CN115699611A - 用于基于事件的上行链路发射波束切换的方法和装置 - Google Patents

用于基于事件的上行链路发射波束切换的方法和装置 Download PDF

Info

Publication number
CN115699611A
CN115699611A CN202180042517.5A CN202180042517A CN115699611A CN 115699611 A CN115699611 A CN 115699611A CN 202180042517 A CN202180042517 A CN 202180042517A CN 115699611 A CN115699611 A CN 115699611A
Authority
CN
China
Prior art keywords
beams
event
transmission
tci
gnb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180042517.5A
Other languages
English (en)
Inventor
麦德·赛弗·拉赫曼
埃科·昂高萨努斯
埃马德·纳德·法拉格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN115699611A publication Critical patent/CN115699611A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于操作用户设备的方法,包括:接收配置信息,所述配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1;接收波束指示;确定是否检测到事件;基于是否检测到所述事件,从N个UL发射波束中选择波束;以及使用所选择的波束来发射UL传输,其中波束是指用于接收或发射源参考信号(RS)的空间属性。

Description

用于基于事件的上行链路发射波束切换的方法和装置
技术领域
本公开大体上涉及无线通信系统,更具体地,涉及基于事件的上行链路发射波束切换。
背景技术
为了满足自第四代(4G)通信系统部署以来增加的无线数据业务的需求,已经致力于开发改进的第五代(5G)或前5G通信系统。5G或前5G通信系统也被称为“超4G网络”或“后长期演进(LTE)系统”。5G通信系统被认为是在较高频率(毫米波)频带,例如60千兆赫(GHz)频带中实现的,以便实现较高的数据速率。为了降低无线电波的传播损耗并增加传输距离,关于5G通信系统讨论了波束成形、大型多输入多输出(MIMO)、全维度MIMO(FD-MIMO)、阵列天线、模拟波束成形和大规模天线技术。此外,在5G通信系统中,正在基于先进小小区、云无线电接入网络(RAN)、超密集网络、装置到装置(D2D)通信、无线回程、移动网络、协作通信、协调多点(CoMP)、接收端干扰消除等进行系统网络改进的开发。在5G系统中,已经开发了作为高级编码调制(ACM)的混合频移键控(FSK)和Feher正交幅度调制(FQAM)以及滑动窗口叠加编码(SWSC),以及作为高级接入技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
因特网是人类产生和消费信息的以人类为中心的连接网络,现在正发展到物联网(IoT),在物联网中,诸如事物的分布式实体在没有人为干预的情况下交换和处理信息。作为IoT技术和大数据处理技术通过与云服务器的连接而结合在一并的万物网(IoE)已经应运而生。作为技术要素,诸如人类产生和消费信息的技术连接网络,现在正演进到其中云服务器具有IoT实现的物联网(IoT),近来已经研究了传感器网络、机器到机器(M2M)通信、机器类型通信(MTC)等。这种IoT环境可提供智能因特网技术服务,其通过收集和分析在连接的事物之间生成的数据来为人类生活创造新的价值。通过现有的信息技术(IT)和各种工业应用之间的融合和组合,IT可应用于各种领域,包括智能家居、智能建筑、智能城市、智能汽车或联网汽车、智能电网、卫生保健、智能设备和高层级医疗服务。
与此相一致,已经进行了将5G通信系统应用到IoT网络的各种尝试。例如,诸如传感器网络、MTC和M2M通信的技术可通过波束成形、MIMO和阵列天线来实施。作为上述大数据处理技术的云RAN的应用也可被认为是5G技术与IoT技术之间相融合的示例。
发明内容
[技术方案]
本公开的实施例提供了启用基于事件的上行链路发射波束切换的方法和装置。
附图说明
为了更完整地理解本公开及其优点,现在结合附图参考以下描述,其中相同的附图标记表示相同的部件:
图1示出了根据本公开实施例的示例性无线网络;
图2示出了根据本公开实施例的示例性gNB;
图3示出了根据本公开实施例的示例性UE;
图4A示出了根据本公开实施例的正交频分多址发射路径的高层示图;
图4B示出了根据本公开实施例的正交频分多址接收路径的高层示图;
图5示出了根据本公开实施例的用于子帧中的PDSCH的发射器框图;
图6示出了根据本公开实施例的用于子帧中的PDSCH的接收器框图;
图7示出了根据本公开实施例的用于子帧中的PUSCH的发射器框图;
图8示出了根据本公开实施例的用于子帧中的PUSCH的接收器框图;
图9示出了根据本公开实施例的两个切片的示例性复用;
图10示出了根据本公开实施例的上行链路多波束操作;
图11示出了根据本公开实施例的上行链路多波束操作;
图12示出了根据本公开实施例的下行链路多波束操作;
图13示出了根据本公开实施例的被配置成接收指示两个波束(B1,B2)的UL TX波束指示的UE的流程图;
图14示出了根据本公开实施例的被配置成接收指示两个波束(B1,B2)的UL TX波束指示的UE的流程图;
图15示出了根据本公开实施例的被配置成接收指示N个波束(B1,B2,...,BN)的ULTX波束指示的UE的流程图;
图16示出了根据本公开实施例的被配置成接收指示N个波束(B1,B2,...,BN)的ULTX波束指示的UE的流程图;
图17示出了根据本公开实施例的用于UL传输的UL TX波束选择的算法描述;
图18示出了根据本公开实施例的用于操作UE的方法的流程图;
图19示出了根据本公开实施例的用于操作BS的方法的流程图;
图20示出了根据本公开实施例的基站;以及
图21示出了根据本公开实施例的用户设备(UE)。
具体实施方式
根据本公开的实施例,提供了一种用户设备(UE),包括收发器和处理器。收发器被配置成:接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1;以及接收波束指示。处理器可操作地联接到收发器,处理器被配置成:确定是否检测到事件;以及基于是否检测到事件,从N个UL发射波束中选择波束。其中,收发器被进一步配置成使用所选择的波束来发射UL传输;以及其中,波束是指用于接收或发射源参考信号(RS)的空间属性。
在实施例中,处理器被进一步配置成:响应于未检测到事件,从N个UL发射波束中选择第一波束作为波束;并且响应于检测到事件,从N个UL发射波束中选择第二波束作为波束。
在实施例中,事件检测是基于是否满足最大允许暴露(MPE)限制。
在实施例中,UE至少配备有第一天线面板和第二天线面板,并且处理器被进一步配置成基于确定从第一天线面板切换到第二天线面板来确定检测到事件。
在实施例中,基于N个UL发射波束中的优先级次序来选择波束。
在实施例中,收发器被配置成接收配置信息,该配置信息包括关于测量RS资源的信息和关于波束报告的信息。处理器被配置成测量测量RS资源,并且基于所测量的测量RS资源计算波束报告。收发器被进一步配置成发射波束报告,测量RS资源包括信道状态信息参考信号(CSI-RS)或同步信号块(SSB)或者CSI-RS和SSB两者,该波束报告包括至少一个资源指示符和与至少一个资源指示符相关联的波束度量,并且该波束指示是基于波束报告进行的。
在实施例中,该波束指示是经由包括至少一个源RS的传输配置指示符(TCI)状态进行的。
在实施例中,该波束指示是经由N个传输配置指示符(TCI)状态进行的,一个TCI状态用于N个UL传输波束中的每一个,并且每个TCI状态包括至少一个源RS。
在实施例中,波束指示分别经由第一传输配置指示符(TCI)状态TCI1和和第二TCI状态TCI2进行的,第一TCI状态和第二TCI状态中的每一个包括至少一个源RS,并且处理器被配置成:使用TCI1来确定N个UL发射波束中的一个,以及使用TCI2来确定N个UL发射波束中的剩余N-1个。
根据本公开的实施例,提供了一种基站(BS),包括处理器和收发器。处理器被配置成:生成配置信息,配置信息包括关于指示N个上行链路(UL)发射波束的波束指示的信息,其中N>1;并且生成波束指示。收发器可操作地联接到处理器,收发器被配置成:发射配置信息,发射波束指示,以及接收使用来自N个UL发射波束中的波束所发射的UL传输,其中基于是否检测到事件来选择波束,并且其中波束是指用于接收或发射源参考信号(RS)的空间属性。
在实施例中,如果未检测到事件,则波束是来自N个UL发射波束中的第一波束;并且如果检测到事件,则波束是来自N个UL发射波束中的第二波束。
在实施例中,事件检测基于是否满足最大允许暴露(MPE)限制。
在实施例中,基于N个UL发射波束中的优先级次序来选择波束。
在实施例中,收发器被配置成:发射配置信息,配置信息包括关于测量RS资源的信息和关于波束报告的信息,发射测量RS资源,以及接收波束报告,测量RS资源包括信道状态信息参考信号(CSI-RS)或同步信号块(SSB)或者CSI-RS和SSB两者,波束报告包括至少一个资源指示符和与至少一个资源指示符相关联的波束度量,波束指示是基于波束报告进行的。
在实施例中,波束指示是经由包括至少一个源RS的传输配置指示符(TCI)状态进行的。
在实施例中,波束指示是经由N个传输配置指示符(TCI)状态进行的,一个TCI状态用于N个UL传输波束中的每一个,并且每个TCI状态包括至少一个源RS。
在实施例中,波束指示分别经由第一传输配置指示符(TCI)状态TCI1和第二TCI状态TCI2进行的,第一和第二TCI状态中的每一个包括至少一个源RS,TCI1指示N个UL发射波束中的一个,并且TCI2指示N个UL发射波束中的剩余N-1个。
根据本公开的实施例,提供了一种用于操作用户设备(UE)的方法,该方法包括:接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1;接收波束指示;确定是否检测到事件;基于是否检测到事件,从N个UL发射波束中选择波束;以及使用所选择的波束来发射UL传输,其中波束是指用于接收或发射源参考信号(RS)的空间属性。
在实施例中,响应于未检测到事件,从N个UL发射波束中选择波束为第一波束;并且响应于检测到事件,从N个UL发射波束中选择波束为第二波束。
在实施例中,波束指示是经由包括至少一个源RS的传输配置指示符(TCI)状态进行的。
根据随附的附图、说明书和权利要求,其它技术特征对于本领域技术人员来说是显而易见的。
[发明模式]
在进行以下详细描述之前,阐述整个专利文件中使用的某些单词和短语的定义可能是有利的。术语“联接”及其派生词是指两个或更多个要素之间的任何直接或间接通信,无论这些要素是否彼此物理接触。术语“发射”、“接收”和“通信”及其派生词涵盖直接和间接通信。术语“包括(include)”和“包括(comprise)”及其派生词意指非限制性地包括。术语“或”是包括性的,意味着和/或。短语“与…相关联”及其派生词意味着包括、包括在…内、与…互连、包括、包括在…内、连接至或与…连接、联接至或与…联接、与…通信、与…协作、交织、并列、接近、绑定至或与…绑定、具有、具有…的特性、具有…与…的关系等。术语“控制器”是指控制至少一个操作的任何设备、系统或其部分。这种控制器可以硬件或硬件和软件和/或固件的组合实现。无论是本地的还是远程的,与任何特定控制器相关联的功能可以是集中式或分布式。短语“至少一个”,当与项目列表一并使用时,意味着可使用所列项目中的一个或多个的不同组合,并且可仅需列表中的一个项目。例如,“A、B和C中的至少一个”包括以下组合中的任何一种:A、B、C,A和B、A和C,B和C、以及A和B和C。
另外,以下描述的各种功能可由一个或多个计算机程序来实施或支持,每个计算机程序由计算机可读程序代码形成,并在计算机可读介质中实施。术语“应用程序”和“程序”是指适用于以合适的计算机可读程序代码实现的一个或多个计算机程序、软件部件、指令集、过程、函数、对象、类、示例、相关数据或其部分。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码和可执行代码。短语“计算机可读介质”包括能由计算机接入的任何类型的介质,诸如只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、光盘(CD)、数字视频光盘(DVD)或任何其它类型的存储器。“非暂存性”计算机可读介质排除了传输瞬时电信号或其它瞬时信号的有线、无线、光或其它通信链路。非暂时性计算机可读介质包括能永久存储数据的介质,以及能存储数据并随后重写数据的介质,诸如可重写光盘或可擦除存储设备。
在整个专利文件中,提供了对其它某些单词和短语的定义。所属领域的技术人员应理解,在许多(如果不是大多数)示例中,此种定义适用于此种定义的词和短语的先前和将来使用。
以下讨论的图1至图21,以及本专利文件中的用于描述本公开原理的各种实施方式仅作为说明,并且不应以任何方式解释为限制本公开的范围。所属领域的技术人员将理解的是,本公开的原理可实施于任何适当布置的系统或设备中。
以下文件和标准描述通过引用结合到本公开中,就如在本文完整阐述:3GPP TS36.211 v16.5.0,“E-UTRA,物理信道和调制(Physical channels and modulation)”(本文中被称为“REF 1”);3GPP TS 36.212 v16.5.0,“E-UTRA,多路复用和信道编码(Multiplexand Channel coding)”(本文中被称为“REF 2”);3GPP TS 36.213 v16.5.0,“E-UTRA,物理层流程(Physical Layer Procedures)”(本文中被称为“REF 3”);3GPP TS36.321v16.4.0,“E-UTRA,多媒体接入控制协议规范(Medium Access Control(MAC)protocol specification)”(本文中被称为“REF 4”);3GPP TS 36.331 v16.4.0,“E-UTRA,无线电资源控制协议规范(Radio Resource Control(RRC)protocol specification)”(本文中被称为“REF 5”);3GPP TS 38.211 v16.5.0,“NR,物理信道和调制(Physicalchannels and modulation)”(本文中被称为“REF 6”);3GPP TS 38.212 v16.5.0,“NR,多路复用和信道编码(Multiplex and Channel coding)”(本文中被称为“REF 7”);3GPP TS38.213 v16.4.0,“NR,物理层控制流程(Physical Layer Procedures for Control)”(本文中被称为“REF 8”);3GPP TS 38.214 v16.4.0,“NR,物理层数据流程(Physical LayerProcedures for Data)”(本文中被称为“REF 9”);3GPP TS 38.215 v16.4.0,“NR,物理层测量(Physical Layer Measurements)”(本文中被称为“REF 10”);3GPP TS38.321v16.4.0,“NR,无线电资源控制协议规范(Radio Resource Control(RRC)protocolspecification)”(本文中被称为“REF 11”);以及3GPP TS 38.331v16.4.1,“NR,无线电资源控制协议规范(Radio Resource Control(RRC)protocol specification)”(本文中被称为“REF12”)。
根据以下详细描述,仅通过说明多个特定实施方式和实现(包括预期用于实施本公开的最佳方式),本公开的方面、特征和优点将变得显而易见。本公开还能够有其它和不同的实施方式,并且可在各种明显的方面修改其若干细节,而所有这些都不脱离本公开的精神和范围。因此,附图和描述在本质上被认为是说明性的,而不是限制性的。在附图的图中以示例的方式而非限制的方式示出了本公开。
在下文中,为了简洁起见,FDD和TDD都被认为是用于DL和UL信令的双工方法。
尽管以下示例性描述和实施方式假设正交频分多路复用(OFDM)或正交频分多址(OFDMA),但是本公开可扩展到其它基于OFDM的传输波形或多址方案,诸如滤波OFDM(F-OFDM)。
为满足自部署4G通信系统以来增加的无线数据业务的需求以及启用各种垂直应用,5G/NR通信系统已被开发并且当前正在持续发展中。5G/NR通信系统被认为是在较高频率(mmWave)频带中实施,(例如28GHz或60GHz频带),以实现更高的数据速率;或在较低频带(诸如6GHz)中实施,以实现更稳健的覆盖和移动性支持。为降低无线电波的传播损耗并增加传输距离,在5G/NR通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维度MIMO(FD-MIMO)、阵列天线、模拟波束成形、大型天线技术。
另外,在5G/NR通信系统中,正在基于高级的小小区、云无线电接入网络(RAN)、超密集网络、装置到装置(D2D)通信、无线回程、移动网络、协作通信、协调多点(CoMP)、接收点干扰消除等进行系统网络改进的开发。
对5G系统和与其相关联的频带的讨论是作为参考,由于本公开的某些实施例可能在5G系统中实现。然而,本公开不限于5G系统或与其相关联的频带,并且本公开的实施例可结合任何频带来使用。例如,本公开的各方面还可应用于5G通信系统、6G或甚至可使用太赫兹(THz)频带的更新版本的部署。
理解和正确地估计用户设备(UE)和gNode B(gNB)之间的信道对于高效和有效的无线通信是重要的。为了正确地估计下行链路(DL)信道条件,gNB可向UE发射用于DL信道测量的参考信号(例如CSI-RS),并且UE可向gNB报告(例如反馈)关于信道测量的信息(例如CSI)。同样,对于上行链路(UL),UE可向gNB发射参考信号,例如SRS,用于UL信道测量。利用DL和UL信道测量,gNB能够选择适当的通信参数以高效地和有效地执行与UE的无线数据通信。对于毫米波通信系统,参考信号可对应于空间波束,并且CSI可对应于指示用于通信的优选空间波束的波束报告。在这种波束成形系统中,为了在gNB和UE处对准空间波束,需要波束指示机制。
下面的图1至图4B描述了在无线通信系统中实现并使用正交频分多路复用(OFDM)或正交频分多址(OFDMA)通信技术的各种实施方式。图1至图3的描述并不意味着暗示对不同实施方式的可实现方式的物理或体系结构上的限制。本公开的不同实施方式可在任何适当布置的通信系统中实现。本公开涵盖可彼此结合或组合使用,或可作为独立方案操作的几个部件。
图1示出了根据本公开实施方式的示例性无线网络。图1所示的无线网络的实施方式仅用于说明。在不脱离本公开的范围的情况下,可使用无线网络100的其它实施方式。
如图1所示,无线网络包括gNB 101、gNB 102和gNB 103。gNB 101与gNB 102和gNB103通信。gNB 101还与至少一个网络130通信,诸如因特网、专有因特网协议(IP)网络或其它数据网络。
gNB 102为gNB 102的覆盖区域120内的第一多个用户设备(UE)提供对网络130的无线宽带接入。第一多个UE包括:UE 111,可位于小企业中;UE 112,可位于企业(E)中;UE113,可位于WiFi热点(HS)中;UE 114,可位于第一住宅(R)中;UE 115,可位于第二住宅(R)中;以及UE 116,可以是移动设备(M),诸如蜂窝电话、无线膝上型计算机、无线PDA等。gNB103为gNB 103的覆盖区域125内的第二多个UE提供对网络130的无线宽带接入。第二多个UE包括UE 115和UE 116。在一些实施方式中,gNB 101至gNB 103中的一个或多个可使用5G、LTE、LTE-A、WiMAX、WiFi或其它无线通信技术彼此通信,以及与UE 111至UE 116通信。
取决于网络类型,术语“基站”或“BS”可指配置为提供对网络的无线接入的任何部件(或部件的集),诸如发射点(TP)、发射-接收点(TRP)、增强型基站(eNodeB或eNB)、5G基站(gNB)、宏小区、毫微微小区、WiFi接入点(AP)或其它无线使能设备。基站可根据一个或多个无线通信协议提供无线接入,例如,5G 3GPP新无线电接口/接入(NR)、长期演进(LTE)、高级LTE(LTE-A)、高速分组接入(HSPA)、Wi-Fi 802.11a/b/g/n/ac等。为了方便起见,术语“BS”和“TRP”在本专利文件中可互换地使用,以指示向远程终端提供无线接入的网络基设施部件。另外,取决于网络类型,术语“用户设备”或“UE”可指任何部件,诸如“移动站”、“订户站”、“远程终端”、“无线终端”、“接收点”或“用户设备”。为了方便起见,在本专利文件中使用术语“用户设备”或“UE”是指无线接入BS的远程无线设备,无论UE是移动设备(诸如移动电话或智能电话)或是通常被认为是固定设备(例如台式计算机或自动售货机)。
虚线示出了覆盖区域120和125的近似范围,仅出于说明和解释的目的示出为近似圆形。应当清楚地理解,与gNB相关联的覆盖区域,诸如覆盖区域120和125,可具有包括不规则形状的其它形状,这取决于gNB的配置和与自然和人造障碍物有关的无线电环境中的变化。
如下面更详细描述的,UE 111至UE 116中的一个或多个包括用于以下过程的电路、编程或其组合:接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1;接收波束指示;确定是否检测到事件;基于是否检测到事件,从N个UL发射波束中选择波束;以及使用所选择的波束发射UL传输,其中波束是指用于接收或发射源参考信号(RS)的空间属性。gNB101至gNB 103中的一个或多个包括用于以下过程的电路、编程或其组合:生成配置信息,配置信息包括关于指示N个上行链路(UL)发射波束的波束指示的信息,其中N>1,生成波束指示,发射配置信息,发射波束指示,以及接收使用来自N个UL发射波束中的波束发射的UL传输,其中基于是否检测到事件来选择波束,并且其中波束是指用于接收或发射源参考信号(RS)的空间属性。
尽管图1示出了无线网络的一个示例,但是可对图1进行各种改变。例如,无线网络可包括任何适当布置的、任何数量的gNB和任何数量的UE。另外,gNB 101可直接与任何数量的UE通信,并向这些UE提供对网络130的无线宽带接入。类似地,每个gNB 102和gNB 103可直接与网络130通信,并向UE提供对网络130的直接无线宽带接入。另外,gNB 101、gNB 102和/或gNB 103可提供对诸如外部电话网络或其它类型的数据网络的其它或附加外部网络的接入。
图2示出了根据本公开实施方式的示例性gNB 102。图2所示的gNB 102的实施方式仅用于说明,并且图1的gNB 101和gNB 103可具有相同或相似的配置。然而,gNB具有多种配置,并且图2不将本公开的范围限于gNB的任何特定实施方式。
如图2所示,gNB 102包括多个天线205a至205n、多个RF收发器210a至210n、发射(TX)处理电路215以及接收(RX)处理电路220。gNB 102还包括控制器/处理器225、存储器230以及回程或网络接口235。
RF收发器210a至210n从天线205a至205n接收输入的RF信号,诸如由网络100中的UE发射的信号。RF收发器210a至210n将输入的RF信号下变频,以产生IF或基带信号。将IF或基带信号发射至RX处理电路220,RX处理电路220通过对基带或IF信号进行滤波、解码和/或数字化来产生经处理的基带信号。RX处理电路220将经处理的基带信号发射至控制器/处理器225以进一步处理。
TX处理电路215从控制器/处理器225接收模拟或数字数据(诸如语音数据、web数据、电子邮件或交互式视频游戏数据)。TX处理电路215对输出的基带数据进行编码、多路复用和/或数字化,以产生经处理的基带或IF信号。RF收发器210a至210n从TX处理电路215接收输出的经处理的基带或IF信号,并将所述基带或IF信号上变频为经由天线205a至205n发射的RF信号。
控制器/处理器225可包括一个或多个处理器或控制gNB 102的整体操作的其它处理设备。例如,控制器/处理器225可根据公知原理,控制RF收发器210a至210n、RX处理电路220和TX处理电路215接收前向信道信号和传输反向信道信号。控制器/处理器225也可支持附加功能,诸如更高级的无线通信功能。
例如,控制器/处理器225可支持波束形成或定向路由操作,对从多个天线205a至205n输出的信号进行不同地加权,以高效地在期望的方向上操纵输出的信号。通过控制器/处理器225可在gNB 102中支持各种其它功能中的任何一种。
控制器/处理器225还能够执行驻留在存储器230中的程序和其它处理,诸如OS。控制器/处理器225可根据执行处理的需要,将数据移入或移出存储器230。
控制器/处理器225还联接至回程或网络接口235。回程或网络接口235允许gNB102通过回程连接或通过网络,与其它设备或系统通信。接口235可支持通过任何适当的有线或无线连接的通信。例如,当gNB 102实现为蜂窝通信系统(例如支持5G、LTE或LTE-A的系统)的一部分时,接口235可允许gNB 102通过有线或无线回程连接与其它gNB通信。当gNB102实现为接入点时,接口235可允许gNB 102通过有线或无线局域网或通过有线或无线连接,与更大的网络(诸如因特网)通信。接口235包括支持通过有线或无线连接通信(诸如以太网或RF收发器)的任何适当的结构。
存储器230联接至控制器/处理器225。存储器230的一部分可包括RAM,并且存储器230的另一个部分可包括闪存或其它ROM。
尽管图2示出了gNB 102的一个示例,但是可对图2进行各种改变。例如,gNB 102可包括图2所示的任何数量的每个部件。作为特定示例,接入点可包括多个接口235,并且控制器/处理器225可支持在不同网络地址之间的对数据进行路由的路由功能。作为另一个特定示例,尽管示出为包括单个TX处理电路215示例和单个RX处理电路220示例,但是gNB 102可包括多个TX处理电路215示例和多个RX处理电路220示例(诸如每个RF收发器一个示例)。另外,图2中的各种部件可组合、进一步细分或省略,并且可根据特定需要添加附加部件。
图3示出了根据本公开实施方式的示例性UE 116。图3所示的UE 116的实施方式仅用于说明,并且图1的UE 111至UE 115可具有相同或相似的配置。然而,UE具有多种配置,并且图3不将本公开的范围限于UE的任何特定实施方式。
如图3所示,UE 116包括天线305、射频(RF)收发器310、TX处理电路315、麦克风320以及接收(RX)处理电路325。UE 116还包括扬声器330、处理器340、输入/输出(I/O)接口(IF)345、触摸屏350、显示器355以及存储器360。存储器360包括操作系统(OS)361以及一个或多个应用362。
RF收发器310从天线305接收由网络100的gNB发射的输入RF信号。RF收发器310将输入的RF信号下变频以产生中频(IF)或基带信号。IF或基带信号发射至RX处理电路325,RX处理电路325通过对基带或IF信号进行滤波、解码和/或数字化来产生经处理的基带信号。RX处理电路325将经处理的基带信号发射至扬声器330(例如用于语音数据)或处理器340以用于进一步处理(诸如用于web浏览数据)。
TX处理电路315从麦克风320接收模拟或数字语音数据,或从处理器340接收其它输出的基带数据(诸如web数据、电子邮件或交互式视频游戏数据)。TX处理电路315对输出的基带数据进行编码、多路复用和/或数字化,以产生经处理的基带或IF信号。RF收发器310从TX处理电路315接收输出的经处理的基带或IF信号,并将所述基带或IF信号上变频为经由天线305发射的RF信号。
处理器340可包括一个或多个处理器或其它处理设备,并执行存储在存储器360中的OS 361以控制UE 116的整体操作。例如,处理器340可根据公知原理,控制RF收发器310、RX处理电路325和TX处理电路315接收前向信道信号和传输反向信道信号。在一些实施方式中,处理器340包括至少一个微处理器或微控制器。
处理器340还能够执行驻留在存储器360中的其它过程和程序,诸如用于以下过程:接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1;接收波束指示;确定是否检测到事件;基于是否检测到事件,从N个UL发射波束中选择一个波束;以及使用所选择的波束发射UL传输,其中波束是指用于接收或发射源参考信号(RS)的空间属性。处理器340可根据执行处理的需要,将数据移入或移出存储器360。在一些实施方式中,处理器340配置为基于OS 361或响应于从gNB或操作员接收的信号来执行应用362。处理器340还联接至I/O接口345,I/O接口345使得UE 116能够连接至其它设备,诸如膝上型计算机和手持计算机。I/O接口345是这些附件与处理器340之间的通信路径。
处理器340还联接至触摸屏350和显示器355。UE 116的操作员可使用触摸屏350将数据输入到UE 116中。显示器355可以是液晶显示器、发光二极管显示器、或能够呈现(诸如来自网站的)文本和/或至少有限的图形的其它显示器。
存储器360联接至处理器340。存储器360的一部分可包括随机存取存储器(RAM),并且存储器360的另一个部分可包括闪存或其它只读存储器(ROM)。
尽管图3示出了UE 116的一个示例,但是可对图3进行各种改变。例如,图3中的各种部件可组合、进一步细分或省略,并且可根据特定需要添加附加部件。作为特定示例,处理器340可划分为多个处理器,诸如一个或多个中央处理单元(CPU)和一个或多个图形处理单元(GPU)。另外,尽管图3示出了配置为移动电话或智能电话的UE 116,但是UE可配置为作为其它类型的移动或固定设备来操作。
图4A是发射路径电路的上层图。例如,发射路径电路可用于正交频分多址(OFDMA)通信。图4B是接收路径电路的上层图。例如,接收路径电路可用于正交频分多址(OFDMA)通信。在图4A和图4B中,对于下行链路通信,发射路径电路可在基站(gNB)102或中继站中实现,并且接收路径电路可在用户设备(例如,图1的用户设备116)中实现。在其它示例中,对于上行链路通信,接收路径电路450可在基站(例如,图1的gNB 102)或中继站中实现,并且发射路径电路可在用户设备(例如,图1的用户设备116)中实现。
发射路径电路包括信道编码和调制块405、串行至并行(S至P)块410、大小为N的快速傅立叶逆变换(IFFT)块415、并行至串行(P至S)块420、添加循环前缀块425以及上变频器(UC)430。接收路径电路450包括下变频器(DC)455、去除循环前缀块460、串行至并行(S至P)块465、大小为N的快速傅立叶变换(FFT)块470、并行至串行(P至S)块475以及信道解码和解调块480。
图4A 400和4B 450中的至少一些部件可以软件实现,而其它部件可通过可配置硬件或软件与可配置硬件的组合来实施。特别地,应注意,本公开文件中描述的FFT块和IFFT块可实现为可配置软件算法,其中可根据实施方式来修改该大小N的值。
另外,尽管本公开涉及实现快速傅立叶变换和逆快速傅立叶变换的实施方式,但是这仅是说明性的,并且不可被解释为限制本公开的范围。可理解,在本公开的替换实施方式中,快速傅立叶变换函数和逆快速傅立叶变换函数可分别容易地由离散傅立叶变换(DFT)函数和逆离散傅立叶变换(IDFT)函数代替。可理解,对于DFT和IDFT函数,变量N的值可以是任何整数(即,1、4、3、4等),而对于FFT和IFFT函数,变量N的值可以是作为2的幂的任何整数(即,1、2、4、8、16等)。
在发射路径电路400中,信道编码和调制块405接收信息位集,对输入位应用编码(例如,LDPC编码)和调制(例如,正交相移键控(QPSK)或正交幅度调制(QAM)),以产生频域调制符号序列。串行至并行块410将串行调制符号转换(即,解多路复用)为并行数据,以产生N个并行符号流,其中,N是BS 102和UE 116中使用的IFFT/FFT大小。然后,大小为N的IFFT块415对N个并行符号流执行IFFT操作,以产生时域输出信号。并行至串行块420将来自大小为N的IFFT块415的并行时域输出符号进行转换(即,多路复用),以产生串行时域信号。然后,添加循环前缀块425向时域信号插入循环前缀。最后,上变频器430将添加循环前缀块425的输出调制(即,上变频)到RF频率,以经由无线信道传输。在信号转换到RF频率之前,还可在基带处对信号进行滤波。
所发射的RF信号在通过无线信道之后到达UE 116,并且执行相对于gNB 102处操作的反向操作。下变频器455将接收到的信号下变频到基带频率,并且去除循环前缀块460去除循环前缀,以产生串行时域基带信号。串行至并行块465将时域基带信号转换为并行时域信号。然后,大小为N的FFT块470执行FFT算法,以产生N个并行频域信号。并行至串行块475将并行频域信号转换为调制数据符号序列。信道解码和解调块480对调制符号进行解调和解码,以恢复原始输入数据流。
gNB 101至gNB 103中的每个可实现类似于在下行链路中向用户设备111至用户设备116进行发射的发射路径,并且可实现类似于在上行链路中从用户设备111至用户设备116进行接收的接收路径。类似地,用户设备111至用户设备116中的每个可实现与用于在上行链路中向gNB 101至gNB 103发射的体系结构对应的发射路径,并且可实现与用于在下行链路中从gNB 101至gNB 103接收的体系结构对应的接收路径。
通信系统包括下行链路(DL)和上行链路(UL),下行链路(DL)将来自诸如基站(BS)或NodeB的传输点的信号传送至用户设备(UE),上行链路(UL)将来自UE的信号传送至诸如NodeB的接收点。UE(通常也被称为终端或移动站)可以是固定的或移动的,并且可以是蜂窝电话、个人计算机设备或自动设备。一般是固定站的eNodeB也可被称为接入点或其它等效术语。对于LTE系统,NodeB通常被称为eNodeB。
在诸如LTE系统的通信系统中,DL信号可包括传送信息内容的数据信号、传送DL控制信息(DCI)的控制信号、以及也被称为导频信号的参照信号(RS)。eNodeB通过物理DL共享信道(PDSCH)发射数据信息。eNodeB通过物理DL控制信道(PDCCH)或增强PDCCH(EPDCCH)发射DCI。
eNodeB响应于来自UE的、在物理混合ARQ指示符信道(PHICH)中的数据传输块(TB)传输,而发射确认信息。eNodeB发射包括UE共用RS(CRS)、信道状态信息RS(CSI-RS)或解调RS(DMRS)的多个类型的RS中的一个或多个。CRS在DL系统带宽(BW)上发射,并且可由UE使用以用来获得信道估计,以解调数据或控制信息或执行测量。为减少CRS开销,eNodeB可以比CRS更小的时域和/或频域密度发射CSI-RS。DMRS仅可在对应的PDSCH或EPDCCH的BW中发射,并且UE可使用DMRS来分别解调PDSCH或EPDCCH中的数据或控制信息。用于DL信道的传输时间间隔被称为子帧,并且可具有例如1毫秒的持续时间。
DL信号还包括携带系统控制信息的逻辑信道的传输。当DL信号传送主信息块(MIB)时,BCCH映射到被称为广播信道(BCH)的传输信道;或者当DL信号传送系统信息块(SIB)时,BCCH映射到DL共享信道(DL-SCH)。大多数系统信息包括在使用DL-SCH发射的不同SIB中。在子帧中的DL-SCH上的系统信息的存在可通过在子帧中的DL-SCH上的系统信息的存在可通过对应PDCCH(传输用于传送具有用以系统信息RNTI(SI-RNTI)加扰的循环冗余校验(CRC)的码字)的传输对应PDCCH来指示。可选地,可在更早的SIB中提供用于SIB传输的调度信息,并且可由MIB提供用于第一SIB(SIB-1)的调度信息。
DL资源分配以子帧和物理资源块(PRB)组为单位执行。传输BW包括被称为资源块(RB)的频率资源单元。每个RB包括NEPDCCH个子载波或资源要素(RE),诸如12个RE。一个子帧上的一个RB的单元被称为PRB。可为UE分配用于PDSCH传输BW的总共
Figure BDA0003997668810000184
个RE中的ns=(ns0+y·NEPDCCH)mod D个RB。
UL信号可包括传送数据信息的数据信号、传送UL控制信息(UCI)的控制信号以及UL RS。UL RS包括DMRS和探测RS(SRS)。UE仅在对应的PUSCH或PUCCH的BW中发射DMRS。eNodeB可使用DMRS来解调数据信号或UCI信号。UE发射SRS以向eNodeB提供UL CSI。UE通过各自的物理UL共享信道(PUSCH)或物理UL控制信道(PUCCH)发射数据信息或UCI。如果UE需要在相同的UL子帧中发射数据信息和UCI,则UE可在PUSCH中多路复用两者。UCI包括:混合自动重复请求确认(HARQ-ACK)信息,用于指示对PDSCH中的数据TB的正确(ACK)或不正确(NACK)检测、或不存在PDCCH检测(DTX);调度请求,用于指示UE在UE的缓冲器中是否具有数据;秩指示符(RI);以及信道状态信息(CSI),用于使eNodeB能够执行用于到UE的PDSCH传输的链路适配。HARQ-ACK信息还由UE响应于对指示释放半永久性调度的PDSCH的PDCCH/EPDCCH的检测而发射。
UL子帧包括两个时隙。每个时隙包括用于发射数据信息的
Figure BDA0003997668810000181
个符号、UCI、DMRS或SRS。UL系统BW的频率资源单元是RB。为UE分配用于传输BW的总共
Figure BDA0003997668810000182
个RE的NRB个RB。对于PUCCH,NRB=1。最后的子帧符号可用于多路复用来自一个或多个UE的SRS传输。可用于数据/UCI/DMRS传输的子帧符号的数量是
Figure BDA0003997668810000183
其中,如果最后的子帧符号用于发射SRS,则NSRS=1,否则NSRS=0。
图5示出了根据本公开实施方式的用于子帧中的PDSCH的发射器框图500的示例。图5所示的发射器框图500的实施方式仅用于说明。图5所示的一个或多个部件可在配置为执行所述功能的专用电路中实施,或者一个或多个部件可由执行指令以执行所述功能的一个或多个处理器来实施。图5不将本公开的范围限于框图500的任何特定实施方式。
如图5所示,信息位510由编码器520(诸如turbo编码器)编码,并由调制器530调制(例如,使用正交相移键控(QPSK)调制)。串行至并行(S/P)转换器540产生M个调制符号,随后这些调制符号被提供给映射器550,以映射到由传输BW选择单元555针对分配的PDSCH传输BW而选择的RE,单元560应用快速傅立叶逆变换(IFFT),然后由并行至串行(P/S)转换器570将输出串行化以生成时域信号,由滤波器580应用滤波,进而获得发射的信号590。附加的功能,诸如数据加扰、循环前缀插入、时间窗、交织和其它功能在本领域中是公知的,并且为了简洁起见未示出。
图6示出了根据本公开实施方式的用于子帧中的PDSCH的接收器框图600。图6中所示的图600的实施方式仅用于说明。图6所示的一个或多个部件可在配置为执行所述功能的专用电路中实施,或者一个或多个部件可由执行指令以执行所述功能的一个或多个处理器来实施。图6不将本公开的范围限于图600的任何特定实施方式。
如图6所示,接收的信号610由滤波器620滤波,由BW选择器635选择用于分配的接收BW的RE 630,单元640应用快速傅立叶变换(FFT),并且由并行至串行转换器650将输出串行化。随后,解调器660通过应用从DMRS或CRS(未示出)获得的信道估计来相干解调数据符号,并且解码器670(诸如turbo解码器)将解调出的数据解码以提供对信息数据位680的估计。为了简洁起见,未示出诸如时间窗、循环前缀去除、解扰、信道估计和解交织的附加功能。
图7示出了根据本公开实施方式的用于子帧中的PUSCH的发射器框图700。图7所示的一个或多个部件可在配置为执行所述功能的专用电路中实施,或者一个或多个部件可由执行指令以执行所述功能的一个或多个处理器来实施。图7中所示的框图700的实施方式仅用于说明。图7不将本公开的范围限于图700的任何特定实施方式。
如图7所示,信息数据位710由编码器720(诸如turbo编码器)编码,并由调制器730调制。离散傅立叶变换(DFT)单元740对调制数据位应用DFT,由传输BW选择单元755来选择与分配的PUSCH传输BW对应的RE 750,单元760应用IFFT,并且在循环前缀插入(未示出)之后,由滤波器770应用滤波,进而获得发射的信号780。
图8示出了根据本公开实施方式的用于子帧中的PUSCH的接收器框图800。图8所示的框图800的实施方式仅用于说明。图8所示的一个或多个部件可在配置为执行所述功能的专用电路中实施,或者一个或多个部件可由执行指令以执行所述功能的一个或多个处理器来实施。图8不将本公开的范围限于图800的任何特定实施方式。
如图8所示,接收的信号810由滤波器820滤波。随后,在去除循环前缀(未示出)之后,单元830应用FFT,由接收BW选择器845来选择与分配的PUSCH接收BW对应的RE 840,单元850应用逆DFT(IDFT),解调器860通过应用从DMRS(未示出)获得的信道估计来相干解调数据符号,解码器870(诸如turbo解码器)将解调出的数据解码以提供对信息数据位的估计880。
图9示出了根据本公开实施例的波束900的示例。图9所示的波束900的实施例仅用于说明。图9所示的一个或多个部件可在配置为执行所述功能的专用电路中实施,或者一个或多个部件可由执行指令以执行所述功能的一个或多个处理器来实施。图9不将本公开的范围限于波束900的任何特定实施方式。
3GPP NR规范支持多达32个CSI-RS天线端口,使得eNB能够配备有大量天线要素(例如64个或128个)。在这种情况下,多个天线要素被映射到一个CSI-RS端口上。对于毫米波频带,尽管对于给定的形状因数天线要素的数量可更大,但是CSI-RS端口的数量(其可对应于数字预编码端口的数量)由于硬件约束(例如在毫米波频率下安装大量ADC/DAC的可行性)而趋于受到限制,如图9所示。在这种情况下,一个CSI-RS端口被映射到可由一组模拟移相器901控制的大量天线要素上。然后,一个CSI-RS端口可对应于一个子阵列,该子阵列通过模拟波束成形905产生窄的模拟波束。该模拟波束可被配置成通过改变符号或子帧上的移相器组来扫过较宽范围的角度(920)。子阵列的数量(等于RF链的数量)与CSI-RS端口NCSI-PORT的数量相同。数字波束成形单元910在NCSI-PORT模拟波束上执行线性组合以进一步增加预编码增益。虽然模拟波束是宽带的(因此不是频率选择性的),但是数字预编码可在频率子带或资源块上变化。可类似地设想接收器的操作。
由于上述系统利用多个模拟波束进行发射和接收(其中,例如,在训练持续时间之后,从大量的波束中选择出一个或少量的模拟波束,以不时地执行),因此术语“多波束操作”用于指代整体系统方面。出于说明的目的,这包括:指示所分配的DL或UL传输(TX)波束(也被称为“波束指示”),测量用于计算和执行波束报告(也分别被称为“波束测量”和“波束报告”)的至少一个参考信号,以及经由选择相应接收(RX)波束来接收DL或UL传输。
上述系统也可适用于较高频带,诸如>52.6GHz(也被称为FR4)。在这种情况下,系统只能应用模拟波束。由于在60GHz频率附近的O2吸收损耗(约10dB的额外损耗/每100m的距离),将需要更多数量和更尖锐的模拟波束(因此在阵列中有更多数量的辐射器)以补偿额外的路径损耗。
在3GPP NR规范中,多波束操作主要被设计用于单发射-接收点(TRP)和单天线面板。因此,该规范支持用于一个TX波束的波束指示,其中TX波束与参考RS相关联。对于DL波束指示和测量,参考RS可以是NZP(非零功率)CSI-RS和/或SSB(同步信号块,其包括主同步信号、次同步信号和PBCH)。这里,DL波束指示是经由包括对一个(且仅一个)分配参考RS的索引的、DL相关的DCI中的传输配置指示符(TCI)字段来完成的。假设或所谓的TCI状态集是经由高层(RRC)信令来配置,并且当适用时,这些TCI状态的子集经由用于TCI字段码点的MAC CE来选择/激活。对于UL波束指示和测量,参考RS可以是NZP CSI-RS、SSB和/或SRS。这里,UL波束指示是经由链接到一个(且仅一个)参考RS的、UL相关的DCI中的SRS资源指示符(SRI)字段来完成的。该链接是经由使用空间关系信息(SpatialRelationInfo)RRC参数的高层信令来配置。实质上,仅有一个TX波束被指示给UE。
在3GPP NR规范中,波束管理被设计为与CSI获取共享相同的框架。然而,尤其是对于FR2,这损害了波束管理的性能。这是由于波束管理主要由模拟波束(FR2的特性)来操作,该模拟波束在范例上不同于CSI获取(考虑到FR1设计)。因此,3GPP NR规范波束管理变得麻烦并且不可能跟上需要大量波束和快速波束切换(例如,更高频带、高移动性和/或更大量的更窄模拟波束)的更激进的使用情况。此外,3GPP NR规范被设计为适应未知的或基本的多个能力(例如,不能进行波束对应的UE)。为了灵活起见,它导致了多个选项。对于L1控制信令这变得繁重,因此经由RRC信令(高层配置)执行多个重新配置。虽然这避免了L1控制开销,但是它导致了高等待时间(如果稀疏地执行了重新配置),或强加了PDSCH的高使用量(由于RRC信令消耗了PDSCH资源)。
在一个示例中,当利用了波束对应关系时,可经由测量DL RS(CSI-RS和/或SSB)和CRI报告并伴随相应的波束度量(例如,RSRP、SINR)来执行UL波束选择。也就是说,基于来自UE的CRI/RSRP或CRI/SINR报告,网络(NW)可假定UE利用与最新CRI报告(尤其是具有最高RSRP或/SINR的报告)中的一个相关联的UL TX波束在PUSCH上执行UL传输。同样,UE可假设NW知道该UE选择。因此,不需要单独的UL波束指示(例如,经由各个UL许可中的SRI字段或UL-TCI字段)。
在3GPP NR规范中,当未利用波束对应关系时,可经由NW选择UL TX波束并经由UL许可将其指示给UE(经由SRI字段或UL-TCI字段发信号通知——实质上指示与UL TX波束相关联的UL TCI状态)来执行UL波束选择。该选择是通过测量从UE发射的SRS(由NW配置)来实现。
在任何一种情况下,当发生导致UE必须选择不同于NW预期的(替代)UL TX波束的事件时,需要一些附加机制来确保:(a)当UE检测到这种事件时UE具有替代UL TX波束可用,并且下一个UL TX波束指示仅能在稍后的时隙中,以及(b)NW知道UE的决定。这种事件的几个示例如下。
在一个示例中,这种事件可能由于所谓的最大允许暴露(MPE)调节而发生,尤其是在北美,在某些方向上限制了UE发射功率。也就是说,为了防止在精细软组织(例如,脑组织)上有任何过度的电磁波暴露,UE将避免沿着一些方向(例如,朝向头部)发射高能量信号。不幸地,这种方向可对应于“最佳”UL TX波束(例如,与最高的报告RSRP/SINR的CRI相关联,或者与在NW处产生最佳测量SINR的SRS资源相关联)。当“最佳”UL TX波束不用于UL传输时,将会发生一些UL吞吐量(尤其是覆盖)的损失。
在另一个示例中,这种事件可能由于在配备有多个天线面板的UE处的硬件(HW)限制而发生,并且响应于该事件,UE需要选择/切换用于UL传输的天线面板。
在又一个示例中,这种事件可能由于潜在的波束失效而发生,并且为了避免波束失效,UE需要选择/切换用于UL传输的天线面板。
在又一个示例中,这种事件可能由于信道条件的突变(例如,由于高速、天线/面板阻塞等)而发生,这可能导致波束失效,并且UE需要切换/改变TX波束以便继续UL传输而不中断/失败,或者必须等待下一个UL TX波束更新/指示。
因此,需要一种有效的设计以实现“替代的”UL TX波束选择(而不必等待下一个ULTX波束指示),以便避免由于上述事件而可能发生的中断(或波束失效)、UL吞吐量损失、UL覆盖损失以及与HW相关的问题。在本公开中,针对这种设计提出了几个示例性实施例。
在本公开中,术语“激活”描述了如下操作:UE接收并解码来自网络(或gNB)的表示时间起始点的信号。起始点可以是当前或将来的时隙/子帧或符号——其被隐式地或显式地指示的、或者以其它方式固定或由高层配置。一旦成功地解码了信号,UE就作出相应的响应。术语“禁用”描述了如下操作:UE接收并解码来自网络(或gNB)的表示时间停止点的信号。停止点可以是当前或将来的时隙/子帧或符号——其被隐式地或显式地指示的、或者以其它方式固定或由高层配置。一旦成功地解码了信号,UE就作出相应的响应。
诸如TCI、TCI状态、空间关系信息、目标RS、参考RS和其它术语的术语是出于说明目的,因此不是范式的。还可使用表示相同功能的其它术语。
“参考RS”对应于DL或UL TX波束的特性集,诸如方向、预编码/波束成形、端口数量等。例如,当UE在由TCI状态表示的DL分配中接收到参考RS索引/ID时,UE将参考RS的已知特性应用于所分配的DL传输。在替代方案中,包括在TCI状态中的参考RS被称为源RS(例如,以从被配置用于波束测量/报告的RS中将包括在TCI状态中的RS区分开)。参考RS(在这种情况下,参考RS是诸如NZP CSI-RS和/或SSB的下行链路信号)可由UE连同用于计算波束报告的测量结果(在3GPP NR规范中,由至少一个CRI伴随的至少一个L1-RSRP)一并接收和测量。当NW/gNB接收到波束报告时,NW可更好地配备有向UE分配特定DL TX波束的信息。可选地,参考RS(在这种情况下,参考RS是诸如SRS的下行链路信号)可由UE发射。当NW/gNB接收到参考RS时,NW/gNB可测量和计算向UE分配特定DL TX波束所需的信息。该选项适用于当DL-UL波束对相对应保持时。
参考RS可由NW/gNB动态触发(例如,在非周期RS的情况下经由DCI),由特定时域行为预先配置(在周期RS的情况下,诸如周期性和偏移),或者由这种预先配置和激活/禁用的组合(在半持久RS的情况下)。
在3GPP NR规范中定义了两种类型的频率范围(FR)。子6GHz范围被称为频率范围1(FR1),毫米波范围被称为频率范围2(FR2)。
下面示出了FR1和FR2的频率范围的示例。
频率范围指定 相应的频率范围
FR1 450MHz-600MHz
FR2 24250MHz-52600MHz
下面的实施例是在网络(NW)接收到来自UE的一些传输之后利用DL波束指示的DL多波束操作的示例。在第一示例性实施例中,非周期CSI-RS由NW发射并由UE测量。尽管在这两个示例中使用非周期RS,但是也可使用周期或半持久RS。
对于多波束操作尤其相关的毫米波(或FR2)或更高频带(例如>52.6GHz或FR4),发射-接收过程包括为给定TX波束选择接收(RX)波束的接收器。对于UL多波束操作,gNB为每个UL TX波束(对应于参考RS)选择UL RX波束。因此,当UL RS(诸如SRS和/或DMRS)被用作参考RS时,NW/gNB触发或配置UE以发射UL RS(其与UL TX波束的选择相关联)。gNB在接收和测量UL RS时选择UL RX波束。结果是,得到TX-RX波束对。NW/gNB可执行该操作以对所有配置参考RS(或者每个参考RS或者“波束扫描”),并且确定与配置给UE的所有参考RS相关联的所有TX-RX波束对。另一个方面,当DL RS(诸如CSI-RS和/或SSB)被用作参考RS(当保持DL-UL的波束对应关系或互易时相关)时,NW/gNB将RS发射到UE(对于UL和互易,这对应于UL RX波束)。作为响应,UE测量参考RS(并且在该过程中选择UL TX波束),并且报告与参考RS的质量相关联的波束度量。在这种情况下,UE为每个配置(DL)参考RS确定TX-RX波束对。因此,尽管该信息对于NW/gNB是不可用的,但是UE在接收到来自NW/gNB的参考RS(因此是UL RX波束)指示时,可从关于所有TX-RX波束对的信息中选择UL TX波束。
在本公开中,术语“资源指示符”(也被缩写为REI)用于指用于信号/信道的RS资源和/或干扰测量的指示符。该术语出于说明目的,因此可由表示相同功能的任何其它术语代替。REI的示例包括上述CSI-RS资源指示符(CRI)和SSB资源指示符(SSB-RI)。任何其它RS也可用于信号/信道和/或干扰测量,例如DMRS。
在图10所示的一个示例中,示出了UL多波束操作1000。图10中所示的UL多波束操作1000的实施例仅用于说明。图10不将本公开的范围限于UL多波束操作1000的任何特定实施方式。
UL多波束操作1000从gNB/NW信令开始,以向UE发射非周期CSI-RS(AP-CSI-RS)触发或指示(步骤1001)。该触发或指示可被包括在(与UL相关或与DL相关的、单独或与非周期CSI请求/触发一并发射的)DCI中,并且指示AP-CSI-RS在相同(零时间偏移)或稍后的时隙/子帧(>0时间偏移)中传输。在接收到由gNB/NW发射的AP-CSI-RS时(步骤1002),UE测量AP-CSI-RS,并且依次计算并报告“波束度量”(指示特定TX波束假设的质量)(步骤1003)。这种波束报告的示例是与其相关联的L1-RSRP/L1-RSRQ/L1-SINR/CQI联接的CSI-RS资源指示符(CRI)或SSB资源指示符(SSB-RI)。在从UE接收到波束报告时,NW可使用波束报告来为UE选择UL TX波束,并且使用UL相关的DCI(其携带UL许可,诸如NR中的DCI格式0_1)中的SRI字段来指示UL TX波束选择(步骤1004)。SRI对应于经由空间关系信息配置链接到参考RS(在这种情况下是AP-CSI-RS)的“目标”SRS资源。在由SRI成功地解码了UL相关的DCI时,UE由与SRI相关联的UL TX波束来执行UL传输(诸如在PUSCH上进行数据传输)(步骤1005)。
在图11所示的另一个示例中,示出了UL多波束操作1100。图11所示的UL多波束操作1100的实施例仅用于说明。图11不将本公开的范围限于UL多波束操作1100的任何特定实施方式。
UL多波束操作1100从gNB/NW信令开始,以向UE发射非周期SRS(AP-SRS)触发或请求(步骤1101)。该触发可被包括在(UL相关或DL相关的)DCI中。在接收到并解码AP-SRS触发时(步骤1102),UE向gNB/NW发射AP-SRS(步骤1103),使得NW(或gNB)可测量UL传播信道并为UE选择UL TX波束。然后,gNB/NW可使用UL相关的DCI(其携带UL许可,诸如NR中的DCI格式0_1)中的SRI字段来指示UL TX波束选择(步骤1104)。SRI对应于经由空间关系信息配置链接到参考RS(在这种情况下,AP-SRS)的“目标”SRS资源。在由SRI成功地解码了UL相关的DCI时,UE由与SRI相关联的UL TX波束来执行UL传输(诸如在PUSCH上进行数据传输)(步骤1105)。
在图12所示的另一个示例中,示出了DL多波束操作1200。图12所示的DL多波束操作1200的实施例仅用于说明。图12不将本公开的范围限于DL多波束操作1200的任何特定实施方式。
在图12所示的示例中,UE被配置用于测量/接收非周期CSI-RS(AP-CSI-RS)并报告非周期CSI(AP-CSI),DL多波束操作1200从gNB/NW信令开始以向UE发射非周期CSI-RS(AP-CSI-RS)触发或指示(步骤1201)。该触发或指示可被包括在(与UL相关或与DL相关的、单独或与非周期CSI请求/触发一并发射的)DCI中,并且指示AP-CSI-RS在相同(零时间偏移)或稍后的时隙/子帧(>0时间偏移)中传输。在接收到由gNB/NW发射的AP-CSI-RS时(步骤1202),UE测量AP-CSI-RS,并且依次计算并报告“波束度量”(被包括在CSI中,指示特定TX波束假设的质量)(步骤1203)。(3GPP NR规范中支持的)这种波束报告的示例是与其相关联的L1-RSRP和/或L1-SINR联接的CSI-RS资源指示符(CRI)或SSB资源指示符(SSB-RI)。在从UE接收到波束报告时,NW/gNB可使用波束报告来为UE选择DL TX波束,并且使用DL相关的DCI(其携带DL分配,诸如NR中的DCI格式1_1)中的TCI字段来指示DL TX波束选择(步骤1204)。TCI状态对应于经由(高层/RRC配置的、经由用于基于DCI选择的MAC CE来激活子集)TCI状态定义而定义/配置的参考RS(在这种情况下,AP-CSI-RS)。在由TCI字段成功地解码了DL相关的DCI时,UE由与TCI字段相关联的DL TX波束来执行DL接收(诸如在PDSCH上进行数据传输)(步骤1205)。在该示例性实施例中,仅有一个DL TX波束被指示给UE。
在图10和图11所示的上述两个示例性实施例中,仅有一个UL TX波束被指示给UE。在图10和图11所示的实施例中使用的SRI也可由UL-TCI代替,其中可在相关的UL相关DCI中引入UL-TCI字段以代替3GPP NR规范中的SRI字段,或者除了3GPP NR规范中的SRI字段之外还引入UL-TCI字段。
图10所示的实施例中的非周期CSI-RS(连同相关的非周期报告)和图1100所示的实施例中的非周期SRS可由诸如半持久(SP)或周期(P)的另一个时域行为的非周期CSI-RS代替。
在下面的任何实施例或子实施例或示例中,流程图是出于说明的目的。本公开涵盖流程图的任何可能变型,仅包括至少一些部件即可。这些部件包括指示多个UL TX波束的UL TX波束指示,以及来自所指示的多个UL TX波束的事件相关UL TX波束切换。
在本公开的其余部分中,术语“波束”可与来自“端口”、“天线端口”或“虚拟天线/端口”的资源信号(RS)的空间发射/接收相关联。同样,术语“发射(TX)波束”可与来自“端口”、“天线端口”或“虚拟天线/端口”的资源信号(RS)或信道的空间传输相关联;并且术语“接收(RX)波束”可与来自“端口”、“天线端口”或“虚拟天线/端口”的资源信号(RS)或信道的空间接收相关联。波束的空间发射/接收可处于三维(3D)空间中。在波束成形的无线系统中,无线信号的发射和接收可经由多个TX和多个RX波束进行。
本公开包括以下部件,以有效设计用于在UE处检测到事件(例如上述事件)时启用“替代”UL TX波束选择(而不必等待下一UL TX波束指示)。
部分1-用于基于事件的UL TX波束切换的UE过程
在一个实施例(I)中,UE被配置成接收指示多个(N个)UL TX波束的UL TX波束指示。UE被进一步配置成使用从多个UL TX波束中选择的UL TX波束来发射UL传输(诸如在PUSCH上进行数据传输)。在一个示例中,对于具有单天线面板(SP)的UE,N>1个UL TX波束被指示用于MPE缓解。在一个示例中,对于具有多个天线面板(MP)的UE,N>1个UL TX波束被指示用于快速面板切换和/或MPE缓解。
图13示出了被配置成接收指示两个波束(B1,B2)1300的UL TX波束指示的UE的流程图。图13中所示的配置成接收指示两个波束(B1,B2)1300的UL TX波束指示的UE的实施例仅用于说明。图13不将本公开的范围限于被配置成接收指示两个波束(B1,B2)1300的UL TX波束指示的UE的任何特定实施方式。
在一个子实施例(I.1)中,如图13所示(操作1310和操作1320),UE被配置成接收指示两个波束(B1,B2)的UL TX波束指示,其中B1是第一UL TX波束,并且B2是第二UL TX波束。
在操作1330中,UE被进一步配置成由UX TX波束B来发射UL传输(诸如在PUSCH上进行数据传输),其中UL TX波束B是两个波束(B1,B2)中的一个。
在操作1340中,UE还执行事件检测过程,以确定在使用UL TX波束B进行UL传输时是否发生感兴趣事件,其中上面描述了感兴趣事件的几个示例。
在操作1350中,如果未检测到事件(即,声明为否定),则UE继续由UL TX波束B来发射UL传输。在操作1360中,如果检测到事件(即,声明为肯定),则UE切换到替代UL TX波束B′以进行UL传输,其中替代UL TX B′≠B且是两个波束(B1,B2)中的一个。基于操作1370中的确定,使用以下示例中的至少一个来确定用于在将来时隙中进行UL传输的UL TX波束。
在一个示例中,UE继续由替代UL TX波束B′来发射UL传输,直到UE在将来的时隙中接收到UL TX波束更新的指示。
在一个示例中,UE可切换回UL TX波束B来进行UL传输,例如,当使用替代UL TX波束B′进行UL传输的同时检测到感兴趣事件(即,声明为肯定)时、或者当未检测到感兴趣事件(即,声明为否定)时,UL TX波束B再次用于进行UL传输。
在一个示例中,UL TX波束B被固定为例如B1。在一个示例中,UL TX波束B被配置成例如B=Bi,并且索引i∈{1,2}是经由RRC和/或MAC CE和/或DCI来配置。在一个示例中,UE可自由地从(B1,B2)中选择UL TX波束B。
关于事件发生的信息可在NW/gNB处隐式地或显式地获得。对于隐式信息,UE可不报告关于事件发生的任何消息,但是通过一些实施方式,NW/gNB可例如基于接收到的UL传输来获取信息(由于当事件发生时,UL TX波束从B切换到B′)。对于显式信息,UE可显式地报告预通知消息以向NW/gNB指示事件发生。NW/gNB可根据所获取的关于事件发生的隐式或显式信息来(在将来的时隙中)发射下一个UL TX波束指示。
在不需要任何预通知消息的可替代显式方法中,UE可例如使用1位指示来包括/报告所选波束的信息(B或者B′)、或者UL TCI状态。在一个示例中,该信息可与许可PUSCH传输(仅UCI、或与UL数据复用)一并被包括/报告。在一个示例中,该信息可与在相同时隙内的PUCCH上的UL控制同时被包括/报告(作为独立信息、或与其它UCI或HARQ-ACK复用)。在一个示例中,该信息可与PRACH传输一并被包括/报告。UE可被配置有用于包括/报告所选波束信息的至少一个UL报告资源,其中该至少一个UL报告资源对应于PUCCH资源、或PUSCH资源、或PUCCH和PUSCH资源之间的组合、或PRACH资源。该资源配置可经由高层(RRC)信令来执行。可替代地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号通知预留资源集。在一个示例中,所选波束的信息可被包括/复用在PUCCH或PUSCH传输的起始部分(例如,所分配的PRB和/或UL报告资源的第一OFDM符号中的一个)中。
以下示例中的至少一个被使用/配置成关于包括针对PUCCH和/或PUSCH和/或PRACH选择的所选UL TX波束的信息。
在一个示例I.1.1中,经由高层(RRC)配置来配置UE,以报告/包括UE选择的UL TX波束或TCI状态。该配置可包括用于该目的的专用参数。可替代地,可经由现有的高层RRC参数联合进行配置。该配置可受限于UE能力,即,仅当UE报告其能够包括/报告时,NW/gNB可配置UE以包括/报告UE选择的UE TX波束。
在一个示例I.1.2中,经由MAC CE和/或DCI动态地发信号通知UE以报告/包括UE选择的UL TX波束或TCI状态。动态信令可包括用于该目的的专用参数或字段。可替代地,这可通过现有的参数或字段联合进行。该信令可受限于UE能力,即,仅当UE报告其能够包括/报告时,NW/gNB可发信号通知UE发射以包括/报告UE选择的UE TX波束。
在一个示例I.1.3中,经由高层(RRC)配置和MAC CE(或DCI)信令的组合来配置UE,以配置报告/包括UE选择的UL TX波束或TCI状态。该配置可受限于UE能力,即,仅当UE报告其能够包括/报告时,NW/gNB可配置/发信号通知UE以包括/报告UE选择的UE TX波束。
在一个示例I.1.4中,(如示例I.1.1到I.1.3中所述的)关于报告/包括UE选择的ULTX波束或TCI状态的配置/信令仅限于当UE配备有多个天线面板的情况。也就是说,对于具有单个天线面板的UE,不允许(不能配置)这种包括/报告。
在一个示例I.1.5中,(如示例I.1.1到I.1.3中所述的)报告/包括关于UE选择的ULTX波束或TCI状态的配置/信令仅限于感兴趣事件(诸如MPE问题)。
由UE进行的事件检测可基于至少一个DL测量RS,诸如CSI-RS或SSB,其可被专门配置用于事件检测的目的,或者其可以是来自被配置用于波束测量的DL测量RS、波束报告和波束指示。
在本子实施例中,UE开始由UL TX波束B来发射UL传输,然后执行事件检测,并且如果事件被声明为肯定,则UE切换到替代UL TX波束B′以进行UL传输。
图14示出了被配置成接收指示两个波束(B1,B2)1400的UL TX波束指示的UE的流程图。图14所示的配置成接收指示两个波束(B1,B2)1400的UL TX波束指示的UE的实施例仅用于说明。图14不将本公开的范围限于配置成接收指示两个波束(B1,B2)1400的UL TX波束指示的UE的任何特定实施方式。
在一个子实施例(I.2)中,如图14所示(操作1410和操作1420),UE被配置成接收指示两个波束(B1,B2)的UL TX波束指示,其中B1是第一UL TX波束,并且B2是第二UL TX波束。
在操作1430和操作1440中,UE先执行事件检测,并且如果事件被声明为否定,则UE由UL TX波束B来发射UL传输(诸如在PUSCH上进行数据传输),否则(操作1430和操作1450)UE由替代UL TX波束B′来发射UL传输,其中B≠B′并且B和B′是从两个波束中选择的。UE重复这些步骤,直到UE在将来的时隙中接收到下一个UL TX波束指示(操作1460)。
该子实施例的其余细节与子实施例I.1相同。特别地,如子实施例I.1所述,关于事件发生的信息可在NW/gNB处隐式地或显式地获取。对于隐式信息,UE可不报告关于事件发生的任何消息,但是通过一些实施方式,NW/gNB可例如基于接收到的UL传输来获取信息(由于当事件发生时,UL TX波束从B切换到B′)。对于显式信息,UE可显式地报告预通知消息以向NW/gNB指示事件发生。NW/gNB可根据所获取的关于事件发生的隐式或显式信息来(在将来的时隙中)发射下一个UL TX波束指示。
在不需要任何预通知消息的可替代显式方法中,UE可例如使用1位指示来包括/报告所选波束的信息(B或者B′)、或者UL TCI状态。在一个示例中,该信息可与许可PUSCH传输(仅UCI、或与UL数据复用)一并被包括/报告。在一个示例中,该信息可与在相同时隙内的PUCCH上的UL控制同时被包括/报告(作为独立信息、或与其它UCI或HARQ-ACK复用)。在一个示例中,该信息可与PRACH传输一并被包括/报告。UE可被配置有用于包括/报告所选波束信息的至少一个UL报告资源,其中该至少一个UL报告资源对应于PUCCH资源、或PUSCH资源、或PUCCH和PUSCH资源之间的组合、或PRACH资源。该资源配置可经由高层(RRC)信令来执行。可替代地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号通知预留资源集。在一个示例中,所选波束的信息可被包括/复用在PUCCH或PUSCH传输的起始部分(例如,所分配的PRB和/或UL报告资源的第一OFDM符号中的一个)中。示例I.1.1到I.1.5中的至少一个可被使用/配置成关于包括针对PUCCH和/或PUSCH和/或PRACH选择的所选UL TX波束的信息。
在一个示例中,UE根据所感兴趣事件来使用子实施例I.1和I.2中的一个进行UL传输。例如,如果感兴趣事件是MPE,则UE使用子实施例I.2,并且如果感兴趣事件与HW限制或波束失效有关,则UE使用子实施例I.1。在另一个示例中,子实施例I.1和I.2中的一个例如经由RRC和/或MAC CE和/或DCI被配置给UE。在另一个示例中,子实施例I.1和I.2中的一个被固定(被使用)用于UL传输。在另一个示例中,UE在其能力信令中报告子实施例I.1和I.2中的一个或两个,并且NW/gNB根据所报告的UE能力来配置子实施例I.1和I.2中的一个。
图15示出了被配置成接收指示N个波束(B1,B2,...,BN)1500的UL TX波束指示的UE的流程图。图15所示的配置成接收指示N个波束(B1,B2,...,BN)1500的UL TX波束指示的UE的实施例仅用于说明。图15不将本公开的范围限于被配置成接收指示N个波束(B1,B2,...,BN)1500的UL TX波束指示的UE的任何特定实施方式。
在一个子实施例(I.3)中,如图15所示(操作1510和操作1520),UE被配置成接收指示N个波束(B1,B2,...,BN)的UL TX波束指示,其中B1是第一UL TX波束,B2是第二UL TX波束,……BN是第N个UL TX波束。
在操作1530中,UE被进一步配置成由UX TX波束B来发射UL传输(诸如在PUSCH上进行数据传输),其中UL TX波束B是从N个波束(B1,B2,...,BN)中选择的。
在操作1540中,UE还执行事件检测过程,以确定在使用UL TX波束B进行UL传输时是否发生感兴趣事件,其中上面描述了感兴趣事件的几个示例。
在操作1550中,如果未检测到事件(即,声明为否定),则UE继续由UL TX波束B来发射UL传输。
在操作1560中,如果检测到事件(即,声明为肯定),则UE切换到替代UL TX波束B′以进行UL传输,其中替代UL TXB′≠B且是从N个波束(B1,B2,...,BN)中选择的。基于操作1570中的确定,使用以下示例中的至少一个来确定用于在将来时隙中进行UL传输的UL TX波束。
在一个示例中,UE继续由替代UL TX波束B′来发射UL传输,直到UE在将来的时隙中接收到UL TX波束更新的指示。
在一个示例中,UE可切换到第二替代UL TX波束B″以进行UL传输,例如,当使用B和B′中的任何一个进行UL传输的同时检测到感兴趣事件(即,声明为肯定)时,其中B″≠B′,B″≠B,并且B″是从N个波束(B1,B2,...,BN)中选择的。
在一个示例中,UE可切换回UL TX波束B来进行UL传输,例如,当使用替代UL TX波束B′,B″,...中的任何一个进行UL传输的同时检测到感兴趣事件(即,声明为肯定)时、或者当未检测到感兴趣事件(即,声明为否定)时,UL TX波束B再次用于进行UL传输。
在一个示例中,UL TX波束B被固定为例如B1。在一个示例中,UL TX波束B被配置成例如B=Bi,并且索引i∈{1,...,N}是经由RRC和/或MAC CE和/或DCI来配置。在一个示例中,UE可自由地从(B1,B2,...,BN)中选择UL TX波束B。在一个示例中,N个UL TX波束按优先级降序排序(分类),使得如果i<j,则Bi比Bj优先级高。当事件被声明为肯定时,UE从候选ULTX波束集(当声明发生事件时,其对应于集(B1,B2,...,BN)减去UL TX波束)中选择出最高优先级的UL TX波束进行UL传输。N个波束的优先级次序可以是固定的(例如,基于其索引),或者经由RRC和/或MAC CE和/或DCI来配置。
N的值是固定的(例如,N=2,N=UE处的天线面板数量),或者经由RRC和/或MAC CE和/或DCI来配置。可替代地,UE报告其所支持的至少一个N值。这种报告可经由UE能力信令进行。可替代地,UE报告一个N值,该N值对应于在UE处的天线面板总数中的活动天线面板数量。注意,活动天线面板数量可小于UE处的天线面板总数。
如子实施例I.1所述,关于事件发生的信息可在NW/gNB处隐式地或显式地获取。对于隐式信息,UE可不报告关于事件发生的任何消息,但是通过一些实施方式,NW/gNB可例如基于接收到的UL传输来获取信息(由于当事件发生时,UL TX波束从B切换到B′)。对于显式信息,UE可显式地报告预通知消息以向NW/gNB指示事件发生。NW/gNB可根据所获取的关于事件发生的隐式或显式信息来(在将来的时隙中)发射下一个UL TX波束指示。
在不需要任何预通知消息的可替代显式方法中,UE可例如使用
Figure BDA0003997668810000341
位指示来包括/报告所选波束的信息(B或者B′)、或者UL TCI状态。在一个示例中,该信息可与许可PUSCH传输(仅UCI、或与UL数据复用)一并被包括/报告。在一个示例中,该信息可与在相同时隙内的PUCCH上的UL控制同时被包括/报告(作为独立信息、或与其它UCI或HARQ-ACK复用)。在一个示例中,该信息可与PRACH传输一并被包括/报告。UE可被配置有用于包括/报告所选波束信息的至少一个UL报告资源,其中该至少一个UL报告资源对应于PUCCH资源、或PUSCH资源、或PUCCH和PUSCH资源之间的组合、或PRACH资源。该资源配置可经由高层(RRC)信令来执行。可替代地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号通知预留资源集。在一个示例中,所选波束的信息可被包括/复用在PUCCH或PUSCH传输的起始部分(例如,所分配的PRB和/或UL报告资源的第一OFDM符号中的一个)中。示例I.1.1到I.1.5中的至少一个可被使用/配置成关于包括针对PUCCH和/或PUSCH和/或PRACH选择的所选ULTX波束的信息。
由UE进行的事件检测可基于至少一个DL测量RS,诸如CSI-RS或SSB,其可被专门配置用于事件检测的目的,或者其可以是来自被配置用于波束测量的DL测量RS、波束报告和波束指示。
在本子实施例中,UE开始由UL TX波束B来发射UL传输,然后执行事件检测,并且如果事件被声明为肯定,则UE切换到用于UL传输的替代UL TX波束B′以进行UL传输。
图16示出了被配置成接收指示N个波束(B1,B2,...,BN)1600的UL TX波束指示的UE的流程图。图16所示的配置成接收指示N个波束(B1,B2,...,BN)1600的UL TX波束指示的UE的实施例仅用于说明。图16不将本公开的范围限于配置成接收指示N个波束(B1,B2,...,BN)1600的UL TX波束指示的UE的任何特定实施方式。
在一个子实施例(I.4)中,如图16所示(操作1610和操作1620),UE被配置成接收指示N个波束(B1,B2,...,BN)的UL TX波束指示,其中B1是第一UL TX波束,B2是第二UL TX波束,……BN是第N个UL TX波束。
在操作1630和操作1640中,UE先执行事件检测,并且如果事件被声明为否定,则UE由UL TX波束B来发射UL传输(诸如在PUSCH上进行数据传输),否则(操作1630和操作1650)UE由替代UL TX波束B′来发射UL传输,其中B≠B′并且B和B′是从N个波束(B1,B2,...,BN)中选择的。UE重复这些步骤,直到UE在将来的时隙中接收到下一个UL TX波束指示(操作1660)。
该子实施例的其余细节与子实施例I.3相同。特别地,如子实施例I.1所述,关于事件发生的信息可在NW/gNB处隐式地或显式地获取。对于隐式信息,UE可不报告关于事件发生的任何消息,但是通过一些实施方式,NW/gNB可例如基于接收到的UL传输来获取信息(由于当事件发生时,UL TX波束从B切换到B′)。对于显式信息,UE可显式地报告预通知消息以向NW/gNB指示事件发生。NW/gNB可根据所获取的关于事件发生的隐式或显式信息来(在将来的时隙中)发射下一个UL TX波束指示。
在不需要任何预通知消息的可替代显式方法中,UE可例如使用
Figure BDA0003997668810000361
位指示来包括/报告所选波束的信息(B或者B′)、或者UL TCI状态。在一个示例中,该信息可与许可PUSCH传输(仅UCI、或与UL数据复用)一并被包括/报告。在一个示例中,该信息可与在相同时隙内的PUCCH上的UL控制同时被包括/报告(作为独立信息、或与其它UCI或HARQ-ACK复用)。在一个示例中,该信息可与PRACH传输一并被包括/报告。UE可被配置有用于包括/报告所选波束信息的至少一个UL报告资源,其中该至少一个UL报告资源对应于PUCCH资源、或PUSCH资源、或PUCCH和PUSCH资源之间的组合、或PRACH资源。该资源配置可经由高层(RRC)信令来执行。可替代地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号通知预留资源集。在一个示例中,所选波束的信息可被包括/复用在PUCCH或PUSCH传输的起始部分(例如,所分配的PRB和/或UL报告资源的第一OFDM符号中的一个)中。示例I.1.1到I.1.5中的至少一个可被使用/配置成关于包括针对PUCCH和/或PUSCH和/或PRACH选择的所选ULTX波束的信息。
在一个示例中,UE根据所感兴趣事件来使用子实施例I.3和I.4中的一个进行UL传输。例如,如果感兴趣事件是MPE,则UE使用子实施例I.4,并且如果感兴趣事件与HW限制或波束失效有关,则UE使用子实施例I.3。在另一个示例中,子实施例I.3和I.4中的一个例如经由RRC和/或MAC CE和/或DCI被配置给UE。在另一个示例中,子实施例I.3和I.4中的一个被固定(被使用)用于UL传输。在另一个示例中,UE在其能力信令中报告子实施例I.3和I.4中的一个或两个,并且NW/gNB根据所报告的UE能力来配置子实施例I.3和I.4中的一个。
图17示出了用于UL传输的UL TX波束选择的算法描述1700。图17所示的用于UL传输的UL TX波束选择的算法描述1700的实施例仅用于说明。图17不将本公开的范围限于用于UL传输的UL TX波束选择的算法描述1700的任何特定实施方式。
在一个子实施例(I.5)中,如图17所示,如实施例I.3至I.4所述的用于UL传输的ULTX波束选择的算法描述可包括以下步骤。
■对于k∈{1,2,...,N},令S1=(B2,...,BN),SN=(B1,...,BN-1)且Sk=(B1,...,Bk-1,Bk+1,...,BN)。注意,Sk对应于去除UL TX波束Bk后获得的N-1个UL TX波束。
■步骤0:UE由从N个波束(B1,B2,...,BN)中选择的UL TX波束B来发射UL传输。令B=Bk,其中k∈{1,2,...,N},初始化T'=Sk且B'=B。
■步骤1:检查是否检测到感兴趣事件(即,声明为肯定)。如果是,则继续步骤2;否则,终端继续使用当前UL TX波束进行UL传输,并继续执行步骤3。
■步骤2:UE从T'中的N-1个波束中选择替代UL TX波束B'进行UL传输。令k'为替代UL TX波束B的索引,即,B'=Bk',并且设T'=Sk'
■步骤3:如果接收到下一个UL TX波束指示,则继续步骤0;否则继续步骤1。
在一个子实施例(I.6)中,当UE可(能够)由两个UL TX波束同时发射(或可发射)UL传输时,只要感兴趣事件不是由两个波束(B1,B2)中的任何一个来声明,UE使用两个UL TX波束(B1,B2)来发射UL传输。当由来自两个波束(B1,B2)中的波束B来声明(肯定)感兴趣事件时,UE使用来自两个波束(B1,B2)中的另一个(替代)UL TX波束(≠B)来发射UL传输。UE重复这些步骤,直到UE在将来的时隙中接收到下一个UL TX波束指示。在接收到下一个UL TX波束指示时,UE更新两个波束(B1,B2),并且如上所述使用两个新UL TX波束继续进行UL传输。如果UE经由UL TX波束指示接收到N>2个波束,则UE在进行上述UL传输之前从N个波束中选择两个波束,其中两个波束的选择可经由RRC和/或MAC CE和/或DCI来固定或配置。
部分2-替代UL TX波束测量、报告和指示
在一个实施例(II)中,UE被配置成在UE(或在gNB)处接收用于波束测量的DL RS(或发射UL RS。UE可被进一步配置有波束报告。波束测量和波束报告被配置成便于进行如实施例I和子实施例I.1至I.6所述的指示多个UL TX波束的UL TX波束指示。注意,如本公开中先前描述的,波束测量和报告的这种配置与UL波束的显式指示/报告或用于UL传输的TCI状态选择(B或B')是分开的(不同的)。也就是说,UL波束选择不是波束报告的一部分,而是伴随着许可UL传输。(来自UE的)波束报告将便于进行(来自NW/gNB的)指示波束(B1,B2,...,BN)的波束指示,并且(来自UE的)UL波束选择将使gNB/NW知道从所指示的波束(B1,B2,...,BN)中选择的用于UL传输的UL TX波束。
在一个子实施例(II.1)中,UE被配置成根据以下示例中的至少一个来执行波束测量和报告。
在一个示例II.1.1中,UE被(NW/gNB)配置成测量(接收)P1个DL测量RS资源(诸如CSI-RS或SSB),其中P1≥1。这种配置可通过高层(RRC)信令来执行。可选地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号/更新DL测量RS资源(子)集。这些资源由UE使用以沿着(由在对UE透明的NW/gNB处执行的波束成形/预编码操作表示的)不同的波束或空间方向执行波束测量。UE被(NW/gNB)进一步配置成报告Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量),其中Q1≤P1。波束度量可表示与数据(PDSCH)和/或专用控制(PDCCH)相关联的链路质量。波束度量的示例包括L1-RSRP、L1-SINR、CQI、或假设的BLER、或任何其它波束度量。资源指示符指示来自P1个DL测量RS资源中的DL测量RS资源索引。资源指示符的示例包括CRI(当DL测量RS是CSI-RS时)和SSB-RI(当DL测量RS是SSB时)。该波束报告的时域行为可被配置成非周期性(AP)、半持久性(SP)或周期性(P)。NW/gNB接收Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量),并使用其来(针对UE)配置指示N个ULTX波束的UL TX波束指示。在一个示例中,N=N1。在一个示例中,N1是经由RRC和/或MAC CE和/或DCI来配置。
在一个示例II.1.2中,UE被(NW/gNB)配置成测量(接收)P1个DL测量RS资源(诸如CSI-RS或SSB),其中P1≥1。该波束测量的细节如上述实施例II.1.1所述。UE被(NW/gNB)进一步配置成报告Q1个资源指示符集或Q1个资源指示符对(资源指示符集,波束度量),其中Q1≤P1,并且每个资源指示符集包括N1个资源指示符(I1,......IN1),其中Ii是集中的第i个资源指示符。关于波束度量、资源指示符和波束报告的时域行为的细节如上文在示例II.1.1中所述。NW/gNB接收Q1个资源指示符集或Q1个资源指示符对(资源指示符集,波束度量),并使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。在一个示例中,N=N1。在一个示例中,N1是经由RRC和/或MAC CE和/或DCI来配置。
在一个示例II.1.3中,UE被(NW/gNB)配置成测量(接收)P1个DL测量RS资源(诸如CSI-RS或SSB),其中P1≥1。该波束测量的细节如上述实施例II.1.1所述。UE被(NW/gNB)进一步配置成报告(R1,...RN)或者(R1,......RN,波束度量),其中对于每个i,Ri是(由NW/gNB指示的)用于N个UL TX波束中的第i个波束的资源指示符集。关于波束度量、资源指示符和波束报告的时域行为的细节如上文在示例II.1.1中所述。NW/gNB接收(R1,...RN)或者(R1,......RN,波束度量),并且使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.4中,UE被(NW/gNB)配置成测量(接收)P1个DL测量RS资源(诸如CSI-RS或SSB),其中P1≥1。该波束测量的细节如上述实施例II.1.1所述。UE被进一步配置有包括用于UL TX波束指示的候选资源指示符(I1,...IN)的集X,其中Ii对应于(由NW/gNB指示的)用于N个UL TX波束中的第i个波束的DL测量RS。UE被(NW/gNB)进一步配置成报告Q1个资源指示符(I1,...IN)或Q1个(资源指示符,波束度量)=(I1,......IN1,波束度量)对,其中Q1≥1,并且所报告的资源指示符(I1,...IN)是来自所配置的集X。关于波束度量、资源指示符和波束报告的时域行为的细节如上文在示例II.1.1中所描述。NW/gNB接收Q1个资源指示符(I1,...IN)或Q1个(资源指示符,波束度量)=(I1,......IN1,波束度量)对,并使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.5中,UE被(NW/gNB)配置成测量(接收)N个DL测量RS资源集(诸如CSI-RS或SSB),其中第i个DL测量RS资源集是用于(由NW/gNB指示的)N个UL TX波束中的第i个波束。该波束测量的细节如上述实施例II.1.1所述。在一个示例中,N个集是与UE处的N个天线面板相关联。在一个示例中,N个集是与UE处的N个空间(或波束)方向范围相关联。UE被(NW/gNB)进一步配置成报告Q1个资源指示符集或Q1个资源指示符对(资源指示符集,波束度量),其中Q1≥1,并且每个资源指示符集包括N个资源指示符(I1,......IN1),其中Ii是从DL测量RS资源的第i个集中选择的集中的第i个资源指示符。关于波束度量、资源指示符和波束报告的时域行为的细节如上文在示例II.1.1中所描述。NW/gNB接收Q1个资源指示符集或Q1资源指示符对(资源指示符集,波束度量),并使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.6中,UE被(NW/gNB)配置成发射P2个UL测量RS资源(例如SRS),其中P2≥1。这种配置可通过高层(RRC)信令来执行。可选地,NW/gNB可经由L1或L2 DL控制(PDCCH或MAC CE)动态地发信号通知/更新UL测量RS资源(子)集。这些SRS资源可由NW/gNB使用以沿着(由在对NW/gNB透明的UE处执行的波束成形/预编码操作表示的)不同的波束或空间方向执行波束测量。可选地,UE可被配置成例如经由UL-TCI报告Q2个候选UL TX波束指示,其中UL-TCI表示如(经由高层信令)在UL TCI状态定义中配置的UL TCI状态,其中TCI状态是与可用于表示UL“方向”(即,UL TX波束)的测量RS相链接/相关联。在本子实施例中,ULTCI状态被链接到表示配置SRS资源的SRS资源索引(SRI),由于SRS被用于测量UL信道的链路质量。
NW/gNB接收(测量)UL测量P2个RS资源(以及可选地,Q2个候选UL TX波束指示),并使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.7中,UE被(NW/gNB)配置成发射N个UL测量RS资源集(诸如SRS),其中第i个UL测量RS资源集是用于(由NW/gNB指示的)N个UL TX波束中的第i个波束。UL测量RS资源的细节如在示例II.1.6中所述。在一个示例中,N个集是与在UE处的N个天线面板相关联。在一个示例中,N个集是与在UE处的N个空间(或波束)方向范围相关联。可选地,UE可被配置成例如经由UL-TCI报告Q2个候选UL TX波束指示,其中UL-TCI表示如(经由高层信令)在UL TCI状态定义中配置的UL TCI状态,其中TCI状态是与可用于表示UL“方向”(即,ULTX波束)的测量RS相链接/相关联。在本子实施例中,UL TCI状态被链接到来自N个UL测量RS资源集中的每一个的N个SRS资源索引(SRI)。
NW/gNB接收(测量)N个UL测量RS资源集(以及可选地,Q2个候选UL TX波束指示),并使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.8中,UE被(NW/gNB)配置成发射P2个UL测量RS资源(与实施例II.1.6比较)或N个UL测量RS资源集(与实施例II.1.7比较)。UL测量RS资源的细节如在示例II.1.6中所述。在一个示例中,N个集是与在UE处的N个天线面板相关联。在一个示例中,N个集是与在UE处的N个空间(或波束)方向范围相关联。UE被进一步配置成例如经由UL-TCI报告多个候选UL TX波束指示集,其中该多个集可与在UE处的多个天线面板相关联,或者与在UE处的多个空间(或波束)方向范围相关联。
NW/gNB接收(测量)UL测量RS资源和多个候选UL TX波束指示集,并且从每个集中选择波束或从多个集中选择子集,然后从每个子集中选择波束。然后,NW/gNB使用其来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例II.1.9中,UE被(NW/gNB)配置成测量(接收)P1个DL测量RS资源(例如CSI-RS或SSB),其中P1≥1。该波束测量的细节如在上述示例II.1.1中所述。UE被(NW/gNB)进一步配置成报告Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量),其中Q1≤P1
UE还被(NW/gNB)配置成发射P2个UL测量RS资源(诸如SRS),其中P2≥1。UL测量RS资源的细节如在示例II.1.6中所述。可选地,UE可被配置成例如经由UL-TCI报告Q2个候选ULTX波束指示。
NW/gNB接收(测量)UL测量RS资源,接收Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量),并且可选地接收Q2个候选UL TX波束指示。然后,NW/gNB使用所接收的信息来(针对UE)配置指示N个UL TX波束的UL TX波束指示。
在一个示例中,当N=2时,基于Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量)来选择N个UL TX波束(B1)中的第一个,并且基于Q2个候选UL TX波束指示来选择N个UL TX波束(B2)中的第二个。
在一个示例中,当N>2时,基于Q1个资源指示符(I)或Q1个(I,J)对=(资源指示符,波束度量)来选择N个UL TX波束(B1)中的第一个,并且基于Q2个候选UL TX波束指示来选择N个UL TX波束(B2,...,BN-2)中的剩余N-1个。
在一个子实施例(II.2)中,UE被配置成经由A-TCI接收指示N个UL TX波束的UL TX波束指示(如上所述),其中A=DL或UL或J(联合)。UE可经由具有TCI状态集的RRC信令来配置,其中每个TCI状态对应于指示N个UL TX波束的A-TCI。UE可被配置成接收从TCI状态集中选择TCI状态的MAC CE命令。可替代地,UE可被配置成接收从TCI状态集中选择TCI状态子集的MAC CE命令,并且UE可被进一步配置成接收在指示来自TCI状态子集中的TCI状态的DCI中的码点。以下示例中的至少一个用于UL TX波束指示。
在一个示例II.2.1中,指示N个UL TX波束的UL TX波束指示是经由UL-TCI进行的。在一个示例中,联合(单个)UL-TCI用于指示N个UL TX波束(即,UL-TCI包括TCI状态ID和各自具有一个端口的N个DL或UL测量RS资源的ID,或者UL-TCI包括TCI状态ID和具有N个端口的DL或UL测量RS资源的ID)。在一个示例中,N(单独的)UL-TCI用于指示N个UL TX波束,每个UL TX波束对应于一个UL TX波束(即,每个UL-TCI包括TCI状态ID和具有一个端口的DL或UL测量RS资源的ID)。对于UL操作(例如,如在Rel.15/16 NR中),UE也可由SRI(除了UL-TCI之外)单独指示。可替代地,SRI经由UL-TCI(联合)指示。
在一个示例II.2.2中,N个UL TX波束中的一个与DL TX波束相同,因此其经由DL-TCI指示(例如,当波束对应关系成立时),并且剩余的N-1个UL TX波束经由UL-TCI指示。在一个示例中,使用联合(单个)UL-TCI来指示N-1个UL TX波束。在一个示例中,N-1个(单独的)UL-TCI用于指示N-1个UL TX波束,每个UL TX波束使用一个UL-TCI。对于UL操作(例如,如在Rel.15/16 NR中),(除了UL-TCI之外)UE也可由SRI单独指示。可替代地,SRI经由UL-TCI(联合)指示。此外,(例如,经由标志或参数)提供了如下信息:经由DL-TCI指示的波束是主波束(例如,B1),还是经由UL-DCI指示的剩余波束中的一个是主波束。该信息可经由RRC和/或MAC CE和/或DCI来提供。
在一个示例II.2.3中,指示N个波束(B1,...,BN)的波束指示是经由UL-TCI或DL-DCI或J-TCI进行的,其中该波束指示对于DL接收和UL传输两者都是共用的(例如,假设波束对应关系成立)。在一个示例中,联合(单个)A-TCI用于指示N个波束。在一个示例中,N个(单独的)A-TCI用于指示N个波束,每个波束一个A-TCI。这里,A是UL或DL或J。
在一个示例中,如本公开所述的,来自(B1,...,BN)中的波束BDL用于进行DL接收,并且波束(B1,...,BN)用于进行UL传输。在一个示例中,BDL=Bi,其中i是固定的(例如,为1)。在一个示例中,BDL是经由RRC和/或MAC CE和/或DCI来配置。
在一个示例II.2.4中,关于N个波束(B1,...,BN)中的一个的波束指示是经由TCI1进行的,其中TCI1是UL-TCI1或DL-TCI1或J-DCI1。关于剩余的N-1个波束,即N个波束(B2,...,BN)的波束指示是经由TCI2进行的,其中TCI2是UL-TCI2或DL-TCI2或J-TCI2。
在一个示例II.2.5中,N个波束中的一个是经由TCI1指示的(即,经由DCI指示的),并且剩余的N-1个波束是经由TCI2指示的(即,经由MAC CE或RRC或MACE与RRC的组合指示的)。
在一个示例II.2.6中,表示N个波束的波束指示是根据除了以下实施例之外的实施例II.2.1至实施例II.2.5中的一个。N个波束(B1,...,BN)中的一个(如B1)总是被指示。剩余的N-1个波束(如N个波束中的(B2,...,BN))可被指示,也可不被指示。是否指示剩余的N-1个波束的信息可经由RRC和/或MACE CE和/或DCI来配置。当DCI被使用时,可使用两级DCI,其中第一级DCI包括是否指示剩余的N-1个波束的信息。根据第一级DCI中的该信息,第二级DCI可被提供给UE,也可不被提供给UE。
在一个子实施例(II.3)中,波束测量、波束报告和波束指示受到限制/条件的影响。
这种限制仅可用于一些(而非所有)事件,例如MPE缓解。可替代地,可应用这种事件而不管事件如何。而且,该限制可被非透明地应用。例如,UE可被配置成应用这种限制和/或UE可报告其能够应用这种限制。以下实施例中的至少一个是用于这种限制。
在一个示例II.3.1中,该限制是基于在UE处的天线面板(Z)数量。例如,当Z=1时,N=1;并且当Z>1时,N>1。
在一个示例II.3.2中,该限制是基于在角度/空间域中遍历N个波束的最小间隔。在角度域中的限制的一个示例中,N个波束中的任何两个波束使得其波束指向方向或波束图案(几乎)是不重叠的(例如,用于MPE缓解)。在空间域中的限制的一个示例中,N个波束是正交的。
在一个示例II.3.2中,该限制是基于实施例II.3.1和实施例II.3.2的组合。
部分3-其它各项实施例
在一个子实施例(III.1)中,UE被配置成接收指示多个(N)UL TX波束的UL TX波束指示。UE被进一步配置成利用从N个UL TX波束中选择的UL TX波束B来发射UL传输(诸如在PUSCH上进行数据传输)。UE选择UL TX波束B进行UL传输,并且gNB/NW根据以下示例中的至少一个来接收UL传输。
在一个示例III.1.1中,UE自由地选择N个UL TX波束中的任何一个进行UL传输。NW/gNB在接收UL传输的同时对所选择的UL TX波束B执行盲解码。可替代地,UE向NW/gNB报告所选UL TX波束的消息,NW/gNB使用该消息来接收UL传输。
在一个示例III.1.2中,UE根据优先级次序(固定的或配置的优先级)来选择用于UL传输的UL TX波束B,即,UE选择最高优先级的UL TX波束(例如,第一波束B1)进行UL传输。如果(如本公开所述)未声明感兴趣事件,则NW/gNB接收由与最高优先级的UL TX波束相关联的UL RX波束进行的UL传输。否则,UE切换到(选择)来自UE传输中的替代UL TX波束。例如,UE选择第二高优先级的UL TX波束(例如,第二波束B2)进行UL传输。当选择第二高优先级的UL TX波束时,NW/gNB在接收UL传输的同时对所选择的UL TX波束B执行盲解码。例如,如果使用最高优先级的UL TX波束进行的解码失败,则NW/gNB使用第二高优先级UL TX波束进行解码。可替代地,UE向NW/gNB报告所选UL TX波束的消息,NW/gNB使用该消息来接收UL传输。
在一个子实施例(III.2)中,当如本公开所述UE被配置有用于UL TX波束指示的UL测量RS(SRS)资源时,该配置包括高层参数SRSResourceSet,高层参数中的“用途(usage)”被设置为“多个面板(multiplepanels)”或“多个UL TX波束(multiple UL TX beams)”或“波束管理(BeamManagement)”,并且N个UL TX波束指示是基于SRSResourceSet中的N个SRS资源。可替代地,该配置包括N个高层参数SRSResourceSet,每个高层参数中的“用途(usage)”被设置为“多个面板(multiplepanels)”或“多个UL TX波束(multiple UL TXbeams)”或“波束管理(BeamManagement)”,并且N个UL TX波束指示是基于N个SRS资源,这N个SRS资源之一来自N个SRSResourceSet中的每一个。
在一个子实施例(III.3)中,当如本公开所述UE配置有用于UL TX波束指示的DL测量RS(例如,CSI-RS)资源时,该配置包括高层参数CSI-RSResourceSet,并且N个UL TX波束指示是基于CSI-RSResourceSet中的N个CSI-RS资源。可替代地,配置包括N个高层参数CSI-RSResourceSet,并且N个UL TX波束指示是基于N个SRS资源,这N个SRS资源之一来自N个SRSResourceSet中的每一个。
在一个子实施例(III.4)中,UE(经由L1控制动态地、或者经由MAC CE、或经由其能力信令)报告关于其接收N>1个UL TX波束的能力的信息。可替代地,UE(经由L1控制动态地、或者经由MACCE、或经由其能力信令)报告关于其接收N>1个UL TX波束的能力的信息,以及UE是支持一个天线面板(SP)还是多个面板(MP)来进行UL传输的信息。可替代地,UE(经由L1控制动态地、或者经由MAC CE、或经由其能力信令)报告关于UE是否支持一个天线面板(SP)或多个面板(MP)进行UL传输的能力的信息。UL TX波束指示受限于所报告的UE能力。
在一个子实施例(III.5)中,UE被配置成从经由波束指示来指示的波束(B1,...,BN)中选择UL TX波束进行UL传输,其中波束选择过程是根据以下示例中的至少一个。
在一个示例中,波束选择是取决于UE的实施方式,即,UE自由地选择任何波束进行UL传输。
在一个示例中,如果未检测到感兴趣事件(例如,满足MPE要求),则波束选择是基于优先级次序;否则,波束选择取决于UE的实施方式来选择另一个面板,其中优先级次序的细节如示例III.1.2中所描述。
在一个示例中,如果未检测到感兴趣事件(例如,满足MPE要求),则波束选择是基于优先级次序;否则,波束选择使用具有最高优先级的波束,使得未由所选择的波束检测到感兴趣事件(例如,满足MPE要求)。
在一个示例中,波束选择是基于优先级次序,使得未由所选择的波束检测到感兴趣事件(例如,满足MPE要求)。
在一个示例中,N等于UE处的天线面板数量,因此在此情况下,波束选择等效于面板选择。在一个示例中,当UE配备有多个天线面板时,UE处的波束选择可被扩展为包括波束和面板选择两者。
在一个子实施例(III.6)中,UE被配置成向NW/gNB报告/指示关于所选波束(和/或面板)的信息,如实施例III.4和本公开中的其它处所述,其中波束选择报告/指示过程是根据以下示例中的至少一个。
在一个示例中,不存在波束(和/或面板)指示,即,NW/gNB在接收UL传输的同时对所选UL TX波束B执行盲解码。
在一个示例中,UE向NW/gNB指示关于所选波束(和/或面板)的信息,例如,波束ID或面板ID或与波束或面板相关联的ID,该NW/gNB用于即将进行的UL传输。用于该指示的物理信道可以是PUCCH、或PUSCH、或PRACH、或PUCCH、PUSCH和PRACH中的至少两个的组合。当PUSCH被用于该指示时,则MAC CE可被用于该指示。当不存在(未提供)MAC CE时,波束(和/或面板)中没有改变/更新。可替代地,该指示可仅与UCI复用、或与UCI和数据两者复用。当PUCCH被用于该指示时,PUCCH中的字段可被用于该指示。可选地,该字段可在波束(和/或面板)改变时被包括。
在一个示例中,UE向NW/gNB指示关于所选波束(和/或面板)的信息,例如,波束ID或面板ID或与波束或面板相关联的ID,该NW/gNB仅在波束(和/或面板)改变时用于即将进行的UL传输。用于该指示的物理信道可以是PUCCH、或PUSCH、或PRACH、或PUCCH、PUSCH和PRACH中的至少两个的组合。当PUSCH被用于该指示时,则MAC CE可被用于该指示。当不存在(未提供)MAC CE时,波束(和/或面板)中没有改变/更新。可替代地,该指示可仅与UCI复用、或与UCI和数据两者复用。当PUCCH被用于该指示时,PUCCH中的字段可被用于该指示。可选地,该字段可在波束(和/或面板)改变时被包括。
在一个子实施例(III.7)中,当UE配置有多个分量载波(CC)时,本公开所述的用于指示波束(和/或面板)的物理DL和/或UL信道可在相同的CC或不同CC内。该信息(相同或不同CC)可以是固定的(未被配置的),或可被配置给UE。
上述变型实施例中的任何一个可独立地使用,或者与至少一个其它变型实施例组合使用。
图18示出了根据本公开实施例的用于操作用户设备(UE)的方法1800的流程图,该方法可由UE(诸如UE 116)执行。图18所示的方法1800的实施例仅用于说明。图18不将本公开的范围限于任何特定实施方式。
如图18所示,方法1800始于步骤1802。在步骤1802中,UE(例如,如图1所示的111-116)接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1。
在步骤1804,UE接收波束指示。
在步骤1806,UE确定是否检测到事件。
在步骤1808中,UE基于是否检测到事件,从N个UL发射波束中选择波束。
在步骤1810中,UE使用所选择的波束来发射UL传输,其中波束是指用于接收或发射源参考信号(RS)的空间属性。
在一个实施例中,UE响应于未检测到事件,从N个UL发射波束中选择第一波束作为波束;并且响应于检测到事件,从N个UL发射波束中选择第二波束作为波束。
在一个实施例中,事件检测是基于是否满足最大允许暴露(MPE)限制。
在一个实施例中,UE至少配备有第一天线面板和第二天线面板,并且为了确定是否检测到事件,UE确定是否从第一天线面板切换到第二天线面板。
在一个实施例中,波束是基于N个UL发射波束中的优先级次序来选择。
在一个实施例中,UE接收配置信息,该配置信息包括关于测量RS资源的信息和关于波束报告的信息;测量测量RS资源并基于所测量的测量RS资源来计算波束报告;并且发射波束报告,其中,测量RS资源包括信道状态信息参考信号(CSI-RS)、或同步信号块(SSB)、或CSI-RS和SSB两者,波束报告包括至少一个资源指示符和与至少一个资源指示符相关联的波束度量,并且波束指示是基于波束报告进行的。
在一个实施例中,波束指示是经由包括至少一个源RS的传输配置指示符(TCI)状态进行的。
在一个实施例中,波束指示是经由N个传输配置指示符(TCI)状态进行的,一个TCI状态用于N个UL传输波束中的每一个,并且每个TCI状态包括至少一个源RS。
在一个实施例中,波束指示是分别经由第一传输配置指示符(TCI)状态TCI1和第二TCI状态TCI2进行的,第一TCI状态和第二TCI状态中的每一个包括至少一个源RS,并且UE使用TCI1来确定N个UL发射波束中的一个,并且使用TCI2来确定N个UL发射波束中的剩余N-1个。
图19示出了根据本公开实施例的可由诸如BS 102的基站(BS)执行的另一个方法1900的流程图。图19所示的方法1900的实施例仅用于说明。图19不将本公开的范围限于任何特定实施方式。
如图19所示,方法1900始于步骤1902。在步骤1902中,BS(例如,如图1所示的101-103)接收配置信息,该配置信息包括与指示N个上行链路(UL)发射波束的波束指示有关的信息,其中N>1。
在步骤1904,BS生成波束指示。
在步骤1906,BS发射配置信息。
在步骤1908,BS发射波束指示。
在步骤1910中,BS接收使用来自N个UL发射波束中的波束所发射的UL传输,其中波束是基于是否检测到事件来选择,并且其中波束是指用于接收或发射源参考信号(RS)的空间属性。
在一个实施例中,如果未检测到事件,则波束是来自N个UL发射波束中的第一波束;并且如果检测到事件,则波束是来自N个UL发射波束中的第二波束。
在一个实施例中,事件检测是基于是否满足最大允许暴露(MPE)限制。
在一个实施例中,波束是基于N个UL发射波束中的优先级次序来选择。
在一个实施例中,BS发射配置信息,该配置信息包括关于测量RS资源的信息和关于波束报告的信息;发射测量RS资源;并且接收波束报告,其中,测量RS资源包括信道状态信息参考信号(CSI-RS)、或同步信号块(SSB)、或CSI-RS和SSB两者,波束报告包括至少一个资源指示符和与至少一个资源指示符相关联的波束度量,并且波束指示是基于波束报告进行的。
在一个实施例中,波束指示是经由包括至少一个源RS的传输配置指示符(TCI)状态进行的。
在一个实施例中,波束指示是经由N个传输配置指示符(TCI)状态进行的,一个TCI状态用于N个UL传输波束中的每一个,并且每个TCI状态包括至少一个源RS。
在一个实施例中,波束指示是分别经由第一传输配置指示符(TCI)状态TCI1和第二TCI状态TCI2进行的,第一TCI状态和第二TCI状态中的每一个包括至少一个源RS,TCI1指示N个UL发射波束中的一个,并且TCI2指示N个UL发射波束中的剩余N-1个。
图20示出了根据本公开实施例的基站。
参考图20,基站2000可包括处理器2010、收发器2020和存储器2030。然而,并非所有示出的部件都是必需的。基站2000可由比图20所示的部件更多或更少的部件来实施。此外,根据另一个实施例,处理器2010和收发器2020以及存储器2030可被实施为单个芯片。
基站2000可对应于上述gNB。例如,基站2000可对应于图2所示的gNB 102。
现在将详细描述上述部件。
处理器2010可包括控制所提出的功能、过程和/或方法的一个或多个处理器或其它处理设备。基站2000的操作可由处理器2010来实施。
收发器2020可包括对发射信号进行上变频和放大的RF发射器,以及对接收信号进行下变频的RF接收器。然而,根据另一个实施例,收发器2020可由比所示部件的更多或少的部件来实施。
收发器2020可连接到处理器2010,并发射和/或接收信号。信号可包括控制信息和数据。此外,收发器2020可通过无线信道接收信号,并将该信号输出到处理器2010。收发器2020可通过无线信道发射从处理器2010输出的信号。
存储器2030可存储包括在由基站2000获得的信号中的控制信息或数据。存储器2030可连接到处理器2010,并存储进行所提出的功能、过程和/或方法的至少一个指令或协议或参数。存储器2030可包括只读存储器(ROM)、和/或随机存取存储器(RAM)、和/或硬盘、和/或CD-ROM、和/或DVD、和/或其它存储设备。
图21示出了根据本公开实施例的用户设备(UE)。
参照图21,UE 2100可包括处理器2110、收发器2120和存储器2130。然而,并非所有示出的部件都是必需的。UE 2100可由比图21中所示的部件更多或更少的部件来实施。此外,根据另一个实施例,处理器2110和收发器2120以及存储器2130可被实现为单个芯片。
UE 2100可对应于上述UE。例如,UE 2100可对应于图3所示的UE 116。
现在将详细描述上述部件。
处理器2110可包括控制所提出的功能、过程和/或方法的一个或多个处理器或其它处理设备。UE 2100的操作可由处理器2110来实施。
收发器2120可包括对发射信号进行上变频和放大的RF发射器,以及对接收信号进行下变频的RF接收器。然而,根据另一个实施例,收发器2120可由比所示部件的更多或少的部件来实施。
收发器2120可连接到处理器2110,并发射和/或接收信号。信号可包括控制信息和数据。此外,收发器2120可通过无线信道接收信号,并将该信号输出到处理器2110。收发器2120可通过无线信道发射从处理器2110输出的信号。
存储器2130可存储包括在由UE 2100获得的信号中的控制信息或数据。存储器2130可连接到处理器2110,并存储进行所提出的功能、过程和/或方法的至少一个指令或协议或参数。存储器2130可包括只读存储器(ROM)、和/或随机存取存储器(RAM)、和/或硬盘、和/或CD-ROM、和/或DVD、和/或其它存储设备。
上述流程图示出了可根据本公开的原理实现的示例性方法,并且可对本文流程图示出的方法进行各种改变。例如,虽然被示为一系列步骤,但是在每个图中的各个步骤可重叠、并行发生、以不同顺序发生、或多次发生。在另一个示例中,步骤可省略或由其它步骤代替。
尽管已经用示例性实施例描述了本公开,但是本领域技术人员可建议各种改变和修改。本公开旨在包括落入所附权利要求范围内的这些改变和修改。本申请中的任何描述都不应被理解为暗示任何特定的要素、步骤或功能都是必须包括在权利要求范围内的必要要素。专利权主题的范围是由权利要求来限定。

Claims (15)

1.一种用户设备UE,包括:
收发器,被配置成:
接收配置信息,所述配置信息包括与指示N个上行链路UL发射波束的波束指示有关的信息,其中N>1;以及
接收所述波束指示;以及
处理器,可操作地联接到所述收发器并被配置成:
确定是否检测到事件,以及
基于是否检测到所述事件,从N个UL发射波束中选择波束,其中,所述收发器被进一步配置成使用所选择的波束来发射UL传输,以及
其中,所述波束是指用于接收或发射源参考信号RS的空间属性。
2.根据权利要求1所述的UE,其中,所述处理器被进一步配置成:
响应于未检测到所述事件,从所述N个UL发射波束中选择第一波束作为所述波束,以及
响应于检测到所述事件,从所述N个UL发射波束中选择第二波束作为所述波束。
3.根据权利要求1所述的UE,其中,所述事件的检测是基于是否满足最大允许暴露MPE限制。
4.根据权利要求1所述的UE,其中:
所述UE至少配备有第一天线面板和第二天线面板,以及
所述处理器被进一步配置成:基于确定出从所述第一天线面板切换到所述第二天线面板来确定检测到所述事件。
5.根据权利要求1所述的UE,其中,所述波束是基于所述N个UL发射波束的优先级次序来选择。
6.根据权利要求1所述的UE,其中,所述波束指示是经由包括至少一个源RS的传输配置指示符TCI状态进行的。
7.根据权利要求1所述的UE,其中:
所述波束指示是分别经由第一传输配置指示符TCI状态TCI1和第二TCI状态TCI2进行的,所述第一TCI状态和所述第二TCI状态中的每一个包括至少一个源RS,以及
所述处理器被配置成:
使用所述TCI1来确定所述N个UL发射波束中的一个,以及
使用所述TCI2来确定所述N个UL发射波束中的剩余N-1个。
8.一种基站BS,包括:
处理器,被配置成:
生成配置信息,所述配置信息包括与指示N个上行链路UL发射波束的波束指示有关的信息,其中N>1,以及
生成所述波束指示;以及
收发器,可操作地联接到所述处理器并且被配置成:
发射所述配置信息,
发射所述波束指示,以及
接收使用来自所述N个UL发射波束中的波束所发射的UL传输,
其中,所述波束是基于是否检测到事件来选择,以及
其中,所述波束是指用于接收或发射源参考信号RS的空间属性。
9.根据权利要求8所述的BS,其中:
如果未检测到所述事件,则所述波束是来自所述N个UL发射波束中的第一波束,以及
如果检测到所述事件,则所述波束是来自所述N个UL发射波束中的第二波束。
10.根据权利要求8所述的BS,其中,所述事件的检测是基于是否满足最大允许暴露MPE限制。
11.根据权利要求8所述的BS,其中,所述波束指示是经由包括至少一个源RS的传输配置指示符TCI状态进行的。
12.根据权利要求8所述的BS,其中:
所述波束指示是分别经由第一传输配置指示符TCI状态TCI1和第二TCI状态TCI2进行的,所述第一TCI状态和所述第二TCI状态中的每一个包括至少一个源RS,
所述TCI1指示所述N个UL发射波束中的一个,以及
所述TCI2指示所述N个UL发射波束中的剩余N-1个。
13.一种用于操作用户设备UE的方法,所述方法包括:
接收配置信息,所述配置信息包括与指示N个上行链路UL发射波束的波束指示有关的信息,其中N>1;
接收所述波束指示;
确定是否检测到事件;
基于是否检测到所述事件,从N个UL发射波束中选择波束;以及
使用所选择的波束来发射UL传输,
其中,所述波束是指用于接收或发射源参考信号RS的空间属性。
14.根据权利要求13所述的方法,进一步包括:
响应于未检测到所述事件,从所述N个UL发射波束中选择第一波束作为所述波束,以及
响应于检测到所述事件,从所述N个UL发射波束中选择第二波束作为所述波束。
15.根据权利要求13所述的方法,其中,所述波束指示是经由包括至少一个源RS的传输配置指示符TCI状态进行的。
CN202180042517.5A 2020-06-26 2021-06-25 用于基于事件的上行链路发射波束切换的方法和装置 Pending CN115699611A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202063044838P 2020-06-26 2020-06-26
US63/044,838 2020-06-26
US202063052830P 2020-07-16 2020-07-16
US63/052,830 2020-07-16
US17/349,680 2021-06-16
US17/349,680 US11659539B2 (en) 2020-06-26 2021-06-16 Method and apparatus for event-based uplink transmit beam switch
PCT/KR2021/008021 WO2021261959A1 (en) 2020-06-26 2021-06-25 Method and apparatus for event-based uplink transmit beam switch

Publications (1)

Publication Number Publication Date
CN115699611A true CN115699611A (zh) 2023-02-03

Family

ID=79030782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180042517.5A Pending CN115699611A (zh) 2020-06-26 2021-06-25 用于基于事件的上行链路发射波束切换的方法和装置

Country Status (5)

Country Link
US (2) US11659539B2 (zh)
EP (2) EP4373027A2 (zh)
KR (1) KR20230027081A (zh)
CN (1) CN115699611A (zh)
WO (1) WO2021261959A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150944A1 (en) * 2020-11-06 2022-05-12 Qualcomm Incorporated Common beam as a default beam for aperiodic channel state information reference signals
EP4087154A3 (en) * 2021-05-03 2023-02-15 Samsung Electronics Co., Ltd. Apparatus for receiving/transmitting downlink signals in wireless communication system and operating method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009462A1 (en) * 2016-07-08 2018-01-11 Intel IP Corporation Uplink beamforming and beam management
CN109391435B (zh) 2017-08-11 2021-05-25 电信科学技术研究院有限公司 Pucch传输方法、用户设备和装置
US10959232B2 (en) * 2018-04-10 2021-03-23 Qualcomm Incorporated Physical uplink control channel reliability enhancements
WO2021154372A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Uplink power control method based on path loss reference signal (pl rs) application time, corresponding ue and bs
EP3886336A1 (en) * 2020-03-27 2021-09-29 Nokia Technologies Oy Beam management in wireless communication
WO2021207567A1 (en) * 2020-04-10 2021-10-14 Ofinno, Llc Uplink beam reporting

Also Published As

Publication number Publication date
US20210410130A1 (en) 2021-12-30
US20230292301A1 (en) 2023-09-14
EP4140058A4 (en) 2023-10-04
WO2021261959A1 (en) 2021-12-30
EP4373027A2 (en) 2024-05-22
US11659539B2 (en) 2023-05-23
KR20230027081A (ko) 2023-02-27
EP4140058A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US11641258B2 (en) Method and apparatus for low-overhead and low latency multi-beam operation
CN111937457B (zh) 用于多流传输的波束管理的方法和装置
US11689955B2 (en) Method and apparatus for RRM measurement enhancement for NR unlicensed
CN113519137A (zh) 用于多波束操作的方法和装置
CN110663282A (zh) 在下一代无线系统中用于波束指示的方法和装置
US11533713B2 (en) Multi-beam operations for multiple component carriers
US11576184B2 (en) Group-based dynamic beam indication mechanism
CN114631386A (zh) 用于快速波束管理的方法和装置
US11937282B2 (en) Method and apparatus for beam management for mobility
CN115211198A (zh) 波束指示信道支持方法及设备
CN115516965A (zh) 用于动态波束指示机制的方法和装置
US20210344558A1 (en) Method and apparatus for beam-specific downlink/uplink operation
CN115462156A (zh) 无线通信系统中动态下行链路多波束操作的方法和装置
US20220014956A1 (en) Uplink transmit beam selection based on downlink and uplink resource signal measurements
CN114128170A (zh) 触发多波束报告的方法和装置
JP2022547227A (ja) フレキシブルデュプレックス通信システムに対するレイテンシ減少を行うための方法及び装置
US20230292301A1 (en) Method and apparatus for event-based uplink transmit beam switch
CN116235416A (zh) 用于波束测量和报告的方法和装置
US11743833B2 (en) Method and apparatus for uplink transmit beam selection procedures
CN115715456A (zh) 用于上行链路发送波束选择的方法和装置
US20220022180A1 (en) Method and apparatus for beam management and training

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination