CN115688017A - FRCMDE-based transformer core fault voiceprint diagnosis method and device - Google Patents
FRCMDE-based transformer core fault voiceprint diagnosis method and device Download PDFInfo
- Publication number
- CN115688017A CN115688017A CN202211704573.3A CN202211704573A CN115688017A CN 115688017 A CN115688017 A CN 115688017A CN 202211704573 A CN202211704573 A CN 202211704573A CN 115688017 A CN115688017 A CN 115688017A
- Authority
- CN
- China
- Prior art keywords
- frcmde
- voiceprint
- algorithm
- population
- butterfly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 12
- 238000004458 analytical method Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000013598 vector Substances 0.000 claims description 14
- 238000013507 mapping Methods 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- 239000006185 dispersion Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 230000035772 mutation Effects 0.000 claims description 3
- 230000001953 sensory effect Effects 0.000 claims description 3
- 238000002405 diagnostic procedure Methods 0.000 claims 5
- 238000012843 least square support vector machine Methods 0.000 claims 2
- 238000012935 Averaging Methods 0.000 claims 1
- 230000003321 amplification Effects 0.000 claims 1
- 238000007689 inspection Methods 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000012706 support-vector machine Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 241000255777 Lepidoptera Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
Abstract
Description
技术领域technical field
本发明涉及电力设备故障技术领域,具体涉及一种基于FRCMDE的变压器铁芯故障声纹诊断方法及装置。The invention relates to the technical field of power equipment faults, in particular to a FRCMDE-based voiceprint diagnosis method and device for transformer iron core faults.
背景技术Background technique
变压器作为电力系统中核心设备,其在复杂变化条件下的状态感知、故障预警等问题日益显露,一旦发生故障,将会造成严重的供配电问题和重大的经济损失。因此,迫切需要一种有效的故障状态诊断方法,及时发现和诊断变压器的运行状态,保证其在新型电力系统复杂环境下的安全可靠运行。As the core equipment in the power system, transformers are increasingly exposed to problems such as state perception and fault warning under complex changing conditions. Once a fault occurs, it will cause serious power supply and distribution problems and major economic losses. Therefore, there is an urgent need for an effective fault state diagnosis method to detect and diagnose the operating state of the transformer in time to ensure its safe and reliable operation in the complex environment of the new power system.
变压器常见故障主要包括机械故障、绝缘故障以及过热故障等,在这之中由于机械故障所导致的电气故障发生频率最高,其中铁芯故障所占比重较大,根据统计研究表明,铁芯故障在初期大多是由于机械结构问题所引起,且随着故障程度的加深会对铁芯夹紧力、绝缘造成威胁和破坏,甚至会导致铁芯多点接地等严重的电气故障出现。变压器运行时的声音信号包含大量的运行状态信息,基于声纹分析的电力变压器故障诊断方法获得了足够的重视。该方法具有状态全面感知、信息高效处理、应用便捷灵活等特征,能够有力提高电力变压器的故障识别水平,降低电力变压器的故障概率,有效防止和减少因变压器故障而导致的重大事故。The common faults of transformers mainly include mechanical faults, insulation faults and overheating faults. Among them, the frequency of electrical faults caused by mechanical faults is the highest, and iron core faults account for a large proportion. According to statistical research, iron core faults are in the Most of them are caused by mechanical structural problems at the beginning, and as the fault degree deepens, it will threaten and damage the clamping force and insulation of the iron core, and even lead to serious electrical faults such as multi-point grounding of the iron core. The sound signal during transformer operation contains a large amount of operating state information, and the power transformer fault diagnosis method based on voiceprint analysis has received sufficient attention. This method has the characteristics of comprehensive state perception, efficient information processing, convenient and flexible application, etc. It can effectively improve the fault identification level of power transformers, reduce the failure probability of power transformers, and effectively prevent and reduce major accidents caused by transformer failures.
发明内容Contents of the invention
为了解决上述背景技术提到的技术问题,本发明提出一种基于FRCMDE的变压器铁芯故障声纹诊断方法,将变压器声纹数据进行逐次变分模态分解(SuccessiveVariational Mode Decomposition,SVMD)分解得到若干个本征模态分量(IMF),计算每个本征模态分量的峭度和能量占比挑选出包含有用信息的本征模态分量(IMF)并进行重构;求出重构信号在分析尺度的内的分数阶精细复合多尺度散布熵(FRCMDE),使用 Fisher比剔除不同尺度下的分数阶精细复合多尺度散布熵中的冗余及无效部分,构造最优特征子集;利用PODSBOA对分数阶精细复合多尺度散布熵的参数和LSSVM的超参进行优化并构建改进的PODSBOA-LSSVM故障诊断模型,对最优特征子集进行识别,输出诊断结果。本方法可以非接触测量、设备安装简单、测量速度快捷、信号易于测量, 不会干扰设备正常运行。In order to solve the technical problems mentioned in the above-mentioned background technology, the present invention proposes a transformer core fault voiceprint diagnosis method based on FRCMDE, which decomposes the transformer voiceprint data through Successive Variational Mode Decomposition (SVMD) to obtain several Intrinsic mode components (IMF), calculate the kurtosis and energy ratio of each eigenmode component, select the intrinsic mode component (IMF) containing useful information and reconstruct it; find the reconstructed signal in Analyze the fractional-order fine compound multi-scale distribution entropy (FRCMDE) within the scale, use Fisher ratio to eliminate redundant and invalid parts in the fractional-order fine compound multi-scale distribution entropy at different scales, and construct the optimal feature subset; use PODSBOA Optimize the parameters of fractional-order fine composite multi-scale scatter entropy and hyperparameters of LSSVM and build an improved PODSBOA-LSSVM fault diagnosis model to identify the optimal feature subset and output the diagnosis results. The method can be used for non-contact measurement, simple equipment installation, fast measurement speed, easy signal measurement, and will not interfere with the normal operation of the equipment.
为了实现上述目的,本发明采用的一个技术方案是:一种基于FRCMDE的变压器铁芯故障声纹诊断方法,包括以下步骤:In order to achieve the above object, a technical solution adopted by the present invention is: a method for diagnosing voiceprints of transformer iron core faults based on FRCMDE, comprising the following steps:
S1、将变压器声纹数据进行逐次变分模态分解得到若干个本征模态分量,计算每个本征模态分量的峭度和能量占比挑选出包含有用信息的本征模态分量并进行重构;S1. Decompose the voiceprint data of the transformer successively to obtain several eigenmode components, calculate the kurtosis and energy proportion of each eigenmode component, select the eigenmode components containing useful information, and to refactor;
S2、求出重构信号在分析尺度内的分数阶精细复合多尺度散布熵;S2. Calculate the fractional-order fine compound multi-scale distribution entropy of the reconstructed signal within the analysis scale;
S3、使用 Fisher比剔除不同尺度下的分数阶精细复合多尺度散布熵中的冗余及无效部分,构造最优尺度的特征子集;S3. Use the Fisher ratio to eliminate redundant and invalid parts in the fractional fine composite multi-scale distribution entropy at different scales, and construct a feature subset of the optimal scale;
S4、利用PODSBOA算法对LSSVM的超参进行优化,以所得最优特征子集为基础,构造PODSBOA-LSSVM故障诊断模型,对未知变压器声纹数据进行诊断,输出诊断结果。S4. Use the PODSBOA algorithm to optimize the super-parameters of LSSVM. Based on the obtained optimal feature subset, construct a PODSBOA-LSSVM fault diagnosis model, diagnose the unknown transformer voiceprint data, and output the diagnosis result.
进一步优选,步骤S2的具体过程如下:Further preferably, the specific process of step S2 is as follows:
S201:设逐次变分模态分解重构后的信号序列X=[x 1,x 2,⋯x n ],n为信号序列X的长 度xn为第n个数据,在复合多尺度散布熵算法中,将初始点为按[1,τ]连续地将信号划分成 长度为的不重叠区域,并求每个区域的平均值,以此得到粗粒化序列; S201: Let the signal sequence X =[ x 1 , x 2 ,… x n ] reconstructed by successive variational mode decomposition, n is the length of the signal sequence X x n is the nth data, and the entropy is distributed in the compound multi-scale In the algorithm, the initial point is [1, τ ] and the signal is continuously divided into lengths The non-overlapping areas of , and calculate the average value of each area, so as to obtain the coarse-grained sequence;
S202:计算粗粒化序列的对应散布模式概率的平均值:S202: Calculate the average value of the probability of the corresponding distribution pattern of the coarse-grained sequence:
采用标准正态分布函数将粗粒化序列映射到[0,1]范围内的映射序列Y=[y 1, y 2,⋯,y n ],y n 为第n个映射信号;即Use the standard normal distribution function to map the coarse-grained sequence to the mapping sequence Y = [ y 1 , y 2 ,..., y n ] in the range of [0,1], where y n is the nth mapping signal; that is
式中,μ,σ为信号序列X的期望和标准差,t为时间,x i 为SVMD分解重构后的第i个信号,y i 为第i个映射信号;In the formula, μ , σ are the expectation and standard deviation of signal sequence X, t is time, x i is the i-th signal after SVMD decomposition and reconstruction, and y i is the i-th mapped signal;
通过线性变换算法,将映射序列Y映射到[1,c]范围内的整数中,得到线性变换信号,即Through the linear transformation algorithm, the mapping sequence Y is mapped to an integer in the range [1, c ] to obtain a linear transformation signal, namely
式中,round为取整函数;c为类别个数;为第i个线性变换信号; In the formula, round is a rounding function; c is the number of categories; is the ith linear transformation signal;
对进行相空间重构,则嵌入向量为: right For phase space reconstruction, the embedding vector is:
式中,m为嵌入维数,d为时延, 每个映射到一个散布模式r v0, v1⋯vm-1,其中,, 由于散布模式r v0, v1⋯vm-1内含有m个元 素, 每个元素可取[1,c]的任意整数,所有可能的散布模式的数量为c m ; In the formula, m is the embedding dimension, d is the time delay, each Maps to a scatter pattern r v 0 , v 1⋯ vm -1 , where, , since the scatter pattern r v 0 , v 1⋯ vm -1 contains m elements, each element can be any integer of [1,c], the number of all possible scatter patterns is c m ;
计算c m 下每个散布模式r v0, v1⋯vm-1的概率P,即:Calculate the probability P of each scatter mode r v 0 , v 1⋯ vm -1 under cm , namely:
式中,Num(r v0, v1⋯vm-1)为对应的散布模式的个数; In the formula, Num ( r v 0 , v 1⋯ vm -1 ) is The number of corresponding scatter patterns;
计算不同尺度粗粒化序列的对应散布模式概率的平均值,即:Calculate the average value of the probability of the corresponding scatter pattern of coarse-grained sequences of different scales, namely:
式中,为尺度τ下的第k个粗粒化序列对应的散步模式的概率, (r v0v1⋯vm-1)不同尺度下粗粒化序列对应的散步模式的平均概率; In the formula, is the probability of the scatter mode corresponding to the kth coarse-grained sequence under the scale τ , ( r v 0 v 1⋯ vm -1 ) the average probability of the spread pattern corresponding to the coarse-grained sequence at different scales;
S203:计算不同尺度下的分数阶精细复合多尺度散布熵,即:S203: Calculating the fractional fine compound multi-scale distribution entropy at different scales, namely:
式中,即(r v0v1⋯vm-1),为gamma函数,Ψ为digamma函数,α为分数阶因子。 In the formula, Right now ( r v 0 v 1⋯ vm -1 ), is the gamma function, Ψ is the digamma function, and α is the fractional order factor.
进一步优选,步骤 S3的具体过程如下:Further preferably, the specific process of step S3 is as follows:
S301:对变压器声纹数据的分数阶精细复合多尺度散布熵构成的特征向量集计算Fisher比,即:S301: Calculate the Fisher ratio for the feature vector set formed by the fractional-order fine compound multi-scale dispersal entropy of the transformer voiceprint data, namely:
式中,F (k)表示第k维的特征向量的Fisher比值,表示第k维特征向量的类间离 散度,表示第k维特征向量的类内离散度; In the formula, F ( k ) represents the Fisher ratio of the feature vector of the k -th dimension, Indicates the inter-class dispersion of the k -th dimensional feature vector, Indicates the intra-class dispersion of the k- dimensional feature vector;
S302:对Fisher比进行排序,挑选出最优尺度的特征子集。S302: Sort the Fisher ratio, and select a feature subset with an optimal scale.
进一步优选,步骤S4的具体过程如下:Further preferably, the specific process of step S4 is as follows:
S401:把最优尺度的特征子集分为训练集和测试集;S401: Divide the optimal scale feature subset into a training set and a test set;
S402:改进的蝴蝶算法利用训练集对及最小二乘支持向量机的惩罚因子c和径向基内积函数参数g进行优化,得到最优参数;S402: The improved butterfly algorithm uses the training set pair and the penalty factor c of the least squares support vector machine and the parameter g of the radial basis inner product function to optimize to obtain the optimal parameters;
S403:对具有最优参数的最小二乘支持向量机进行训练,并利用测试集进行测试;S403: Train the least squares support vector machine with optimal parameters, and use the test set to test;
S404:根据训练测试结果构建PODSBOA-LSSVM故障诊断模型,使用PODSBOA-LSSVM诊断模型对未知变压器声纹数据进行诊断,输出诊断结果。S404: Construct a PODSBOA-LSSVM fault diagnosis model according to the training test results, use the PODSBOA-LSSVM diagnosis model to diagnose the unknown transformer voiceprint data, and output a diagnosis result.
进一步优选,改进的蝴蝶算法的步骤如下:Further preferably, the steps of the improved butterfly algorithm are as follows:
步骤A1:对蝴蝶算法搜索参数进行初始化:设置蝴蝶种群数量为N,设置算法的最大迭代次数为N 1,种群边界条件[L b ,U b ],寻优问题维度dim;Step A1: Initialize the search parameters of the butterfly algorithm: set the number of butterfly populations to N , set the maximum number of iterations of the algorithm to N 1 , the population boundary conditions [ L b , U b ], and the optimization problem dimension dim ;
步骤A2:根据边界条件生成初始蝴蝶种群:在边界范围,采用随机数,生成N*dim大小的初始蝴蝶种群,通过空间对称扩增初始种群规模到2N*dim;Step A2: Generate the initial butterfly population according to the boundary conditions: in the boundary range, use random numbers to generate an initial butterfly population of N *dim size, and expand the initial population size to 2 N*dim through spatial symmetry;
步骤A3:适应度计算:根据适应度准则函数,计算扩增种群蝴蝶个体适应度;Step A3: Calculation of fitness: According to the fitness criterion function, calculate the individual fitness of the expanded population of butterflies;
步骤A4:种群恢复:通过精英保留策略选取N个适应度最佳的个体记为恢复种群,找到并记录当前恢复种群的最佳个体;Step A4: Population recovery: select N individuals with the best fitness through the elite retention strategy and record them as the recovery population, find and record the best individual in the current recovery population;
步骤A5:劣势种群更新:选择适应度最差的两只蝴蝶个体,对其进行交叉处理和变异操作;Step A5: Inferior population update: select the two butterfly individuals with the worst fitness, and perform cross processing and mutation operations on them;
步骤A6:算法参数动态更新:根据当前的迭代次数按照以下公式更新感官模态β、幂指数a、动态搜索切换概率p及位置更新算子w 1 、w 2 ;Step A6: Dynamic update of algorithm parameters: update sensory modality β , power exponent a , dynamic search switching probability p and position update operators w 1 and w 2 according to the current iteration number according to the following formula;
步骤A7:迭代寻优:若动态搜索切换概率p>rand,rand为0~1之间的随机数,对个体的位置进行全局更新;若动态搜索切换概率p<rand,对个体的位置进行局部更新;更新全局最优;Step A7: Iterative optimization: if the dynamic search switching probability p>rand , rand is a random number between 0 and 1, the individual's position is updated globally; if the dynamic search switching probability p<rand , the individual's position is locally updated update; update the global optimum;
步骤A8:越界检查:检查更新后的个体是否超出边界,对超出边界的新个体的位置进行界限修正;Step A8: Boundary check: check whether the updated individual is out of the boundary, and perform boundary correction on the position of the new individual that exceeds the boundary;
步骤A9:判断当前是否满足算法的迭代结束条件:不满足结束条件,算法转步骤A5步骤继续执行;反之,输出当前的最优结果,算法结束。Step A9: Determine whether the current iteration end condition of the algorithm is satisfied: if the end condition is not met, the algorithm proceeds to step A5 and continues to execute; otherwise, the current optimal result is output, and the algorithm ends.
本发明还提供一种基于FRCMDE的变压器铁芯故障声纹诊断装置,包括非易失性计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述的基于FRCMDE的变压器铁芯故障声纹诊断方法。The present invention also provides a FRCMDE-based transformer core fault voiceprint diagnosis device, which includes a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute the above-mentioned FRCMDE-based transformer Iron core fault soundprint diagnosis method.
本发明提供的基于FRCMDE的变压器铁芯故障声纹诊断装置包括电子设备,所述电子设备包括:一个或多个处理器以及存储器,还包括输入装置和输出装置,处理器、存储器、输入装置和输出装置通过总线或者其他方式连接,存储器为非易失性计算机可读存储介质,处理器通过运行存储在存储器中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现基于FRCMDE的变压器铁芯故障声纹诊断方法,输入装置接收输入的数字或字符信息,以及产生与基于FRCMDE的变压器铁芯故障声纹诊断装置的用户设置以及功能控制有关的键信号输入。The FRCMDE-based transformer core fault voiceprint diagnosis device provided by the present invention includes electronic equipment, and the electronic equipment includes: one or more processors and memory, and also includes an input device and an output device, a processor, a memory, an input device and The output device is connected through a bus or other means, the memory is a non-volatile computer-readable storage medium, and the processor executes various functional applications of the server by running non-volatile software programs, instructions and modules stored in the memory. Data processing, that is, to implement the FRCMDE-based transformer core fault voiceprint diagnosis method, the input device receives input digital or character information, and generates keys related to user settings and function control of the FRCMDE-based transformer core fault voiceprint diagnosis device signal input.
本发明的有益效果是:首先,将SVMD在信号处理方面的优越性和FRCMDE在故障特征提取方面的有效性相结合,有效滤除信号内的噪声干扰成分,并借鉴分数阶微积分的优势,将其引入到精细复合多尺度散布熵,以提高熵特征对变压器声音故障特征的敏感度;其次利用Fisher比构建最优特征子集,降低特征维度;运用PODSBOA算法对LSSVM的超参进行优化,构建了改进的PODSBOA-LSSVM诊断模型并变压器故障噪声信号进行诊断,有效提升了变压器故障诊断的准确性。The beneficial effects of the present invention are as follows: firstly, the superiority of SVMD in signal processing and the effectiveness of FRCMDE in fault feature extraction are combined to effectively filter out the noise interference components in the signal, and learn from the advantages of fractional calculus, It is introduced into the fine compound multi-scale distribution entropy to improve the sensitivity of entropy features to transformer sound fault characteristics; secondly, the Fisher ratio is used to construct the optimal feature subset to reduce the feature dimension; the PODSBOA algorithm is used to optimize the hyperparameters of LSSVM, An improved PODSBOA-LSSVM diagnostic model is constructed to diagnose transformer fault noise signals, which effectively improves the accuracy of transformer fault diagnosis.
附图说明Description of drawings
图1是本发明的方法流程图。Fig. 1 is a flow chart of the method of the present invention.
图2是一种电子设备的结构示意图。Fig. 2 is a schematic structural diagram of an electronic device.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,本实施例的基于FRCMDE的变压器铁芯故障声纹诊断方法,包括以下步骤:As shown in Figure 1, the FRCMDE-based transformer core fault voiceprint diagnosis method of the present embodiment includes the following steps:
S1、将变压器声纹数据进行逐次变分模态分解(Successive Variational ModeDecomposition,SVMD)得到若干个本征模态分量(IMF),计算每个本征模态分量的峭度和能量占比挑选出包含有用信息的本征模态分量(IMF)并进行重构;S1. Perform successive variational mode decomposition (SVMD) on the transformer voiceprint data to obtain several intrinsic mode components (IMF), calculate the kurtosis and energy ratio of each intrinsic mode component and select Intrinsic Mode Components (IMF) containing useful information and reconstructed;
S2、求出重构信号在分析尺度内的分数阶精细复合多尺度散布熵(FRCMDE值);S2. Calculate the fractional-order fine composite multi-scale dispersion entropy (FRCMDE value) of the reconstructed signal within the analysis scale;
S3、使用 Fisher比剔除不同尺度下的分数阶精细复合多尺度散布熵中的冗余及无效部分,构造最优尺度的特征子集;S3. Use the Fisher ratio to eliminate redundant and invalid parts in the fractional fine composite multi-scale distribution entropy at different scales, and construct a feature subset of the optimal scale;
S4、利用PODSBOA算法对LSSVM的超参进行优化,以所得最优特征子集为基础,构造PODSBOA-LSSVM故障诊断模型,对未知变压器声纹数据进行诊断,输出诊断结果。S4. Use the PODSBOA algorithm to optimize the super-parameters of LSSVM. Based on the obtained optimal feature subset, construct a PODSBOA-LSSVM fault diagnosis model, diagnose the unknown transformer voiceprint data, and output the diagnosis result.
本实施例步骤S1中,将变压器声纹数据进行逐次变分模态分解(SuccessiveVariational Mode Decomposition,SVMD)得到若干个本征模态分量(IMF),计算每个本征模态分量的峭度和能量占比挑选出包含有用信息的本征模态分量(IMF)并进行重构。具体过程为:In step S1 of this embodiment, the transformer voiceprint data is subjected to successive variational mode decomposition (SuccessiveVariational Mode Decomposition, SVMD) to obtain several intrinsic mode components (IMF), and the kurtosis sum of each intrinsic mode component is calculated Energy proportioning picks out Intrinsic Mode Components (IMFs) that contain useful information and reconstructs them. The specific process is:
S101:对变压器声纹数据进行逐次变分模态分解(SVMD)得到若干个本征模态分量(IMF);S101: Performing Sequential Variational Mode Decomposition (SVMD) on the transformer voiceprint data to obtain several Intrinsic Mode Components (IMF);
S102:计算每个本征模态分量(IMF)的峭度,其计算公式为:S102: Calculate the kurtosis of each intrinsic mode component (IMF), the calculation formula of which is:
式中:y b 为第i个本征模态分量的第b个位置的数据值;μ i 为第i个本征模态分量的均值;σ i 为第i个本征模态分量的标准差;u i 为第i个本征模态分量的数据个数;In the formula: y b is the data value of the bth position of the i -th eigenmode component; μ i is the mean value of the i -th eigenmode component; σ i is the standard value of the i -th eigenmode component difference; u i is the number of data of the ith eigenmode component;
S103:计算每个本征模态分量(IMF)的能量占比,其计算公式为:S103: Calculate the energy proportion of each intrinsic mode component (IMF), the calculation formula of which is:
式中:e i 为第i个本征模态分量(IMF)的能量,M表示为本征模态分量(IMF)的个数。In the formula: e i is the energy of the i -th eigenmode component (IMF), and M represents the number of eigenmode components (IMF).
S104:通过峭度准则和能量比准则选择包含有用信息的本征模态分量进行信号重构。S104: Select an eigenmode component containing useful information by using a kurtosis criterion and an energy ratio criterion to perform signal reconstruction.
在本实施例步骤S2的具体过程如下:The specific process of step S2 in the present embodiment is as follows:
S201:设SVMD分解重构后的信号序列X=[x 1,x 2,⋯x n ],n为信号序列X的长度xn为第n 个数据,在RCMDE算法(复合多尺度散布熵)中,将初始点为按[1,τ]连续地将信号划分成长 度为的不重叠区域,并求每个区域的平均值,以此得到粗粒化序列。即: S201: Let the signal sequence X after SVMD decomposition and reconstruction =[ x 1 , x 2 ,… x n ], n is the length of the signal sequence X x n is the nth data, in the RCMDE algorithm (composite multi-scale distribution entropy) In , the initial point is to continuously divide the signal into lengths according to [1, τ ] The non-overlapping regions of , and calculate the average value of each region, so as to obtain the coarse-grained sequence. Right now:
式中,为信号序列X粗粒化后的序列,k为同一尺度下的序列号,j为信号序列被 划分的等长段数,也是粗粒化序列的数据长度; In the formula, is the coarse-grained sequence of the signal sequence X, k is the sequence number at the same scale, j is the number of equal-length segments into which the signal sequence is divided, and is also the data length of the coarse-grained sequence;
S202:计算粗粒化序列的对应散布模式概率的平均值:S202: Calculate the average value of the probability of the corresponding distribution pattern of the coarse-grained sequence:
(1)采用标准正态分布函数将粗粒化序列x映射到[0,1]范围内的映射序列Y=[y 1, y 2,⋯,y n ],y n 为第n个映射信号;即(1) Use the standard normal distribution function to map the coarse-grained sequence x to the mapping sequence Y in the range of [0,1] = [ y 1 , y 2 ,⋯, y n ], y n is the nth mapping signal ;Right now
式中,μ,σ为信号序列X的期望和标准差,t为时间,x i 为SVMD分解重构后的第i个信号,y i 为第i个映射信号;In the formula, μ , σ are the expectation and standard deviation of signal sequence X, t is time, x i is the i-th signal after SVMD decomposition and reconstruction, and y i is the i-th mapped signal;
(2)通过线性变换算法,将映射序列Y映射到[1,c]范围内的整数中,得到线性变换信号,即(2) Through the linear transformation algorithm, the mapping sequence Y is mapped to integers in the range [1, c] to obtain the linear transformation signal, namely
式中,round为取整函数;c为类别个数;为第i个线性变换信号。 In the formula, round is a rounding function; c is the number of categories; is the ith linear transformation signal.
(3)对进行相空间重构,则嵌入向量为: (3) yes For phase space reconstruction, the embedding vector is:
式中,m为嵌入维数,d为时延, 每个映射到一个散布模式r v0, v1⋯vm-1,其中,, 由于散布模式r v0, v1⋯vm-1内含有m个元素, 每个元素可取[1,c]的任意整数,因此所有可能的散布模式的数量为c m 。 In the formula, m is the embedding dimension, d is the time delay, each Maps to a scatter pattern r v 0 , v 1⋯ vm -1 , where, , since the scatter pattern r v 0 , v 1⋯ vm -1 contains m elements, and each element can be any integer of [1,c], so the number of all possible scatter patterns is c m .
(4)计算c m 下每个散布模式r v0, v1⋯vm-1的概率P,即(4) Calculate the probability P of each scatter pattern r v 0 , v 1⋯ vm -1 under cm , namely
式中,Num(r v0, v1⋯vm-1)为对应的散布模式的个数。 In the formula, Num ( r v 0 , v 1⋯ vm -1 ) is The number of corresponding scatter patterns.
(5)计算不同尺度粗粒化序列的对应散布模式概率的平均值,即:(5) Calculate the average value of the corresponding distribution pattern probabilities of coarse-grained sequences of different scales, namely:
式中,为尺度τ下的第τ个粗粒化序列对应的散步模式的概率,(r v0v1⋯vm-1)不同尺度下粗粒化序列对应的散步模式的平均概率; In the formula, is the probability of the scatter mode corresponding to the τth coarse-grained sequence under the scale τ , ( r v 0 v 1⋯ vm -1 ) the average probability of the spread pattern corresponding to the coarse-grained sequence at different scales;
S203:计算不同尺度下的分数阶精细复合多尺度散布熵( FRCMDE 值),即S203: Calculate the fractional order fine composite multi-scale dispersion entropy (FRCMDE value) at different scales, namely
式中,即(r v0v1⋯vm-1),为gamma函数,Ψ为digamma函数,α为分数阶因子。 In the formula, Right now ( r v 0 v 1⋯ vm -1 ), is the gamma function, Ψ is the digamma function, and α is the fractional order factor.
在本实施例中,m通常取 2 或 3,c取[4,8]之间,时延d一般取 1。In this embodiment, m is usually 2 or 3, c is between [4,8], and delay d is generally 1.
本实施例中,步骤 S3的具体过程如下:In the present embodiment, the specific process of step S3 is as follows:
S301:对变压器声纹数据的分数阶精细复合多尺度散布熵构成的特征向量集计算Fisher比,即S301: Calculate the Fisher ratio for the eigenvector set formed by the fractional-order fine composite multi-scale spread entropy of the transformer voiceprint data, namely
式中,F (k)表示第k维的特征向量的Fisher比值,表示第k维特征向量的类间离 散度,表示第k维特征向量的类内离散度; In the formula, F ( k ) represents the Fisher ratio of the feature vector of the k -th dimension, Indicates the inter-class dispersion of the k -th dimensional feature vector, Indicates the intra-class dispersion of the k-th dimension feature vector;
S302:对Fisher比进行排序,挑选出最优尺度的特征子集。S302: Sort the Fisher ratio, and select a feature subset with an optimal scale.
在本实施例中,步骤S4的具体过程如下:In this embodiment, the specific process of step S4 is as follows:
S401:把最优尺度的特征子集分为训练集和测试集;S401: Divide the optimal scale feature subset into a training set and a test set;
S402:改进的蝴蝶算法(PODSBOA)利用训练集对及最小二乘支持向量机(LSSVM)的惩罚因子c和径向基内积函数参数g进行优化,得到最优参数;S402: The improved butterfly algorithm (PODSBOA) is optimized by using the training set pair and the penalty factor c of the least squares support vector machine (LSSVM) and the parameter g of the radial basis inner product function to obtain the optimal parameters;
S403:对具有最优参数的最小二乘支持向量机(LSSVM)进行训练,并利用测试集进行测试;S403: Train a least squares support vector machine (LSSVM) with optimal parameters, and use a test set for testing;
S404:根据训练测试结果构建PODSBOA-LSSVM故障诊断模型,使用PODSBOA-LSSVM诊断模型对未知变压器声纹数据进行诊断,输出诊断结果。S404: Construct a PODSBOA-LSSVM fault diagnosis model according to the training test results, use the PODSBOA-LSSVM diagnosis model to diagnose the unknown transformer voiceprint data, and output a diagnosis result.
本实施例中,步骤 S4所述的改进的蝴蝶算法是基于优化初始种群、改进劣势种群等种群优化策略和引入会自适应调整的动态搜索参数、引入变权重位置更新因子策略对蝴蝶算法进行组合优化,综合两种优化策略的优势,形成了基于种群优化和动态参数策略的蝴蝶算法。改进的蝴蝶算法的步骤如下:In this embodiment, the improved butterfly algorithm described in step S4 is based on population optimization strategies such as optimizing the initial population, improving disadvantaged populations, introducing dynamic search parameters that can be adaptively adjusted, and introducing a variable weight position update factor strategy to combine the butterfly algorithm. Optimization, combining the advantages of the two optimization strategies, a butterfly algorithm based on population optimization and dynamic parameter strategy is formed. The steps of the improved butterfly algorithm are as follows:
步骤A1:对蝴蝶算法搜索参数进行初始化:设置蝴蝶种群数量为N,设置算法的最大迭代次数为N 1,种群边界条件[L b , U b ],寻优问题维度dim;Step A1: Initialize the search parameters of the butterfly algorithm: set the number of butterfly populations to N , set the maximum number of iterations of the algorithm to N 1 , the population boundary conditions [ L b , U b ], and the optimization problem dimension dim ;
步骤A2:根据边界条件生成初始蝴蝶种群:在边界范围,采用随机数,生成N*dim大小的初始蝴蝶种群,通过空间对称扩增初始种群规模到2N*dim;Step A2: Generate the initial butterfly population according to the boundary conditions: in the boundary range, use random numbers to generate an initial butterfly population of N *dim size, and expand the initial population size to 2 N*dim through spatial symmetry;
步骤A3:适应度计算:根据适应度准则函数,计算扩增种群蝴蝶个体适应度;Step A3: Calculation of fitness: According to the fitness criterion function, calculate the individual fitness of the expanded population of butterflies;
步骤A4:种群恢复:通过精英保留策略选取N个适应度最佳的个体记为恢复种群,找到并记录当前恢复种群的最佳个体;Step A4: Population recovery: select N individuals with the best fitness through the elite retention strategy and record them as the recovery population, find and record the best individual in the current recovery population;
步骤A5:劣势种群更新:选择适应度最差的两只蝴蝶个体,对其进行交叉处理和变异操作;Step A5: Inferior population update: select the two butterfly individuals with the worst fitness, and perform cross processing and mutation operations on them;
步骤A6:算法参数动态更新:根据当前的迭代次数按照以下公式更新感官模态β、幂指数a、动态搜索切换概率p及位置更新算子w 1 、w 2 ;Step A6: Dynamic update of algorithm parameters: update sensory modality β , power exponent a , dynamic search switching probability p and position update operators w 1 and w 2 according to the current iteration number according to the following formula;
步骤A7:迭代寻优:若动态搜索切换概率p>rand,rand为0~1之间的随机数,对个体的位置进行全局更新;若动态搜索切换概率p<rand,对个体的位置进行局部更新;更新全局最优;Step A7: Iterative optimization: if the dynamic search switching probability p>rand , rand is a random number between 0 and 1, the individual's position is updated globally; if the dynamic search switching probability p<rand , the individual's position is locally updated update; update the global optimum;
步骤A8:越界检查:检查更新后的个体是否超出边界,对超出边界的新个体的位置进行界限修正;Step A8: Boundary check: check whether the updated individual is out of the boundary, and perform boundary correction on the position of the new individual that exceeds the boundary;
步骤A9:判断当前是否满足算法的迭代结束条件:不满足结束条件,算法转步骤A5步骤继续执行;反之,输出当前的最优结果,算法结束。Step A9: Determine whether the current iteration end condition of the algorithm is satisfied: if the end condition is not met, the algorithm proceeds to step A5 and continues to execute; otherwise, the current optimal result is output, and the algorithm ends.
本发明实施例还提供一种基于FRCMDE的变压器铁芯故障声纹诊断装置,包括非易失性计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意实施例中的基于FRCMDE的变压器铁芯故障声纹诊断方法。The embodiment of the present invention also provides a FRCMDE-based transformer core fault voiceprint diagnosis device, including a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute any of the above-mentioned embodiments FRCMDE-based voiceprint diagnosis method for transformer core faults.
本实施例提供的基于FRCMDE的变压器铁芯故障声纹诊断装置包括一种电子设备,图2是本发明实施例提供的电子设备的结构示意图,该电子设备包括:一个或多个处理器100以及存储器200,图2中以一个处理器100为例。电子设备还可以包括:输入装置300和输出装置400。处理器100、存储器200、输入装置300和输出装置400可以通过总线或者其他方式连接,图2中以通过总线连接为例。存储器200为上述的非易失性计算机可读存储介质。处理器100通过运行存储在存储器200中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现基于FRCMDE的变压器铁芯故障声纹诊断方法。输入装置300可接收输入的数字或字符信息,以及产生与基于FRCMDE的变压器铁芯故障声纹诊断装置的用户设置以及功能控制有关的键信号输入。输出装置400可包括显示屏等显示设备。The FRCMDE-based transformer core fault voiceprint diagnosis device provided in this embodiment includes an electronic device. FIG. 2 is a schematic structural diagram of the electronic device provided by the embodiment of the present invention. The electronic device includes: one or
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place , or can also be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211704573.3A CN115688017A (en) | 2022-12-29 | 2022-12-29 | FRCMDE-based transformer core fault voiceprint diagnosis method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211704573.3A CN115688017A (en) | 2022-12-29 | 2022-12-29 | FRCMDE-based transformer core fault voiceprint diagnosis method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115688017A true CN115688017A (en) | 2023-02-03 |
Family
ID=85056041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211704573.3A Pending CN115688017A (en) | 2022-12-29 | 2022-12-29 | FRCMDE-based transformer core fault voiceprint diagnosis method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115688017A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116125235A (en) * | 2023-04-14 | 2023-05-16 | 南昌工程学院 | GIS Partial Discharge Fault Diagnosis Method Based on Ultrasonic Signal |
CN116430188A (en) * | 2023-06-13 | 2023-07-14 | 南昌工程学院 | Transformer fault voiceprint diagnosis method based on improved white crown chicken optimization algorithm |
CN118606678A (en) * | 2024-06-17 | 2024-09-06 | 淮阴工学院 | A soft-sensing method for chemical oxygen demand in sewage based on data enhancement and deep learning |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109214460A (en) * | 2018-09-21 | 2019-01-15 | 西华大学 | Method for diagnosing fault of power transformer based on Relative Transformation Yu nuclear entropy constituent analysis |
CN110864902A (en) * | 2019-12-24 | 2020-03-06 | 安徽工业大学 | A method for early fault detection of rolling bearings based on fractional-order walk entropy |
CN111414893A (en) * | 2020-04-09 | 2020-07-14 | 北华大学 | Rotor fault feature extraction method based on VMD fine composite multi-scale diffusion entropy |
CN113532829A (en) * | 2021-07-15 | 2021-10-22 | 东北石油大学 | Fault diagnosis method of reciprocating compressor based on improved RCMDE |
CN115062733A (en) * | 2022-08-19 | 2022-09-16 | 江西派源科技有限公司 | Transformer voiceprint fault diagnosis method based on empirical mode decomposition and butterfly algorithm |
CN115060497A (en) * | 2022-06-10 | 2022-09-16 | 南昌工程学院 | Bearing fault diagnosis method based on CEEMD energy entropy and optimized PNN |
CN115096590A (en) * | 2022-05-23 | 2022-09-23 | 燕山大学 | A fault diagnosis method of rolling bearing based on IWOA-ELM |
WO2022261805A1 (en) * | 2021-06-15 | 2022-12-22 | 大连理工大学 | Diesel engine gearbox fault diagnosis method |
-
2022
- 2022-12-29 CN CN202211704573.3A patent/CN115688017A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109214460A (en) * | 2018-09-21 | 2019-01-15 | 西华大学 | Method for diagnosing fault of power transformer based on Relative Transformation Yu nuclear entropy constituent analysis |
CN110864902A (en) * | 2019-12-24 | 2020-03-06 | 安徽工业大学 | A method for early fault detection of rolling bearings based on fractional-order walk entropy |
CN111414893A (en) * | 2020-04-09 | 2020-07-14 | 北华大学 | Rotor fault feature extraction method based on VMD fine composite multi-scale diffusion entropy |
WO2022261805A1 (en) * | 2021-06-15 | 2022-12-22 | 大连理工大学 | Diesel engine gearbox fault diagnosis method |
CN113532829A (en) * | 2021-07-15 | 2021-10-22 | 东北石油大学 | Fault diagnosis method of reciprocating compressor based on improved RCMDE |
CN115096590A (en) * | 2022-05-23 | 2022-09-23 | 燕山大学 | A fault diagnosis method of rolling bearing based on IWOA-ELM |
CN115060497A (en) * | 2022-06-10 | 2022-09-16 | 南昌工程学院 | Bearing fault diagnosis method based on CEEMD energy entropy and optimized PNN |
CN115062733A (en) * | 2022-08-19 | 2022-09-16 | 江西派源科技有限公司 | Transformer voiceprint fault diagnosis method based on empirical mode decomposition and butterfly algorithm |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116125235A (en) * | 2023-04-14 | 2023-05-16 | 南昌工程学院 | GIS Partial Discharge Fault Diagnosis Method Based on Ultrasonic Signal |
CN116430188A (en) * | 2023-06-13 | 2023-07-14 | 南昌工程学院 | Transformer fault voiceprint diagnosis method based on improved white crown chicken optimization algorithm |
CN116430188B (en) * | 2023-06-13 | 2023-08-29 | 南昌工程学院 | Transformer fault voiceprint diagnosis method based on improved white crown chicken optimization algorithm |
CN118606678A (en) * | 2024-06-17 | 2024-09-06 | 淮阴工学院 | A soft-sensing method for chemical oxygen demand in sewage based on data enhancement and deep learning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115688017A (en) | FRCMDE-based transformer core fault voiceprint diagnosis method and device | |
WO2022166199A1 (en) | Quantum error correction decoding system and method, fault-tolerant quantum error correction system, and chip | |
Osborne | Simulating adiabatic evolution of gapped spin systems | |
Lin et al. | Comparison of probabilistic production cost simulation methods | |
Raczy et al. | A sort-based DDM matching algorithm for HLA | |
CN110927490A (en) | Transformer winding fault diagnosis method based on IVMD (integrated virtual machine direction) permutation entropy and CWAA-SVM (continuous wave operation-support vector machine) | |
US10627470B2 (en) | System and method for learning based magnetic resonance fingerprinting | |
CN108038149B (en) | A Method of Reconstructing Temperature Field Data | |
CN110490947B (en) | MRI image reconstruction method, device, storage medium and terminal equipment | |
CN113408804B (en) | Electricity stealing behavior detection method, system, terminal equipment and storage medium | |
Bardet | Testing for the presence of self‐similarity of Gaussian time series having stationary increments | |
CN117290679A (en) | Running state detection method and device of current transformer and electronic equipment | |
CN108551412A (en) | Monitoring data noise reduction process method and apparatus | |
Khorramdel et al. | Fault locating in large distribution systems by empirical mode decomposition and core vector regression | |
CN109214402A (en) | A kind of people having the same aspiration and interest unit grouping method of combination WAVELET FUZZY entropy and GG fuzzy clustering | |
CN1679030A (en) | Method and system for displaying confidence intervals for source reconstruction | |
CN109039341A (en) | Perception matrix construction methods, system and the storage medium of volume measured compressed perception | |
CN113866614A (en) | A multi-scenario user-side low-voltage DC switch arc fault diagnosis method and device | |
CN113094899A (en) | Random power flow calculation method and device, electronic equipment and storage medium | |
Abur et al. | Elimination of leverage measurements via matrix stretching | |
CN116207721A (en) | Micro-grid protection method and micro-grid protection device | |
CN112734622A (en) | Image steganalysis method and terminal based on Tucker decomposition | |
CN118191517B (en) | Fault locating method, device, electronic equipment, storage medium and program product | |
Li et al. | A self-supervised learning framework for Under-Sampling pattern design using graph convolution network | |
Afraimovich et al. | Dimensions and entropies in multidimensional systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230203 |
|
RJ01 | Rejection of invention patent application after publication |