、室),其中一些试剂储存器可包含转化剂,例如酶组分。在一些实施方案中,该装置包含用于将捕获物体暴露于样品流体的室(例如,以允许捕获物体与来自样品流体的一个或更多个分析物分子或颗粒孵育)。该装置还可包括样品洗涤器,该样品洗涤器被配置成制备来自流体样品的分析物分子或颗粒和捕获物体以用于检测(例如,经由通过冲洗流体进行的一个或更多个洗涤步骤)。样品洗涤器还可用于将捕获物体(其中一些捕获物体可与至少一个分析物分子或颗粒缔合)暴露于一个或更多个结合配体和/或转化剂(例如,酶组分)。在一些但不一定是全部实施方案中,该装置可包括测定消耗品操作器,该测定消耗品操作器被配置成与测定消耗品有效联接。在一些实施方案中,测定消耗品操作器和测定消耗品被配置成用于使用本公开内容中描述的方法固定捕获物体。例如,测定消耗品可具有包括测定位点(例如,各自具有10阿托升至100皮升的体积)的表面。测定消耗品操作器还可包括捕获物体施加器,该捕获物体施加器被配置成将捕获物体施加至测定消耗品的表面或表面附近(例如,表面上的测定位点(如果存在的话)附近)。在一些这样的实施方案中,测定消耗品操作器还包括力场发生器,该力场发生器与测定消耗品相邻并且被配置成在表面附近(例如,测定位点附近)产生力场。此外,测定消耗品操作器可包括流体注射器,该流体注射器被配置成产生当在测定消耗品的表面上时具有各自与不混溶流体(例如,气体例如空气)相邻的第一弯月面和第二弯月面的流体塞(例如,包含水溶液)。然而,在一些实施方案中,捕获物体可在未被空间上分离到不同位置(例如,测定位点)中的情况下被查询,并且测定消耗品可被配置成用于例如寻址捕获物体,该捕获物体包括或包含在被如上所述的不混溶流体包围的液滴内。在一些实施方案中,测定消耗品操作器包括流体泵,该流体泵能够使流体移动通过测定消耗品的表面。在一些实施方案中,在测定消耗品操作器和/或测定消耗品中包括用于其他试剂和/或组分例如前体标记剂(例如,酶底物)的储存器,以及密封组件(例如,液体密封组件)。在涉及测定位点(例如,作为阵列)的一些实施方案中,测定消耗品操作器可被配置成将包含固定的捕获物体和前体标记剂的测定位点密封。测定消耗品操作器还可包括成像系统,该成像系统包括检测器和光学器件以用于检测来自捕获物体(例如,来自测定位点、来自液滴等)的信号。在一些实施方案中,测定消耗品操作器还包括控制器,该控制器包括被配置成调节流体泵以使流体移动通过测定消耗品的表面的一个或更多个处理器。测定消耗品操作器还可包括计算机实施的控制系统,该计算机实施的控制系统被配置成从成像系统接收信息,并确定指示分析物或分子浓度的度量值。应理解,这样的集成装置可以是例如自动化机器人系统的形式,或者是微流体系统的形式(例如,在芯片上存在一些或所有上述组件)。
被配置成检测/定量流体样品中分析物分子或颗粒的集成微流体装置可以是多种形式中的任一种。在一些实施方案中,本文中所述的某些组件可存在于为微流体芯片形式的测定消耗品上。图7A至图7B分别示出了一个这样的实施方案的俯视示意图和透视示意图。图7A至图7B示出了根据某些实施方案的为微流体芯片形式的测定消耗品315。测定消耗品315包括样品输入室301、捕获物体储存器302、结合配体室303、转化剂室304、样品孵育室305、结合配体和转化剂孵育室306、样品洗涤器室306、密封组件室308、检测区域309和前体标记剂室310。微流体芯片的多个室和区域能够经由图7A至图7B中作为实线例如实线311示出的一个或更多个微流体通道形成流体连接。流体移动可使用本公开内容中描述的某些技术(例如,通过流体泵提供的负压差和/或正压差(例如,真空)、毛细管流动技术、电泳技术、数字化微流体技术(例如,电介质上电润湿)等)来实现,并且可通过本领域已知的阀和其他微流体组件的适当配置来控制。合适的测定的一个实施方案可包括经由样品输入室301将样品流体加载到测定消耗品315中,并且使样品流体从样品输入室301流至样品孵育室305。也可使加载到捕获物体室302中的捕获物体(例如,珠)(例如,作为预包装的捕获物体或手动加载的捕获物体)流入样品孵育室305中(例如,经由缓冲溶液)。可在样品孵育室305中进行孵育步骤,在那里捕获物体可暴露于来自样品流体的分析物分子或颗粒,并且进行如以上测定中描述的固定步骤。同时地或在不同的时间点,可使结合配体室304中包含结合配体的溶液和包含转化剂(例如,酶组分)的溶液各自流入结合配体和转化剂孵育室306,在那里可进行孵育步骤(和随后的缔合)。可使捕获物体(其中至少一些捕获物体可与至少一个分析物分子或颗粒缔合)流入样品洗涤器室307,在那里捕获物体可与来自室306的经孵育的结合配体/转化剂组合。在样品洗涤器室307中,过量的分析物分子或颗粒和/或其他溶液组分可经由一种或更多种冲洗流体(例如,缓冲液)被除去,并且可被允许与结合配体和转化剂缔合。在制备之后,可将捕获物体引导流至检测区域309,在那里捕获物体可被查询。在一些实施方案中,捕获物体可相对于检测区域309中测定消耗品315的表面上的测定位点固定,例如,使用涉及力场发生器和/或具有后退弯月面的流体塞流的上述固定方法。然而,在一些实施方案,例如在其中捕获物体在检测区域309中被分离成被不混溶流体包围的独立液滴的某些实施方案中,捕获物体可作为阵列被查询,或者可在它们流动通过经过与检测区域309有效联接的成像系统(未示出)的通道(例如,单行)时被查询。在涉及捕获物体在检测区域309中相对于测定位点固定的一些实施方案中,可在捕获物体固定之后将来自前体标记剂室310的前体标记剂引至检测室309。此外,在一些实施方案中,可发生密封步骤,在密封步骤中,在捕获物体固定之后使来自密封组件室308的密封组件(例如,密封液体)流入检测区域309,从而将测定位点(例如,在检测之前)密封。然后,可使用成像系统和计算机实施的控制系统来获取和分析图像,并确定指示分析物分子或颗粒浓度的度量值。在某些实施方案中,如图7A和7B所示的微流体芯片可被设计成与机器人测定消耗品操作器配对,由机器人测定消耗品操作器操纵和操作。在另一些实施方案中,这样的微流体芯片可独立使用和/或由操作者以手动方式使用。
在一些实施方案中,如图7A和7B所示的微流体芯片可被配置成使用如上所述来自非均匀电场的介电电泳力将捕获物体相对于测定位点(例如,在检测区域309中)相关联(例如,固定)。在一些这样的实施方案中,使用数字化微流体技术(例如,电介质上电润湿技术)将流体塞输送至检测区域(例如,检测区域309)。例如,微流体芯片的检测区域和/或通道的至少一部分可包括导电固体(例如,电极),该导电固体与电源导电地或电感地电连通,并且与测定消耗品的表面相邻。向导电固体施加电压可以引起流体塞移动通过微流体芯片的表面的至少一部分(例如,从导电固体到导电固体)(例如,移动至检测区域309中的测定位点)。
液体处理技术
所描述的基于捕获物体的测定可使用在一些情况下可以降低或避免捕获物体损失的制备步骤来进行。如上所述,在采用相对较少的捕获物体的测定中,测定期间捕获物体的损失可能是特别不利的。在一些实施方案中,测定的一个或更多个步骤包括将捕获物体与分析物分子或颗粒在液体中混合(例如,缔合或未缔合)以形成捕获物体混悬液,随后除去液体。这些步骤可包括将捕获物体初始暴露于流体样品、将捕获物体暴露于试剂(例如,结合配体)和/或洗涤步骤。在本公开内容的上下文中已经确定,当使用常规的液体除去技术进行时,这样的液体暴露和除去过程可能是捕获物体损失的来源。现在描述的某些液体除去技术(例如,在样品洗涤之后)可避免或降低捕获物体的这样的损失。
在一些实施方案中,可提供捕获物体。在一些实施方案中,提供相对较少的捕获物体(例如,少于或等于10,000个、少于或等于5,000个,和/或少至2,000个、少至1,000个、或更少)。可以制备这些捕获物体和来自流体样品的分析物分子或颗粒以用于检测。用于检测的制备可包括一个或更多个过程步骤,其包括:(1)将捕获物体与分析物分子或颗粒在液体中混合以形成捕获物体混悬液,以及(2)向捕获物体混悬液施加力以从捕获物体混悬液中除去液体。在一些实施方案中,这些制备步骤可在合适的容器中进行,所述容器包括但不限于板(例如96孔板、384孔板等)上的孔、试管、Eppendorf管等。
在一些实施方案中,一个这样的两部分过程(two-part process)包括将捕获物体暴露于包含分析物分子或颗粒的流体样品,其中该溶液提供液体(例如,水性溶剂例如缓冲液或样品介质)。然后,该过程将包括从所得捕获物体混悬液中除去液体(例如,以形成捕获物体的丸粒(pellet),其中至少一些捕获物体与至少一个分析物分子或颗粒缔合)。
在一些实施方案中,一个这样的两部分过程包括使捕获物体(其中至少一些捕获物体与至少一个分析物分子或颗粒缔合)在包含结合配体的溶液中重悬的后续步骤,其中该溶液提供液体。然后,该过程将包括从所得捕获物体混悬液中除去液体(例如,以形成捕获物体的丸粒,其中至少一些捕获物体与至少一个分析物分子或颗粒以及至少一个结合配体缔合)。
在一些实施方案中,一个这样的两部分过程包括使用洗涤溶液的洗涤步骤,其中洗涤溶液提供液体。在某些实施方案中,洗涤溶液被选择成使得其不会引起捕获物体和/或分析物分子或颗粒的配置的可感知变化,和/或不会破坏测定的至少两个组分(例如,捕获组分与分析物分子或颗粒)之间的任何特异性结合相互作用。在另一些情况下,洗涤溶液可以是被选择成与一种或更多种测定组分进行化学相互作用的溶液。如本领域普通技术人员将理解的,洗涤步骤可在所述方法期间的任何合适的时间点进行。例如,可在将捕获物体暴露于包含分析物分子、结合配体、前体标记剂等的一种或更多种溶液之后洗涤捕获物体。作为另一个实例,在将分析物分子或颗粒相对于多个捕获物体固定之后,可使捕获物体进行洗涤步骤,从而除去未相对于捕获物体特定固定的任何分析物分子。在其中两部分过程包括洗涤步骤的一些实施方案中,该过程然后将包括从所得捕获物体/洗涤溶液混悬液中除去来自洗涤溶液(例如,水性缓冲液)的液体(例如,以形成经洗涤的捕获物体的丸粒,其中至少一些经洗涤的捕获物体与至少一个分析物分子或颗粒和/或至少一个结合配体缔合)。
在本公开内容的上下文中已经确定,上述两部分过程中施加一定的力以除去液体可以以在一些情况下损失相对较少的捕获物体的方式进行。特别地,在一些实施方案中,向捕获物体混悬液施加力,其中该力不包括经由捕获物体混悬液与力图除去液体的真空源的流体连接向捕获物体混悬液施加负压。捕获物体混悬液与力图除去液体的真空源的流体连接可包括自动或手动吸取/注射上层清液。然而,包括经由流体连接施加真空的这样的方法在一些情况下可以将捕获物体从混悬液中吸出,从而提供捕获物体损失的来源。相比之下,已经发现施加其他类型的力来避免这样的问题。例如,在一些实施方案中,向捕获物体混悬液施加离心力,并且离心力有助于除去液体。在一些实施方案中,所描述的装置包含样品洗涤器,该样品洗涤器被配置成施加这样的力以从捕获物体混悬液中除去洗涤溶液。例如,参照图8,样品洗涤器90可被配置成向捕获物体混悬液施加离心力。样品洗涤器90可被配置成通过包括力场发生器来实现这一点,该力场发生器能够在捕获物体附近产生作用于捕获物体的力场,使得捕获物体抵抗由为了除去液体(例如,洗涤溶液)而施加的力引起的运动。作为一个实例,图8示出了包括容器710的样品洗涤器90,该容器710包括液体720中的捕获物体100。容器710的旋转(如由箭头700所示)可引起离心力705以从容器710中除去液体720。在一些实施方案中,力场发生器740(例如,磁体)可以产生由矢量场745表示的作用于捕获物体100(例如,磁珠)的力场(例如,磁场),因此捕获物体抵抗由离心力705引起的运动。如样品洗涤器90的系统是可商购获得的,例如可从BlueCatBio,Inc获得的
Figure BDA0003998994720000811
洗涤器。
在一些实施方案中,样品洗涤器包括能够在捕获物体附近产生电场的力场发生器。电场可作用于捕获物体。例如,电场可作用于捕获物体使得捕获物体抵抗由为了除去液体而施加的力场引起的运动。电场还可用于促进样品制备期间(例如,在微孔板中,在样品洗涤器中等)捕获物体的其他操作,例如混合、丸粒化和/或重悬(例如,在捕获物体的丸粒化之后)。在一些实施方案中,力场发生器被配置成使用介电电泳产生作用于捕获物体的电场(例如,通过产生非均匀电场)。力场发生器可被配置成使得电场可以提供吸引力或排斥力(取决于例如电场的频率(即来自交流电的场的频率))。这样的配置可允许在样品制备过程的不同点处向捕获物体施加不同的介电电泳力(例如,以抵抗在使用正介电电泳除去液体期间捕获物体的运动,并且在期望重悬和/或混合时使用负介电电泳促进捕获物体的运动)。
在一些实施方案中,可进行用于制备捕获物体(其中至少一些捕获物体与来自流体样品的分析物分子或颗粒缔合,并且统计学上显著分数的捕获物体未与任何分析物分子或颗粒缔合)的上述过程,使得制备的捕获物体的总数目为初始提供的捕获物体的大于或等于90%、大于或等于95%、大于或等于99%、或者更大。然后,所制备的捕获物体可用于所描述的测定的下游步骤。一些这样的步骤可包括至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值来确定流体样品中分析物分子或颗粒的浓度的度量值。
动力学原理
本文的发明人在本公开内容的上下文中确定了可提供用于检测和/或定量分析物的测定的提高的灵敏度的某些动力学考虑。在一些情况下,这样的动力学考虑可有助于具有上述范围内的灵敏度(例如,小于或等于2阿托摩或甚至更小)的测定。一些考虑涉及这样的认识,即测定的灵敏度可与溶液中的分析物相对于捕获物体固定的效率(即,分析物捕获的程度)成比例。这样的考虑在采用相对较少的捕获物体的一些实施方案中可以是特别重要的,因为当存在较少的捕获物体(和更少的捕获组分)时,分析物捕获效率可能更加困难。本发明人已经认识到,在一些实施方案中,捕获物体的亲和力(例如,当存在时,包括捕获组分的结合表面的亲和力)可以影响在某些条件下分析物被捕获的程度。因此,在一些但不一定是所有实施方案中,使用包括对分析物具有相对较高亲和力(例如,解离常数小于或等于10-10M、小于或等于10-11M、小于或等于10-12M、小于或等于10-13M、或者更小)的结合表面的捕获物体。此外,如上所述,在本公开内容的上下文中已经确定,可采用相对较大的样品体积和相对较长的捕获物体暴露于流体样品的持续时间(例如,使用上述范围)。
试剂盒
考虑到以上和以下实施例中提供的动力学见识,可以为这样的高灵敏度测定(包括具有相对较少捕获物体的测定)找到条件并选择捕获物体。在一些实施方案中,提供了用于制备用于检测的分析物分子或颗粒的样品的试剂盒。该试剂盒可包括捕获物体,该捕获物体包括对分析物分子或颗粒具有亲和力的结合表面。在一些实施方案中,捕获物体可适用于使用相对较少的捕获物体的测定(例如,基于捕获物体对分析物的亲和力、捕获物体的结合表面上捕获组分的密度、或从本公开内容中显而易见的多种其他考虑中的任一种)。在一些实施方案中,使用5,000个与试剂盒中相同的捕获物体的第一测定的检测极限比使用500,000个与试剂盒中相同的捕获物体的第二测定的检测极限低至少50%、至少75%、至少90%或至少99%,所述第一测定和第二测定是在除了各自孵育步骤的长度之外其他方面相同的条件下进行的。在一些实施方案中,第一测定包括将捕获物体与分析物分子或颗粒一起孵育第一时间段的步骤,而第二测定包括将捕获物体与分析物分子或颗粒一起孵育第二时间段的步骤,其中第一时间段比第二时间段显著更长(例如长100倍)。“其他方面相同的条件”包括诸如样品体积、样品来源、检测条件等的条件,但是不包括样品中捕获物体的浓度。应理解,虽然试剂盒的特征可在于具有500,000个捕获物体的测定与具有5,000个捕获物体的测定之间的检测极限的比较,但是试剂盒不一定需要包含这些值所涵盖的捕获物体的量。例如,该试剂盒可具有少至100个捕获物体(或更少)或多至5,000,000个捕获物体(或更多)。
在一些实施方案中,提供的试剂盒可包括用于分析物检测测定的包装容器。这样的预包装容器可包括相对较少的捕获物体。该试剂盒可被包装用于多种测定中的任一种。在一些实施方案中,试剂盒被包装用于包括多至96个独立实验的测定(如通过将捕获物体平均分布到96孔板的孔上进行的)。在一些实施方案中,包装容器包括大于或等于50,000个、大于或等于100,000个、大于或等于500,000个、大于或等于1,000,000个和/或多至2,000,000个或多至5,000,000个捕获物体,每个捕获物体包括对分析物具有亲和力的结合表面。捕获物体的结合表面可例如包含对分析物具有亲和力的捕获组分。捕获物体可相对较小(例如,直径为0.1微米至100微米)。在一些实施方案中,分析物检测测定可以在相对较低的检测极限下进行。例如,在一些实施方案中,分析物检测测定可在小于或等于50×10-18M、小于或等于50×10-18M、小于或等于10×10-18M、小于或等于5×10-18M、小于或等于2×10- 18M、小于或等于1×10-18M、或更小的检测极限下进行。
描述了用于进行本文中所述的某些测定的示例性装置。该装置可包括样品洗涤器,该样品洗涤器被配置成制备来自流体样品的分析物分子或颗粒和磁珠以用于检测。在一些但不一定是所有情况下,样品洗涤器被配置成在不向珠混悬液施加负压的情况下(例如,而是通过施加离心力)从珠混悬液中除去液体。该装置还可包括测定消耗品操作器,该测定消耗品操作器被配置成与具有包括反应容器(例如,每个反应容器的体积为10阿托升至100皮升)的表面的测定消耗品有效联接。该装置还可包括珠施加器,该珠施加器被配置成将磁珠施加至测定消耗品的表面或该表面附近。在一些这样的实施方案中,该装置还包括磁场发生器,该磁场发生器与测定消耗品相邻并且被配置成在表面附近产生磁场。此外,该装置可包括流体注射器,该流体注射器被配置成产生当在测定消耗品的表面上时具有各自与不混溶流体(例如,气体例如空气)相邻的第一弯月面和第二弯月面的流体塞(例如,包含水溶液)。在一些实施方案中,该装置包含流体泵,该流体泵能够使流体移动通过测定消耗品的表面。该装置还可包括成像系统,该成像系统包括检测器和光学器件,其具有比由反应容器阵列限定的区域更大的固定视场。在一些实施方案中,该装置还包括控制器,该控制器包括被配置成调节流体泵以使流体移动通过测定消耗品的表面(例如,双向)的一个或更多个处理器。该装置还可包括计算机实施的控制系统,该计算机实施的控制系统被配置成接收来自成像系统的信息并分析包括反应容器阵列的整个区域。
在一些实施方案中,提供了用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法。该方法可包括将磁珠暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液。一些实施方案包括将分析物分子或颗粒相对于磁珠固定,使得至少一些磁珠与来自流体样品的至少一个分析物分子或颗粒缔合,并且统计学上显著分数的磁珠不与来自流体样品的任何分析物分子或颗粒缔合。在一些情况下,从进行了固定步骤的磁珠的至少一部分中除去溶液。一些实施方案还包括将磁珠递送至(例如,测定消耗品的)表面上的反应容器附近。该方法还可包括在表面附近产生作用于捕获物体的磁场(例如,经由永磁体或电磁体),使得捕获物体朝向表面移动。该方法还可包括使包含磁珠的流体塞流动,使得流体塞的后退弯月面流动通过至少一些(或全部)反应容器。该方法还可包括将至少一部分磁珠插入反应容器中。一些实施方案包括在插入步骤之后对整个反应容器进行成像,并对进行了成像步骤的整个反应容器进行分析,以确定指示与来自流体样品的分析物分子或颗粒缔合的磁珠的数目或分数的度量值。在一些情况下,至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的珠的数目或分数的度量值来确定流体样品中分析物分子或颗粒的浓度的度量值。
在一些实施方案中,提供了涉及保留相对较高百分比的捕获物体的用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法。在一些实施方案中,该方法包括将捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液。该方法还可包括将分析物分子或颗粒相对于捕获物体固定,使得至少一些捕获物体与来自流体样品的至少一个分析物分子或颗粒缔合,并且统计学上显著分数的捕获物体不与来自流体样品的任何分析物分子或颗粒缔合。在一些实施方案中,该方法还包括从进行了固定步骤的捕获物体中的至少一部分中除去溶液,同时保留进行了固定步骤的捕获物体中的至少80%、至少90%、至少95%、至少99%、或者更多。然后可将进行了除去步骤的捕获物体中的至少80%、至少90%、至少95%、至少99%、或者更多递送至表面上的测定位点附近。在一些实施方案中,该方法包括将进行了递送步骤的捕获物体中的至少20%、至少30%、至少40%、至少50%、至少60%、至少75%、至少90%、至少95%、至少99%、或者更多相对于测定位点固定。该方法还可包括对至少80%、至少90%、至少95%、至少99%或所有测定位点进行成像。在一些实施方案中,该方法包括对至少75%、至少90%、至少95%、至少99%或所有进行了成像步骤的测定位点进行分析,以确定指示与来自流体样品的分析物分子或颗粒缔合的磁性捕获物体的数目或分数的度量值。然后该方法可包括至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值来确定流体样品中分析物分子或颗粒的浓度的度量值。
于2020年4月15日提交的且标题为“Methods and Systems Related to HighlySensitive Assays and Delivering Capture Objects”的美国临时专利申请序列No.63/010,613和2020年4月15日提交的且标题为“Methods and Systems Related to HighlySensitive Assays and Delivering Capture Objects”的美国临时专利申请序列No.63/010,625各自出于所有目的通过引用整体并入本文。
以下实施例旨在举例说明本发明的某些实施方案,但并不例示本发明的全部范围。
实施例1
本实施例描述了根据某些实施方案的与提高基于捕获物体的测定的灵敏度相关的实验程序和建模结果。
蛋白质的测量是生命科学的核心,影响着基础研究、诊断和治疗剂开发。较高的蛋白质测量灵敏度(当与高特异性组合时)可以提供所检测的蛋白质和在其中检测蛋白质的样品的更大的多样性。近年来,基于单一蛋白质的检测的免疫测定法作为一种有前景的方法出现,其大大提高了蛋白质测量的灵敏度,从而允许检测亚飞母托摩浓度下的蛋白质。本实施例中描述了“数字化”免疫测定法的方法,该“数字化”免疫测定法基于将蛋白质捕获在显微超顺磁珠上,用酶标记对蛋白质进行标记,并通过将珠和酶-底物反应的产物限制在飞母托升尺寸的孔的阵列中的独立孔内来检测单一酶标记。该方法基于经典的酶联免疫吸附测定(ELISA)以及数字化的独立酶读出,因此其被称为数字化ELISA。数字化ELISA将免疫测定法的灵敏度从皮摩(10-12M)改善到亚飞母托摩(约10-16M),并且已经被广泛用于允许新类型的蛋白质测量。最值得注意的是,数字化ELISA允许检测血浆和血清中的神经生物标志物,从而首次提供了“用于大脑的血液测试”的潜力。数字化ELISA还允许测量健康和患病患者的血液中的炎性细胞因子,以及检测在感染原的早期和准确诊断中重要的蛋白质。
虽然数字化ELISA提供了用于测量先前不可检测的蛋白质的技术,但很明显,需要甚至在低阿托摩浓度下的更大灵敏度。例如,血液中许多细胞因子(例如IL-17A)的可检测性低于100%,这意味着并不总是可以在所有健康个体中对在监测炎性状态和针对抗炎治疗剂的响应中重要的这些分子进行定量。此外,生物学见解通过对蛋白质的特定翻译后修饰进行定量而是可能的,所述蛋白质的特定翻译后修饰提供了比亲本分子更大的生物学特异性和诊断特异性,但通常仅代表亲本分子总浓度的一小部分(约1%)。复杂样品(例如粪便和脑脊液)中蛋白质的检测可以通过例如在高浓度缓冲液中稀释样品以抑制所谓的基质效应来完成。然而,稀释不利地影响可检测性,因此更灵敏的测定可以允许检测复杂样品中的低丰度蛋白质。通过对病毒蛋白质和细菌蛋白质(例如HIV)的更高的灵敏度,感染性疾病的早期检测也是可以的。对蛋白质的更大的分析灵敏度还将提供小样品体积(例如,来自啮齿动物、手指针刺和儿科患者的足跟针刺的血液)的检测,通常包含较低浓度的侵入性较小的样品的测试和更快的测定。本实施例和以下实施例中描述的工作旨在提高数字化ELISA的灵敏度。
提高数字化ELISA灵敏度的方法受到了用于由测定效率的逐步分析开发的测定的动力学模型的启发。在数字化ELISA中,将包被在捕获抗体中的超顺磁珠与包含靶蛋白质的样品一起孵育。当[蛋白质]<[珠](与在飞母托摩浓度和更低浓度下的情况一样)时,蛋白质在高结合率(on-rate)下以高效率与捕获抗体结合,并且蛋白质根据泊松分布统计学地分布在珠上。将珠洗涤并顺序地与生物素化的检测抗体和链霉抗生物素蛋白-β-半乳糖苷酶一起孵育以用单一酶标记免疫复合物。将珠在酶底物中重悬,并加载到微孔阵列中,用油密封,并进行成像以确定与至少一个酶缔合的珠的分数。从该分析中,经由泊松分布确定每个珠的平均酶数目(AEB)。该过程的动力学模型——基于不同组分的浓度、孵育时间以及不同双分子相互作用的结合率和解离率(off-rate)——预测AEB并因此灵敏度将随着珠数目的降低而提高,其中对于具有良好亲和力的抗体对而言期望的珠数目为10,000至50,000个珠。由于原始数字化ELISA中对珠进行分析的效率(定义为“珠读取效率”=(所分析的珠数目÷添加至样品的珠数目))低,因此该模型的先前测试限于相对大数目的珠(约500,000个)。通常,分析了用于从样品中捕获蛋白质的珠的仅5%—约25,000个珠——从而在典型的测定背景下于在珠上(on bead)的分数(fon)下产生约250个阳性珠。由于珠读取效率低,因此需要高的输入珠数目以在检测极限下具有足够的阳性珠,并且避免过多的泊松噪声。本实施例和以下实施例表明了具有较大珠读取效率的方法,因此更低数目的捕获珠(约1,000至50,000个)可以实现AEB和测定灵敏度的显著提高。在该方法中,最灵敏的测定将具有少量的珠以用于捕获蛋白质,并且将能够读取尽可能多的这些珠。
虽然某些现有的方法已经提高了成像的珠的数目,但是它们在提高数字化ELISA的灵敏度方面受到了限制。首先,过去的方法使用高的珠数目(数十万至数亿个),并且无法检查在本公开内容的上下文中被确定为有利于产生高灵敏度测定的较低的珠数目(<10,000个)的使用。第二,这些方法调节它们的珠负载以提高被填充的孔的分数,而不是调节本公开内容的上下文中确定的与测定灵敏度相关的因素,即珠读取效率。最后,这些现有方法仅集中于数字化ELISA的珠加载步骤,并且它们没有检查在该过程中影响所分析的珠的数目的其他步骤,例如测定步骤和图像分析。
在本实施例和以下实施例中,开发了可以使用低输入珠数目来提高所分析的珠的分数以提高数字化ELISA灵敏度的方法。还描述了用于基于SimoaTM盘(QuanterixCorporation)将磁珠以高效率加载到微孔阵列中并进行油密封的自动化方法。采用整体方法来提高珠读取效率并检查测定中的每个步骤,包括测定步骤和图像分析期间珠的损失。基于提高的珠读取效率,针对多种不同蛋白质开发了灵敏度更高的数字化ELISA,并表明了在临床样品可检测性方面的益处。
实验
材料。
捕获抗体珠、检测抗体、链霉抗生物素蛋白-β-半乳糖苷酶(SβG)、试卤灵-β-D-吡喃半乳糖苷(RGP)、洗涤缓冲液、样品稀释缓冲液、微量滴定板、移液器尖端和SimoaTM盘均从Quanterix Corporation获得。来自健康个体的血清和血浆样品从bioIVT获得。
测定步骤。
按照三步过程或两步过程进行数字化ELISA。在三步测定中,将样品在缓冲液中稀释,并将稀释的样品或校准物溶液(100μL至250μL)添加至96孔微量滴定板的每个孔。然后将含有包被在捕获抗体中的超顺磁珠的溶液(25μL)添加至每个孔,并将板在定轨振荡器(Quanterix Corporation)上在30℃下孵育。然后使用Simoa WasherTM(QuanterixCorporation)或
Figure BDA0003998994720000881
Washer(BlueCatBio)使用在洗涤期间保留珠的96孔磁性集管(manifold)洗涤孔中的珠。然后将珠顺序地与100μL检测抗体和100μL SβG一起孵育,其中在各步骤之间进行洗涤。在该过程结束时,将带有珠丸粒的板留在96孔磁性集管上干燥。除了对于所有或部分样品孵育步骤向样品和珠的混合物中添加检测抗体来代替单独的检测抗体步骤之外,两步测定与三步测定相同。在需要确定珠损失的情况下,使用MultisizerCoulter计数器颗粒分析仪(Beckman Coulter)对珠数目进行定量。
使用SimoaTM的检测和数据分析。
将包含经干燥的珠丸粒的96孔板转移至进行测定珠的Simoa读出的SR-XTM读取器(Quanterix Corporation)。原样使用SR-XTM,或者对SR-XTM进行改变以进行下文所述的磁-弯月面扫描珠加载方案。在SR-XTM上,使用一次性尖端移液器将珠丸粒在RGP中重构,并将RGP-珠混合物转移到SimoaTM盘上的入口端口中,在入口端口处真空将拉动珠通过孔阵列。使珠沉降或者主动加载到微孔中,将其用油密封,进行成像并分析以得到每个珠的平均酶(AEB)。作为校准物浓度的函数的AEB符合四参数逻辑拟合(4PL)。样品浓度通过从这些校准曲线外推其AEB值来确定。假设测定背景下的变异系数(coefficient of variation,CV)为10%,则将测定的检测极限(limit of detection,LOD)计算为对应于高于测定背景三个标准偏差的信号的浓度。将定量下限(lower limit of quantification,LLOQ)和定量上限(upper limit of quantification,ULOQ)分别确定为校准曲线的下限和上限,其中变异系数(CV)曲线表明所确定的浓度的不精确性超过20%。将本文实施例中测定的动态范围确定为log10(ULOQ/LLOQ)。CV曲线使用信号的总合噪声(aggregate noise)来计算浓度不精确性。对于校准曲线中的每个数据点,通过结合7.1%的固定AEB CV和泊松噪声CV(来自所分析的珠的数目)来计算总合噪声。将浓度的不精确性计算为从平均信号、平均信号+噪声和平均信号-噪声的4PL拟合内推的浓度的CV。这种从校准曲线计算LLOQ的方法显示出与LLOQ的良好相关性(斜率=0.83;r2=0.75),所述LLOQ由连续稀释的低浓度样品经过至少十次运行确定的浓度不精确性确定。
提高数字化ELISA灵敏度的一般方法。
图9示出了使用相比于500,000个珠的5,000个珠的靶分子与捕获珠的比率的模拟增加——假设274,000个抗体/珠——所述靶分子与捕获珠的比率为基于Simoa动力学模型的捕获抗体的解离常数(KD)的函数。KD通过在固定的koff(3.13×10-6-1)下改变kon值来改变。由于随后的标记步骤没有改变,因此这些模拟增加等于AEB即测定斜率的预期提高。进一步假设背景AEB和不精确性不随珠数目而变化,图9示出了作为KD函数的LOD增加。这种灵敏度提高的模型假设靶标向珠的扩散-传递输送不受限制,并且假设捕获效率可以通过仅考虑蛋白质与捕获抗体之间的双分子反应动力学来建模。考虑到在此使用的靶标捕获所使用的长孵育时间,该假设被认为是正确的,并且该建模对于低珠数字化ELISA和高珠数字化ELISA都是有效的。在该模型中,数字化ELISA中信号的主要驱动因素是捕获抗体-抗原相互作用的结合率(kon)和珠上捕获抗体的量。
灵敏度随着珠数目降低的模拟变化倾向于如下两个极限(图9)之一:a)对于高亲和力抗体(KD≤10-13M),等于被比较的珠的比率的提高(在这种情况下为100×);和b)对于较低亲和力抗体(KD≥10-9M)预测没有提高(1×)。灵敏度提高的变化通过平衡时作为抗体浓度的函数的所捕获靶蛋白质的分数来驱动。本质上,与更高亲和力的抗体结合可以克服抗体浓度的100倍降低,这导致使用百分之一的珠,并且蛋白质-抗体结合反应仍然在长的孵育时间内完成。由于这些分子分布在更少的珠上,因此AEB随着被比较的珠数目的比率而增加,并且实现了灵敏度的提高。然而,较低亲和力的抗体在低抗体浓度下变得动力学受限,并且蛋白质-捕获反应在较低分数的所捕获蛋白质下达到平衡。在这种情况下,捕获的蛋白质的分数与抗体浓度成线性关系,从而抵消了将蛋白质分布在更少珠上的益处:AEB没有变化,从而导致灵敏度没有提高。
这种提高数字化ELISA灵敏度的方法基于两个测定设计原理,其中第二个原理起源于图9中的见解。首先,该方法试图捕获珠上的每个蛋白质(蛋白质捕获效率=100%),并对用于捕获蛋白质的每个珠进行成像(珠读取效率=100%)。该原理应导致每个蛋白质被检测到,并产生可能的最灵敏的免疫测定法。第二,该方法希望通过产生来自与靶分子结合的捕获珠的最高AEB,即提高分子与珠的比率,来提高测定的信号-背景(S/B)比率(测定斜率)。该原理有利于降低用于捕获的珠的数目并提高样品的体积(在相同浓度下提高分子的数目)。然而,这两个设计原理倾向于在相反的方向上发挥作用:蛋白质的快速捕获和来自读取珠的低泊松噪声有利于高珠数目和小体积,而更大的测定斜率有利于低珠数目和大体积。该方法旨在平衡这些竞争性考虑因素,以产生具有最高灵敏度的数字化ELISA。基于这种双管齐下的方法,数字化ELISA方法的每个步骤的性能得到相应地提高。这些提高可大致分为珠读取效率的提高——汇总在下表1中——或影响捕获动力学和测定斜率的特定测定条件(珠数目、样品体积和孵育时间)的改进。依次描述这些中的每一者。
表1.标准数字化ELISA和低珠数字化ELISA的珠读取效率。如实施例中其他地方所述的对两种测定的每个步骤测量珠损失,从而得到输出珠的所预测总合数目(aggregatednumber)(B)。还测量了在使用已知量的输入珠(A)的测定结束时剩余的珠的数目(C)。
Figure BDA0003998994720000901
Figure BDA0003998994720000911
提高珠读取效率的方法是降低过程中每个步骤时的珠损失。将测定过程分解为6个步骤——测定孵育和洗涤、将珠吸入移液器尖端、将珠从尖端转移到SimoaTM盘、将珠加载至孔中并密封、对孔中的珠进行成像以及珠的图像分析——并且在这些步骤中的每一者时确定珠的损失。使用SR-XTM对先前公开的方案的这些步骤中的每一者的分析显示每个步骤的珠效率(表1)和与由总体测定产生的数据(4.8%)匹配的4.9%的累积珠读取效率。这些测量结果与数字化ELISA的初始描述的珠读取效率非常匹配。接下来的5个部分中描述了如何改进每个步骤以提高珠读取效率。
基于增加的珠读取效率,可以开发具有低的珠数目和更高灵敏度的测定。为了提高这些测定的灵敏度,改变了三个重要的参数:捕获珠的数目、样品体积和孵育时间。虽然使用更少的珠增大了分子与珠的比率,但是这样做意味着捕获抗体的浓度更低并且珠间隔更远,因此对于高结合效率需要更长的孵育时间以动力学地产生高结合效率并克服蛋白质分子向珠的扩散输送。类似地,更大的样品体积增大了分子与珠的比率,但是需要更长的孵育时间来确保蛋白质分子被捕获。在随后的部分中,描述了如何确定这些测定条件。
在测定步骤(步骤1)期间减少珠损失。
数字化ELISA通常涉及在磁体上进行使珠丸粒化(pelleting bead)的多次循环,以及除去样品、检测抗体、酶缀合物或洗涤缓冲液。之前使用的用于从孔中除去液体的方法是基于通过针头抽真空进行的抽吸。虽然这种方式在除去液体方面有效,但在此观察到,当针经过磁珠丸粒时,由吸力产生的高剪切力可以将珠拉离磁体并使珠从反应体积中吸出。在三步测定中的11次丸粒-抽吸循环中,在每个步骤中即使少量的珠损失也可以累积成显著的珠损失。定量测量表明,在500,000个珠的情况下,使用基于针的洗涤,珠损失为12.1%。对于120,000个输入珠,随着珠数目的减少而增加——如磁场中对于超顺磁珠所预期的——的珠损失达到28.2%。由于此步骤是导致珠的稀释溶液损失的重要贡献者,因此我们开发了基于从微量滴定板的孔中离心除去液体而不是通过针抽吸除去液体的测定。该方法经由重量法显示出优异的残留体积(<1μL),这对于高灵敏度测定来说是期望的;并且在整个测定过程中在定量方法的误差内(<5%)未检测到珠损失。
将珠转移至SimoaTM盘(步骤2和3)。
在酶底物中使珠重悬并将该溶液转移至SimoaTM盘可导致由于死体积(deadvolume)的珠损失。重量测量结果表明38μL的底物被尖端吸取并与珠混合,并且由于需要在孔中留下残余体积以避免尖端中的空气,因此仅36μL从孔中转移出而进入尖端,导致珠损失为5.3%(步骤2)。在这36μL中,重量测量结果表明,由于尖端内外的残留体积,33μL的RGP-珠混合物被转移至SimoaTM盘的入口端口中,损失为8.3%(步骤3)。在这两个步骤中减少残留体积的努力导致空气被携入盘中和更少的可重现的珠负载,因此没有进行更改。
使用磁力结合弯月面扫描将珠加载到微孔中(步骤4)。
观察到原始数字化ELISA方法中珠损失最大的步骤是将珠加载和密封至微孔阵列中(表1)。原始方法依赖于重力加载和120秒的稳定时间(settling time),这导致低的珠加载效率(约11.5%)。开发了改进的方法以尽可能多的将珠从稀释的珠溶液中加载至微孔中。
磁体提供了有前景的方式以使磁珠快速移动至孔阵列的表面,并且一旦在孔中就将它们保持在适当的位置。使用磁体将珠加载至微孔中的主要挑战是超顺磁珠倾向于在磁场中成链,并且珠间的吸引力倾向于阻止单个珠进入微孔。此外,固定磁体不提供任何横向移动,因此珠不在阵列表面上移动并对孔的开口“采样(sample)”。珠在表面上的流体流动可以通过以下来提高珠负载:使珠在孔上方移动,帮助润湿孔,以及提供弯月面力以将珠驱动至孔中。然而,在现有的数字化ELISA中,流动驱动的珠加载受到限制,因为:a)流动发生在整个装置上方,而不是将珠集中在孔上方,因此本质上是低效的;b)其依靠重力最初将珠移动至阵列表面,因此固有地是慢的;以及c)油密封步骤将珠从孔中拉出,导致珠损失。为了克服单独使用磁体或流体的挑战,开发了在空气与液体之间的弯月面的后退边缘处结合磁力和流动引起的毛细管力的方法(图10),以实现两种力的好处,同时抵消它们对珠加载的负面影响。
图10示出了基于以下的珠加载方法的一个实施方案的示意图:微孔阵列下方的固定磁体,其最初将珠拉到表面上,然后是RGP-珠溶液塞在阵列上的来回(back-and-forth)流动的多次循环,因此后退的空气-液体界面处的弯月面力将珠向下推入至微孔中。图10示出了(A)垂直磁场使珠快速移动至表面,经由吸引力垂直地成链,并在平面内排斥。(B)后退弯月面处的毛细管力将珠在流动下向下推并进入孔中,(C)孔中液体钉珠(pin bead)的薄膜处的毛细管力,以及(D)流动期间活跃的惯性力将引起在后退弯月面处聚集和珠的再循环。从弯月面指出的实心箭头表示空气-水界面处的强大的毛细管力。带箭头的垂直线表示磁场。虚线表示流动过程期间的弱的惯性力。在实验期间,一旦在孔中,珠就在油密封期间被磁性地固定在那里。这种方法被称为磁-弯月面扫描(MMS)。与单独使用磁力或弯月面力无法实现的重力加载相比,这种方法引起珠加载效率的提高。认为在MMS期间将珠加载到孔中是由作用在珠上的三种力驱动的:
Ⅰ.磁力,其将珠向下拉并使珠成链。
垂直于阵列的磁场将珠快速拉至孔阵列的表面,从而允许当珠溶液最初流过阵列时珠集中在孔上方。在磁体靠近孔放置的情况下,垂直的磁场引起阵列平面中的珠在表面的平面内彼此排斥,因此当从均匀分散的珠混悬液开始时珠就不会水平地聚集。然而,在这种配置中,确实发生了垂直于阵列表面的珠成链(图10中的A)。这种成链取向有利于随后通过毛细管力(II)进行脱链,而无需将珠从孔中拉出。
磁场建模表明,对于放置在距离孔0mm处的磁体,由于磁体边缘处的强的局部横向场,珠将在阵列边缘上丸粒化,并且无法进入孔。在1mm处,场线为垂直的,并且甚至穿过阵列,平面内排斥最大,因此珠的丸粒化倾向较低,并且可以在数秒钟内将珠拉到均匀地在表面上的阵列上。在使横向场分量最小化同时使垂直场分量最大化(其与横向珠-珠排斥成比例)之间存在权衡:1mm的距离提供了低横向场分量和高垂直场分量的期望平衡。在距离孔≥3mm处,珠被快速拉至表面并垂直地成链,但由于较低的平面内排斥,在孔阵列的中心表现出更大的丸粒化倾向。由于盘为1.2mm厚,并且盘移动需要间隙,因此基于磁建模,使用面积大于阵列的定位于盘下方1mm(位于孔下方共2.2mm)处的0.4mT NdFeB磁体。初始珠填充实验表明,考虑到机械约束,该位置提供最高的珠填充。
Ⅱ.后退弯月面处的毛细管力,其将珠推入孔中。
消散的微滴的后退弯月面可以对颗粒施加大的力。这些力在珠的溶液在微孔的阵列上移动时发挥作用:在后退弯月面处的毛细管力可以引起聚苯乙烯珠高效加载到玻璃上的微孔中。在本实施例的测定中,当RGP的后退弯月面通过阵列表面上的珠时,接触角<90°,并且它在流动方向上并向下朝向阵列表面施加力(图10中的B)。在较高的速度下,在后缘处的表面法线更接近于垂直,从而增加了对珠的向下的力。如果将这种力施加至孔上方的单个珠,则这种力可以迅速将珠驱动至孔中并将其固定在那里。如果弯月面遇到垂直的珠链(例如,2至3个珠高),则这种力可以迫使最低的珠进入孔中,同时侧向剪切上面的珠;在珠移动了约60°的角度之后,它们可能停止彼此吸引,而是彼此排斥。后退弯月面通过阵列时形成的拖尾流体膜(图10中的C)也可以增加珠加载的机会。如果该膜比1个珠直径更薄,则珠将受到将其强烈向下推动的力。
Ⅲ.体积流体力(Bulk fluidic force),其导致珠聚集和再循环。
在MMS期间,毛细管力对珠的作用最强,其次是磁力,较弱的体积流体力也可以在增加珠进入孔中的负载方面发挥作用。先前的研究描述了由于作用于珠的流体阻力和重力的平衡引起的珠在微滴中移动的再循环回路(图10中的D)。根据这两种力的相对强度,珠在后退弯月面处积累为密集堆积的珠团,或者在流体流过阵列时在孔上再循环。对于前者,这些珠将可在后退弯月面处经由毛细管力和磁力加载到孔中(图10中的B)。对于后者,再循环的珠将被拉至表面并在磁场下成链,这将驱动珠进一步加载到后退弯月面处的孔中。哪种方案会获胜将取决于磁体的接近性和珠混悬液的流量。
MMS的过程I至III增加了每个珠遇到孔的入口并被迫使进入孔中并保持在孔内的机会。捕获在孔中的珠的数目随着这些过程的每次循环而增加,因此实施了多次循环,即,使珠完全地扫过微孔阵列并返回。扫描还具有提高底物润湿孔的速率以促进珠进入孔的益处。对于基于低珠数目的数字化ELISA重要的是,磁体与弯月面扫描相组合的使用使得可以加载稀释的珠溶液:磁体将珠聚集在包含微孔的区域中,并且弯月面扫描允许它们足够频繁地(对于被加载而言)对孔进行采样,这是当使用高珠数目时不需要的方式。
通过修改通常用于珠的常规重力加载的SR-XTM读取器(Quanterix Corporation)来实施MMS以加载珠。将两个4mm×5mm×1mm N50镀镍磁体堆叠并置于压盘下方,所述压盘将Simoa盘保持在用于将RGP-珠溶液和油加载到盘中的位置处。如下所述,探索了提高MMS的珠加载效率的多种参数,并决定了以下方案。在珠加载期间,首先将33μL RGP-珠溶液转移至SimoaTM盘中的阵列组件的入口端口。通过以40μL/秒的速度施加相当于33μL体积的负压,将转移的珠溶液拉入通道中并通过阵列。珠溶液在磁体的第一堆叠体上方停留15秒。该时间允许珠被拉至阵列的表面或进入飞母托升的孔中,并且允许被困在飞母托升的孔内的空气开始被水性液体取代(“润湿”),如前所述。弯月面扫描的第一阶段是通过以下开始的:通过以40μL/秒的速度施加等于66μL体积的真空将珠溶液完全拉动通过微孔阵列,使得等于99μL总体积的珠溶液从入口端口被拉动进入通道中。然后通过正压将珠溶液的整个体积推回至入口端口,这产生了后退弯月面,所述后退弯月面产生毛细管力以在珠流动通过微孔阵列时将珠向下驱动至孔中。通过在阵列上将99μL的等效体积拉和推5次来重复弯月面扫描循环,以珠溶液收集在入口端口中结束。然后重复此顺序(将珠溶液拉动通过阵列,等待15秒,完成第一个拉-推循环并重复5个扫描循环)。最后,将在前面的步骤之后收集在阵列组件的入口端口处的珠溶液拉动通过阵列并停留15秒。所有弯月面扫描均在置于微孔阵列下方的固定磁体的上方进行。然后将SimoaTM盘顺时针旋转15°以将包含珠的微孔阵列置于等待位置持续190秒以允许盘中的其他阵列的平行处理。然后将SimoaTM盘顺时针旋转15°至定位在固定磁体的第二堆叠体上方的油密封位置。通过以下将珠密封至微孔阵列中:使碳氟油流动以从阵列表面替代水性珠溶液并将RGP和珠捕获在孔内。在用油密封之后,将SimoaTM盘顺时针旋转15°至成像位置(步骤5)。用于MMS的该方案得到了约61%的珠加载效率(表1)。将该效率与没有磁体的弯月面扫描的约15%和具有在合适位置的磁体但没有弯月面扫描(使用120,000个珠)的约5%进行比较。
开发使用磁性弯月面扫描(MMS)的珠加载。
在提高MMS的珠加载效率方面探索的变量为:与珠混合的RGP的体积;RGP-珠混合物在阵列上的流动速度;和在开始扫描之前在阵列上的珠的等待时间。当RGP体积在25μL与45μL之间变化时,珠加载没有显著变化。这个观察结果归因于这样的事实:弯月面力和磁力驱动珠并将珠保持在孔中,因此较高浓度的珠在这里没有益处,因为它是用于基于重力的加载。然而,低于25μL,在加载到盘上之前,微量滴定板中的珠的重悬无效;高于45μL,将珠从SimoaTM盘的出口端口拉出的风险增加。33μL被选为用于使用的最稳健的体积。扫描速度是高珠加载的关键驱动因素,其中约50μL/秒的速度产生高的珠填充。更快的速度(100μL/秒)导致略微更高但不太稳健的珠填充率。较低的速度(<20μL/秒)导致珠的不均匀加载。40μL/秒被选为产生一致的珠加载的最稳健的速度。最后,在扫描开始之前检查在磁体上的停留时间,以及扫描次数(表2),并选择15秒的停留时间和总计10次扫描。
表2.作为扫描开始之前在磁体上的停留时间以及扫描次数的函数的珠加载效率。
扫描次数=10 扫描次数=5
在磁体上的时间=30秒 55% 48%
在磁体上的时间=15秒 78% 53%
孔的成像(步骤5)。
用于数字化ELISA的原始SimoaTM成像仪基于定制的显微镜物镜和CCD相机,其中视场(FOV)为2.63mm×3.51mm,小于阵列尺寸(3.15mm×4.2mm)。因此,该FOV将成像的孔数目限制为阵列中238,764个孔中的约167,000个,因此孔中31%的珠无法用于分析(表1)。本实施例中使用的成像仪(SR-XTM)基于光学器件和CMOS相机成像仪,其具有更大的FOV(3.19mm×4.36mm),即大于微孔阵列的面积,但是商业图像分析方法数字地裁剪该图像以匹配原始成像仪的FOV(表1)。相比之下,在此使用了由SR-X提供的整个FOV,并且可以对约234,800个孔进行成像,这使该步骤的珠损失减少至1.6%。孔的剩余损失是由于以下而造成的:一些阵列上的轻微径向未对准导致边缘附近的孔落在FOV之外,以及归因于阵列表面上保留的孔之间的珠的光散射而无法区分孔。识别珠的图像分析(步骤6和7)。
获得图像之后,对其进行分析以识别孔和这些孔中的珠(步骤6)。该步骤的珠损失是由于识别和排除碎片(例如,气泡或聚集的珠)以避免错误信号而造成的。通常,在从分析中除去碎片之后保留235,000个孔中的220,000个,即损失约6%。与原始珠加载方法相比,观察到来自MMS加载阵列的图像中的略微降低的碎片(6.3%vs.10%)。从图像中识别珠的最后一步是应用分类阈值,使得除去群体中最外(outermost)的珠以避免分析“假”珠(步骤7)。先前,使用10%的阈值以确保有效区分多路珠。由于在此的工作重点在单个珠类型的测量,因此将阈值放宽至0%并避免了珠损失。
总体珠读取效率。
基于对测定的每个步骤的测量和改进,累积珠读取效率(通过将步骤1至7的效率相乘而确定的)从常规的数字化ELISA的4.9%提高至48.5%,提高至约10倍(表2)。累积提高反映在测定中的珠数目的直接测量中,其中常规数字化ELISA和改进的测定的珠读取效率分别为4.8%和47.2%(表1)。珠读取效率的这种改进为待使用比以前更少的捕获珠开发的测定提供了方法,并为在以下实施例中描述的那些条件下的期望的测定参数的确定提供了方法。
实施例2
该实施例描述了根据某些实施方案的基于低数目的捕获珠和高的珠读取效率的用于IL-17A的数字化ELISA的开发。
基于图9中示出的灵敏度方面的建模改进,首先测试了具有高亲和力的捕获抗体的测定。准确确定在珠表面处的蛋白质-抗体相互作用的结合速率和解离速率具有挑战性,因为可用的分析方法(例如,SPR)使用平坦表面和不同的抗体固定化学物质来确定这些值。作为准确kon值的替代,选择了IL-17A,其具有使用500,000个珠的最灵敏的数字化ELISA之一,假设灵敏度部分地由高亲和力捕获抗体驱动。此外,使用数字化ELISA的关于血清和血浆的IL-17A的所报告的可检测性是低的(60%),因此该测定将受益于提高的灵敏度。图11示出了在两个样品孵育时间(30分钟(标准)和4小时)下使用每个样品500,000个和31,250个珠的用于IL-17A的数字化ELISA的AEB的比较。500,000个珠的数据是使用标准方法生成的,并且31,250个珠的数据使用高的珠效率数字化ELISA方法,包括MMS。实线是对数据的4PL拟合。这些数据举例说明了斜率增加是使用较少的珠来捕获IL-17A导致的:对于常规的30分钟样品孵育,虽然500,000个和31,250个珠的背景相似,但使用较少珠的AEB增加,使得信号与背景比在1.2fM下增加至3倍,从1.8至5.2。作为结果,在其他基本相同的条件下,从500,000个至31,250个珠,LOD存在改进,从0.4fM至0.074fM。正如动力学模型所预期的,高珠数目的测定并没有受益于较长的孵育时间(在1.2fM下,对于30分钟和4小时的孵育,S/B分别=1.8和2.0),因为靶蛋白被相对快速地捕获,而较少的珠的测定确实受益于较长的孵育时间(在1.2fM下,对于30分钟和4小时的孵育,S/B分别=5.2和11.8),因为靶蛋白需要更长的时间以在较少的珠上被捕获。
图12示出了对于使用范围从7,810至500,000的6种不同珠数目和4小时样品孵育时间的数字化ELISA,针对[IL-17A]的AEB的图。使用标准方法生成500,000个珠的数据,并且所有其他条件使用高珠效率数字化ELISA方法,包括MMS。从500,000个珠的数据中去除了重复异常值。实线为对数据的4PL拟合。这些数据表明,随着珠数目降低至<8,000个珠,斜率持续提高,而背景没有变化。作为结果,在相同条件下,LOD从对于500,000个珠的429aM改善为对于7,810个珠的17aM。对于7,810个珠,在最低测试浓度(49aM)下的S/B比率为2.0,而对于典型的500,000个珠的测定,该浓度无法高于背景进行区分。进一步滴定低至1,200个珠(图13)示出灵敏度随着珠变少而持续增加,但是在1,200个珠时,加载至孔中的珠太少而无法在该实验的条件下成像,并且未在图13中绘出。实线为对数据的4PL拟合。作为结果,选择了每个样品约5,000个珠——是标准数字化ELISA的百分之一——作为得到更高灵敏度测定的稳健珠数目。
对于高亲和力抗体,动力学模型表明,由使用较少的珠引起的AEB提高等于珠数目的降低倍数(图9)。表3示出了对于7,812个珠至125,000个珠数目的在10fM下的AEB(减去背景AEB)与对于500,000个珠的在10fM下的AEB(减去背景AEB)相比的比率(图12中的数据)。AEB的倍数提高非常接近于所使用的珠降低至31,250个珠的比率。该观察结果表明,IL-17A数字化ELISA如对于高亲和力捕获抗体(KD≤10-13M)所建模的那样进行。在15,625个珠及低于15,625时,AEB的增加小于所使用的珠数目的降低倍数,这可能是因为在较低抗体浓度下的不完全捕获。为了确保在较低的珠数目下的完全靶标捕获,使用15,000个珠,测量作为样品孵育时间(直至约29小时)的函数的AEB。图14A示出了使用15,000个珠在1.2fM下作为样品孵育时间的函数的AEB;图14B示出了使用15,000个珠在30分钟、195分钟、330分钟和1727分钟孵育时间下的校准曲线。实线是对数据的4PL拟合。这些数据表明,在30分钟之后捕获完成约25%,在约6小时之后完成约90%,在>8小时之后已完成。对于在一个工作日期间进行的测定,使用6小时的孵育时间;对于在这些条件下的最高的灵敏度,使用了过夜孵育。
表3.对于不同的珠数目高于背景的AEB,以及与500,000个珠条件相比,AEB提高和珠数的比率。数据取自图11和图12。n.a.=不适用。
Figure BDA0003998994720000981
Figure BDA0003998994720000991
增加测定中所使用的样品体积以提高灵敏度。理论上,对于固定的珠数目,无限增加样品体积将引起灵敏度的持续提高,但是这种方式实际上受到容器(珠和样品在其中孵育)的体积以及捕获的扩散-对流-反应动力学的限制。在这种情况下,样品孵育在最大体积为350μL的96孔板中进行。孵育期间,在定轨振荡器上摇动板以保持珠混悬,这将可以使用的体积限制为200μL至250μL以避免在孔之间飞溅。图15示出了使用100μL和200μL样品的IL-17A测定的比较,所述样品与15,000个珠一起孵育16小时。实线为对数据的线性拟合。高于背景的AEB的平均增加为88%,接近从理论预期的两倍。在100μL和200μL下的LOD分别为14阿托摩(aM)和7aM。
对于IL-17A的改进的数字化ELISA的灵敏度。
基于上述的测定调节,确定了在对于IL-17A的数字化ELISA中可以实现的最高灵敏度。图16示出了与标准数字化ELISA(500,000个珠,在100μL样品中孵育30分钟)相比,使用与200μL样品孵育24小时的5,453个、2,726个和1,363个捕获珠的数字化ELISA的校准曲线。实线是对数据的4PL拟合。表4总结了这4种测定条件的LOD、LLOQ、ULOQ和动态范围。使用1,363个珠实现了相对于标准数字化ELISA的最低LOD改进(0.71aM)和最大LOD改进(437倍)。然而,随着珠数目和背景中阳性珠数目的降低,泊松噪声开始影响数据(表5),使得使用5,453个珠实现了相对于标准条件的LLOQ的最佳改善(92倍)。这一现象通过随着珠数目的降低,来自一式三份测量结果的cv提高以及泊松噪声提高而得到说明(表5)。使用5,453个珠vs.500,000个珠的测定的LOD改善(1.7aM vs.313aM)与通过理论建模的改善非常一致,而由于泊松噪声的影响,较低珠数目的测定产生较少的改善(表5)。虽然使用<5,000个珠的测定可以允许较低的LOD,但在本实施例中提出的方式中,约5,000个捕获珠得到更加稳健和定量的测定。
表4.与标准数字化ELISA(500,000个珠)相比,图16中绘制的对于IL-17A的低珠数字化ELISA的LOD、LLOQ、ULOQ和动态范围。
Figure BDA0003998994720001001
表5.来自图16的低珠数字化ELISA数据中AEB的变异系数(CV)和相对于背景的三个一式三份测量结果的阳性珠的平均数。由于珠不足,对于1,363个珠的条件,21个阵列中的4个没有产生AEB,导致没有计算对于3.52fM的CV。
Figure BDA0003998994720001002
使用更少珠的数字化ELISA的更大斜率(每单位浓度的AEB)意指AEB的动态范围(通常,0.001<AEB<30)被更窄的浓度范围所覆盖,即,所测量的浓度的动态范围降低多至0.5log10(表4)。在需要更大动态范围的情况下,可以通过改变图像分析算法和获取图像的模式来提高动态范围。
图17示出了被设计用于产生稳健灵敏度的IL-17A的测定(约5,000个珠,在250μL样品中孵育24小时)与可能更方便地使用更少样品在一天内运行的测定(约5,000个珠,在100μL样品中孵育6小时)的比较。实线是对数据的4PL拟合。与标准数字化ELISA的313aM相比,这两种测定的LOD分别为1.8aM和7.4aM,即分别改进了174倍和42倍。就成像的珠而言,在21个阵列上,在来自5,540个输入珠中,成像的珠的平均数目(±s.d.)为2,700(±397),对应于48.6%的珠效率。在检测蛋白质分子的效率方面,改进的数字化ELISA方法的总体分子检测效率为13.2%±0.7%。
使用低珠数字化ELISA的蛋白质检测的效率。
根据AEB值和捕获珠的数目,确定了数字化ELISA方法的总体分子检测效率。根据图17中所示的通过24小时/250μL测定测量的6种浓度的IL-17A的AEB值,珠上的蛋白质的捕获和标记的平均效率(所使用的测定珠×AEB/分子数目)为13.2%±0.7%。由于所用珠的低于50%被成像,因此靶蛋白质的平均检测效率(成像的珠×AEB/分子数目)为6.4%±0.4%。根据结合的动力学的实验模型(图14A)和理论模型,接近100%的IL-17A被捕获在珠上,因此可以推断这些分子中仅1/7.6被标记。这种效率受到标记试剂(检测抗体和酶缀合物)与捕获珠的非特异性结合的限制。可以通过提高标记试剂的浓度来提高效率,但是测定背景也将提高,这对S/B比率和测定灵敏度没有益处。
IL-17A数字化ELISA的加标回收率和稀释线性(dilution linearity)的调节。
稳健的免疫测定需要表现出来自将已知浓度的靶标分析物掺入至被测样品类型的信号的一致的回收率(“加标回收率”),以及靶标分析物浓度被稀释时信号的线性(“稀释线性”)。图18示出了血清中两种浓度的IL-17A的加标回收率,其为测定中使用的珠数目的函数,其中使用了现有商业IL-17A数字化ELISA试剂盒中使用的稀释缓冲液和4倍稀释因子。对于≥49,000的珠数目,加标回收率是可接受的(80%至120%),并且低于这些珠数目,加标回收率下降,对于6,000个珠,加标回收率达到56%。为了解决随着珠数目降低而观察到较低回收率,研究了替代的稀释缓冲液和更大的稀释因子。提高稀释缓冲液的血清和洗涤剂含量有助于提高加标回收率和稀释线性,这表明稀释缓冲液可以适用于低珠测定。将样品稀释因子从4倍提高至8倍并将牛IgG添加至标准稀释缓冲液,将0.12pg/mL和0.013pg/mL下的加标回收率分别提高至87%和88%。使用该缓冲液,稀释线性也是可接受的(表6)。尽管另外的2倍稀释降低了测定的有效灵敏度,但使用基于改进的加标回收率和稀释线性的该缓冲液和稀释因子进行样品测试。
表6.在标准缓冲液+牛IgG中以8倍样品稀释开始的IL-17A的血清和血浆中的稀释线性。
Figure BDA0003998994720001021
实施例3
该实施例描述了根据某些实施方案的使用实施例1中描述的方法检测不同样品介质中的分析物。使用更高灵敏度的数字化ELISA以测量50个个体的血浆和50个个体的血清中的IL-17A。在测试样品之前,评价低珠数字化ELISA的测定性能。稳健的免疫测定需要表现出来自将已知浓度的靶标分析物掺入至被测样品类型的信号的一致的回收率(“加标回收率”),以及靶标分析物浓度被稀释时信号的线性(“稀释线性”)。在珠数目降低至<49,000个珠之后,血清(但不是样品稀释物)中的加标回收率下降至低于可接受的限度(80%至120%),在6,000个珠时观察到显著的回收率下降(图18)。此外,样品中的稀释线性在可接受的限度(80%至120%)之外。有两种方法来改进在低珠数目时差的测定性能:a)提高校准物稀释物的基质含量,或b)提高样品稀释因子。对于用低珠数目测定进行的样品测试,样品稀释因子从4倍提高到8倍,这将加标回收率和稀释线性改进到可接受的范围内。
图19A至图19B示出了使用标准数字化ELISA(500,000个珠)和更灵敏的低珠数字化ELISA(5,000个珠)在这些100个血清和血浆样品中测定的IL-17A浓度的散点图。具体地,图19A至图19B示出了50个人血浆样品(图19A);和50个人血清样品(图19B)。水平实线表示样品的平均浓度。水平虚线表示对于两种测定的可检测水平(对于标准测定和低珠测定分别为LOD×4和LOD×8)。水平虚线表示对于两种测定的可定量水平(对于标准测定和低珠测定分别为LLOQ×4和LLOQ×8)。对于标准测定,IL-17A分别在12%和24%的血浆样品和血清样品中是可定量的,即样品浓度高于LLOQ×样品稀释因子(4)。此外,IL-17A分别在42%和60%(合计(aggregate)=51%)的血浆样品和血清样品中是可检测的,即浓度高于LOD×稀释因子(4)。对于更灵敏的低珠测定,IL-17A分别在100%和96%的血浆样品和血清样品中是可定量的,即浓度高于LLOQ×稀释因子(8);IL-17A分别在100%和100%的血浆样品和血清样品中是可检测的,即浓度高于LOD×稀释因子(8)。这些数据举例说明了低珠数字化ELISA显著提高血液中细胞因子的可检测性的能力。图20示出了对于在两种测定中高于LLOQ的样品(n=18),通过标准和低珠数字化ELISA测定的浓度的相关性。实线是对数据的线性回归拟合,排除了异常值。虚线为标准测定中的可定量极限(LLOQ×4)。排除一个异常值,相关性良好,显示出斜率为1.18并且r2值为0.85。相关性受到许多接近标准数字化ELISA的可定量极限的样品的负面影响。
实施例4
该实施例描述了根据某些实施方案的使用实施例1中描述的方法检测多种蛋白质分析物。在实施例2至3中建立了提高数字化ELISA灵敏度的原理之后,使用来自现有商业试剂盒的试剂和类似于IL-17A的条件,开发了对于5种另外的蛋白质(IL-12p70、p24、干扰素α(IFN-α)、IL-4和前列腺特异性抗原(PSA))的测定(图21)。图21示出了使用针对低珠数目进行调节的数字化ELISA(空心圆圈)和标准数字化ELISA(实心正方形),针对IL-17A、IL-12p70、p24、IFN-α、IL-4和PSA浓度的AEB的图。实线是对数据的4PL拟合。每种蛋白质的测定条件总结在表7中。表8中总结了LOD、LLOQ和相对于标准数字化ELISA的灵敏度改进。表8还示出了每个珠的捕获抗体的数目。除了IL-4之外的所有蛋白质都具有大于原始模型中使用的数目(每个珠274,000个)(图9)的数目;IL-4具有1/17的珠。
表7.图21中所示数据的测定条件的细节。所有孵育均在30℃下进行。IL-12p70和p24为两步测定,其中检测器被添加至样品-珠混合物。
Figure BDA0003998994720001041
表8.对于图21中所呈现的数据,6种标准市售数字化ELISA和相应的约5,000个珠的数字化ELISA的测定变量、LOD和LLOQ的比较。LOD的最高理论改进倍数是对于高结合速率的捕获抗体的,假设每个珠≥274,000个抗体=(所用样品体积的比率)×(所用珠的比率)-1;其没有考虑泊松噪声或扩散限制的结合。LOD的最低理论改进倍数=(所用样品体积的比率)。在低珠数据中在PSA数据中去除了两个异常值。
Figure BDA0003998994720001042
Figure BDA0003998994720001051
对于IL-17A、IL-12p70和p24,灵敏度的改进分别为189倍、73倍和27倍;这些与KD≤10-13M的捕获抗体一致(图9),其基于珠数目和样品体积预测的改进在2倍以内(表8)。对于IFN-α,改进更加适度(11.5倍),与较低亲和力(KD在10-11M与10-12M之间)的捕获抗体一致。IL-4仅通过样品体积增加的因素而改进,这部分地是由于对于该蛋白质在珠上的捕获抗体的非常低的负载(表8):每个珠16,000个抗体仅引起约30倍的最高预期改进。PSA的数字化ELISA的表现与其他5种蛋白质不同,因为随着珠数目的降低,背景提高,导致灵敏度降低。该观察结果表明,在PSA的检测抗体与捕获珠之间存在特异性相互作用,随着珠数目的降低,该相互作用提高了背景处的AEB。这种效应可以通过使用与捕获抗体不具有特异性相互作用的替代检测抗体来解决。这种有限的蛋白质筛选表明,通过降低珠数目来实现持续改进的一种方法是通过:a)工程化KD≤10-13M的捕获抗体;b)具有捕获抗体的高加载;以及c)降低非特异性捕获-检测相互作用。
对于IL-12p70和p24,力求对用于进一步提高灵敏度的珠数目的更低的极限。图22和表9示出了IL-12p70的数字化ELISA的数据,该数字化ELISA具有降低至1,342个捕获珠。具体地,图22示出了对于标准ELISA(400,000个珠;100μL样品;30分钟孵育)和针对低珠数目进行调节的数字化ELISA(5,368、2,684或1,342个珠;200μL样品;24小时孵育),针对掺入稀释血清中的IL-12p70的浓度的AEB的图。实线是对数据的4PL拟合。至于IL-17A,LOD在较少的珠数目下提高,但是在较高的珠数目下观察到更好的LLOQ,这是由于来自不足的阳性珠的泊松噪声增加。尽管阵列中仅48%具有足够的珠用于分析,但使用1,342个珠的LOD为45zM或200μL中的5.5个分子,相比于标准数字化ELISA改进了486倍。使用2,684个珠更加稳健,其中100%的阵列具有足够的珠用于分析,并且LOD为92zM。认为这种测定是迄今为止所报道的对蛋白质最敏感的,并且接近样品中单个分子的极限。图23和表10示出了来自p24的数字化ELISA的数据,该数字化ELISA具有降低至1,313个捕获珠。具体地,图23示出了对于标准ELISA(300,000个珠;125μL样品;30分钟孵育)和针对低珠数目进行调节的数字化ELISA(5,259、2,625或1,313个珠;125μL样品;24小时孵育),针对掺入稀释血清中的p24的浓度的AEB的图。实线是对数据的4PL拟合。一般地,p24测定的精确性低于IL-17A和IL-12p70,并且在低于5,000的珠数目下没有实现对LOD的进一步改进。使用5,250个珠的LOD为9.1aM,相比于标准数字化ELISA改进了27倍。相比于最灵敏的商业PCR测试的20至25个病毒/mL,以及早期报道的数字化ELISA的56个病毒/mL,该LOD相当于约2.7个病毒/mL,因为每个病毒产生2,000个p24拷贝。这种灵敏度的提高可以允许相比于以前使用核酸测试或免疫测定所实现的对HIV感染的更早的检测。
表9.与标准数字化ELISA(500,000个珠)相比,图22中绘制的IL-12p70的低珠数目数字化ELISA的LOD、LLOQ、ULOQ和动态范围。
Figure BDA0003998994720001061
表10.与标准数字化ELISA(500,000个珠)相比,图23中绘制的p24的低珠数目数字化ELISA的LOD、LLOQ、ULOQ和动态范围。
Figure BDA0003998994720001062
Figure BDA0003998994720001071
实施例5
该实施例描述了关于与施加磁场结合的使包含磁珠的流体塞流动通过孔阵列的实验和结果。
在RGP的7.5微升等份试样中形成250,000个超顺磁珠的混悬液。将珠混悬液施加至微通道中的微孔阵列。然后研究了存在磁体和使用弯月面流动的影响。如图24中所示,在微孔阵列(3.15×4.15阵列中的239,000个孔,每个孔的体积为44fL)下方在不同距离处放置10mm×9mm的钕铁硼(NeFeB)磁体。使等分试样流动,以使得其弯月面通过阵列不同的次数。然后用油密封孔,并用白光显微镜成像。然后使用MatlabTM分析图像,以确定填充有珠的孔的百分比。表11总结了实验结果。
表11.不同磁体和流动配置下的孔填充。
Figure BDA0003998994720001072
Figure BDA0003998994720001081
表11中总结的结果表明,与没有弯月面流动下的磁力相比,磁力和弯月面扫描的组合引起更强效的珠插入。
虽然本文已经描述和举例说明了本发明的数个实施方案,但是本领域普通技术人员将容易预想用于执行本文中所述的功能和/或获得本文中所述的结果和/或一个或更多个优点的多种其他方式和/或结构,并且这样的变化方案和/或修改方案中的每一者都被认为在本发明的范围内。更一般地,本领域技术人员将容易理解,所描述的所有参数、大小、材料和配置是示例性的,并且实际的参数、大小、材料和/或配置将取决于使用本发明的教导的一个或更多个具体应用。本领域技术人员将认识到或仅使用常规实验就能够确定所描述的本发明的具体实施方案的许多等同方案。因此,应理解,前述实施方案仅通过实例的方式呈现,并且在所附权利要求及其等同方案的范围内,本发明可以以具体描述和要求保护之外的方式来实践。本发明涉及所描述的每个单独的特征、系统、制品、材料和/或方法。此外,如果这样的特征、系统、制品、材料和/或方法不相互不一致,则这样的特征、系统、制品、材料和/或方法中的两个或更多个的任意组合包括在本发明的范围内。
除非明确地指出相反,否则如本文在说明书和权利要求书中使用的没有数量词修饰的名词应理解成意指“至少一者”。
如本文在说明书中和权利要求书中使用的短语“和/或”应理解为意指如此结合的要素中的“任一者或两者”,即在一些情况下共同存在而在另一些情况下分开存在的要素。除非明确指出相反,否则除由“和/或”子句具体标识的要素之外还可以任选地存在其他要素,无论与具体标识的那些要素相关还是不相关。因此,作为一个非限制性实例,当与开放式语言例如“包括”结合使用时,提及“A和/或B”在一个实施方案中可以是指A而没有B(任选地包括除B之外的要素);在另一个实施方案中可以是指B而没有A(任选地包括除A之外的要素);在又一个实施方案中可以是指A和B二者(任选地包括其他要素);等等。
如本文在说明书中和权利要求书中使用的“或/或者”应理解为具有与如上所定义的“和/或”相同的含义。例如,当将列表中的项目分开时,“或/或者”或“和/或”应解释为包括性的,即包括多个要素或要素列表中的至少一个,但也包括多于一个,以及任选地另外未列出的项目。仅明确指出相反的术语,例如“仅之一”或“恰好之一”,或者当用于权利要求时“由......组成”,将指的是包括多个要素或要素列表中的恰好一个要素。一般而言,如本文所用的术语“或/或者”在前面有排他性术语(例如“任一”、“之一”、“仅之一”或“恰好之一”)时仅应解释为指示排他性替代方案(即“一个或另一个但并非二者”)。“基本上由......组成”在用于权利要求中时应具有其在专利法领域中所使用的普通含义。
如本文在说明书中和权利要求中使用的,在提及一个或更多个要素的列表时,短语“至少一个”应被理解为意指选自要素列表中任意一个或更多个要素的至少一个要素,但不一定包括要素列表内具体列出的各个和每个要素中的至少一个,并且不排除要素列表中要素的任意组合。该定义还允许可以任选地存在除在短语“至少一个”所提及的要素列表内具体指出的要素之外的要素,无论与具体指出的那些要素相关或不相关。因此,作为一个非限制性实例,“A和B中的至少一者”(或等同地,“A或B中的至少一者”,或等同地,“A和/或B中的至少一者”)在一个实施方案中可以指至少一个A,任选地包括多于一个A,而不存在B(并且任选地包括除B之外的要素);在另一个实施方案中,可以指至少一个B,任选地包括多于一个B,而不存在A(并且任选地包括除A之外的要素);在又一个实施方案中,可以指至少一个A,任选地包括多于一个A,以及至少一个B,任选地包括多于一个B(并且任选地包括其他要素);等等。
在权利要求中以及以上说明书中,所有过渡短语例如“包含”、“包括”、“带有”、“具有”、“含有”、“涉及”、“持有”等都应理解为开放式的,即理解为意指包括但不限于。仅过渡短语“由...组成”和“基本上由...组成”应分别为封闭或半封闭的过渡短语,如美国专利局专利审查程序手册的第2111.03节所述。

Claims (200)

1.用于将捕获物体相对于测定位点固定的方法,其包括:
将捕获物体递送至表面上的测定位点附近;
在所述表面附近产生倾向于作用于所述捕获物体以使得所述捕获物体朝向所述表面移动的力场;
使包含所述捕获物体的流体塞以第一方向流动,使得所述流体塞的第一方向后退弯月面流动通过至少一些所述测定位点;
使所述流体塞以不同的第二方向流动,使得所述流体塞的第二方向后退弯月面流动通过至少一些所述测定位点;以及
将进行了以下步骤的所述捕获物体中的至少一些相对于所述测定位点固定:使所述流体塞以第一方向流动和/或使所述流体塞以第二方向流动。
2.用于将捕获物体相对于测定位点固定的方法,其包括:
将捕获物体递送至表面上的测定位点附近;
在所述表面附近产生倾向于作用于所述捕获物体以使得所述捕获物体朝向所述表面移动的力场;
使包含所述捕获物体的流体塞流动通过至少一些所述测定位点一次或更多次;以及
将进行了所述流动步骤的所述捕获物体中的至少一些相对于所述测定位点固定;
其中在所述流动步骤期间,递送至所述测定位点附近的捕获物体的总数目的至少20%被固定。
3.权利要求2所述的方法,其中所述流动步骤包括使所述流体塞以第一方向流动,使得所述流体塞的第一方向后退弯月面流动通过至少一些所述测定位点,并且所述方法还包括使所述流体塞以不同的第二方向流动,使得所述流体塞的第二方向后退弯月面流动通过至少一些所述测定位点。
4.权利要求1所述的方法,其中递送至所述测定位点附近的捕获物体的总数目的至少20%被固定。
5.权利要求1至4中任一项所述的方法,其中递送至所述测定位点附近的捕获物体的总数目的至少25%、至少40%、至少50%、至少60%、至少75%、至少90%、至少95%、至少99%、或全部被固定。
6.权利要求1和3至5中任一项所述的方法,其中所述固定步骤通过施加至少部分地由所述第一方向后退弯月面和/或所述第二方向后退弯月面贡献的力来进行。
7.权利要求1至6中任一项所述的方法,其中所述力场是磁场。
8.权利要求7所述的方法,其中产生所述磁场以使得所述磁场的磁场矢量从所述表面指向所述测定位点的底部。
9.权利要求1至6中任一项所述的方法,其中所述力场是电场。
10.权利要求1至9中任一项所述的方法,其中所述捕获物体的平均直径为0.1微米至100微米。
11.权利要求1至10中任一项所述的方法,其中所述捕获物体包含珠。
12.权利要求11所述的方法,其中所述珠是磁珠。
13.权利要求12所述的方法,其中所述磁珠是超顺磁性的。
14.权利要求12所述的方法,其中所述磁珠是铁磁性的。
15.权利要求1至14中任一项所述的方法,其中所述测定位点以二维阵列布置。
16.权利要求1至15中任一项所述的方法,其中测定位点的数目大于或等于100,000。
17.权利要求1至16中任一项所述的方法,其中所述测定位点包括反应容器。
18.权利要求17所述的方法,其中将至少一些所述捕获物体相对于所述反应容器固定包括将至少一些所述捕获物体插入到所述反应容器中。
19.权利要求1至18中任一项所述的方法,其中所述测定位点位于所述表面上的多个独立的位置处,并且进行至少一些所述捕获物体的固定以使得至少一些所述捕获物体被分离在所述多个独立的位置上。
20.权利要求1至19中任一项所述的方法,其中将所述捕获物体递送至所述测定位点附近包括使包含所述捕获物体的流体塞至少部分地流动通过所述测定位点。
21.权利要求1至20中任一项所述的方法,其中所述流体塞的体积为大于或等于3μL。
22.权利要求1至21中任一项所述的方法,其中所述流体塞中的捕获物体的数目小于或等于50,000个捕获物体/μL所述流体塞。
23.权利要求1至22中任一项所述的方法,其中递送至所述反应容器附近的捕获物体的总数目小于或等于100,000。
24.权利要求1至23中任一项所述的方法,其中递送至所述测定位点附近的捕获物体的总数目小于或等于测定位点的数目。
25.权利要求1至24中任一项所述的方法,其中递送至所述测定位点附近的捕获物体的总数目与测定位点的数目的比率为小于或等于1:1、小于或等于1:2、小于或等于1:3、小于或等于1:4、小于或等于1:5、小于或等于1:10、小于或等于1:20、小于或等于1:30、或者小于或等于1:40。
26.权利要求1至25中任一项所述的方法,其中捕获物体相对于少于或等于20%的所述测定位点固定。
27.权利要求1和3至26中任一项所述的方法,其中使所述流体塞以第一方向流动以这样的流量进行:所述流量使得由所述第一方向后退弯月面和/或所述第二方向后退弯月面贡献的力导致相对于所述表面的对所述捕获物体的向下的力。
28.权利要求1至27中任一项所述的方法,其中使所述流体塞流动以大于或等于1μL/秒、大于或等于2μL/秒、大于或等于5μL/秒、大于或等于10μL/秒、大于或等于15μL/秒、大于或等于20μL/秒、大于或等于25μL/秒、大于或等于30μL/秒、或者大于或等于40μL/秒的流量进行。
29.权利要求1和3至28中任一项所述的方法,其中在使所述流体塞以第一方向流动的步骤的至少一些部分期间,所述第一方向后退弯月面与所述表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、或者小于或等于15度。
30.权利要求1和3至29中任一项所述的方法,其中在使所述流体塞以第一方向流动的整个步骤期间,所述第一方向后退弯月面与所述表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、或者小于或等于15度。
31.权利要求1至30中任一项所述的方法,其中使所述流体塞流动的步骤使用基本上连续的流来进行。
32.权利要求1至31中任一项所述的方法,其中使所述流体塞流动的步骤使用正压和/或负压来进行。
33.权利要求1至32中任一项所述的方法,其中使所述流体塞流动的步骤使用电介质上电润湿和/或电泳技术来进行。
34.权利要求7至8和10至33中任一项所述的方法,其中所述磁场由永磁体和/或电磁体产生。
35.权利要求34所述的方法,其中至少在所述产生步骤期间,所述永磁体和/或所述电磁体在所述测定位点下方。
36.权利要求1和3至35中任一项所述的方法,其中在使所述流体塞以第一方向流动的步骤的至少一部分期间存在所述力场。
37.权利要求1至36中任一项所述的方法,其中在使包含所述捕获物体的流体塞流动的步骤之前,降低所述力场的量值。
38.权利要求7至8和10至37中任一项所述的方法,其中所述磁场由永磁体产生,并且降低所述磁场的量值包括引起所述永磁体与所述表面之间的相对运动。
39.权利要求7至8和10至37中任一项所述的方法,其中所述磁场由电磁体产生,并且降低所述磁场的量值包括调节流经所述电磁体的电流的量值。
40.权利要求1至39中任一项所述的方法,其还包括通过调节所述力场的横向分布来向所述捕获物体施加横向力,以及通过所施加的横向力将至少一些所述捕获物体相对于所述测定位点固定。
41.权利要求7至8和10至40中任一项所述的方法,其中所述磁场由永磁体产生,并且调节磁场的横向分布包括引起所述永磁体与所述表面之间的相对横向运动。
42.权利要求41所述的方法,其中调节所述磁场包括引起所述永磁体和/或电磁体与所述表面之间的横向相对运动。
43.权利要求1至42中任一项所述的方法,其中所述流体塞是第一流体塞,并且所述方法还包括使通过不混溶流体与第一流体塞分开的第二流体塞流动通过至少一些所述测定位点,使得至少一些捕获物体相对于所述测定位点固定。
44.权利要求1至43中任一项所述的方法,其中所述测定位点的体积为10阿托升至100皮升。
45.权利要求1至44中任一项所述的方法,其中所述表面是通道的一部分。
46.权利要求45所述的方法,其中所述通道在所述测定位点处的高度大于或等于100微米。
47.权利要求1至46中任一项所述的方法,其中所述表面包含疏水性物质。
48.权利要求1至47中任一项所述的方法,其中使所述流体塞流动在毛细管数大于或等于1×10-6且小于或等于1×10-2的情况下进行。
49.用于将捕获物体相对于测定消耗品的表面上的测定位点固定的装置,其包含:
捕获物体施加器,其被配置成将捕获物体施加至所述测定消耗品的表面或所述表面附近;
力场发生器,当存在时,其与所述测定消耗品相邻,并且被配置成在所述表面附近产生力场;
流体注射器,其被配置成产生当在所述测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;
流体泵,其能够使流体移动通过所述表面的至少一部分;以及
控制器,其包含一个或更多个处理器,所述处理器被配置成调节所述流体泵以使所述流体塞双向移动通过所述表面的至少一部分。
50.用于使捕获物体相对于测定消耗品的表面上的测定位点相关联的装置,其包含:
捕获物体施加器,其被配置成将捕获物体施加至所述测定消耗品的表面或所述表面附近;
力场发生器,当存在时,其与所述测定消耗品相邻,并且被配置成在所述表面附近产生力场,其中所述力场是能够向可极化介电捕获物体施加介电电泳力的非均匀电场;
流体注射器,其被配置成产生当在所述测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;
流体泵,其能够使流体移动通过所述表面的至少一部分;以及
控制器,其包含一个或更多个处理器,所述处理器被配置成调节所述流体泵以使所述流体塞双向移动通过所述表面的至少一部分。
51.用于使捕获物体与测定消耗品的表面上的测定位点相关联的装置,其包含:
捕获物体施加器,其被配置成将捕获物体施加至所述测定消耗品的表面或所述表面附近;
电源;
导电固体,当存在时,其与所述电源导电地或电感地电连通,与所述测定消耗品的表面相邻或相对;
流体注射器,其被配置成产生流体塞;以及
控制器,其包含一个或更多个处理器,所述处理器被配置成启动通过所述电源向至少一些所述导电固体施加电压以:
(a)在所述表面附近产生能够向可极化介电捕获物体施加介电电泳力的非均匀电场;以及
(b)产生使流体塞移动通过所述表面的至少一部分的电场。
52.权利要求49至51所述的装置,其还包含测定消耗品操作器,所述测定消耗品操作器被配置成与所述测定消耗品有效联接。
53.权利要求49至50和52中任一项所述的装置,其中所述一个或更多个处理器被配置成调节所述流体泵以使所述流体塞移动,使得至少部分地由所述第一弯月面和/或所述第二弯月面贡献的力可相对于所述测定位点固定至少一些所述捕获物体。
54.权利要求49至53中任一项所述的装置,其中所述力场被配置成引起所述捕获物体与所述表面之间的相对运动。
55.权利要求49和52至54中任一项所述的装置,其中所述力场是磁场。
56.权利要求49和52至55中任一项所述的装置,其中所述力场发生器被配置成产生磁场,使得所述磁场的磁场矢量从所述表面指向所述测定位点的底部。
57.权利要求49至54中任一项所述的装置,其中所述力场是电场。
58.权利要求49至57中任一项所述的装置,其中所述捕获物体的平均直径为0.1微米至100微米。
59.权利要求49至58中任一项所述的装置,其中所述捕获物体包含珠。
60.权利要求59所述的装置,其中所述珠是磁珠。
61.权利要求60所述的装置,其中所述磁珠是超顺磁性的。
62.权利要求60所述的装置,其中所述磁珠是铁磁性的。
63.权利要求49至62中任一项所述的装置,其中所述测定位点以二维阵列布置。
64.权利要求49至63中任一项所述的装置,其中测定位点的数目大于或等于100,000。
65.权利要求49至64中任一项所述的装置,其中所述测定位点包括反应容器。
66.权利要求65所述的装置,其中至少一些所述捕获物体相对于所述反应容器的固定包括将至少一些所述捕获物体插入到所述反应容器中。
67.权利要求49至66中任一项所述的装置,其中所述流体注射器被配置成产生体积大于或等于10μL的流体塞。
68.权利要求49至67中任一项所述的装置,其中所述捕获物体施加器被配置成将少于或等于100,000个捕获物体施加至所述测定消耗品的表面或所述表面附近。
69.权利要求49至68中任一项所述的装置,其中所述捕获物体施加器被配置成施加的捕获物体的总数目与测定位点的数目的比率小于或等于1:1、小于或等于1:2、小于或等于1:3、小于或等于1:4、小于或等于1:5、小于或等于1:10、小于或等于1:20、小于或等于1:30、或者小于或等于1:40。
70.权利要求49至50和52至68中任一项所述的装置,其中所述一个或更多个处理器被配置成调节所述流体泵以使所述流体塞以这样的流量流动:所述流量使得由所述第一弯月面和/或所述第二弯月面贡献的力导致相对于所述测定消耗品的表面的对所述捕获物体的向下的力。
71.权利要求49至50和52至70中任一项所述的装置,其中所述一个或更多个处理器被配置成调节所述流体泵以使所述流体塞以大于或等于1μL/秒、大于或等于2μL/秒、大于或等于5μL/秒、大于或等于10μL/秒、大于或等于15μL/秒、大于或等于20μL/秒、大于或等于25μL/秒、大于或等于30μL/秒、或者大于或等于40μL/秒的流量流动。
72.权利要求49至50和52至71中任一项所述的装置,其中所述一个或更多个处理器被配置成调节所述流体泵以使所述流体塞流动,使得所述流体塞与所述表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、或者小于或等于15度。
73.权利要求49至50和52至72中任一项所述的装置,其中所述流体泵能够引起所述流体塞的基本上连续的流。
74.权利要求49至73中任一项所述的装置,其中所述力场发生器包含永磁体和/或电磁体。
75.权利要求49至74中任一项所述的装置,其中所述装置被配置成将所述力场发生器定位在所述测定消耗品的测定位点下方。
76.权利要求74至75中任一项所述的装置,其中所述装置被配置成将所述永磁体和/或所述电磁体定位在所述测定消耗品的测定位点下方,使得所述永磁体和/或电磁体可在所述测定消耗品的表面处产生0.1至2特斯拉的磁场量值。
77.权利要求49至76中任一项所述的装置,其中所述装置被配置成将所述力场发生器定位成距离所述测定位点的底部0mm至5mm。
78.权利要求49至77中任一项所述的装置,其中所述装置被配置成调节所述力场的量值。
79.权利要求74至78中任一项所述的装置,其中所述磁场由永磁体产生,并且所述装置被配置成通过引起所述永磁体与所述测定消耗品之间的相对运动来调节所述磁场的量值。
80.权利要求79所述的装置,其中引起所述永磁体与所述测定消耗品之间的相对运动包括在与测定消耗品相邻的第一位置与距所述测定消耗品的距离比所述第一位置更远的第二位置之间移动所述永磁体量值。
81.权利要求55至80中任一项所述的装置,其中所述磁场由电磁体产生,并且所述捕获装置被配置成通过调节流经所述电磁体的电流的量值来调节所述磁场的量值。
82.权利要求52至81中任一项所述的装置,其还包含与所述测定消耗品操作器有效联接的所述测定消耗品。
83.权利要求49至82中任一项所述的装置,其中所述测定消耗品包含通道,所述通道包含含有所述测定位点的表面。
84.权利要求83所述的装置,其中所述通道在所述测定位点处的高度大于或等于100微米。
85.权利要求49至50和52至84中任一项所述的装置,其中所述一个或更多个处理器被配置成调节所述流体泵,使得所述流体塞的双向流动包括:
使流体塞以第一方向流动,使得所述流体塞的第一方向后退弯月面流动通过一部分或全部的所述反应容器;以及
使所述流体塞以不同的第二方向流动,使得所述流体塞的第二方向后退弯月面流动通过一部分或全部的所述反应容器。
86.权利要求49至85中任一项所述的装置,其中所述测定位点的体积为10阿托升至100皮升。
87.权利要求49至86中任一项所述的装置,其中所述表面包含疏水性物质。
88.权利要求49至50和52至87中任一项所述的装置,其中所述流体泵被配置成通过向流体施加正压差和/或负压差来使所述流体在所述通道中移动。
89.权利要求49至50和52至88中任一项所述的装置,其中所述装置被配置成使流体在毛细管数大于或等于1×10-6且小于或等于1×10-2的情况下在所述通道中移动。
90.权利要求51至52、54、57至69、74至84和86至87中任一项所述的装置,其中所述电源包含:
第一电源,其与至少一些导电固体导电地或电感地电连通,通过所述第一电源产生所述非均匀电场;以及
第二电源,其与至少一些导电固体导电地或电感地电连通,用于使所述流体塞移动通过所述表面的至少一部分。
91.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;
将所述特定类型的分析物分子或颗粒的分析物分子或颗粒相对于所述捕获物体固定,使得至少一些所述捕获物体与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的所述捕获物体不与来自所述流体样品的所述特定类型的分析物分子或颗粒中的任一个缔合;
确定指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及
至少部分地基于指示被确定为与所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的所述度量值,确定所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值。
92.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;
将所述特定类型的分析物分子或颗粒的分析物分子或颗粒相对于所述捕获物体固定,使得至少一些所述捕获物体与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合;
确定指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及
基于指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的所述度量值,至少部分地基于指示被确定为与所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的所述度量值,确定所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值,或者至少部分地基于指示存在所述特定类型的分析物分子或颗粒中的多个的所测量信号强度水平,确定所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值。
93.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;
将所述特定类型的分析物分子或颗粒的分析物分子或颗粒相对于所述捕获物体固定,使得至少一些所述捕获物体与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的所述捕获物体不与来自所述流体样品的所述特定类型的分析物分子或颗粒中的任一个缔合;
将进行了所述固定步骤的至少25%的捕获物体空间分离到多个独立的位置中;
对进行了所述空间分离步骤的所述多个位置中的至少一部分进行寻址,以确定指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及
至少部分地基于指示被确定为与所述分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的所述度量值,确定所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值。
94.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将各自对特定类型的分析物分子或颗粒具有亲和力的捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000;
将所述特定类型的分析物分子或颗粒的分析物分子或颗粒相对于所述捕获物体固定,使得至少一些所述捕获物体与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合,而统计学上显著分数的所述捕获物体不与来自所述流体样品的所述特定类型的分析物分子或颗粒中的任一个缔合;
将至少一个结合配体相对于与捕获物体缔合的所述特定类型的分析物分子或颗粒中的至少一些固定;
将至少一个固定的结合配体暴露于前体标记剂,使得所述前体标记剂被转化为相对于所述结合配体所固定的所述捕获物体变得固定的标记剂;
确定指示包含至少一个固定的标记剂的捕获物体的数目或分数的度量值;以及
至少部分地基于指示被确定为包含至少一个固定的标记剂的捕获物体的数目或分数的所述度量值,确定所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值。
95.权利要求93所述的方法,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于50,000。
96.权利要求91至92和94中任一项所述的方法,其中所述方法还包括:
将进行了所述固定步骤的至少一部分捕获物体空间分离到多个独立的位置中;
对进行了所述空间分离步骤的所述多个位置中的至少一部分进行寻址,以确定指示包含来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个的珠的数目或分数的度量值。
97.权利要求91至92和94至96中任一项所述的方法,其中所述方法包括将进行了所述固定步骤的至少25%的捕获物体空间分离到多个独立的位置中。
98.权利要求91至97中任一项所述的方法,其中所述方法包括将进行了所述固定步骤的至少30%、至少50%、至少50%、至少75%、至少90%、至少95%或全部捕获物体空间分离到多个独立的位置中。
99.权利要求91至98中任一项所述的方法,其中所述方法的特征在于所述特定类型的分析物分子或颗粒的检测水平小于或等于50×10-18M。
100.权利要求91至99中任一项所述的方法,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于10,000。
101.权利要求91至100中任一项所述的方法,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目小于或等于7,500、小于或等于5,000、小于或等于4,000、小于或等于3,000、或者小于或等于2,000。
102.权利要求91至101中任一项所述的方法,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目大于或等于100。
103.权利要求93至102中任一项所述的方法,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的捕获物体的数目与独立位置的数目的比率小于或等于1:1、小于或等于1:2、小于或等于1:3、小于或等于1:4、小于或等于1:5、小于或等于1:10、小于或等于1:20、小于或等于1:30、或者小于或等于1:40。
104.权利要求91至103中任一项所述的方法,其中进行所述暴露步骤持续大于或等于15分钟、大于或等于30分钟、大于或等于1小时、大于或等于2小时、大于或等于4小时、大于或等于6小时、大于或等于8小时、大于或等于10小时、或者大于或等于12小时。
105.权利要求91至104中任一项所述的方法,其中所述含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液的体积为大于或等于50微升、大于或等于100微升、大于或等于200微升、或者大于或等于300微升。
106.权利要求91至105中任一项所述的方法,其中与所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的百分比为捕获物体总数目的小于或等于99.99%、小于或等于99.9%、小于或等于99%、小于或等于98%、小于或等于95%、小于或等于90%、80%、小于或等于70%、小于或等于60%、小于或等于50%、小于或等于40%、小于或等于30%、小于或等于20%、小于或等于10%、小于或等于5%、或者小于约1%、小于或等于0.5%、或者小于或等于0.1%。
107.权利要求91至106中任一项所述的方法,其中所述捕获物体包含对所述特定类型的分析物分子或颗粒具有亲和力的结合表面。
108.权利要求91至107中任一项所述的方法,其中所述捕获物体包含珠。
109.权利要求108所述的方法,其中所述珠是磁珠。
110.权利要求109所述的方法,其中所述磁珠是超顺磁性的。
111.权利要求109所述的方法,其中所述磁珠是铁磁性的。
112.权利要求91至111中任一项所述的方法,其中所述捕获物体的平均直径为0.1微米至100微米。
113.权利要求93和95至112中任一项所述的方法,其中所述多个独立的位置包括表面上的测定位点。
114.权利要求113所述的方法,其中所述测定位点的平均体积为10阿托升至100皮升。
115.权利要求113至114中任一项所述的方法,其中所述测定位点包括反应容器。
116.权利要求91至115中任一项所述的方法,其中所述分析物分子或颗粒是蛋白质或核酸。
117.权利要求91至93和95至116中任一项所述的方法,其中所述分析物分子或颗粒与至少一个结合配体缔合。
118.权利要求117所述的方法,其中所述结合配体包含酶组分。
119.权利要求91至118中任一项所述的方法,其中所述流体样品中所述特定类型的分析物分子或颗粒的浓度小于或等于50×10-15M。
120.权利要求91至119中任一项所述的方法,其中所述捕获物体包含液滴或各自包含在液滴内,所述液滴混悬在与所述液滴不混溶的流体中。
121.权利要求91至120中任一项所述的方法,其中确定指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值包括复制核酸前体。
122.权利要求91至121中任一项所述的方法,其中确定指示与来自所述流体样品的所述特定类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值还包括确定指示包含可容易地检测的核酸的捕获物体的数目或分数的度量值。
123.权利要求91至122中任一项所述的方法,其中所述流体样品中所述特定类型的分析物分子或颗粒的浓度的度量值至少部分地通过将所测量的参数与校准标准进行比较来确定。
124.权利要求91至123中任一项所述的方法,其中使用光学技术来寻址所述多个独立的位置。
125.权利要求91至124中任一项所述的方法,其中指示所述流体样品中所述分析物分子或颗粒的浓度的所述度量值至少部分地基于数字化分析来确定。
126.权利要求91至124中任一项所述的方法,其中指示所述流体样品中所述分析物分子或颗粒的浓度的所述度量值至少部分地基于对存在所述分析物分子或颗粒的至少一个指示的强度水平的测量来确定。
127.权利要求91至124中任一项所述的方法,其中所述捕获物体是第一捕获物体,并且所述特定类型的分析物分子或颗粒是第一类型的分析物分子或颗粒,并且所述方法还包括:
将各自包含对第二类型的分析物分子或颗粒具有亲和力的结合表面的第二捕获物体暴露于所述含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液,其中暴露于所述含有或怀疑含有分析物分子或颗粒的溶液的第二捕获物体的数目小于或等于50,000;
将所述第二类型的分析物分子或颗粒的分析物分子或颗粒相对于所述第二捕获物体固定,使得至少一些所述第二捕获物体与来自所述流体样品的所述第二类型的分析物分子或颗粒中的至少一个缔合,并且统计学上显著分数的所述第二捕获物体不与来自所述流体样品的所述第二类型的分析物分子或颗粒中的任一个缔合;
确定指示与来自所述流体样品的所述第二类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的度量值;以及
至少部分地基于指示被确定为与所述第二类型的分析物分子或颗粒中的至少一个缔合的捕获物体的数目或分数的所述度量值,确定所述流体样品中所述第二类型的分析物分子或颗粒的浓度的度量值。
128.权利要求127所述的方法,其中所述第一捕获物体各自包含对所述第一类型的分析物分子或颗粒具有亲和力的结合表面,并且所述第二捕获物体各自包含对所述第二类型的分析物分子或颗粒具有亲和力的结合表面。
129.权利要求128中任一项所述的方法,其中暴露于所述含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液的有对任何类型分析物分子或颗粒具有亲和力的结合表面的捕获物体的总数目小于或等于100,000。
130.权利要求94至129中任一项所述的方法,其中所述标记剂通过在所述标记剂与附着于所述捕获物体的官能团之间形成化学键而相对于所述捕获物体变得固定。
131.权利要求130所述的方法,其中在形成所述化学键之后,可检测部分相对于所述标记剂固定。
132.权利要求94至129中任一项所述的方法,其中所述标记剂通过形成与所述捕获物体缔合的基本上不溶或沉淀的物质而相对于所述捕获物体变得固定。
133.用于对测定消耗品表面上的测定位点阵列进行成像的装置,其包含:
成像系统,其包含检测器和光学器件,具有比包含所述测定位点阵列的区域更大的固定视场;以及
计算机实施的控制系统,其被配置成从所述成像系统接收信息并分析包含所述测定位点阵列的整个区域;
其中所述测定位点的体积为10阿托升至100皮升。
134.权利要求133所述的装置,其还包含被配置成与所述测定消耗品有效联接的测定消耗品操作器。
135.权利要求133至134中任一项所述的装置,其中所述计算机实施的控制系统还被配置成基于所分析的整个所述测定位点阵列来确定测定样品中分析物分子或颗粒的未知浓度的度量值。
136.权利要求133至135中任一项所述的装置,其中所述控制系统被配置成分析至少2mm2的区域。
137.权利要求133至136中任一项所述的装置,其中所述控制系统被配置成分析至少10mm2的区域。
138.权利要求134至137中任一项所述的装置,其还包含与所述测定消耗品操作器有效联接的所述测定消耗品。
139.权利要求133至138中任一项所述的装置,其中测定位点的数目大于或等于100,000。
140.权利要求133至139中任一项所述的装置,其还包含捕获物体施加器,所述捕获物体施加器被配置成将捕获物体施加至所述测定消耗品的表面或所述表面附近。
141.权利要求133至140中任一项所述的装置,其还包含力场发生器,所述力场发生器与所述测定消耗品相邻并且被配置成在所述表面附近产生力场。
142.权利要求141所述的装置,其中所述力场是磁场。
143.权利要求133至142中任一项所述的装置,其还包含流体注射器,所述流体注射器被配置成产生当在所述测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞。
144.权利要求133至143中任一项所述的装置,其还包含能够使流体移动通过所述表面的至少一部分的流体泵。
145.权利要求133至144中任一项所述的装置,其还包含控制器,所述控制器包含一个或更多个处理器,所述处理器被配置成调节所述流体泵以使所述流体塞双向移动通过所述表面的至少一部分。
146.权利要求140至145中任一项所述的装置,其中所述捕获物体包含珠。
147.权利要求146所述的装置,其中所述珠是磁珠。
148.权利要求147所述的装置,其中所述磁珠是超顺磁性的。
149.权利要求147中任一项所述的装置,其中所述磁珠是铁磁性的。
150.用于进行用于检测流体样品中分析物分子或颗粒的测定的方法,其包括:
提供1,000至200,000个捕获物体;
通过进行包括以下各项的一个或更多个过程来制备来自所述流体样品的分析物分子或颗粒和所述捕获物体以用于检测:
(1)将所述捕获物体和分析物分子或颗粒在液体中混合,以形成捕获物体混悬液;以及
(2)向所述捕获物体混悬液施加力以从所述捕获物体混悬液中去除液体,其中施加力不包括通过将所述捕获物体混悬液与倾向于使所述液体移动的真空源流体连接而向所述捕获物体混悬液施加负压;
其中:
所述制备步骤产生所制备的捕获物体,所制备的捕获物体中的至少一些与来自所述流体样品的所述分析物分子或颗粒缔合,并且统计学上显著分数的所制备的捕获物体不与任何分析物分子或颗粒缔合;并且
所制备的捕获物体的总数目大于或等于所述提供步骤中的所述捕获物体的90%:以及
至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的度量值,确定所述流体样品中分析物分子或颗粒的浓度的度量值。
151.权利要求150所述的方法,其中施加力包括向所述捕获物体混悬液施加离心力。
152.权利要求150至151中任一项所述的方法,其中在所述一个或更多个过程中的至少一个中,所述液体为所述流体样品。
153.权利要求150至152中任一项所述的方法,其中在所述一个或更多个过程中的至少一个中,所述液体包含结合配体。
154.权利要求150至153中任一项所述的方法,其中在所述一个或更多个过程中的至少一个中,所述液体为洗涤溶液。
155.权利要求150至154中任一项所述的方法,其中所述捕获物体包含珠。
156.权利要求155所述的方法,其中所述珠是磁珠。
157.权利要求156所述的方法,其中所述磁珠是超顺磁性的。
158.权利要求156所述的方法,其中所述磁珠是铁磁性的。
159.权利要求150至158中任一项所述的方法,其还包括在所述捕获物附近产生倾向于作用于所述捕获物体的力场,使得所述捕获物体抵抗由所施加以去除所述液体的力引起的运动。
160.权利要求150至159中任一项所述的方法,其中所述力场是磁场。
161.权利要求150至160中任一项所述的方法,其还包括将所制备的珠混悬在流体中,并将所述流体施加至表面上的测定位点或其附近。
162.用于进行测定的装置,其包含:
样品洗涤器,其被配置成制备来自流体样品的分析物分子或颗粒和磁珠以用于检测;
珠施加器,其被配置成将所述磁珠施加至测定消耗品的表面或所述表面附近,所述表面包含反应容器;
磁场发生器,其被配置成与所述测定消耗品相邻并且被配置成在所述表面附近产生磁场;
流体注射器,其被配置成产生当在所述测定消耗品的表面上时具有各自与不混溶流体相邻的第一弯月面和第二弯月面的流体塞;
流体泵,其能够使流体移动通过所述测定消耗品的表面;
成像系统,其包含检测器和光学器件,具有比由反应容器阵列限定的区域更大的固定视场;以及
控制器,其包含一个或更多个处理器,所述处理器被配置成调节所述流体泵以使流体移动通过所述测定消耗品的表面。
163.权利要求162所述的装置,其还包含测定消耗品操作器,所述测定消耗品操作器被配置成与所述测定消耗品有效联接。
164.权利要求163所述的装置,其还包含与所述测定消耗品操作器有效联接的所述测定消耗品。
165.权利要求162至164中任一项所述的装置,其中所述样品洗涤器被配置成在没有通过将捕获物体混悬液与倾向于使液体移动的真空源流体连接而向珠混悬液施加负压的情况下从所述珠混悬液中去除液体。
166.权利要求162至165中任一项所述的装置,其中所述样品洗涤器被配置成通过向珠混悬液施加离心力来从所述珠混悬液中去除液体。
167.权利要求162至166中任一项所述的装置,其中所述磁珠是超顺磁性的。
168.权利要求162至166中任一项所述的装置,其中所述磁珠是铁磁性的。
169.权利要求162至168中任一项所述的装置,其还包含计算机实施的控制系统,所述计算机实施的控制系统被配置成从所述成像系统接收信息并分析包含所述反应容器阵列的整个区域。
170.权利要求162至169中任一项所述的装置,其中所述反应容器的体积为10阿托升至100皮升。
171.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将磁珠暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;
将分析物分子或颗粒相对于所述磁珠固定,使得至少一些所述磁珠与来自所述流体样品的至少一个分析物分子或颗粒缔合,并且统计学上显著分数的所述磁珠不与来自所述流体样品的任何分析物分子或颗粒缔合;
从进行了所述固定步骤的所述磁珠的至少一部分中去除溶液;
将所述磁珠递送至表面上的反应容器附近;
在所述表面附近产生倾向于作用于所述捕获物体的磁场,使得所述捕获物体朝向所述表面移动;
使包含所述磁珠的流体塞流动,使得所述流体塞的后退弯月面流动通过至少一些所述反应容器;
将至少一部分所述磁珠插入到所述反应容器中;
在所述插入步骤之后对整个所述反应容器进行成像;
对进行了所述成像步骤的整个所述反应容器进行分析,以确定指示与来自所述流体样品的分析物分子或颗粒缔合的磁珠的数目或分数的度量值;以及
至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的珠的数目或分数的所述度量值,确定所述流体样品中分析物分子或颗粒的浓度的度量值。
172.用于确定流体样品中分析物分子或颗粒的浓度的度量值的方法,其包括:
将捕获物体暴露于含有或怀疑含有至少一种类型的分析物分子或颗粒的溶液;
将分析物分子或颗粒相对于所述捕获物体固定,使得至少一些所述捕获物体与来自所述流体样品的至少一个分析物分子或颗粒缔合,并且统计学上显著分数的所述捕获物体不与来自所述流体样品的任何分析物分子或颗粒缔合;
从进行了所述固定步骤的所述捕获物体中的至少一部分中去除所述溶液,同时保留进行了所述固定步骤的所述捕获物体中的至少80%;
将进行了所述去除步骤的所述捕获物体中的至少80%递送至表面上的测定位点附近;
将进行了所述递送步骤的所述捕获物体中的至少20%相对于所述测定位点固定;
对至少80%的所述测定位点进行成像;
对进行了所述成像步骤的所述测定位点中的至少75%进行分析,以确定指示与来自所述流体样品的分析物分子或颗粒缔合的磁性捕获物体的数目或分数的度量值;以及
至少部分地基于指示被确定为与至少一个分析物分子或颗粒缔合的捕获物体的数目或分数的所述度量值,确定所述流体样品中分析物分子或颗粒的浓度的度量值。
173.方法,其包括在小于2×10-18M的检测水平下确定流体样品中分析物分子或颗粒的浓度的度量值。
174.用于将捕获物体相对于测定位点固定的方法,其包括:
将捕获物体递送至表面上的测定位点附近;
向进行了所述递送步骤的所述捕获物体施加外力,使得所述捕获物体与所述测定位点之间的距离缩短;
使包含所述捕获物体的流体塞流动,使得所述流体塞的后退弯月面流动通过所述测定位点;以及
通过施加至少部分地由所述后退弯月面贡献的力将所述捕获物体相对于所述测定位点固定。
175.用于使捕获物体相对于测定位点相关联的方法,其包括:
将捕获物体递送至表面上的测定位点附近;
向进行了所述递送步骤的所述捕获物体施加外力,使得所述捕获物体与所述测定位点之间的距离缩短,其中所述外力是介电电泳力;
使包含所述捕获物体的流体塞流动,使得所述流体塞的后退弯月面流动通过所述测定位点;以及
通过施加至少部分地由所述后退弯月面贡献的力使所述捕获物体相对于所述测定位点相关联。
176.用于使捕获物体与测定位点相关联的方法,其包括:
通过使用数字化微流体技术使包含捕获物体的流体塞流动至测定位点来将所述捕获物体递送至表面上的测定位点附近,
产生非均匀电场以将外部介电电泳力施加至进行了所述递送步骤的所述捕获物体,使得所述捕获物体与所述测定位点之间的距离缩短,以及
通过施加至少部分地由所述介电电泳力贡献的力使所述捕获物体相对于所述测定位点相关联。
177.权利要求174至176所述的方法,其中施加所述外力包括在所述表面附近产生倾向于作用于所述捕获物体的力场,使得所述捕获物体朝向所述表面移动。
178.权利要求174和177中任一项所述的方法,其中所述力场是磁场。
179.权利要求174至178中任一项所述的方法,其中所述捕获物体包含珠。
180.权利要求179所述的方法,其中所述珠是磁珠。
181.权利要求180所述的方法,其中所述磁珠是超顺磁性的。
182.权利要求180所述的方法,其中所述磁珠是铁磁性的。
183.权利要求174至182中任一项所述的方法,其中所述测定位点包括反应容器。
184.权利要求183所述的方法,其中所述反应容器的体积为10阿托升至100皮升。
185.权利要求174至184中任一项所述的方法,其中使所述流体塞流动以大于或等于1μL/秒、大于或等于2μL/秒、大于或等于5μL/秒、大于或等于10μL/秒、大于或等于15μL/秒、大于或等于20μL/秒、大于或等于25μL/秒、大于或等于30μL/秒、大于或等于40μL/秒的流量进行。
186.权利要求174至185中任一项所述的方法,其中在使所述流体塞以第一方向流动的步骤的至少一些部分期间,所述第一方向后退弯月面与所述表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、或者小于或等于15度。
187.权利要求174至186中任一项所述的方法,其中在使所述流体塞以第一方向流动的整个步骤期间,所述第一方向后退弯月面与所述表面的接触角小于90度、小于或等于60度、小于或等于45度、小于或等于30度、或者小于或等于15度。
188.权利要求174至175和177至187中任一项所述的方法,其中使所述流体塞流动的步骤使用基本上连续的流来进行。
189.权利要求174至188中任一项所述的方法,其中使所述流体塞流动的步骤使用正压和/或负压来进行。
190.权利要求174至189中任一项所述的方法,其中所述表面是通道的一部分。
191.权利要求174至175和177至190中任一项所述的方法,其中使所述流体塞流动在毛细管数大于或等于1×10-6且小于或等于1×10-2的情况下进行。
192.权利要求176所述的方法,其中使所述流体塞流动的步骤使用电介质上电润湿和/或电泳技术来进行。
193.用于将捕获物体相对于测定位点固定的方法,其包括:
将包含捕获物体的流体递送至表面上的测定位点附近;
在所述表面附近产生倾向于作用于所述捕获物体的力场,使得所述捕获物体朝向所述表面移动;
通过调节所述力场的横向分布来向所述捕获物体施加横向力;以及
至少部分地通过所施加的横向力将至少一些所述捕获物体相对于所述测定位点固定,
其中在所述施加步骤期间,递送至所述测定位点附近的捕获物体的总数目的至少20%被固定。
194.权利要求193所述的方法,其中所述力场是磁场。
195.权利要求194所述的方法,其中所述磁场使用永磁体和/或电磁体产生。
196.权利要求193至195中任一项所述的方法,其中调节磁场的横向分布包括引起所述永磁体与所述表面之间的相对横向运动。
197.用于制备分析物分子或颗粒的样品以用于检测的试剂盒,其包含:
捕获物体,所述捕获物体包含对所述分析物分子或颗粒具有亲和力的结合表面,其中使用5,000个与所述试剂盒中相同的捕获物体的第一测定的检测水平比使用500,000个与所述试剂盒中相同的捕获物体的第二测定的检测水平低至少50%,其中:
所述第一测定包括将所述捕获物体与所述分析物分子或颗粒一起孵育第一时间段的步骤,
所述第二测定包括将所述捕获物体与所述分析物分子或颗粒一起孵育第二时间段的步骤,所述第一时间段是所述第二时间段的100倍长,并且
所述第一测定和所述第二测定在其他方面相同的条件下进行。
198.试剂盒,其包含用于分析物检测测定的包装容器,所述包装容器包含50,000至5,000,000个捕获物体,所述捕获物体各自包含对所述分析物具有亲和力的结合表面且平均直径为0.1微米至100微米,其中所述分析物检测测定可在小于或等于50×10-18M的检测水平下进行。
199.权利要求197至198中任一项所述的试剂盒,其中每个捕获物体的结合表面包含对所述分析物具有亲和力的捕获组分。
200.组合物,其包含:
分离的流体,其体积为10至1000微升;
至少一种类型的分析物分子或颗粒,其以0.001aM至10pM的浓度存在;
100至50,000个捕获物体,其包含对所述至少一种类型的分析物分子或颗粒具有亲和力的结合表面。
CN202180042598.9A 2020-04-15 2021-04-14 通过提高的捕获物体递送的与高灵敏度数字化测定相关的方法和系统 Pending CN115702043A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063010625P 2020-04-15 2020-04-15
US202063010613P 2020-04-15 2020-04-15
US63/010,625 2020-04-15
US63/010,613 2020-04-15
PCT/US2021/027347 WO2021211754A2 (en) 2020-04-15 2021-04-14 Methods and systems related to highly sensitive assays and delivering capture objects

Publications (1)

Publication Number Publication Date
CN115702043A true CN115702043A (zh) 2023-02-14

Family

ID=75787310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180042598.9A Pending CN115702043A (zh) 2020-04-15 2021-04-14 通过提高的捕获物体递送的与高灵敏度数字化测定相关的方法和系统

Country Status (6)

Country Link
US (1) US20230109130A1 (zh)
EP (1) EP4135897A2 (zh)
JP (1) JP2023522223A (zh)
CN (1) CN115702043A (zh)
CA (1) CA3172579A1 (zh)
WO (1) WO2021211754A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250343A (zh) * 2022-06-10 2023-12-19 广州印芯半导体技术有限公司 载体均匀地分散的生物检测装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US6406845B1 (en) 1997-05-05 2002-06-18 Trustees Of Tuft College Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample
US8460879B2 (en) 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
EP2201374B1 (en) 2007-08-30 2015-10-07 Trustees Of Tufts College Methods for determining the concentration of an analyte in solution.
US8093064B2 (en) * 2008-05-15 2012-01-10 The Regents Of The University Of California Method for using magnetic particles in droplet microfluidics
US20100075439A1 (en) 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of molecules by capture-and-release using reducing agents followed by quantification
WO2010039179A1 (en) 2008-09-23 2010-04-08 Quanterix Corporation Ultra-sensitive detection of molecules or enzymes
US20100075862A1 (en) 2008-09-23 2010-03-25 Quanterix Corporation High sensitivity determination of the concentration of analyte molecules or particles in a fluid sample
US20100075355A1 (en) 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of enzymes by capture-and-release followed by quantification
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
ES2544635T3 (es) 2010-03-01 2015-09-02 Quanterix Corporation Métodos para extender el rango dinámico en ensayos para la detección de moléculas o partículas
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
US9809163B2 (en) 2015-04-14 2017-11-07 Harman International Industries, Incorporation Techniques for transmitting an alert towards a target area

Also Published As

Publication number Publication date
WO2021211754A3 (en) 2021-12-09
JP2023522223A (ja) 2023-05-29
EP4135897A2 (en) 2023-02-22
US20230109130A1 (en) 2023-04-06
CA3172579A1 (en) 2021-10-21
WO2021211754A2 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US20240091770A1 (en) Imaging Analyzer For Testing Analytes
US11865542B2 (en) System and method for isolating and analyzing cells
US10209250B2 (en) PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use
US20030040129A1 (en) Binding assays using magnetically immobilized arrays
US10775368B2 (en) Fluidic device, system, and method
US20180001320A1 (en) Fluidic device, system, and method
US20230109130A1 (en) Methods and systems related to highly sensitive assays and delivering capture objects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination