CN115687499B - Global frequency spectrum map design and implementation system - Google Patents
Global frequency spectrum map design and implementation system Download PDFInfo
- Publication number
- CN115687499B CN115687499B CN202211335905.5A CN202211335905A CN115687499B CN 115687499 B CN115687499 B CN 115687499B CN 202211335905 A CN202211335905 A CN 202211335905A CN 115687499 B CN115687499 B CN 115687499B
- Authority
- CN
- China
- Prior art keywords
- data
- spectrum mapping
- global spectrum
- mapping data
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 144
- 238000013461 design Methods 0.000 title claims description 10
- 238000013507 mapping Methods 0.000 claims abstract description 138
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000000007 visual effect Effects 0.000 claims abstract description 17
- 230000003993 interaction Effects 0.000 claims abstract description 10
- 238000007781 pre-processing Methods 0.000 claims abstract description 9
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000009877 rendering Methods 0.000 claims abstract description 7
- 238000012800 visualization Methods 0.000 claims description 45
- 238000005070 sampling Methods 0.000 claims description 32
- 230000005855 radiation Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 13
- 238000010586 diagram Methods 0.000 claims description 7
- 230000008447 perception Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 235000019580 granularity Nutrition 0.000 claims 9
- 230000003595 spectral effect Effects 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 7
- 238000013079 data visualisation Methods 0.000 abstract description 3
- 108010001267 Protein Subunits Proteins 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Processing Or Creating Images (AREA)
Abstract
本发明涉及电磁频谱数据可视化技术领域,提供了一种全球频谱测绘图设计与实现系统。该系统包括:数据源模块,用于获取全球频谱测绘数据,并将全球频谱测绘数据存储至数据库;数据业务处理模块,用于通过数据读取、业务运算和数据传输,将全球频谱测绘数据进行预处理,得到预处理后的全球频谱测绘数据,将预处理后的全球频谱测绘数据进行渲染绘制,并将渲染绘制后的全球频谱测绘数据传输至数据展示模块;数据展示模块,用于通过逻辑控制、人机交互和可视化展示,将渲染绘制后的全球频谱测绘数据转换为屏幕视图的形式进行展示。本发明实现了对数据的多尺度统一建模,实现了对全球频谱测绘数据多维度、多视角、多尺度表达。
The invention relates to the technical field of electromagnetic spectrum data visualization, and provides a system for designing and implementing global spectrum mapping. The system includes: a data source module, which is used to obtain global spectrum mapping data and store the global spectrum mapping data in the database; a data service processing module, which is used to process the global spectrum mapping data through data reading, business operation and data transmission Preprocessing, obtaining the preprocessed global spectrum mapping data, rendering and drawing the preprocessed global spectrum mapping data, and transmitting the rendered and drawn global spectrum mapping data to the data display module; the data display module is used to pass the logic Control, human-computer interaction and visual display, convert the rendered and drawn global spectrum mapping data into a screen view for display. The invention realizes multi-scale unified modeling of data, and realizes multi-dimensional, multi-angle and multi-scale expression of global spectrum surveying and mapping data.
Description
技术领域Technical Field
本发明涉及电磁频谱数据可视化技术领域,尤其涉及一种全球频谱测绘图设计与实现系统。The present invention relates to the technical field of electromagnetic spectrum data visualization, and in particular to a global spectrum mapping and designing system.
背景技术Background Art
目前,对全球频谱资源状况进行普查,绘制全球频谱测绘图,正确认识和理解电磁空间是利用和控制频谱资源的首要环节。关于频谱数据可视化目前已经有较多的研究进展,但是全球频谱测绘数据较以往研究中有着以下几点新的问题:一是数据量巨大,依托频谱监测卫星无法不间断对全球频谱资源进行测绘,可以获得特定频段内海量频谱测绘数据,呈现出海量、高增长率和多样化的特点;二是数据稳态与动态、集中与分散难以统一,从时域上看,频谱测绘数据具有长期稳态性与有规律变化性,从空域上看,频谱资源分布范围遍布全球但是又相对集中在某一区域内。At present, conducting a census of the global spectrum resource status, drawing a global spectrum mapping map, and correctly understanding and understanding the electromagnetic space are the primary links in utilizing and controlling spectrum resources. There have been many research advances in spectrum data visualization, but global spectrum mapping data has the following new problems compared with previous studies: First, the data volume is huge. It is impossible to continuously map global spectrum resources based on spectrum monitoring satellites. Massive spectrum mapping data can be obtained in specific frequency bands, showing the characteristics of massive, high growth rate and diversity; second, it is difficult to unify data stability and dynamics, concentration and dispersion. From the perspective of time domain, spectrum mapping data has long-term stability and regular changes. From the perspective of airspace, spectrum resources are distributed all over the world but are relatively concentrated in a certain area.
因此,亟需对全球频谱测绘数据进行重新认知与理解,采用合适的数据组织方式以及可视化表达方法对全球频谱测绘数据进行研究。Therefore, there is an urgent need to re-recognize and understand the global spectrum mapping data, and to use appropriate data organization methods and visualization expression methods to study the global spectrum mapping data.
发明内容Summary of the invention
有鉴于此,本发明提供了一种全球频谱测绘图设计与实现方法,以解决现有技术中呈现出海量、高增长率和多样化难以进行数据组织,数据的稳态与动态,集中与分散相统一难以进行可视化表达的技术问题。In view of this, the present invention provides a global spectrum mapping design and implementation method to solve the technical problems in the prior art that it is difficult to organize massive, high-growth and diversified data, and it is difficult to visualize the unity of data stability and dynamics, concentration and dispersion.
本发明提供了一种全球频谱测绘图设计与实现系统,包括:The present invention provides a global spectrum mapping design and implementation system, comprising:
数据源模块、数据业务处理模块和数据展示模块,Data source module, data business processing module and data display module,
所述数据源模块,用于获取全球频谱测绘数据,并将所述全球频谱测绘数据存储至数据库;The data source module is used to obtain global spectrum mapping data and store the global spectrum mapping data in a database;
所述数据业务处理模块,用于通过数据读取、业务运算和数据传输,将所述全球频谱测绘数据进行预处理,得到预处理后的全球频谱测绘数据,将所述预处理后的全球频谱测绘数据进行渲染绘制,并将渲染绘制后的全球频谱测绘数据传输至数据展示模块;The data service processing module is used to pre-process the global spectrum mapping data through data reading, service operation and data transmission to obtain pre-processed global spectrum mapping data, render and draw the pre-processed global spectrum mapping data, and transmit the rendered global spectrum mapping data to the data display module;
所述数据展示模块,用于通过逻辑控制、人机交互和可视化展示,将所述渲染绘制后的全球频谱测绘数据转换为屏幕视图的形式进行展示。The data display module is used to convert the rendered global spectrum mapping data into a screen view for display through logic control, human-computer interaction and visual display.
进一步地,所述数据源模块包括定义数据单元和接入数据单元,Furthermore, the data source module includes a definition data unit and an access data unit.
所述定义数据单元,用于定义全球频谱测绘数据来源、数据格式和数据接口;The defined data unit is used to define the global spectrum mapping data source, data format and data interface;
所述接入数据单元,用于通过所述数据接口,接入所述全球频谱测绘数据,获得对频谱态势的动态感知。The data access unit is used to access the global spectrum mapping data through the data interface to obtain dynamic perception of the spectrum situation.
进一步地,所述数据业务处理模块包括:预处理单元、业务运算单元和可视化视图绘制单元,Furthermore, the data service processing module includes: a pre-processing unit, a service operation unit and a visualization view drawing unit.
所述预处理单元,用于将所述全球频谱测绘数据,通过数据传输、数据分选、数据归一化,对所述全球频谱测绘数据进行预处理,得到处理后的全球频谱测绘数据;The preprocessing unit is used to preprocess the global spectrum mapping data through data transmission, data sorting, and data normalization to obtain processed global spectrum mapping data;
所述业务运算单元,用于基于相应的业务运算,将所述处理后的全球频谱测绘数据,传输至所述可视化视图绘制单元;The business operation unit is used to transmit the processed global spectrum mapping data to the visualization view drawing unit based on corresponding business operations;
所述可视化视图绘制单元,用于将所述处理后的全球频谱测绘数据进行渲染绘制,得到渲染绘制后的全球频谱测绘数据。The visualization view drawing unit is used to render and draw the processed global spectrum mapping data to obtain rendered global spectrum mapping data.
进一步地,所述业务运算单元包括:全球频谱测绘热力图子单元、全球辐射源分布子图子单元、雷达三维覆盖区域子图子单元、区域电磁三维剖分子图子单元和多维电磁态势可视化分析子图子单元,Furthermore, the business operation unit includes: a global spectrum mapping heat map sub-unit, a global radiation source distribution sub-map sub-unit, a radar three-dimensional coverage area sub-map sub-unit, a regional electromagnetic three-dimensional sectioning sub-map sub-unit and a multi-dimensional electromagnetic situation visualization analysis sub-map sub-unit.
所述全球频谱测绘热力图子单元,用于基于读取所述全球频谱测绘数据的空域信息和能域信息,按照采样规则,展示全球频谱测绘热力图;The global spectrum mapping heat map subunit is used to display the global spectrum mapping heat map according to the sampling rules based on the spatial domain information and energy domain information of the global spectrum mapping data;
所述全球辐射源分布子图子单元,用于基于读取全球频谱测绘数据的空域、能域、频域信息,根据对辐射源的定位结果确定所述辐射源所在剖分网格,展示全球辐射源分布子图;The global radiation source distribution sub-map sub-unit is used to determine the subdivision grid where the radiation source is located according to the positioning result of the radiation source based on the spatial domain, energy domain and frequency domain information of the global spectrum mapping data, and display the global radiation source distribution sub-map;
所述雷达三维覆盖区域子图子单元,用于基于读取所述全球频谱测绘数据的空域、能域、频域信息,采用移动立方体算法结合剖分网格查找等值面,确定需要在网格层级下所述预处理后的全球频谱测绘数据与网格对应,展示雷达三维覆盖区域子图;The radar three-dimensional coverage area sub-map sub-unit is used to read the spatial domain, energy domain, and frequency domain information of the global spectrum mapping data, use the moving cube algorithm in combination with the grid division to find the isosurface, determine the correspondence between the pre-processed global spectrum mapping data and the grid at the grid level, and display the radar three-dimensional coverage area sub-map;
所述区域电磁三维剖分子图子单元,用于基于读取全球频谱测绘数据的能域、空域信息,确定需要绘制的网格层级,展示区域电磁三维剖分子图;The regional electromagnetic three-dimensional sectioning sub-map sub-unit is used to determine the grid level to be drawn based on the energy domain and airspace information of the global spectrum mapping data, and to display the regional electromagnetic three-dimensional sectioning sub-map;
所述多维电磁态势可视化分析子图子单元,用于基于读取全球频谱测绘数据的时域、空域、能域、频域信息,展示多维电磁态势可视化分析子图。The multi-dimensional electromagnetic situation visualization analysis sub-graph sub-unit is used to display a multi-dimensional electromagnetic situation visualization analysis sub-graph based on the time domain, space domain, energy domain, and frequency domain information read from the global spectrum mapping data.
进一步地,所述采样规则包括:Furthermore, the sampling rules include:
a.确定全球频谱测绘数据的采样粒度,假设所述全球频谱测绘数据在经纬高三个维度的间距分布为:经度间距为Δlon,纬度间距为Δlat,高度间距为Δh,则采用全球频谱测绘数据的采样粒度为三者最小值,即δ=min(Δlon,Δlat,Δh)确定全球频谱测绘数据的采样粒度;a. Determine the sampling granularity of the global spectrum mapping data. Assuming that the spacing distribution of the global spectrum mapping data in the three dimensions of longitude, latitude and height is: the longitude spacing is Δlon, the latitude spacing is Δlat, and the height spacing is Δh, then the sampling granularity of the global spectrum mapping data is the minimum of the three, that is, δ = min (Δlon, Δlat, Δh) to determine the sampling granularity of the global spectrum mapping data;
b.确定网格对应层级,基于所述全球频谱测绘数据的采样粒度,按照层级对应规则确定网络对应层级,所述层级对应规则包括:b. Determine the grid corresponding level, based on the sampling granularity of the global spectrum mapping data, determine the network corresponding level according to the level corresponding rules, the level corresponding rules include:
规则1.如果第n层级下的剖分粒度与采样粒度为三者最小值相等,即size(n)=δ,则N=n;
规则2.如果所述第n层级下的剖分粒度小于等于采样粒度为三者最小值size(n+1)≤δ≤size(n),则N=n+1;Rule 2. If the partition granularity at the nth level is less than or equal to the sampling granularity, which is the minimum value of the three: size(n+1)≤δ≤size(n), then N=n+1;
其中,size(n)表示第n层级下的剖分粒度,N表示割分网络层级;Among them, size(n) represents the partition granularity at the nth level, and N represents the network level of the partition;
c.根据所述全球频谱测绘数据采集的经纬高,计算其对应的剖分网格,当采样点经纬高落入设定范围的剖分网格坐标范围内,则将采样点属性映射至网格坐标,确定网格位置;c. Calculate the corresponding grid according to the longitude and latitude of the global spectrum mapping data collection. When the longitude and latitude of the sampling point fall within the set range of the grid coordinates, map the sampling point attributes to the grid coordinates to determine the grid position;
d.对于缺少数据的网格做插值处理。d. Interpolate grids with missing data.
进一步地,所述移动立方体算法具体步骤包括:Furthermore, the specific steps of the marching cubes algorithm include:
step1:确定初始剖分层级L,并在该层级下遍历数据立方体并标记顶点,存在等值面标记为“0”,否则标记为“1”。Step 1: Determine the initial subdivision level L, and traverse the data cube at this level and mark the vertices. If there is an isosurface, mark it as "0", otherwise mark it as "1".
step2:判断该层级下顶点标记是否为“0”,若为“0”则将该网格继续向下剖分,否则停止剖分。Step 2: Determine whether the vertex mark at this level is "0". If it is "0", continue to divide the mesh downwards, otherwise stop dividing.
step3:持续步骤1、2,直至所需层级网格下查找出所有等值面所在网格。Step 3: Continue
进一步地,所述可视化视图绘制单元包括确定网格子单元、分段函数子单元、绘制可视化子单元和更改尺寸可视化子单元,Furthermore, the visualization view drawing unit includes a grid determination subunit, a piecewise function subunit, a visualization drawing subunit and a size change visualization subunit.
所述确定网格子单元,根据计算得到的剖分网格的中心坐标确定网格所在场景中的空间位置;The determining grid subunit determines the spatial position of the grid in the scene according to the calculated center coordinates of the subdivided grid;
所述分段函数子单元,根据数据的变化规律采用分段函数的方法和采用颜色映射方案将场强数据由小到大映射为由红色到蓝色的渐变,根据场强值由大到小的变化,获得颜色由红色渐变至绿色;The piecewise function subunit uses a piecewise function method and a color mapping scheme to map the field intensity data from small to large into a gradient from red to blue according to the change law of the data, and obtains a color gradient from red to green according to the change of the field intensity value from large to small;
所述绘制可视化子单元,用于结合系统中的地理空间数据,在三维地球场景中实现对频谱测绘数据的可视化展示;The drawing visualization subunit is used to combine the geospatial data in the system to realize the visualization display of the spectrum mapping data in the three-dimensional earth scene;
所述更改尺寸可视化子单元,用于通过改变剖分网格层级从而改变可视化时的尺度大小,实现对频谱测绘数据的多尺度可视化展示。The size-changing visualization subunit is used to change the scale of visualization by changing the subdivision grid level, thereby realizing multi-scale visualization display of spectrum mapping data.
进一步地,所述颜色映射方案包括表达式:Furthermore, the color mapping scheme includes the expression:
其中,E表示能域值,Emax表示能域的最大值,Emin表示能域的最小值,R(E)、G(E)、B(E)表示颜色的红、绿、蓝三个分量,A(E)表示该色块的透明度Among them, E represents the energy domain value, Emax represents the maximum value of the energy domain, Emin represents the minimum value of the energy domain, R(E), G(E), B(E) represent the red, green, and blue components of the color, and A(E) represents the transparency of the color block.
进一步地,所述数据展示模块包括:逻辑控制单元、人机交互单元和可视化展示单元,Furthermore, the data display module includes: a logic control unit, a human-computer interaction unit and a visual display unit.
逻辑控制单元,用于进行整体系统界面的逻辑控制;Logic control unit, used for logic control of the overall system interface;
人机交互单元,用于判断键盘和鼠标的输入状态和内容,并将所述输入状态和内容传输至所述数据业务处理模块进行处理;A human-computer interaction unit, used to determine the input status and content of the keyboard and mouse, and transmit the input status and content to the data service processing module for processing;
可视化展示单元,用于在三维地球场景中对所述渲染绘制后的全球频谱测绘数据转换为屏幕视图进行呈现。The visualization display unit is used to convert the rendered global spectrum mapping data into a screen view for presentation in a three-dimensional earth scene.
本发明与现有技术相比存在的有益效果是:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明通过判断数据采样粒度,实现了对数据的多尺度统一建模;1. The present invention realizes multi-scale unified modeling of data by judging the data sampling granularity;
2.本发明通过多视图的表达方法,实现了对全球频谱测绘数据多维度、多视角、多尺度表达。2. The present invention realizes multi-dimensional, multi-perspective and multi-scale expression of global spectrum mapping data through a multi-view expression method.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the present invention, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明实施例提供一种全球频谱测绘图设计与实现系统的框图;FIG1 is a block diagram of a global spectrum mapping design and implementation system provided by an embodiment of the present invention;
图2是本发明实施例提供的一种全球频谱测绘图设计与实现系统示意图。FIG. 2 is a schematic diagram of a global spectrum mapping system design and implementation provided by an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。In the following description, specific details such as specific system structures, technologies, etc. are provided for the purpose of illustration rather than limitation, so as to provide a thorough understanding of the embodiments of the present invention. However, it should be clear to those skilled in the art that the present invention may be implemented in other embodiments without these specific details. In other cases, detailed descriptions of well-known systems, devices, circuits, and methods are omitted to prevent unnecessary details from obstructing the description of the present invention.
下面结合附图详细说明根据本发明的一种全球频谱测绘图设计与实现系统。A global spectrum mapping and implementation system according to the present invention will be described in detail below with reference to the accompanying drawings.
图1是本发明实施例提供一种全球频谱测绘图设计与实现系统的框图;FIG1 is a block diagram of a global spectrum mapping design and implementation system provided by an embodiment of the present invention;
图2是本发明实施例提供的一种全球频谱测绘图设计与实现系统示意图;FIG2 is a schematic diagram of a global spectrum mapping system design and implementation provided by an embodiment of the present invention;
如图1所示,该系统包括:As shown in Figure 1, the system includes:
数据源模块、数据业务处理模块和数据展示模块,Data source module, data business processing module and data display module,
所述数据源模块,用于获取全球频谱测绘数据,并将所述全球频谱测绘数据存储至数据库;The data source module is used to obtain global spectrum mapping data and store the global spectrum mapping data in a database;
所述数据源模块通过定义的数据接口将全球频谱测绘数据统一接收。The data source module receives the global spectrum mapping data in a unified manner through a defined data interface.
所述数据源模块包括定义数据单元和接入数据单元,The data source module includes a definition data unit and an access data unit.
所述定义数据单元,用于定义全球频谱测绘数据来源、数据格式和数据接口;The defined data unit is used to define the global spectrum mapping data source, data format and data interface;
所述接入数据单元,用于通过所述数据接口,接入所述全球频谱测绘数据,获得对频谱态势的动态感知。The data access unit is used to access the global spectrum mapping data through the data interface to obtain dynamic perception of the spectrum situation.
所述数据源模块接收excel格式的全球频谱测绘数据并将其存储至数据库。定义了全球频谱测绘数据来源、数据的格式以及相关数据接口,为系统运行提供数据支撑服务,通过数据接口接入全球频谱监测数据实现对频谱态势的动态感知。其中数据库主要用于存储各类性的数据资源,具体包含地理空间数据库(具体包含地理高程数据、地理影像数据、行政区域划分等)、全球辐射源特征以及属性库(具体包含空间位置坐标、频段、功率、持续时间等)、业务服务数据库(具体包含无线电法规政策等)、频谱资源数据库,并可存储历史频谱监测数据构建历史资料库。此外,所述数据源模块还用于存储系统运行中产生的过程数据。The data source module receives the global spectrum mapping data in Excel format and stores it in the database. It defines the source of global spectrum mapping data, the format of the data and the relevant data interface, provides data support services for system operation, and accesses the global spectrum monitoring data through the data interface to realize dynamic perception of the spectrum situation. The database is mainly used to store various types of data resources, including geospatial databases (including geographic elevation data, geographic image data, administrative area divisions, etc.), global radiation source characteristics and attribute libraries (including spatial location coordinates, frequency bands, power, duration, etc.), business service databases (including radio regulations and policies, etc.), spectrum resource databases, and can store historical spectrum monitoring data to build a historical database. In addition, the data source module is also used to store process data generated during system operation.
所述数据业务处理模块,用于通过数据读取、业务运算和数据传输,将所述全球频谱测绘数据进行预处理,得到预处理后的全球频谱测绘数据,将所述预处理后的全球频谱测绘数据进行渲染绘制,并将渲染绘制后的全球频谱测绘数据传输至数据展示模块;The data service processing module is used to pre-process the global spectrum mapping data through data reading, service operation and data transmission to obtain pre-processed global spectrum mapping data, render and draw the pre-processed global spectrum mapping data, and transmit the rendered global spectrum mapping data to the data display module;
根据显示需求进行不同的处理包含:数据读取、业务运算与数据传输三个步骤,根据可视化显示内容的不同,采用不同的业务运算过程,Different processing according to display requirements includes three steps: data reading, business operation and data transmission. Different business operation processes are adopted according to different visual display contents.
所述数据业务处理模块包括:预处理单元、业务运算单元和可视化视图绘制单元,The data service processing module includes: a pre-processing unit, a service operation unit and a visualization view drawing unit.
所述预处理单元,用于将所述全球频谱测绘数据,通过数据传输、数据分选、数据归一化,对所述全球频谱测绘数据进行预处理,得到处理后的全球频谱测绘数据;The preprocessing unit is used to preprocess the global spectrum mapping data through data transmission, data sorting, and data normalization to obtain processed global spectrum mapping data;
所述业务运算单元,用于基于相应的业务运算,将所述处理后的全球频谱测绘数据,传输至所述可视化视图绘制单元;The business operation unit is used to transmit the processed global spectrum mapping data to the visualization view drawing unit based on corresponding business operations;
所述业务运算单元包括:全球频谱测绘热力图子单元、全球辐射源分布子图子单元、雷达三维覆盖区域子图子单元、区域电磁三维剖分子图子单元和多维电磁态势可视化分析子图子单元,The business operation unit includes: a global spectrum mapping heat map sub-unit, a global radiation source distribution sub-map sub-unit, a radar three-dimensional coverage area sub-map sub-unit, a regional electromagnetic three-dimensional sectioning sub-map sub-unit and a multi-dimensional electromagnetic situation visualization analysis sub-map sub-unit.
所述全球频谱测绘热力图子单元,用于基于读取所述全球频谱测绘数据的空域信息和能域信息,按照采样规则,根据所述空域信息将所述全球频谱测绘数据与剖分按网格相对应,获得第一网格对应数据,将所述第一网格对应数据传输至所述可视化绘制单元进行渲染绘制之后展示全球频谱测绘热力图;The global spectrum mapping heat map sub-unit is used to read the spatial domain information and energy domain information of the global spectrum mapping data, correspond the global spectrum mapping data to the grid according to the spatial domain information according to the sampling rule, obtain the first grid corresponding data, transmit the first grid corresponding data to the visualization drawing unit for rendering and drawing, and then display the global spectrum mapping heat map;
其中,所述采样规则包括:The sampling rules include:
a.确定全球频谱测绘数据的采样粒度,假设所述全球频谱测绘数据在经纬高三个维度的间距分布为:经度间距为Δlon,纬度间距为Δlat,高度间距为Δh,则采用全球频谱测绘数据的采样粒度为三者最小值,即δ=min(Δlon,Δlat,Δh)确定全球频谱测绘数据的采样粒度;a. Determine the sampling granularity of the global spectrum mapping data. Assuming that the spacing distribution of the global spectrum mapping data in the three dimensions of longitude, latitude and height is: the longitude spacing is Δlon, the latitude spacing is Δlat, and the height spacing is Δh, then the sampling granularity of the global spectrum mapping data is the minimum of the three, that is, δ = min (Δlon, Δlat, Δh) to determine the sampling granularity of the global spectrum mapping data;
b.确定网格对应层级,基于所述全球频谱测绘数据的采样粒度,按照层级对应规则确定网络对应层级,所述层级对应规则包括:b. Determine the grid corresponding level, based on the sampling granularity of the global spectrum mapping data, determine the network corresponding level according to the level corresponding rules, the level corresponding rules include:
规则1.如果第n层级下的剖分粒度与采样粒度为三者最小值相等,即size(n)=δ,则N=n;
规则2.如果所述第n层级下的剖分粒度小于等于采样粒度为三者最小值size(n+1)≤δ≤size(n),则N=n+1;Rule 2. If the partition granularity at the nth level is less than or equal to the sampling granularity, which is the minimum value of the three: size(n+1)≤δ≤size(n), then N=n+1;
其中,size(n)表示第n层级下的剖分粒度,N表示割分网络层级;Among them, size(n) represents the partition granularity at the nth level, and N represents the network level of the partition;
c.根据所述全球频谱测绘数据采集的经纬高,计算其对应的剖分网格,当采样点经纬高落入设定范围的剖分网格坐标范围内,则将采样点属性映射至网格坐标,确定网格位置;c. Calculate the corresponding grid according to the longitude and latitude of the global spectrum mapping data collection. When the longitude and latitude of the sampling point fall within the set range of the grid coordinates, map the sampling point attributes to the grid coordinates to determine the grid position;
d.对于缺少数据的网格做插值处理。d. Interpolate grids with missing data.
所述全球辐射源分布子图子单元,用于基于读取全球频谱测绘数据的空域、能域、频域信息,根据对辐射源的定位结果确定所述辐射源所在剖分网格,展示全球辐射源分布子图;The global radiation source distribution sub-map sub-unit is used to determine the subdivision grid where the radiation source is located according to the positioning result of the radiation source based on the spatial domain, energy domain and frequency domain information of the global spectrum mapping data, and display the global radiation source distribution sub-map;
所述全球辐射源分布子图子单元,用于基于读取全球频谱测绘数据的空域、能域、频域信息,根据对辐射源的定位结果确定所述辐射源所在剖分网格,获得第二网格对应数据,将所述第二网格对应数据传输至所述可视化绘制单元进行渲染绘制之后展示全球辐射源分布子图;The global radiation source distribution sub-map sub-unit is used to determine the subdivision grid where the radiation source is located based on the spatial domain, energy domain, and frequency domain information of the global spectrum mapping data, according to the positioning result of the radiation source, obtain the corresponding data of the second grid, transmit the corresponding data of the second grid to the visualization drawing unit for rendering and drawing, and then display the global radiation source distribution sub-map;
所述雷达三维覆盖区域子图子单元,用于基于读取所述全球频谱测绘数据的空域、能域、频域信息,采用移动立方体算法结合剖分网格查找等值面,确定需要在网格层级下所述预处理后的全球频谱测绘数据与网格对应,展示雷达三维覆盖区域子图;The radar three-dimensional coverage area sub-map sub-unit is used to read the spatial domain, energy domain, and frequency domain information of the global spectrum mapping data, use the moving cube algorithm in combination with the grid division to find the isosurface, determine the correspondence between the pre-processed global spectrum mapping data and the grid at the grid level, and display the radar three-dimensional coverage area sub-map;
雷达三维覆盖区域子图子单元,用于读取所述全球频谱测绘数据的空域、能域、频域信息,确定需要在网格层级下数据与网格对应,获得第三网格对应数据,采用移动立方体算法结合剖分网格查找等值面,将所述第三网格对应数据传输至所述可视化绘制单元进行绘制之后展示雷达三维覆盖区域子图;The radar three-dimensional coverage area sub-map sub-unit is used to read the spatial domain, energy domain, and frequency domain information of the global spectrum mapping data, determine that the data needs to correspond to the grid at the grid level, obtain the third grid corresponding data, use the moving cube algorithm combined with the grid segmentation to find the isosurface, transmit the third grid corresponding data to the visualization drawing unit for drawing, and then display the radar three-dimensional coverage area sub-map;
所述移动立方体算法具体步骤包括:The specific steps of the marching cube algorithm include:
step1:确定初始剖分层级L,并在该层级下遍历数据立方体并标记顶点,存在等值面标记为“0”,否则标记为“1”。Step 1: Determine the initial subdivision level L, and traverse the data cube at this level and mark the vertices. If there is an isosurface, mark it as "0", otherwise mark it as "1".
step2:判断该层级下顶点标记是否为“0”,若为“0”则将该网格继续向下剖分,否则停止剖分。Step 2: Determine whether the vertex mark at this level is "0". If it is "0", continue to divide the mesh downwards, otherwise stop dividing.
step3:持续步骤1、2,直至所需层级网格下查找出所有等值面所在网格。Step 3: Continue
所述区域电磁三维剖分子图子单元,用于基于读取全球频谱测绘数据的能域、空域信息,确定需要绘制的网格层级,展示区域电磁三维剖分子图;The regional electromagnetic three-dimensional sectioning sub-map sub-unit is used to determine the grid level to be drawn based on the energy domain and airspace information of the global spectrum mapping data, and to display the regional electromagnetic three-dimensional sectioning sub-map;
所述区域电磁三维剖分子图子单元,用于基于读取全球频谱测绘数据的能域、空域信息,确定需要绘制的网格层级,在所述网络层级下将数据与网格对应,获得第四网格对应数据,根据所述第四网格对应数据展示模块的可视化数据请求,将第四网格对应数据传输至所述可视化视图绘制单元进行渲染绘制之后展示区域电磁三维剖分子图;The regional electromagnetic three-dimensional sectioning sub-map sub-unit is used to determine the grid level to be drawn based on the energy domain and airspace information of the global spectrum mapping data, correspond the data to the grid at the network level, obtain the fourth grid corresponding data, and transmit the fourth grid corresponding data to the visualization view drawing unit for rendering and drawing according to the visualization data request of the fourth grid corresponding data display module, and then display the regional electromagnetic three-dimensional sectioning sub-map;
所述多维电磁态势可视化分析子图子单元,用于基于读取全球频谱测绘数据的时域、空域、能域、频域信息,展示多维电磁态势可视化分析子图。The multi-dimensional electromagnetic situation visualization analysis sub-graph sub-unit is used to display a multi-dimensional electromagnetic situation visualization analysis sub-graph based on the time domain, space domain, energy domain, and frequency domain information read from the global spectrum mapping data.
所述多维电磁态势可视化分析子图子单元,用于基于读取全球频谱测绘数据的时域、空域、能域、频域信息,根据辐射源空间坐标将其与地理空间系统对应,获得第五网格对应数据,将所述第五网格对应数据传输至所述可视化绘制单元进行渲染绘制之后展示多维电磁态势可视化分析子图。The multi-dimensional electromagnetic situation visualization analysis sub-graph sub-unit is used to read the time domain, spatial domain, energy domain, and frequency domain information of the global spectrum mapping data, correspond it to the geographic space system according to the spatial coordinates of the radiation source, obtain the fifth grid corresponding data, transmit the fifth grid corresponding data to the visualization drawing unit for rendering and drawing, and then display the multi-dimensional electromagnetic situation visualization analysis sub-graph.
所述可视化视图绘制单元,用于将所述处理后的全球频谱测绘数据进行渲染绘制,得到渲染绘制后的全球频谱测绘数据。The visualization view drawing unit is used to render and draw the processed global spectrum mapping data to obtain rendered global spectrum mapping data.
所述可视化视图绘制单元包括确定网格子单元、分段函数子单元、绘制可视化子单元和更改尺寸可视化子单元,The visualization view drawing unit includes a grid determination subunit, a piecewise function subunit, a visualization drawing subunit and a size change visualization subunit.
所述确定网格子单元,根据计算得到的剖分网格的中心坐标确定网格所在场景中的空间位置;The determining grid subunit determines the spatial position of the grid in the scene according to the calculated center coordinates of the subdivided grid;
所述分段函数子单元,根据数据的变化规律采用分段函数的方法和采用颜色映射方案将场强数据由小到大映射为由红色到蓝色的渐变,根据场强值由大到小的变化,获得颜色由红色渐变至绿色;The piecewise function subunit uses a piecewise function method and a color mapping scheme to map the field intensity data from small to large into a gradient from red to blue according to the change law of the data, and obtains a color gradient from red to green according to the change of the field intensity value from large to small;
所述分段函数子单元,根据数据的变化规律采用分段函数的方法和采用颜色映射方案将场强数据由小到大映射为由红色到蓝色的渐变,颜色具备RGBA四个分量,RGB为颜色分量分别代表红色、绿色、蓝色三原色,A为透明度分量代表颜色的透明度,各分量的取值范围为[0.0,1.0],假设某点场强值为E(单位为dBm),采用所述颜色映射方案进行传递函数,场强最大的点红色分量为1.0,蓝色与绿色分量为0.0,场强最小的点绿色分量为1.0,红色和蓝色分量为0.0,场强为零的点其透明度为0,即全透明状态,以此类推,根据场强值由大到小的变化,颜色由红色渐变至绿色,更加符合场强变化的规律;The piecewise function subunit uses a piecewise function method and a color mapping scheme to map the field intensity data from small to large into a gradient from red to blue according to the law of data change. The color has four components, RGBA, RGB is the color component representing the three primary colors of red, green and blue respectively, A is the transparency component representing the transparency of the color, and the value range of each component is [0.0, 1.0]. Assuming that the field intensity value of a certain point is E (in dBm), the color mapping scheme is used to transfer the function. The red component of the point with the largest field intensity is 1.0, and the blue and green components are 0.0. The green component of the point with the smallest field intensity is 1.0, and the red and blue components are 0.0. The transparency of the point with zero field intensity is 0, that is, a fully transparent state. By analogy, according to the change of the field intensity value from large to small, the color gradually changes from red to green, which is more in line with the law of field intensity change;
其中,所述颜色映射方案包括表达式:Wherein, the color mapping scheme includes the expression:
其中,Emax表示能域的最大值,Emin表示能域的最小值,R(E)、G(E)、B(E)表示颜色的红、绿、蓝三个分量,A(E)表示该色块的透明度Among them, Emax represents the maximum value of the energy domain, Emin represents the minimum value of the energy domain, R(E), G(E), B(E) represent the red, green, and blue components of the color, and A(E) represents the transparency of the color block.
所述绘制可视化子单元,用于结合系统中的地理空间数据(包含地形地貌、高程、地理影像贴图等),在三维地球场景中实现对频谱测绘数据的可视化展示;The visualization subunit is used to combine the geospatial data (including topography, elevation, geographic image maps, etc.) in the system to realize the visualization display of spectrum mapping data in a three-dimensional earth scene;
所述更改尺寸可视化子单元,用于通过改变剖分网格层级从而改变可视化时的尺度大小,实现对频谱测绘数据的多尺度可视化展示。The size-changing visualization subunit is used to change the scale of visualization by changing the subdivision grid level, thereby realizing multi-scale visualization display of spectrum mapping data.
所述数据展示模块,用于通过逻辑控制、人机交互和可视化展示,将所述渲染绘制后的全球频谱测绘数据转换为屏幕视图的形式进行展示。The data display module is used to convert the rendered global spectrum mapping data into a screen view for display through logic control, human-computer interaction and visual display.
所述数据展示模块包括:逻辑控制单元、人机交互单元和可视化展示单元,The data display module includes: a logic control unit, a human-computer interaction unit and a visual display unit.
逻辑控制单元,用于进行整体系统界面的逻辑控制;Logic control unit, used for logic control of the overall system interface;
人机交互单元,用于判断键盘和鼠标的输入状态和内容,并将所述输入状态和内容传输至所述数据业务处理模块进行处理;A human-computer interaction unit, used to determine the input status and content of the keyboard and mouse, and transmit the input status and content to the data service processing module for processing;
可视化展示单元,用于在三维地球场景中对所述渲染绘制后的全球频谱测绘数据转换为屏幕视图进行呈现。The visualization display unit is used to convert the rendered global spectrum mapping data into a screen view for presentation in a three-dimensional earth scene.
本发明通过判断数据采样粒度,实现了对数据的多尺度统一建模;本发明通过多视图的表达方法,实现了对全球频谱测绘数据多维度、多视角、多尺度表达。The present invention realizes multi-scale unified modeling of data by judging the data sampling granularity; the present invention realizes multi-dimensional, multi-perspective and multi-scale expression of global spectrum mapping data through a multi-view expression method.
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。All the above optional technical solutions can be arbitrarily combined to form optional embodiments of the present application, which will not be described one by one here.
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that the order of execution of the steps in the above embodiment does not necessarily mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present invention.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. Such modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211335905.5A CN115687499B (en) | 2022-10-28 | 2022-10-28 | Global frequency spectrum map design and implementation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211335905.5A CN115687499B (en) | 2022-10-28 | 2022-10-28 | Global frequency spectrum map design and implementation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115687499A CN115687499A (en) | 2023-02-03 |
CN115687499B true CN115687499B (en) | 2023-04-21 |
Family
ID=85045941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211335905.5A Active CN115687499B (en) | 2022-10-28 | 2022-10-28 | Global frequency spectrum map design and implementation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115687499B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682234A (en) * | 2017-01-17 | 2017-05-17 | 北京工业大学 | Method for electromagnetic spectrum distribution prediction and dynamic visualization based on spatial interpolation |
CN112528508A (en) * | 2020-12-17 | 2021-03-19 | 航天恒星科技有限公司 | Electromagnetic visualization method and device |
CN114003981A (en) * | 2021-11-05 | 2022-02-01 | 成都戎星科技有限公司 | Electromagnetic spectrum visual analysis method based on space-time integrated digital earth |
CN114970216A (en) * | 2022-07-29 | 2022-08-30 | 中国人民解放军战略支援部队航天工程大学 | Electromagnetic environment visual expression method based on subdivision grids |
CN114996973A (en) * | 2022-07-18 | 2022-09-02 | 中国人民解放军战略支援部队航天工程大学 | A system and method for visualization of electromagnetic situation based on multi-domain grid |
-
2022
- 2022-10-28 CN CN202211335905.5A patent/CN115687499B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682234A (en) * | 2017-01-17 | 2017-05-17 | 北京工业大学 | Method for electromagnetic spectrum distribution prediction and dynamic visualization based on spatial interpolation |
CN112528508A (en) * | 2020-12-17 | 2021-03-19 | 航天恒星科技有限公司 | Electromagnetic visualization method and device |
CN114003981A (en) * | 2021-11-05 | 2022-02-01 | 成都戎星科技有限公司 | Electromagnetic spectrum visual analysis method based on space-time integrated digital earth |
CN114996973A (en) * | 2022-07-18 | 2022-09-02 | 中国人民解放军战略支援部队航天工程大学 | A system and method for visualization of electromagnetic situation based on multi-domain grid |
CN114970216A (en) * | 2022-07-29 | 2022-08-30 | 中国人民解放军战略支援部队航天工程大学 | Electromagnetic environment visual expression method based on subdivision grids |
Non-Patent Citations (4)
Title |
---|
Haojie Hu等.Design electromagnetic situation visualization system.《2021 2nd International Conference on Intelligent Design(ICID)》.2022,93-100. * |
冯晓萌等.电磁环境实时分频段绘制算法.《北京邮电大学学报》.2015,第38卷(第1期),108-112. * |
韩李涛 ; 范克楠 ; .三维地形颜色渐变渲染的光滑过渡方法研究.地球信息科学学报.2015,(第01期),35-40. * |
马良 ; 张政 ; .复杂电磁环境三维态势展示方法研究.中国无线电.2020,(04),33-39. * |
Also Published As
Publication number | Publication date |
---|---|
CN115687499A (en) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105893972B (en) | Automatic monitoring method for illegal building based on image and implementation system thereof | |
US8743149B2 (en) | Meteorology and oceanography geospatial analysis toolset | |
CN101887595B (en) | Three-dimensional digital earth-space data organizing and rendering method based on quad-tree index | |
LU102117B1 (en) | Method and system for measuring mountain view visible area in city | |
CN112860689A (en) | Platform system based on space-time grid data | |
US12031836B2 (en) | Map data adjustments for anomaly correction | |
WO2019223413A1 (en) | System for constructing urban design digital sandbox | |
WO2021017675A1 (en) | Trajectory data processing method, device and storage medium | |
CN112528508B (en) | Electromagnetic visualization method and device | |
US9390528B2 (en) | Meteorology and oceanography geospatial analysis toolset | |
CN115272637B (en) | Large-area-oriented three-dimensional virtual ecological environment visual integration and optimization system | |
CN106934058B (en) | Vector data reading method and system and vector data visualization method and system | |
CN102722885A (en) | Method for accelerating three-dimensional graphic display | |
CN105976313A (en) | Method and system for transforming CAD plane coordinate system to Baidu map coordinate system | |
CN116069882B (en) | Airspace grid diagram generating method | |
CN117435823B (en) | Space-time data service method based on grid coding and industrial Internet platform | |
She et al. | 3D building model simplification method considering both model mesh and building structure | |
CN115408382B (en) | Vector space information grid storage and management method for large-scale satellite data | |
CN115687499B (en) | Global frequency spectrum map design and implementation system | |
CN115017348A (en) | Method and device for realizing grid data graph | |
Giordano et al. | A conceptual model of GIS-based spatial analysis | |
CN114116948A (en) | Geographic vector data space buffer area analysis method, device, equipment and medium | |
Wang et al. | The Innovation of GIS Service Mode Based on “Grid Integration” and “Elastic Cloud” | |
CN118428596A (en) | Resource capability center-based scenerized resource coverage analysis method | |
Zhao | Research on monitoring technology of marine oil spill environment based on LoT+ GIS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |