CN115664605A - 控制辅小区组添加和释放 - Google Patents

控制辅小区组添加和释放 Download PDF

Info

Publication number
CN115664605A
CN115664605A CN202210790854.9A CN202210790854A CN115664605A CN 115664605 A CN115664605 A CN 115664605A CN 202210790854 A CN202210790854 A CN 202210790854A CN 115664605 A CN115664605 A CN 115664605A
Authority
CN
China
Prior art keywords
base station
measurements
rrc
represented
gnb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210790854.9A
Other languages
English (en)
Inventor
D·尼基施
S·桑巴尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN115664605A publication Critical patent/CN115664605A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及控制辅小区组添加和释放。在用户设备(UE)处执行自主测量可包括对无线电资源控制(RRC)连接请求进行编码,以用于传输到具有第一基站类型的第一基站。可对从该第一基站接收的RRC连接建立通信进行解码。可在处于RRC连接状态时自主地执行与第二基站类型的候选载波集相关联的测量。自动地执行测量可包括导出要测量的候选载波集。可存储来自所执行测量的结果。

Description

控制辅小区组添加和释放
技术领域
本申请整体涉及无线通信系统,包括用于控制辅小区组(SGC)的添加的无线电通信设备和方法。
背景技术
无线移动通信技术使用各种标准和协议以在基站和无线通信设备之间传输数据。无线通信系统标准和协议可以包括,例如,第三代合作伙伴计划(3GPP)长期演进(LTE)(如4G)、3GPP新空口(NR)(如5G)和用于无线局域网(WLAN)的IEEE 802.11标准(行业组织内通常称其为
Figure BDA0003730144620000011
)。
如3GPP所设想,不同的无线通信系统标准和协议可以使用各种无线接入网(RAN),以使RAN(其有时也可称为RAN节点、网络节点,或简称为节点)的基站与被称为用户设备(UE)的无线通信设备进行通信。3GPP RAN可包括,例如,全球移动通信系统(GSM)、增强型数据速率GSM演进(EDGE)RAN(GERAN)、通用陆地无线接入网(UTRAN)、演进通用陆地无线接入网(E-UTRAN)和/或下一代无线接入网(NG-RAN)。
每个RAN可以使用一种或多种无线接入技术(RAT)来进行基站与UE之间的通信。例如,GERAN实施GSM和/或EDGE RAT,UTRAN实施通用移动电信系统(UMTS)RAT或其他3GPPRAT,E-UTRAN实施LTE RAT(其有时简称为LTE),NG-RAN则实施NR RAT(其有时在本文中也称为5G RAT、5G NR RAT或简称为NR)。在某些部署中,E-UTRAN还可实施NRRAT。在某些部署中,NG-RAN还可实施LTE RAT。
RAN所用的基站可以对应于该RAN。E-UTRAN基站的一个示例是演进通用陆地无线接入网(E-UTRAN)节点B(通常也表示为演进节点B、增强型节点B、eNodeB或eNB)。NG-RAN基站的一个示例是下一代节点B(有时也称为gNodeB或gNB)。
RAN通过其与核心网络(CN)的连接与外部实体一起提供通信服务。例如,E-UTRAN可以利用演进分组核心网(EPC),而NG-RAN可以利用5G核心网(5GC)。
5G NR的频带可被分成两个或更多个不同的频率范围。例如,频率范围1(FR1)可包括以6Ghz以下频率操作的频带,其中一些频带可供先前的标准使用,并且可潜在地被扩展以覆盖410MHz至7125MHz的新频谱产品。频率范围2(FR2)可包括24.25GHz至52.6GHz的频带。FR2的毫米波(mmWave)范围中的频带可具有比FR1中的频带更小的范围但潜在更高的可用带宽。技术人员将认识到,以举例的方式提供的这些频率范围可能会随着时间或区域的不同而变化。
附图说明
为了容易地识别对任何特定元件或动作的讨论,参考标号中的一个或多个最高有效数位是指首先引入该元件的附图编号。
图1示出了根据一个实施方案的ENDC信令的数据流程图。
图2示出了根据一个实施方案的与触发ENDC相关联的数据流程图。
图3示出了根据一个实施方案的ENDC释放程序的数据流程图。
图4示出了根据一个实施方案的自主IRAT NR测量和NR测量结果报告的数据流程图。
图5示出了根据一个实施方案的ENDC信令的时间线。
图6示出了根据一个实施方案的ENDC信令的数据流程图。
图7示出了根据一个实施方案的ENDC信令的数据流程图。
图8示出了根据一个实施方案的NRDC信令的数据流程图。
图9示出了根据一个实施方案的NRDC信令的数据流程图。
图10示出了根据一个实施方案的NRDC信令的数据流程图。
图11示出了根据一个实施方案的NRDC信令的数据流程图。
图12示出了根据一个实施方案的NRDC信令的数据流程图。
图13示出了根据一个实施方案的NRDC信令的数据流程图。
图14示出了根据一个实施方案的用于维护载波列表的状态转变图。
图15示出了根据一个实施方案的用于在移动期间维持载波列表的数据流程图。
图16示出了根据一个实施方案的通信设备。
图17示出了根据一个实施方案的用于执行自主测量的方法的流程图。
图18示出了根据本文所公开实施方案的无线通信系统的示例性架构。
图19示出了根据本文所公开实施方案的用于在无线设备和网络设备之间执行信令的系统。
图20示出了根据本文公开的实施方案的EN-DC架构。
具体实施方式
各实施方案就UE进行描述。然而,对UE的参考仅仅是出于说明的目的而提供的。示例性实施方案可与可建立与网络的连接并且被配置有用于与网络交换信息和数据的硬件、软件和/或固件的任何电子部件一起使用。因此,如本文所述的UE用于表示任何适当的电子部件。
本文所述的原理涉及用于基于设备的当前使用情况或场景来控制辅小区组(SGC)的添加的无线电通信设备。当今的技术提供了将不同载波频率的多个小区聚合到一个小区组并且使用聚合带宽进行通信设备和网络之间的用户数据传输的方法。因此,这种通信设备可同时连接到两个不同的小区组。两个小区组可属于相同或不同的无线电接入技术(RAT)。一个小区组被视为主小区组(MCG)并且其他小区组可被视为辅小区组(SCG)。本文所述的原理可关于以下技术的任何组合(以及关于将来技术的任何组合)来实践:1.主LTE小区组与辅LTE小区组组合(也称为LTE双连接);2.主LTE小区组与辅5G NR小区组组合(也称为演进通用陆地无线电接入(EUTRA)NR双连接(ENDC));3.主5G NR小区组与辅5G NR小区组组合(也称为NR双连接(NRDC));4.主5G NR小区组与辅LTE小区组组合(也称为NR EUTRA双连接(NEDC));5.LTE或5G NR与未来技术的任何组合;以及6.载波聚合和双连接的任何组合。
本文所述的原理还包括用于允许通信设备(例如,UE)在要发生SCG的添加或者通信设备要连接到仅MCG的情况下向网络发信号通知的方法。此外,本文所述的信令允许设备为SCG提供优选配置。此类优选配置可包括与最大可实现数据吞吐量和用于功率消耗减少的降低的吞吐量之间的平衡相关的信息。例如,此类信息可包括:1.SCG内要聚合的下行链路(DL)和上行链路(UL)载波频率的最大数量;2.用于DL和UL数据传输的最大聚合带宽;3.用于DL和UL数据传输的多输入和多输出(MIMO)层的最大数量;4.用于DL和UL数据传输的最大带宽部分(BWP);5.UE优选的非连续接收(DRX)配置;等等。
当具有ENDC能力的UE移动到LTE Connected模式时,eNB将设置ENDC(LTE+NR)。尽管要传输仅少量数据并且实际上不需要ENDC,但在此类情况下可使用ENDC,这在UE侧上消耗大量功率并且在网络侧上消耗大量资源。具体地,尽管当添加NR SCG时发生大量控制信令开销,但未转移太多用户数据。当前,不存在基于UE数据传输需求来控制进入ENDC的适当方法。NR进入NRDC或NEDC(或甚至保持在仅MCG操作中)也存在相同的问题。在示例中,当电话处于个人的口袋并且执行后台业务时,可能出现这些问题。在另一示例中,当移动设备的用户仅使用执行少量数据业务(例如,文本)的应用程序时,可能出现这些问题。
因此,当今的技术不提供用于通信设备控制SCG的添加的方法。相反,通信设备可在将SCG添加到设备连接之后仅仅发信号通知其偏好。设备可能无法就SCG被添加到连接以实现高吞吐量数据传输或UE偏好保持仅连接到MCG而与网络通信。UE可出于多个原因而偏好仅MCG连接,包括但不限于:1.功率节省目的;2.要传输少量数据的场景;以及3.相关数据传输包括后台数据传输的场景(即,相关数据传输不是由用户交互引起,例如,相关数据传输与周期性地传输或接收少量数据以启用用于邮件/消息的推送服务相关)。
因此,可引入信令以指示UE的进入ENDC的期望。更具体地,此类新颖信令可发生在UE和eNB之间,以指示UE期望使用ENDC以实现给定目的,或者仅LTE连接对于UE足够。例如,在LTE连接设置期间,UE可向网络指示当前要发生仅小数据传输,并且因此,网络/eNB可将UE保持处于仅LTE连接(即,不是设置ENDC)。当出现UE期望ENDC以进行更大数据传输的情况时,UE然后可向网络指示该情况。然后,网络可设置ENDC作为响应。在仅LTE调用期间,UE可自主地执行无线电接入技术间(IRAT)NR测量(未从网络接收到IRAT NR测量配置),以在ENDC添加之前准备潜在的NR测量报告。
具体地,LTE连接模式期间的IRAT NR测量在名称为“Clarification to UEcapability of independentGapConfig for inter-RAT NR measurement not yetconfigured with EN-DC”的RAN2:38.306CR0037;RP-182651中进一步讨论,该标准将independentGapConfig定义为“该字段指示UE是否支持用于TS 38.133[5]中指定的FR1和FR2的两个独立测量间隙配置。该字段还指示UE在EN-DC未配置时是否支持无间隙FR2 RAT间测量。”
以下假设也可适用于本文所提出的解决方案:1.UE和网络支持以下3GPP版本16(Rel-16):a.双载波和载波聚合增强(DC_CA),包括:i.NR空闲模式测量配置;以及ii.用于报告NR空闲模式结果的UE信息请求/响应程序;和b.UE NR功率节省增强,包括:i.用于报告UE省电偏好的UE辅助信息程序;以及2.UE支持用于导出必须发生ENDC操作的情况的机制(此类机制的细节可以是UE特定的)。
所提议解决方案可包括以下两个部分:1.用于指示对ENDC的期望的ENDC信令,包括:触发5G NR添加或将UE保持处于仅LTE模式;和b.基于UE评估机制来确定ENDC的适用性;以及2.使用ENDC信令的自主IRAT NR测量和NR测量结果报告。此类测量和报告可有助于在上述解决方案的第一部分中概述的ENDC添加程序(即,与ENDC相关联的信令)。此外,这些测量和报告可帮助快速提供NR测量结果以用于适用时的快速ENDC添加。
图1示出了在用于避免进入ENDC时上述ENDC信令的示例性数据流程图。如图所示,图1包括UE 102以及eNB 110和gNB 112,该UE包括接入点104(AP 104)、无线电资源控制106(RRC 106)和层1 108(L1 108)。如图所示,图1的信令可包括LTE连接建立(如框114所表示),该LET连接建立可包括RRC 106初始处于如框116所表示的空闲状态。然后,UE数据量评估可在AP 104处发生在某个点(如框118所表示),然后是从AP 104到RRC 106的连接建立消息(对应于小数据)(如箭头120所表示)。然后可经由RRC 106在UE 102和eNB 110之间传达一系列RRC连接消息(如箭头122、箭头124、箭头126和框128所表示)。最后,LTE连接建立可包括UE 102和eNB 110之间经由RRC106的安全模式通信(如箭头130和箭头132所表示)。一旦LTE连接建立完成,经由RRC 106,UE 102可向eNB 110发送UE-MRDC-SCGConfigurationRequest,该eNB-MRDC-SCGConfigurationRequest可通过将NR载波的数量设置为零来指示UE 102不进入演进通用陆地无线电接入双连接(ENDC)的偏好(如框136所表示)。
因此,用于指示利用ENDC的适用性/期望的ENDC信令可包括避免使用UE在LTE连接建立和RRC安全激活之后发送的UE-MRDC-SCGConfigurationRequest进入ENDC(框114中表示)。UE-MRDC-SCGConfigurationRequest可针对UL和DL将减少分量载波(CC)的数量设置为零值,并且可在EUTRA信令无线电承载1(SRB1)中传输。EUTRAN可接收UE-MRDC-SCGConfigurationRequest,检测UE对零NR载波的偏好,并且避免触发NR SCG添加或准备SCG添加的任何程序(例如,避免设置任何IRAT NR测量)。
相比之下,图2示出了与触发ENDC设置相关联的信令的数据流程图。如图所示,图2包括UE 202以及eNB 210和gNB 212,该UE包括接入点204(AP 204)、无线电资源控制206(RRC 206)和层1 208(L1 208)。图2的信令可包括LTE连接建立(如框214所表示),该LET连接建立可包括RRC 206初始处于如框216所表示的空闲状态。值得注意的是,当UE在LTE连接建立时传输大量数据时,触发ENDC设置可能是特别适用的。因此,然后,UE数据量评估可在AP 204处发生在某个点(如框218所表示),然后是从AP 204到RRC 206的连接建立消息(对应于大数据)(如箭头220所表示)。然后可经由RRC 206在UE 202和eNB 210之间传达一系列RRC连接消息(如箭头222、箭头224、箭头226和框228所表示)。最后,LTE连接建立可包括UE202和eNB 210之间经由RRC 206的安全模式通信(如箭头230和箭头232所表示)。
一旦LTE连接建立完成,经由RRC 206,UE 202可向eNB 210发送UE-MRDC-SCGConfigura tionRequest(如箭头234所表示),该eNB-MRDC-SCGConfigurationRequest可通过将聚合DL载波的数量设置为零之外(即,大于零)的值来指示UE 202进入演进通用陆地无线电接入双连接(ENDC)的偏好,如框236所表示。然后,ENDC添加设置(由框238所表示)可包括eNB 210通过发送SgNB添加请求(如箭头240所表示)来触发到NR节点(即,gNB 212)的SCG添加。然后,gNB 212可发送对此的确认,如箭头242所表示。然后,eNB 210可经由RRC206向UE 202发送RRC连接重新配置通信(如箭头244所表示),这可以RRC连接ENDC状态(如框246所表示)结束。
因此,关于与指示进入ENDC的偏好相关联的信令,UE可:1.将聚合DL载波的数量设置为大于零的值;2.包括IRAT NR测量结果(如有可用的话);以及3.在LTE SRB1上传输UE-MRDC-SCGConfigurationRequest消息。类似地,关于EUTRAN接收UE-MRDC-scgrecurationrequest消息,EUTRAN可:1.检测UE对要设置的NR载波的偏好;2.触发NR SCG添加程序;以及3.利用所报告IRAT NR测量结果(即,在报告的情况下)来针对SCG PSCell和SCell选择正确小区。
也可利用基于3GPP版本16(Rel-16)NR UE辅助信息(UAI)的ENDC释放。值得注意的是,程序关于3GPP TS 38.331CR 1469来描述;R2-2002389可包括以下:1.UE通过在UAI消息内将FR1和FR2的DL和UL载波的数量以及DL和UL聚合带宽的数量设置为零来指示释放NRSCG的偏好;2.UAI消息通过嵌入ULInformationTransferMRDC消息中的LTE SRB1传输并且MN将消息转发到SN;3.如果配置了SRB3,则UE使用SRB3发送UAI以直接告知SN;和/或4.SN在检测到对零载波/零带宽的UE偏好时发起SCG释放程序。
因此,图3示出了使用Rel-16 UAI的ENDC释放程序的示例性数据流程图。如图所示,图3包括UE 302以及MN eNB 310和SN gNB 312,该UE包括接入点304(AP 304)、无线电资源控制306(RRC 306)和层1308(L1 308)。在此类实施方案中,UE可能已经处于RRC连接ENDC状态,如框314所表示。然后,UE数据量评估可在AP 304处发生在某个点(如框316所表示),然后是从AP 304到RRC 306的小数据指示(如箭头318所表示)。
然后,UAI可由UE 302用于使用各种选项来向网络告知释放NR SCG的UE偏好。在第一选项(如框320所表示)中,UE可直接向SN gNB 312发送指示释放SCG的偏好的UAI消息(如箭头322所表示)。此程序可如由3GPP Rel-16 NR UE功率节省增强(38.331CR 1469;R2-2002389)定义地执行。在第二选项(如框324所表示)中,UE可向MN eNB 310发送包括UAI的ULInformationTransferMRDC消息以指示UE的释放偏好(如箭头326所表示)。然后,MN eNB310可将此类消息转发到SN gNB 312上,如箭头328所表示)。无论是否利用第一或第二选项,UE都可通过将优选DL和UL载波的数量设置为零来指示其释放偏好。然后可执行SCG释放,如框330所表示。
还可利用使用UE-MRDC-SCGConfigurationRequest消息的自主IRAT NR测量和NR测量结果报告,如本文进一步描述。此类测量和测量报告可包括处于LTE连接模式的UE执行无间隙IRAT NR测量,包括:1.UE使用从多个来源导出的NR载波列表,如本文进一步描述;2.UE自主使用LTE连接模式非连续接收(CDRX)间隙进行IRAT NR测量;以及3.UE使用第二RX链(RX2)来并行于LTE RX+TX测量IRAT NR,并且在LTE TX与用于NR的RX2冲突的情况下应用TX消隐。
当要执行ENDC设置并且UE发送UE-MRDC-SCGConfigurationRequest消息时,UE可包括NR测量结果。网络可使用NR测量结果来选择要添加用于ENDC操作的NR PSCell和SCell。在UE不能执行自主NR测量的情况下,UE可不在UE-MRDC-SCGConfigurationRequest中报告结果。在此类情况下,eNB可使用MeasObject来设置IRAT NR测量并且使用ReportConfig导出结果来报告(当此类结果要用于NR SCG添加时)。
图4示出了使用UE-MRDC-SCGConfigurationRequest消息的自主IRAT NR测量和NR测量结果报告的数据流程图。如图所示,图4包括UE 402以及eNB 410和gNB 412,该UE包括接入点404(AP 404)、无线电资源控制406(RRC 406)和层1 408(L1 408)。在UE 402处于关于小数据传输的RRC连接状态(如框414所表示)时,IRAT NR测量可由UE 402自主地执行(如框416所表示)。此类自主测量可包括基于先前配置(例如,先前ENDC会话、给定操作者的已知载波等等)导出要测量的NR载波,如框418所表示。然后,IRAT NR测量和结果可经由RRC406和L1 408(分别如箭头420和箭头422所表示)执行/传达。关于自主测量,如框424中所示:1.FR2 RZ可在没有间隙的情况下使用;以及2.FR1可:a.使用LTE CDRX间隙;b.不使用第二RX链;并且c.在LTE TX与用于NR测量的RX2冲突的情况下应用TX消隐。然后,可存储测量结果,如框426所表示。
然后,可在AP 404处执行对数据量的评估(如框428所表示),该评估可包括大量数据(如箭头430所表示),并且产生与UE处的大数据相关联的RRC连接状态(如框432所表示)。然后,UE 402可发送UE-MRDC-SCGConfigurationRequest并且向网络告知其添加NR SCG的偏好,以及报告IRAT NR测量结果(如箭头434和框436所表示)。
然后,网络可开始ENDC添加程序,如框438所示。此类程序可包括eNB 410发送SgNB添加请求和gNB 412确认请求(分别如箭头440和箭头442所表示)。然后,eNB 410可发送具有用于SCG添加的嵌入式NR RRC重新配置的RRC连接重新配置(如箭头444所表示),从而产生RRC连接ENDC状态(如框446所表示)。
因此,图4示出了关于指示对ENDC的偏好和UE的自主测量的以下内容:1.UE可先前偏好仅LTE,并且未配置NR SCG;2.UE可执行自主IRAT NR测量以稍后避免ENDC添加的延迟;3.UE可使用网络空闲模式测量配置来执行IRAT NR测量;以及4.一旦大型数据应用开始并且ENDC是优选的,UE就可使用UE-MRDCSCGConfigurationRequest消息来请求NR SCG添加并且传输NR测量结果。
例如,以下UE-MRDCSCGConfigurationRequest消息示例可适用:
消息UE-MRDC-SCGConfigurationRequest
Figure BDA0003730144620000091
Figure BDA0003730144620000101
Figure BDA0003730144620000111
图5示出了与用于使用自主NR测量来指示ENDC的偏好的信令相关联的时间线。如图所示,图5包括UE RRC 502和UE层1 504。当UE在新颖搜索和测量期间自主地搜索和测量NR小区时(如框508所表示),UE可处于RRC连接状态(与少量数据相关联,如框506所表示)。在某个点处,UE的应用可利用大量数据开始,该数据可从UE的AP传达到UE RRC502(如框510所表示)。在UE发送UE-MRDC-SCGConfigurationRequest(如箭头512所表示)和与NR SCG添加相关联的RRC重新配置的开始(如箭头514所表示)之间可经过约100(缺失)毫秒(ms)的时间段518。然后,在与NR SCG添加相关联的RRC重新配置的开始和RRC重新配置完成(如箭头516所表示)之间可经过20ms的时间段520。
还可关于ENDC添加利用特征能力信令。例如,在一些实施方案中,UE可仅在对应EUTRA网络支持此类特征时才发送新颖消息UE-MRDC-SCGConfigurationRequest。因此,网络可指示其对此类特征的支持。例如,网络可在RRC连接设置消息中指示此类能力。在特定示例中,网络可使用以下:lateNonCriticalExtension-OCTET STRING-OPTIONAL。在此类实施方案中,当消息中不包括OCTET STRING时,网络可能不支持此类特征。相比之下,当OCTETSTRING包括消息中的1个八位元组(例如,值0x01)时,网络可支持此类特征。此外,UE可向网络发信号通知其对此类特征的支持。在示例中,UE可使用非使用的FGI位中的一个位(注意:3GPP不使用LTE FGI Rel8位43至64),如下使用位#64作为示例:1.当FGI位#64=0时,UE不支持特征;以及2.当FGI位#64=1时,UE支持特征。
在示例中,LTE RRC连接设置消息可包括:
Figure BDA0003730144620000121
图6示出了使用UE-MRDC-SCGConfigurationRequest消息和DCCA空闲模式测量增强的数据流程图。如图所示,图6包括UE 602以及eNB 610和gNB 612,该UE包括接入点604(AP 604)、无线电资源控制606(RRC 606)和层1 608(L1 608)。最初,可执行DCCA空闲模式测量,如框614所表示。在UE 602处于RRC空闲状态(如框616所表示)时,IRAT NR测量可由UE602执行(如箭头618和箭头620所表示)。具体地,此类测量可在如在Rel-16DCCA增强中进一步讨论的空闲模式下执行,以用于快速SCG添加(如框622所表示)。此外,可存储此类测量结果,如框624所表示。
然后,可执行LTE连接建立,如框626所表示。作为如此的一部分,可在AP 604处执行UE数据量评估(如框628所表示),然后是从AP 604到RRC 606的连接建立消息(对应于小数据)(如箭头630所表示)。然后可经由RRC 606在UE 602和eNB 610之间传达一系列RRC连接消息(如箭头632、箭头634、箭头636和框640所表示)。RRC连接设置完成消息(如箭头636所表示)还可包括向eNB 610指示的DCCA空闲模式测量结果的可用性的信息(如框638所表示)。最后,LTE连接建立可包括UE 602和eNB 610之间经由RRC 606的安全模式通信(如箭头642和箭头644所表示)。
一旦LTE连接建立完成,经由RRC 606,UE 602可向eNB 610发送UE-MRDC-SCGConfigurationRequest(如箭头646所表示),该eNB-MRDC-SCGConfigurationRequest可通过将NR载波的数量设置为等于零来指示UE 602不进入演进通用陆地无线电接入双连接(ENDC)的偏好。作为响应,网络可将UE保持处于LTE连接模式并且不准备ENDC添加,如框648所表示。
图7示出了使用UE-MRDC-SCGConfigurationRequest消息和DCCA空闲模式测量增强的数据流程图。如图所示,图7包括UE 702以及eNB 710和gNB 712,该UE包括AP 704、RRC706和L1 708。最初,可执行DCCA空闲模式测量,如框714所表示。在UE 702处于RRC空闲状态(如框716所设备)时,IRAT NR测量可由UE 702执行(如箭头718和箭头720所表示)。具体地,此类测量可在如在Rel-16DCCA增强中进一步讨论的空闲模式下执行,以用于快速SCG添加(如框722所表示)。此外,可存储此类测量结果,如框724所表示。
然后,可执行LTE连接建立,如框726所表示。作为如此的一部分,可在AP 704处执行UE数据量评估(如框728所表示),然后是从AP 704到RRC 706的连接建立消息(对应于大数据)(如箭头730所表示)。然后可经由RRC 706在UE 702和eNB 710之间传达一系列RRC连接消息(如箭头732、箭头734、箭头736和框740所表示)。RRC连接设置完成消息(如箭头736所表示)还可包括向eNB 710指示的DCCA空闲模式测量结果的可用性的信息(如框738所表示)。最后,LTE连接建立可包括UE 702和eNB 710之间经由RRC 706的安全模式通信(如箭头742和箭头744所表示)。
一旦LTE连接建立完成,经由RRC 706,UE 702可向eNB 710发送UE-MRDC-SCGConfigurationRequest(如箭头746所表示),该eNB-MRDC-SCGConfigurationRequest可通过将NR载波的数量设置为大于零的值来指示UE 702进入演进通用陆地无线电接入双连接(ENDC)的偏好。作为响应,网络可设置ENDC添加,如框748和框750所表示。ENDC添加可包括来自eNB 710的SgNB添加请求(如箭头752所表示)和来自gNB 712的SgNB添加请求确认(如箭头754所表示)。然后,eNB 710可发送具有用于SCG添加的嵌入式RRC重新配置的RRC连接重新配置消息(如箭头756所表示),这可以RRC连接ENDC状态(如框758所表示)结束。
类似于上述ENDC信令,本文所述的解决方案还包括用于指示对利用NRDC的偏好的NRDC信令。具体地,此类NRDC信令可包括:1.UE和主节点(MN)gNB之间的用于指示UE何时偏好NRDC或者何时仅使用NR MCG的操作是足够的NRDC信令;2.在NR连接设置期间,UE向网络指示小数据传输是适用的,并且因此,主节点(MN)gNB可将UE保持处于NR MCG(即,避免设置NR SCG);3.一旦UE由于在稍后时间点处的更大数据转移而偏好NRDC,UE就向网络指示对NRDC的偏好(然后是网络设置NRDC);4.虽然限于NR MCG操作,但UE自主地执行与候选SCGNR载波相关联的NR测量(即,未从网络接收到NR测量配置)以在NR SCG添加之前准备NR测量报告。
关于此类实施方案,以下假设可适用:1.Ue和网络支持以下3GPP Rel-16特征:a.双载波和载波聚合增强(DC_CA),包括:i.NR空闲模式测量配置;以及ii.用于报告NR空闲模式结果的UE信息请求/响应程序;和b.UE NR功率节省增强,包括用于报告UE省电偏好的UE辅助信息(UAI)程序;以及2.UE支持导出NRDC操作的适用性的机制(机制的细节可包括UE特定的具体实施)。
本文所述的所提议NRDC解决方案可包括两个主要部分,包括:1.用于指示对NRSCG添加的偏好的NRDC信令,包括:触发5G NR添加或将UE保持处于仅NR MCG模式;和b.基于UE评估机制来确定NRDC的适用性;以及2.使用NRDC信令的自主NR测量和NR测量结果报告。这些自主测量和报告可有助于NR SCG添加程序被触发作为该解决方案的第一部分,并且可帮助快速提供NR测量结果以用于快速SCG添加。
用于指示NR SCG添加的非适用性的NRDC信令可包括:1.避免使用UE-NRDC-SCGConfigurationRequest进入NRDC,包括:在NR连接建立和RRC安全激活之后发送消息;b.针对UL和DL将减少CC的数量设置为零值;c.在NR MCG SRB1上传输UE-NRDC-SCGConfigurationRequest;和d.NR MN接收UE-NRDC-SCGConfigurationRequest,还包括:i.NR MN检测对零辅助NR载波的UE偏好;以及ii.NR MN不触发NR SCG添加或用于准备SCG添加的任何程序(例如,不设置任何附加NR测量)。
因此,图8示出了用于NRDC信令的数据流程图。如图所示,图8包括UE 802以及MNgNB 810和辅节点(SN)gNB(即,SN gNB 812),该UE包括AP 804、RRC 806和L1 808。最初,UE802可在UE 802处于RRC空闲状态(如框816所表示)时执行NR连接建立程序(如框814所表示)。作为如此的一部分,可在AP 804处执行UE数据量评估(如框818所表示),然后是从AP804到RRC 806的连接建立消息(对应于小数据)(如箭头820所表示)。然后可经由RRC 806在UE 802和MN gNB 810之间传达一系列RRC连接消息(如箭头822、箭头824、箭头826和框828所表示)。最后,NR连接建立可包括UE 802和MN gNB 810之间经由RRC 806的安全模式通信(如箭头830和箭头832所表示)。
一旦NR连接建立完成,经由RRC 806,UE 802可向和MN gNB 810发送UE-NRDC-SCGConfigurationRequest(如箭头834所表示),该MNMRDC-SCGConfigurationRequest可通过将NR载波的数量设置为等于零来指示UE 802不进入NRDC的偏好。作为响应,网络可将UE保持处于仅NR MCG连接模式并且不准备NRDC添加,如框836所表示。
用于指示NR SCG添加的适用性的NRDC信令可包括:1.触发NR SCG设置,包括:a.UE通过发送UE-NRDC-SCGReconfigurationRequest消息来指示设置NR SCG的偏好,还包括:i.UE将聚合SCG DL载波的最大数量设置为大于零的值;ii.包括NR测量结果的UE(如果可用的话);和iii.消息通过NR MCG SRB1传输;b.NR MN接收UE-NRDC-SCGReconfigurationRequest,包括:i.NR MN检测对要设置的辅助NR载波的UE偏好;ii.NRMN触发NR SCG添加程序;和iii.NR MN使用所报告NR测量结果来针对SCG PSCell和SCell选择正确小区。
因此,图9示出了用于NRDC信令的数据流程图。如图所示,图9包括UE 902以及MNgNB 910和SN gNB 912,该UE包括AP 904、RRC 906和L1 908。最初,UE 902可在UE 902处于RRC空闲状态(如框916所表示)时执行NR连接建立程序(如框914所表示)。作为如此的一部分,可在AP 904处执行UE数据量评估(如框918所表示),然后是从AP 904到RRC 906的连接建立消息(对应于大数据)(如箭头920所表示)。然后可经由RRC 906在UE 902和MN gNB 910之间传达一系列RRC连接消息(如箭头922、箭头924、箭头926和框928所表示)。最后,NR连接建立可包括UE 902和MN gNB 910之间经由RRC 906的安全模式通信(如箭头930和箭头932所表示)。
一旦NR连接建立完成,经由RRC 906,UE 902可向和MN gNB 910发送UE-NRDC-SCGConfigurationRequest(如箭头934所表示),该MNMRDC-SCGConfigurationRequest可通过将NR载波的数量设置为大于零的值来指示UE 902进入NRDC的偏好。作为响应,网络可开始用于NRDC的SCG添加程序,如框936所表示。NRDC添加程序(如框938所表示)可包括MN gNB910的SgNB添加请求(如箭头940所表示)和SN gNB 912的确认(如箭头942所表示)。然后,可将具有嵌入式SCG添加的RRC重新配置消息从MN gNB 910发送到UE 902(如箭头944所示),从而产生RRC连接NRDC状态(如框946所表示)。
释放NRDC可基于3GPP Rel-16 NR UEAssistanceInformation(UAI)。具体地,程序可类似于TS 38.331 CR 1469;R2-2002389中的3GPP定义,如下:1.UE可通过在UAI消息内将FR1和FR2的DL和UL载波的数量以及Dl和UL聚合带宽的数量设置为零能够来指示释放NRSCG的偏好;2.UAI消息可在嵌入ULInformationTransferMRDC中的MCG NR SRB1上传输,该ULInformationTransferMRDC由MN转发到SN;3.如果配置了SRB3,则UE可使用SRB3发送UAI消息,从而直接告知SN;以及4.SN可检测对零载波/零带宽的UE偏好并且发起SCG释放程序。
因此,图10示出了使用Rel-16 UAI的示例性NRDC释放程序。如图所示,图10包括UE1002以及MN gNB 1010和SN gNB 1012,该UE包括AP 1004、RRC 1006和L1 1008。在此类实施方案中,UE可能已经处于RRC连接NRDC状态,如框1014所表示。然后,UE数据量评估可在AP1004处发生在某个点(如框1016所表示),然后是从AP 1004到RRC 1006的小数据指示(如箭头1018所表示)。
然后,UAI可由UE 1002用于使用各种选项来向网络告知释放NR SCG的UE偏好。在第一选项(如框1020所表示)中,UE可直接向SN gNB 1012发送指示释放SCG的偏好的UAI消息(如箭头1022所表示)。此程序可如由3GPP Rel-16 NR UE功率节省增强(38.331CR 1469;R2-2002389)定义地执行。在第二选项(如框1024所表示)中,UE可向MN gNB 1010发送包括UAI的ULInformationTransferMRDC消息以指示UE的释放偏好(如箭头1026所表示)。然后,MN gNB 1010可将此类消息转发到SN gNB 1012上,如箭头1028所表示)。无论是否利用第一或第二选项,UE都可通过将优选DL和UL载波的数量设置为零来指示其释放偏好。然后可执行SCG释放,如框1030所表示。
使用UE-NRDCSCGConfigurationRequest消息的自主NR测量和NR测量结果报告可包括:1.处于NR连接模式的UE执行无间隙NR测量,包括:a.UE使用从多个来源导出的NR载波列表,如本文进一步描述;b.UE自主使用NR CDRX间隙进行IRAT NR测量;和c.UE使用第二RX链(RX2)来并行于NR RX+TX测量NR,并且在NR TX与用于NR测量的RX2测量冲突的情况下应用TX消隐(如针对MSIM);2.当需要NRDC设置并且UE发送UE-NRDC-SCGConfigurationRequest消息时,UE将NR测量结果包括在消息中;3.网络使用NR测量结果来选择要添加用于NRDC操作的NR PSCell和SCell;以及4.在UE不能执行自主NR测量的情况下,UE避免在UENRDC-SCGConfigurationRequest消息中报告结果。然后,则eNB可使用MeasObject来设置NR测量值并且使用ReportConfig导出结果来报告(如果NR SCG添加需要)。
图11示出了使用UENRDC-SCGConfigurationRequest消息的自主NR测量和NR测量结果报告。如图所示,图11包括UE 1102以及MN gNB 1110和SN gNB 1112,该UE包括AP1104、RRC 1106和L1 1108。在UE 1102处于关于小数据传输的RRC连接状态(如框1114所表示)时,NR测量可由UE 1102自主地执行(如框1116所表示)。此类自主测量可包括基于先前配置(例如,先前NRDC会话、DCCA空闲模式测量、给定操作者的已知载波等等)导出要测量的潜在NR载波,如框1118所表示。然后,NR测量和结果可经由RRC 1106和L1 1108(分别如箭头1120和箭头1122所表示)执行/传达。此类自主测量可被执行以避免与NR SCG添加相关联的未来延迟,并且可使用网络空闲模式测量配置来执行。关于自主测量,如框1124中所示:1.RX可在没有间隙的情况下使用;以及2.如果使用间隙,则:无CDRX间隙可用;b.可不使用第二RX链;并且c.可在LTE TX与用于NR测量的RX2冲突的情况下应用TX消隐。然后,可存储测量结果,如框1126所表示。
然后,可在AP 1104处执行对数据量的评估(如框1128所表示),该评估可包括大量数据(如箭头1130所表示),并且产生与UE处的大数据相关联的RRC连接状态(如框1132所表示)。然后,UE 1102可发送UE-NRDC-SCGConfigurationRequest并且向网络告知其添加NRSCG的偏好,以及报告NR测量结果(如箭头1134和框1136所表示)。
然后,网络可开始NRDC添加程序,如框1138所示。此类程序可包括MN gNB 1110发送SgNB添加请求和SN gNB 1112确认请求(分别如箭头1140和箭头1142所表示)。然后,MNgNB 1110可发送具有用于SCG添加的嵌入式SCG RRC重新配置的RRC连接重新配置(如箭头1144所表示),从而产生RRC连接NRDC状态(如框1146所表示)。
图12示出了使用UE-NRDC-SCGConfigurationRequest消息和DCCA空闲模式测量增强的数据流程图。如图所示,图12包括UE 1202以及MN gNB 1210和SN gNB 1212,该UE包括AP 1204、RRC 1206和L1 1208。最初,可执行DCCA空闲模式测量,如框1214所表示。在UE1202处于RRC空闲状态(如框1216所设备)时,NR测量可由UE 1202执行(如箭头1218和箭头1220所表示)。具体地,此类测量可在如在Rel-16DCCA增强中进一步讨论的空闲模式下执行,以用于快速SCG添加(如框1222所表示)。此外,可存储此类测量结果,如框1224所表示。
然后,可执行NR连接建立,如框1226所表示。作为如此的一部分,可在AP 1204处执行UE数据量评估(如框1228所表示),然后是从AP 1204到RRC 1206的连接建立消息(对应于小数据)(如箭头1230所表示)。然后可经由RRC 1206在UE 1202和MN gNB 1210之间传达一系列RRC连接消息(如箭头1232、箭头1234、箭头1236和框1240所表示)。RRC连接设置完成消息(如箭头1236所表示)还可包括向MN gNB 1210指示的DCCA空闲模式测量结果的可用性的信息(如框1238所表示)。最后,NR连接建立可包括UE 1202和MN gNB 1210之间经由RRC1206的安全模式通信(如箭头1242和箭头1244所表示)。
一旦LTE连接建立完成,经由RRC 1206,UE 1202可向和MN gNB 1210发送UE-NRDC-SCGConfigurationRequest(如箭头1246所表示),该MNMRDC-SCGConfigurationRequest可通过将SCG NR载波的数量设置为等于零来指示UE 1202不进入NRDC的偏好。作为响应,网络可将UE保持处于NR MCG连接模式并且不准备NRDC添加,如框1248所表示。
图13示出了使用UE-NRDC-SCGConfigurationRequest消息和DCCA空闲模式测量增强的数据流程图。如图所示,图13包括UE 1302以及MN gNB 1310和SN gNB 1312,该UE包括AP 1304、RRC 1306和L1 1308。最初,可执行DCCA空闲模式测量,如框1314所表示。在UE 13处于RRC空闲状态(如框1316所设备)时,NR测量可由UE 1302执行(如箭头1318和箭头1320所表示)。具体地,此类测量可在如在Rel-16DCCA增强中进一步讨论的空闲模式下执行,以用于快速SCG添加(如框1322所表示)。此外,可存储此类测量结果,如框1324所表示。
然后,可执行NR连接建立,如框1326所表示。作为如此的一部分,可在AP 1304处执行UE数据量评估(如框1328所表示),然后是从AP 1304到RRC 1306的连接建立消息(对应于大数据)(如箭头1330所表示)。然后可经由RRC 1306在UE 1302和MN gNB 1310之间传达一系列RRC连接消息(如箭头1332、箭头1334、箭头1336和框1340所表示)。RRC连接设置完成消息(如箭头1336所表示)还可包括向MN gNB 1310指示的DCCA空闲模式测量结果的可用性的信息(如框1338所表示)。最后,NR连接建立可包括UE 1302和MN gNB 1310之间经由RRC1306的安全模式通信(如箭头1342和箭头1344所表示)。
一旦NR连接建立完成,经由RRC 1306,UE 1302可向和MN gNB 1310发送UE-NRDC-SCGConfigurationRequest(如箭头1348所表示),该MNMRDC-SCGConfigurationRequest可通过将NR载波的数量设置为大于零的值来指示UE 1302进入NRDC的偏好。作为响应,网络可设置NRDC添加,如框1346和框1350所表示。NRDC添加可包括来自MN gNB 1310的SgNB添加请求(如箭头1352所表示)和来自SN gNB 1312的SgNB添加请求确认(如箭头1354所表示)。然后MN gNB 1310可发送具有用于SCG添加的嵌入式RRC重新配置的RRC连接重新配置消息(如箭头1356所表示),这可以RRC连接NRDC状态(如框1358所表示)结束。
关于贯穿本公开讨论的自主测量,UE可:1.维护要测量的载波集;2.在没有测量间隙模式配置的情况下执行测量;3.应用UE特定的具体实施小区搜索和测量周期;以及4.根据UE的适用场景,启用和禁用自主测量。
导出要测量的载波集可包括:1.在RRC状态转变时:a.在SCG释放的情况下,存储先前ENDC、NRDC或NEDC会话期间用于PSCell的载波频率;以及b.在进入RRC连接模式时,存储先前配置用于3GPP Rel16DCCA空闲模式测量的载波频率;以及2.在连接模式移动时:a.UE在触发移交的RRC重新配置消息内(或在移交之后不久的单独RRC重新配置消息中)接收测量对象(MeasObject)中的载波列表,该触发移交(或在切换后不久的单独RRC重新配置消息),在这种情况下,以下可能是适用的:i.网络可在不链接到MeasId/ReportConfig并且没有任何间隙模式配置的情况下指示配置MeasObject的载波;以及ii.UE可使用MeasObject信息进行自主测量;和b.UE获取具有Rel-16 DCCA空闲模式测量配置的目标小区系统信息块(SIB)(即,LTE中的SIB5包括NR载波列表,NR中的SIBx包括NR和LTE载波列表)。
图14示出了用于维护载波列表的状态转变图。如图所示,当从RRC非活动状态(框1402)转变为RRC连接状态(框1406)时,空闲模式载波可存储在候选载波列表(即,框1412)的顶部处,如框1404所表示,而在相反方向上转变导致不采取动作。此外,从RRC连接状态(框1406)转变为MRDC状态(框1416)不产生动作,而相反转变导致将PSCell载波存储在候选载波列表的顶部处,如框1414所表示)。此外,从RRC连接状态(1406)转变为RRC空闲状态(框1408)导致空闲模式载波被添加到候选载波列表的顶部(如框1410所表示),而在相反方向上转变不产生动作。最后,从RRC非活动状态(框1402)转变为RRC空闲状态(框1408)不产生动作。
在没有测量间隙模式配置的情况下执行测量可包括:1.使用PCell的潜在可用连接模式DRX间隙;2.对于FR1中的EUTRA PCell或NR PCell,以无间隙方式测量任何NR FR2载波;以及3.使用第二/附加RX链来执行测量,如下:当RX链与PCell的TX冲突时,使用TX消隐;或b.调离TX一段时间,以优先考虑附加RX链。
图15示出了用于在移动(例如,移交)期间维持载波列表的数据流程图。如图所示,图15包括AP 1502、小区1 1504(例如,eNB或gNB)和小区2 1506(例如,eNB或gNB)。小区1可传输包括MeasObject的移交RRC重新配置消息(如箭头1508所表示)。然后,可将MeasObject存储在用于自主测量的载波列表1512的顶部处(如框1510所表示)。然后,AP可在目标小区上同步,如框1514所表示。然后,小区2 1506可发送主信息块(MIB)和SIB1(分别如箭头1516和箭头1518所表示)。然后,AP 1502可向小区2 1506发送RRC重新配置/移交完成消息(如箭头1520所表示)。
然后,小区2 1506可发送SIB消息(例如,LTE SIB5或NR SIBx)(如箭头1522所表示)。如果在RRC重新配置消息中未接收到此类消息,则载波列表可从SIB存储(如框1524所表示。
然后,可由小区2 1506发送具有MeasObject的RRC重新配置完成消息(如箭头1526所表示)。然后,可将MeasObject载波存储在候选载波列表的顶部处(如框1530所表示)。最后,AP 1502然后可向小区2 1506发送RRC重新配置完成消息(如箭头1528所表示)。
本文所述的原理包括用于允许通信设备在要发生SCG的添加或者通信设备要连接到仅MCG的情况下向网络发信号通知的方法。此外,本文所述的信令允许设备为SCG提供优选配置。此类优选配置可包括与最大可实现数据吞吐量和用于功率消耗减少的降低的吞吐量之间的平衡相关的信息。例如,此类信息可包括:1.SCG内要聚合的下行链路(DL)和上行链路(UL)载波频率的最大数量;2.用于DL和UL数据传输的最大聚合带宽;3.用于DL和UL数据传输的多输入和多输出(MIMO)层的最大数量;4.用于DL和UL数据传输的最大带宽部分(BWP);5.UE优选的非连续接收(DRX)配置;等等。
如本文所述,通信设备可通过指示零DL和零UL载波频率来指示通信设备不必具有用于用户数据传输的SCG。基于此类指示,网络然后可决定不添加SCG,而是仅保持设备连接到MCG。
相比之下,通信设备可通过指示非零DL和UL载波频率来指示通信设备必须具有用于用户数据传输的SCG。设备还可能够发信号通知非零DL和零UL载波频率以实现SCG的仅DL配置。除DL和UL载波频率的数量之外,设备还可通过选择聚合带宽、MIMO层的数量和BWP配置来缩放最大数据吞吐量和所得功率消耗。因此,此类信息(例如,聚合带宽、MIMO层的数量等等)可由设备发送到网络。
网络可限于在通信设备请求时执行SGC的添加。另外,网络可使用所提供的信息来将设备按照其所请求的聚合带宽/载波频率、MIMO层的数量和BWP配置进行配置。
为了优化与最大可实现数据吞吐量和用于功率消耗减少的降低的吞吐量之间的平衡相关的SCG的配置,通信设备可:1.设置DL和UL分量载波的数量。作为如此的一部分:a.当不使用SCG配置时,DL和UL载波的数量可设置为零;b.对于仅DL操作,DL载波的数量可设置为非零数量,并且UL载波的数量可设置为零;c.最大可能吞吐量可通过设置DL和UL载波的数量来按设备缩放(即,将DL和UL载波的数量设置为设备支持的最大值以实现最大吞吐量并且设置小于最大数量以降低功率消耗);2.按频率范围设置DL和UL的设备优选的最大聚合带宽。作为如此的一部分:可针对每个频率范围控制所用最大带宽,并且可禁用特定频率范围的使用。值得注意的是,以下可能适用:i.低于8千兆赫(GHz)的频率范围可定义为FR1(即,介于410兆赫(MHz)和7125MHz之间的范围);以及ii.高于8GHz的频率范围可定义为FR2(即,介于24250MHz和52600MHz之间的范围);b.FR1的DL和UL带宽可设置为大于零的值,并且FR2的DL和UL带宽可设置为零,以设置用于仅FR1操作的SCG。这样做可避免FR2操作将消耗高量功率的情况下的FR2使用;c.FR2的DL和UL带宽可设置为大于零的值,并且FR1的DL和UL带宽可设置为零,以设置用于仅FR2操作的SCG;d.FR1和FR2的DL和UL带宽可设置为设备支持的最大值以实现最大吞吐量;3.按频率范围设置DL和UL的MIMO层的数量,包括:a.将MIMO层的数量减小到小于UE支持的最大层数的值以减少功率消耗;或b.将MIMO层的数量设置为等于UE针对FR1 DL、FR1 UL、FR2 DL和FR2 UL支持的最大层数的值,以实现最大吞吐量;4.在设备不使用最大吞吐量的情况下,提供优选DRX配置以降低功率消耗;以及5.使用最适合通信设备的上文所列项(即,1、2、3和4)的参数设置的任何组合。
信令还可包括相邻小区测量结果。具体地,网络可能必须接收由设备报告的测量结果,以便针对SCG选择正确小区。使用当前程序,网络可将设备配置为对相邻频率执行测量并且周期性地或响应于特定触发条件来报告测量结果。然而,此类测量程序可能导致添加SCG的延迟。为了避免此类延迟,设备可对潜在候选频率自主地执行测量并且停止存储测量结果。这样做确保了设备在确定添加SCG时具有可用的测量结果。一旦设备发信号通知期望添加SCG,设备就可将测量结果包括在发送到网络的对应消息中。
设备可通过执行以下中的一者或多者来确定用于自主测量的候选频率列表:1.识别网络先前已经提供用于执行空闲模式下测量的潜在频率列表,这些测量可包括在设备建立连接以用于转移数据之前执行的相邻小区测量。UE可将此用于连接模式自主测量以准备SCG的添加;2.对较早SCG配置期间设备所用的频率的识别。例如,当设备最近已执行SCG释放程序并且准备再次添加SCG时,可利用此类频率;以及3.对于通信设备执行到MCG上的不同主服务小区的移交的移动性场景,以下两个选项中的一者可适用:a.通信设备可读取系统信息并且导出要测量的空闲模式载波频率。然后,通信设备可在网络支持广播此类信息时将此类信息重新用于连接模式;或b.网络可在移交命令消息中(即,NR中的无线电资源控制(RRC)重新配置和演进通用陆地无线电接入(EUTRA)中的RRC连接重新配置)或在切换之后的单独消息中提供关于载波频率列表的更新信息。消息可从新小区传输到设备。
此外,通信设备可在没有任何网络配置的测量间隙模式(即,无间隙测量)的情况下使用以下执行上述自主测量:1.PCell的连接模式DRX时机;2.EUTRA PCell或在FR1上的NRPCell的情况下,任何NR FR2载波可执行无间隙测量,因为FR2使用特定于频率范围的单独RF实体;或3.用于执行测量的第二或任何附加可用RX链。当附加RX链与PCell的TX冲突时,UE可在短持续时间内中断到小区的传输以挤压自主测量。
图16示出了用于实践本文所述的原理的通信设备1602。如图所示,通信设备1602包括数据传输评估器1604、信令引擎1606、测量数据库1608和测量引擎1610。数据传输评估器1604可被配置为确定要传输的数据量、业务模式和设备用户交互水平以评估SCG是否要用于传输数据。数据传输评估器1604还可就频率层、MIMO层和带宽确定用于SCG的配置。信令引擎1606可被配置为执行到网络的信令以将网络配置为添加(或不添加)SCG。测量数据库1608可被配置为存储候选频率的相邻小区测量结果并且将此类结果提供到信令引擎1606。测量引擎1610可被配置为确定设备执行自主测量以准备潜在SCG添加的频率。测量引擎1610还可负责执行此类测量并且将测量结果提供到测量数据库1608。
另选的实施方案还可包括:1.代替使用多个聚合载波、MIMO层和带宽来指示对SCG添加的期望,设备可向网络发信号通知指示此类期望(即,附加SCG)的数据。然后,网络可确定是否执行SCG的添加。在这种情况下,网络可导出多个聚合载波、MIMO层和带宽。数据传输评估器1604可导出业务量/模式。然后,设备可将评估结果传输到网络。这种选项的一个缺点可在于,设备不控制不同的SCG配置参数,而是依赖于网络来选择正确配置模式。和/或2.代替在设备和网络之间定义和实现新消息以用于此类信令,现有消息可扩展为包括此类信息。然而,这样做可能导致与设备何时被允许将这种消息发送到网络相关联的依赖性以及其他潜在依赖性。
图17示出了用于在UE处执行自主测量的方法1700的流程图。在框1702处,方法1700包括:对无线电资源控制(RRC)连接请求进行编码以传输到具有第一基站类型的第一基站。例如,UE 402可向eNB 410发送RRC请求,如图4所示(除本文中所包括的各种其他附图中所示之外)。在框1704处,方法1700包括:对从第一基站接收的RRC连接建立通信进行解码。例如,eNB 410可向UE 402发送RRC连接建立消息。
在框1706处,方法1700包括:在处于RRC连接状态时自主地执行与第二基站类型的候选载波集相关联的测量。自主地执行测量可以包括导出要测量的候选载波集。例如,UE402可执行自主IRAT NR测量。在框1708处,方法1700包括:存储来自所执行测量的结果。在图4的继续示例中,UE 402可存储自主执行的测量。
方法1700还可包括第一基站类型和第二基站类型,该第一基站类型包括增强型节点B(eNB),该第二基站类型包括下一代节点B(gNB)。方法1700还可包括执行数据量评估,以及基于所执行数据量评估来指示UE的与进入对应于来自候选载波集的至少一个候选载波的演进通用陆地无线电接入(EUTRA)新空口(NR)双连接(ENDC)状态相关联的偏好。偏好可传输到第一基站。
方法1700还可包括第一基站类型和第二基站类型,该第一基站类型包括主节点(MN)下一代节点B(gNB),该第二基站类型包括辅节点(SN)gNB。方法1700还可包括执行数据量评估,以及基于所执行数据量评估来指示UE的与进入对应于来自候选载波集的至少一个候选载波的新空口双连接(NRDC)状态相关联的偏好。偏好可传输到第一基站。方法1700还可包括:在没有测量间隙模式配置的情况下执行自主测量。方法1700还可包括:自主地执行测量包括在未从网络接收到测量配置的情况下执行测量。
本文所设想的实施方案包括一种装置,该装置包括用于执行方法1700的一个或多个要素的构件。该装置可以是例如UE的装置(诸如作为UE的无线设备1902,如本文所述)。
本文所设想的实施方案包括一个或多个非暂态计算机可读介质,该一个或多个非暂态计算机可读介质包括指令,这些指令在由电子设备的一个或多个处理器执行时使电子设备执行方法1700的一个或多个要素。该非暂态计算机可读介质可以是例如UE的存储器(诸如作为UE的无线设备1902的存储器1906,如本文所述)。
本文所设想的实施方案包括一种装置,该装置包括用于执行方法1700的一个或多个要素的逻辑、模块或电路系统。该装置可以是例如UE的装置(诸如作为UE的无线设备1902,如本文所述)。
本文所设想的实施方案包括一种装置,该装置包括:一个或多个处理器和一个或多个计算机可读介质,该计算机可读介质包括指令,这些指令在由所述一个或多个处理器执行时使所述一个或多个处理器执行方法1700的一个或多个要素。该装置可以是例如UE的装置(诸如作为UE的无线设备1902,如本文所述)。
本文所设想的实施方案包括一种信号,该信号如在方法1700的一个或多个要素中所描述或与该方法的一个或多个要素相关。
本文所设想的实施方案包括一种计算机程序或计算机程序产品,该计算机程序或计算机程序产品包括指令,其中由处理器执行程序使处理器执行方法1700的一个或多个要素。处理器可以是UE的处理器(诸如作为UE的无线设备1902的处理器1904,如本文所述)。这些指令可例如位于处理器中和/或UE的存储器(诸如作为UE的无线设备1902的存储器1906,如本文所述)上。
图18示出了根据本文所公开实施方案的无线通信系统1800的示例性架构。以下提供的描述是针对结合3GPP技术规范提供的LTE系统标准和/或5G或NR系统标准操作的示例性无线通信系统1800。
如图18所示,该无线通信系统1800包括UE 1802和UE 1804(但可使用任何数量的UE)。在该示例中,UE 1802和UE 1804被示出为智能手机(例如,能够连接到一个或多个蜂窝网络的手持式触摸屏移动计算设备),但也可包括被配置用于无线通信的任何移动或非移动计算设备。
UE 1802和UE 1804可被配置为与RAN 1806通信耦接。在实施方案中,RAN 1806可以是NG-RAN、E-UTRAN等。UE 1802和UE 1804利用与RAN 1806的连接(或信道)(分别示出为连接1808和连接1810),其中每个连接(或信道)包括物理通信接口。RAN 1806可包括实现连接1808和连接1810的一个或多个基站,诸如基站1812和基站1814。
在该示例中,连接1808和连接1810是实现此类通信耦接的空中接口,并且可符合RAN 1806所用的RAT,诸如例如LTE和/或NR。
在一些实施方案中,UE 1802和UE 1804还可经由侧链路接口1816直接交换通信数据。UE 1804被示出为被配置为经由连接1820访问接入点(示出为AP 1818)。以举例的方式,连接1820可包括本地无线连接,诸如符合任何IEEE 802.11协议的连接,其中AP 1818可包括
Figure BDA0003730144620000261
路由器。在该示例中,AP 1818可在不通过CN 1824的情况下连接到另一网络(例如,互联网)。
在实施方案中,UE 1802和UE 1804可被配置为根据各种通信技术(诸如但不限于正交频分多址(OFDMA)通信技术(例如,用于下行链路通信)或单载波频分多址(SC-FDMA)通信技术(例如,用于上行链路和ProSe或侧链路通信))使用正交频分复用(OFDM)通信信号在多载波通信信道上互相进行通信或与基站1812和/或基站1814进行通信,但实施方案的范围在这方面不受限制。OFDM信号可包括多个正交子载波。
在一些实施方案中,基站1812或基站1814的全部或部分可实现为作为虚拟网络的一部分在服务器计算机上运行的一个或多个软件实体。此外,或在其他实施方案中,基站1812或基站1814可被配置为经由接口1822彼此通信。在无线通信系统1800是LTE系统(例如,当CN 1824是EPC时)的实施方案中,接口1822可以是X2接口。该X2接口可在连接到EPC的两个或以上基站(例如,两个或以上eNB等)之间和/或连接到EPC的两个eNB之间予以定义。在无线通信系统1800是NR系统(例如,当CN 1824是5GC时)的实施方案中,接口1822可以是Xn接口。该Xn接口限定在连接到5GC的两个或更多个基站(例如,两个或更多个gNB等)之间、连接到5GC的基站1812(例如,gNB)和eNB之间和/或连接到5GC(例如,CN 1824)的两个eNB之间。
RAN 1806被示出为通信地耦接到CN 1824。CN 1824可包括一个或多个网络元件1826,该一个或多个网络元件被配置为向经由RAN 1806连接到CN 1824的客户/订阅者(例如,UE 1802和UE 1804的用户)提供各种数据和电信服务。CN 1824的部件可在包括用于从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取和执行指令的部件的一个物理设备或单独物理设备中实现。
在实施方案中,CN 1824可以是EPC,并且RAN 1806可经由S1接口1828与CN 1824相连。在实施方案中,S1接口1828可分成两部分:S1用户平面(S1-U)接口,该S1-U接口携载基站1812或基站1814和服务网关(S-GW)之间的业务数据;以及S1-MME接口,该S1-MME接口是基站1812或基站1814和移动性管理实体(MME)之间的信令接口。
在实施方案中,CN 1824可以是5GC,并且RAN 1806可经由NG接口1828与CN 1824相连。在实施方案中,NG接口1828可分成两部分:NG用户平面(NG-U)接口,该NG-U接口携载基站1812或基站1814和用户平面功能(UPF)之间的业务数据;以及S1控制平面(NG-C)接口,该NG-C接口是基站1812或基站1814和接入和移动性管理功能(AMF)之间的信令接口。
一般来说,应用服务器1830可以是提供与CN 1824一起使用互联网协议(IP)承载资源的应用的元件(例如,分组交换数据服务)。应用服务器1830还可被配置为经由CN 1824支持针对UE 1802和UE 1804的一种或多种通信服务(例如,VoIP会话、群组通信会话等)。应用服务器1830可通过IP通信接口1832与CN 1824通信。
图19示出了根据本文所公开实施方案的用于在无线设备1902和网络设备1918之间执行信令1932的系统1900。系统1900可以是如本文所述的无线通信系统的一部分。无线设备1902可以是例如无线通信系统的UE。网络设备1918可以是例如无线通信系统的基站(例如,eNB或gNB)。
无线设备1902可包括一个或多个处理器1904。处理器1904可执行指令,使得执行无线设备1902的各种操作,如本文所述。处理器1904可包括一个或多个基带处理器,该一个或多个基带处理器使用例如被配置为执行本文所述操作的中央处理单元(CPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、控制器、现场可编程门阵列(FPGA)设备、另一硬件设备、固件设备或它们的任何组合来实现。
无线设备1902可包括存储器1906。存储器1906可以是存储指令1908(其可包括,例如,由处理器1904执行的指令)的非暂态计算机可读存储介质。指令1908也可称为程序代码或计算机程序。存储器1906还可存储由处理器1904使用的数据和由该处理器计算的结果。
无线设备1902可包括可使用射频(RF)发射器和/或接收器电路系统的一个或多个收发器1910,该射频发射器和/或接收器电路使用无线设备1902的天线1912以根据对应的RAT促进到和/或从无线设备1902与其他设备(例如,网络设备1918)的信令(例如,信令1932)。
无线设备1902可包括一根或多根天线1912(例如,一根、两根、四根或更多根)。对于具有多根天线1912的实施方案,无线设备1902可利用此类多根天线1912的空间分集,以在同一时频资源上发送和/或接收多个不同数据流。这一做法可被称为,例如,多输入多输出(MIMO)做法(指的是分别在传输设备和接收设备侧使用的实现这一方面的多根天线)。由无线设备1902进行的MIMO传输可根据应用于无线设备1902处的预编码(或数字波束形成)来实现,该无线设备根据已知或假设的信道特性跨天线1912复用数据流,使得每个数据流相对于其他流以适当的信号强度并在空域中的期望位置(例如,与该数据流相关联的接收器的位置)处被接收。某些实施方案可使用单用户MIMO(SU-MIMO)方法(其中数据流全部针对单个接收器)和/或多用户MIMO(MU-MIMO)方法(其中个别数据流可针对空域中不同位置的个别(不同)接收器)。
在具有多根天线的某些实施方案中,无线设备1902可实现模拟波束形成技术,由此由天线1912发送的信号的相位被相对调整成使得可定向天线1912的(联合)传输(这有时称为波束控制)。
无线设备1902可包括一个或多个接口1914。接口1914可用于向无线设备1902提供输入或从该无线设备提供输出。例如,作为UE的无线设备1902可包括接口1914,诸如传声器、扬声器、触摸屏、按钮等,以便允许该UE的用户向该UE进行输入和/或输出。这种UE的其他接口可由(例如,除已描述的收发器1910/天线1912以外的)允许该UE和其他设备之间进行通信的发射器、接收器和其他电路系统组成,并且可根据已知协议(例如,
Figure BDA0003730144620000291
等)进行操作。
无线设备1902可包括自主测量模块1916。自主测量模块1916可经由硬件、软件或它们的组合来实现。例如,自主测量模块1916可实现为处理器、电路和/或存储在存储器1906中并且由处理器1904执行的指令1908。在一些示例中,自主测量模块1916可集成在处理器1904和/或收发器1910内。例如,自主测量模块1916可通过处理器1904或收发器1910内的软件部件(例如,由DSP或通用处理器执行)和硬件部件(例如,逻辑门和电路系统)的组合来实现。
自主测量模块1916可用于本公开的各个方面,例如,图4、图5、图11、图14和图15的各方面。自主测量模块1916被配置为辅助UE执行关于候选载波(例如,NR载波)的自主测量。
网络设备1918可包括一个或多个处理器1920。处理器1920可执行指令,使得执行网络设备1918的各种操作,如本文所述。处理器1904可包括一个或多个基带处理器,该一个或多个基带处理器使用例如被配置为执行本文所述操作的CPU、DSP、ASIC、控制器、FPGA设备、另一硬件设备、固件设备或它们的任何组合来实现。
网络设备1918可包括存储器1922。存储器1922可以是存储指令1924(其可包括例如由处理器1920执行的指令)的非暂态计算机可读存储介质。指令1924也可称为程序代码或计算机程序。存储器1922还可存储由处理器1920使用的数据和由该处理器计算的结果。
网络设备1918可包括一个或多个收发器1926,该一个或多个收发器可包括RF发射器和/或接收器电路系统,该RF发射器和/或接收器电路系统使用网络设备1918的天线1928以根据对应的RAT促进到和/或从网络设备1918与其他设备(例如,无线设备1902)的信令(例如,信令1932)。
网络设备1918可包括一根或多根天线1928(例如,一根、两根、四根或更多根)。在具有多根天线1928的实施方案中,网络设备1918可执行如已所述的MIMO、数字波束形成、模拟波束形成、波束控制等。
网络设备1918可包括一个或多个接口1930。接口1930可用于向网络设备1918提供输入或从该网络设备提供输出。例如,作为基站的网络设备1918可包括由(例如,除已描述的收发器1926/天线1928以外的)发射器、接收器和其他电路组成的接口1930,这些接口使得该基站能够与核心网络中的其他设备进行通信,和/或使得该基站能够与外部网络、计算机、数据库等进行通信,以达到执行操作、管理和维护该基站或与该基站可操作连接的其他设备的目的。
多无线电双连接(MR-DC)是E-UTRA内双连接(DC)的一般化,其中具有多Rx/Tx能力的UE可被配置为利用由经由非理想回程连接的两个不同节点提供的资源,一个节点提供NR接入,并且另一节点提供E-UTRA或NR接入。一个节点可充当主节点(MN),并且另一个节点可充当辅节点(SN)。MN和SN可经由网络接口连接,并且至少MN连接到核心网络。MN和/或SN可利用共享频谱信道接入来操作。
在某些实施方案中,除非另外指明,否则为UE指定的功能可用于集成接入和回程移动终端(IAB-MT)。类似于UE,IAB-MT可使用一个网络节点或使用具有E-UTRA-NR双连接(EN-DC)和NR-NR双连接(NR-DC)架构的两个不同节点来接入网络。在EN-DC中,可能不支持通过E-UTRA无线电接口的回程流量。MR-DC可基于不同节点之间的非理想回程的假设来设计,但也可在理想回程的情况下使用。
图20示出了根据本文实施方案的EN-DC架构2000。EN-DC架构2000包括E-UTRAN2024和EPC 2022。E-UTRAN 2024经由EN-DC支持MR-DC,其中UE连接到充当MN的一个eNB和充当SN的一个en-gNB。en-gNB可以是向UE提供NR用户平面和控制平面协议终止的节点,并且可充当EN-DC中的SN。在图20中,EPC 2022可包括一个或多个移动性管理实体/服务网关(MME/S-GW),诸如MME/S-GW 2004和MME/S-GW 2002。以举例的方式,E-UTRAN 2024可包括eNB 2010、eNB 2012、en-gNB 2008和en-gNB 2006。eNB 2010和eNB 2012中的每一者可经由一个或多个S1接口2014连接到EPC 2022,并且经由一个或多个X2接口2018连接到一个或多个en-gNB。en-gNB 2008和en-gNB 2006中的每一者可经由一个或多个S1-U接口2016连接到EPC 2022。en-gNB 2008和en-gNB 2006可通过X2-U接口2020彼此连接。
在某些具体实施中,NG-RAN支持NG-RAN E-UTRA-NR双连接(NGEN-DC),其中UE连接到充当MN的一个ng-eNB和充当SN的一个gNB。
在某些具体实施中,NG-RAN支持NR-E-UTRA双连接(NE-DC),其中UE连接到充当MN的一个gNB和充当SN的一个ng-eNB。
在某些具体实施中,NG-RAN支持NR-NR双连接(NR-DC),其中UE连接到充当MN的一个gNB和充当SN的另一个gNB。此外,当UE连接到两个gNB-DU时,也可以使用NR-DC,一个gNB-DU服务于MCG,并且另一个gNB-DU服务于SCG,这两个gNB-DU连接到相同的gNB-CU,既充当MN又充当SN。
对于一个或多个实施方案,在前述附图中的一个或多个附图中示出的部件中至少一个部件可被配置为执行如本文所述的一个或多个操作、技术、过程和/或方法。例如,本文结合前述附图中的一个或多个附图所述的基带处理器可被配置为根据本文所述示例中的一个或多个示例进行操作。又如,与上文结合前述附图中的一个或多个附图所述的UE、基站、网络元件等相关联的电路系统可被配置为根据本文示出的示例中的一个或多个示例进行操作。
除非另有明确说明,否则上述实施方案中的任一者可与任何其他实施方案(或实施方案的组合)进行组合。一个或多个具体实施的前述描述提供了说明和描述,但是并不旨在穷举或将实施方案的范围限制为所公开的精确形式。鉴于上面的教导内容,修改和变型是可能的,或者可从各种实施方案的实践中获取修改和变型。
本文所述的系统和方法的实施方案和具体实施可包括各种操作,这些操作可体现在将由计算机系统执行的机器可执行指令中。计算机系统可包括一个或多个通用或专用计算机(或其他电子设备)。计算机系统可包括硬件部件,这些硬件部件包括用于执行操作的特定逻辑部件,或者可包括硬件、软件和/或固件的组合。
应当认识到,本文所述的系统包括对具体实施方案的描述。这些实施方案可组合成单个系统、部分地结合到其他系统中、分成多个系统或以其他方式划分或组合。此外,可设想在另一个实施方案中使用一个实施方案的参数、属性、方面等。为了清楚起见,仅在一个或多个实施方案中描述了这些参数、属性、方面等,并且应认识到除非本文特别声明,否则这些参数、属性、方面等可与另一个实施方案的参数、属性、方面等组合或将其取代。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。
尽管为了清楚起见已经相当详细地描述了前述内容,但是将显而易见的是,在不脱离本发明原理的情况下,可以进行某些改变和修改。应当指出的是,存在实现本文所述的过程和装置两者的许多另选方式。因此,本发明的实施方案应被视为例示性的而非限制性的,并且本说明书不限于本文给出的细节,而是可在所附权利要求书的范围和等同物内进行修改。

Claims (20)

1.一种用户设备(UE),包括:
处理器;以及
存储器,所述存储器存储指令,所述指令在由所述处理器执行时将所述UE配置为:
对无线电资源控制(RRC)连接请求进行编码,以用于传输到具有第一基站类型的第一基站;
对从所述第一基站接收的RRC连接设置通信进行解码;
在处于RRC连接状态时自主地执行与第二基站类型的候选载波集相关联的测量,自主地执行所述测量包括导出要测量的所述候选载波集;以及
存储来自所述测量的结果。
2.根据权利要求1所述的UE,其中所述第一基站类型包括增强型节点B(eNB)并且所述第二基站类型包括下一代节点B(gNB)。
3.根据权利要求2所述的UE,其中所述存储器还存储指令,所述指令在由所述处理器执行时将所述处理器配置为:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的演进通用陆地无线电接入(EUTRA)新空口(NR)双连接(ENDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
4.根据权利要求1所述的UE,其中所述第一基站类型包括主节点(MN)下一代节点B(gNB)并且所述第二基站类型包括辅节点(SN)gNB。
5.根据权利要求4所述的UE,其中所述存储器还存储指令,所述指令在由所述处理器执行时将所述处理器配置为:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的新空口双连接(NRDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
6.根据权利要求1所述的UE,其中所述测量在没有测量间隙模式配置的情况下执行。
7.根据权利要求1所述的UE,其中自主地执行所述测量包括在未从网络接收测量配置的情况下执行所述测量。
8.一种用于在用户设备(UE)处执行自主测量的方法,所述方法包括:
对无线电资源控制(RRC)连接请求进行编码,以用于传输到具有第一基站类型的第一基站;
对从所述第一基站接收的RRC连接设置通信进行解码;
在处于RRC连接状态时自主地执行与第二基站类型的候选载波集相关联的测量,自主地执行所述测量包括导出要测量的所述候选载波集;以及
存储来自所述测量的结果。
9.根据权利要求8所述的方法,其中所述第一基站类型包括增强型节点B(eNB)并且所述第二基站类型包括下一代节点B(gNB)。
10.根据权利要求9所述的方法,所述方法还包括:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的演进通用陆地无线电接入(EUTRA)新空口(NR)双连接(ENDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
11.根据权利要求8所述的方法,其中所述第一基站类型包括主节点(MN)下一代节点B(gNB)并且所述第二基站类型包括辅节点(SN)gNB。
12.根据权利要求11所述的方法,所述方法还包括:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的新空口双连接(NRDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
13.根据权利要求8所述的方法,其中所述测量在没有测量间隙模式配置的情况下执行。
14.根据权利要求8所述的方法,其中自主地执行所述测量包括在未从网络接收测量配置的情况下执行所述测量。
15.一种非暂态计算机可读存储介质,所述计算机可读存储介质包括指令,所述指令在由用户设备(UE)的处理器执行时使所述UE:
对无线电资源控制(RRC)连接请求进行编码,以用于传输到具有第一基站类型的第一基站;
对从所述第一基站接收的RRC连接设置通信进行解码;
在处于RRC连接状态时自主地执行与第二基站类型的候选载波集相关联的测量,自主地执行所述测量包括导出要测量的所述候选载波集;以及
存储来自所述测量的结果。
16.根据权利要求15所述的非暂态计算机可读存储介质,其中所述第一基站类型包括主节点(MN)下一代节点B(gNB)并且所述第二基站类型包括辅节点(SN)gNB。
17.根据权利要求16所述的非暂态计算机可读存储介质,其中所述计算机可读存储介质还包括指令,所述指令在由所述UE的处理器执行时使所述UE:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的演进通用陆地无线电接入(EUTRA)新空口(NR)双连接(ENDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
18.根据权利要求15所述的非暂态计算机可读存储介质,其中所述第一基站类型包括主节点(MN)下一代节点B(gNB)并且所述第二基站类型包括辅节点(SN)gNB。
19.根据权利要求18所述的非暂态计算机可读存储介质,其中所述计算机可读存储介质还包括指令,所述指令在由所述UE的处理器执行时使所述UE:
执行数据量评估;以及
基于所执行的数据量评估,指示所述UE的与进入对应于来自所述候选载波集的至少一个候选载波的演进通用陆地无线电接入(EUTRA)新空口(NR)双连接(ENDC)状态相关联的偏好,所述偏好被传输到所述第一基站。
20.根据权利要求15所述的非暂态计算机可读存储介质,其中所述测量在没有测量间隙模式配置的情况下执行。
CN202210790854.9A 2021-07-15 2022-07-05 控制辅小区组添加和释放 Pending CN115664605A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/377,229 US20230030498A1 (en) 2021-07-15 2021-07-15 Controlling secondary cell group addition and release
US17/377,229 2021-07-15

Publications (1)

Publication Number Publication Date
CN115664605A true CN115664605A (zh) 2023-01-31

Family

ID=82839294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210790854.9A Pending CN115664605A (zh) 2021-07-15 2022-07-05 控制辅小区组添加和释放

Country Status (3)

Country Link
US (1) US20230030498A1 (zh)
EP (1) EP4120741A1 (zh)
CN (1) CN115664605A (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012DN02809A (zh) * 2009-10-01 2015-07-24 Interdigital Patent Holdings
WO2016106740A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 无线通信方法、装置和系统
US20160345229A1 (en) * 2015-05-22 2016-11-24 Qualcomm Incorporated Wlan and wwan cooperative support of wwan functionality
US10674498B2 (en) * 2017-10-12 2020-06-02 Qualcomm Incorporated Accelerated cell activation in wireless communication
KR102629306B1 (ko) * 2018-05-21 2024-01-25 삼성전자 주식회사 차세대 이동통신 시스템에서 sdap 제어 pdu를 구분해서 처리하는 방법 및 장치
US20220248277A1 (en) * 2019-07-26 2022-08-04 Qualcomm Incorporated Early measurements during inter-rat cell reselection in wireless communication
US11683783B2 (en) * 2021-05-04 2023-06-20 Qualcomm Incorporated Network mode selection based on positioning system information blocks

Also Published As

Publication number Publication date
US20230030498A1 (en) 2023-02-02
EP4120741A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US11889334B2 (en) Method and apparatus for measurement report
US20170359747A1 (en) Methods and apparatuses for enhancing the setup of carrier aggregation, dual connectivity, multi connectivity, license assisted access, or lte-wlan in communications networks
KR20200043457A (ko) Rrc 재개/일시중단 시의 nr pdcp 보존을 위한 방법들 및 장치들
EP2770661B1 (en) Method and apparatus for handling inter-node connectivity in a wireless communication system
CN111434153A (zh) 特定载波和特定频率能力限制
US11412425B2 (en) Radio network nodes, and methods performed therein for handling communication in a wireless communication network
EP3925130B1 (en) Apparatus, method and computer program
CN115152271B (zh) 主节点、辅助节点、用户设备和在通信网络中执行的方法
EP3202187B1 (en) Transmission of wlan access parameters for a group of wlan ap
CN114599058B (zh) 通信方法、装置、电子设备及计算机可读存储介质
EP4120741A1 (en) Controlling secondary cell group addition and release
WO2024031311A1 (en) Effective early measurement for reporting during connection setup
WO2024060210A1 (en) Configuration for gap for musim capable ue
WO2024092615A1 (en) Conditional handover enhancement with candidate target cell prioritization
US20240137819A1 (en) Cross layer optimization for selection of a best cell from conditional special cell change candidate cells
WO2024065593A1 (en) Per-frequency range measurement gap indication with adapted reporting
WO2024060189A1 (en) New srb design for group rrc message transmission
WO2024092621A1 (en) Enhancement on network controlled small gap (ncsg) support
WO2024092643A1 (en) Systems and methods of wireless communication systems using multi-layer models
WO2024031328A1 (en) Link quality monitoring on multiple candidate cell groups
US20240196246A1 (en) Ncsg for deactivated serving cell measurement
US20220386189A1 (en) Methods to prevent mcg link failure due to failure in scg link
WO2024026720A1 (en) Layer 3 and layer 1 procedure enhancement for scell activation
US20240215090A1 (en) Method and apparatus for improving reliability and reducing power consumption for fr2 rrm
US20240179758A1 (en) Ue reference timing for cfra on serving cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination