CN115664283A - A sliding mode control method and system based on generalized parameter estimation observer - Google Patents
A sliding mode control method and system based on generalized parameter estimation observer Download PDFInfo
- Publication number
- CN115664283A CN115664283A CN202211444912.9A CN202211444912A CN115664283A CN 115664283 A CN115664283 A CN 115664283A CN 202211444912 A CN202211444912 A CN 202211444912A CN 115664283 A CN115664283 A CN 115664283A
- Authority
- CN
- China
- Prior art keywords
- sliding mode
- parameter estimation
- axis current
- generalized
- linear regression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000001360 synchronised effect Effects 0.000 claims abstract description 45
- 238000012417 linear regression Methods 0.000 claims abstract description 32
- 238000013178 mathematical model Methods 0.000 claims abstract description 27
- 230000009466 transformation Effects 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims description 18
- 230000007704 transition Effects 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 8
- 230000005284 excitation Effects 0.000 claims description 6
- 230000004907 flux Effects 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010237 hybrid technique Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于广义参数估计观测器的滑模控制方法及系统,属于永磁同步电机稳定控制技术领域。The invention relates to a sliding mode control method and system based on a generalized parameter estimation observer, and belongs to the technical field of permanent magnet synchronous motor stability control.
背景技术Background technique
近年来,永磁同步电机由于具有高功率密度、高动态性能、高效率、低惯性、低噪声、等诸多优良特性,已被广泛应用于机器人、计算机数控机床、航空等诸多工业领域。传统的PID控制稳定性好,结构简单,容易调整,比例环节将误差按一定的比例反映便于快速调节;积分环节主要用来消除系统的静态误差;微分环节可以预见系统偏差的变化趋势可以很好地改善系统的动态性能。但对于复杂的系统会存在较大的误差,产生超调。由于永磁同步电机是非线性的,并且存在建模误差、不可避免的干扰以及参数的变化,仅仅通过PID控制已无法获得满意的性能。In recent years, permanent magnet synchronous motors have been widely used in many industrial fields such as robots, computer numerical control machine tools, and aviation due to their high power density, high dynamic performance, high efficiency, low inertia, low noise, and many other excellent characteristics. The traditional PID control has good stability, simple structure, and is easy to adjust. The proportional link reflects the error according to a certain ratio for quick adjustment; the integral link is mainly used to eliminate the static error of the system; the differential link can predict the change trend of the system deviation and can be very good improve the dynamic performance of the system. However, for complex systems, there will be large errors, resulting in overshoot. Since permanent magnet synchronous motors are nonlinear, and there are modeling errors, inevitable disturbances and parameter changes, satisfactory performance cannot be obtained only by PID control.
发明内容Contents of the invention
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于广义参数估计观测器的滑模控制方法及系统。The technical problem to be solved by the present invention is to overcome the defects of the prior art and provide a sliding mode control method and system based on a generalized parameter estimation observer.
为解决上述技术问题,本发明提供一种基于广义参数估计观测器的滑模控制方法,包括:In order to solve the above technical problems, the present invention provides a sliding mode control method based on a generalized parameter estimation observer, including:
获取三相永磁同步电机的自然坐标系下的数学模型,通过Clark坐标变换和Park坐标变换,并选取永磁同步电机q轴电流作为状态变量,机械角速度ω r 作为输出以及状态变量,将自然坐标系下的数学模型转换为三相永磁同步电机的d-q轴同步旋转坐标系下的数学模型;Obtain the mathematical model of the three-phase permanent magnet synchronous motor in the natural coordinate system, through Clark coordinate transformation and Park coordinate transformation, and select the q-axis current of the permanent magnet synchronous motor as the state variable, and the mechanical angular velocity ω r as the output and state variable, the natural The mathematical model under the coordinate system is converted into the mathematical model under the dq axis synchronous rotating coordinate system of the three-phase permanent magnet synchronous motor;
根据所述d-q轴同步旋转坐标系下的数学模型,基于广义参数估计观测理论将状态观测转化为参数估计,确定用于估计q轴电流i q 和负载转矩T L 的线性回归方程;According to the mathematical model under the dq-axis synchronous rotating coordinate system, the state observation is converted into parameter estimation based on the generalized parameter estimation observation theory, and the linear regression equation for estimating the q -axis current iq and the load torque T L is determined;
处理所述的线性回归方程,使其符合激励条件,根据预先设置的广义参数估计观测器,确定q轴电流的估计值和负载转矩T L 的估计值;Process the linear regression equation to make it meet the excitation conditions, estimate the observer according to the preset generalized parameters, and determine the estimated value of the q-axis current and an estimate of the load torque T L ;
根据广义参数估计观测器的估计信息,设计滑模控制器,根据滑模控制器得到控制量u q ,对控制量u q 进行逆Park坐标变换后,经由SVPWM模块得到三相逆变器的驱动信号,根据所述驱动信号调节三相逆变器的输出。According to the estimated information of the generalized parameter estimation observer, the sliding mode controller is designed, and the control variable u q is obtained according to the sliding mode controller. After the inverse Park coordinate transformation is performed on the control variable u q , the drive of the three-phase inverter is obtained through the SVPWM module signal, and adjust the output of the three-phase inverter according to the drive signal.
进一步的,所述d-q轴同步旋转坐标系下的数学模型表示为:Further, the mathematical model under the d-q axis synchronously rotating coordinate system is expressed as:
其中,为q轴电流对时间的导数,i q 为q轴电流,R s 为定子电阻,L为电感,φ f 为永磁体与定子交链的磁链,u q 为q轴电压同时也是控制输入,ω r 为转子的机械角速度,为转子的机械角速度对时间的导数,P为电机的极对数,J为转动惯量,B为粘滞摩擦系数,T L 为负载转矩。in, is the derivative of the q -axis current to time, i q is the q- axis current, R s is the stator resistance, L is the inductance, φ f is the flux linkage between the permanent magnet and the stator, u q is the q-axis voltage and is also the control input, ω r is the mechanical angular velocity of the rotor, is the derivative of the mechanical angular velocity of the rotor with respect to time, P is the number of pole pairs of the motor, J is the moment of inertia, B is the coefficient of viscous friction, and T L is the load torque.
进一步的,所述线性回归方程为:Further, the linear regression equation is:
q e 为加入滤波器线性回归方程的可测量,m e 为加入滤波器线性回归方程的回归因子,为线性回归方程的中间变量,,i q0为q轴电流初始值误差; q e is the measurable added to the filter linear regression equation, m e is the regression factor added to the filter linear regression equation, is the intermediate variable of the linear regression equation, , i q 0 is the error of the initial value of the q-axis current;
s1为微分算子,α 1、α 2、β 1、β 2为滤波器参数,满足α 1,α 2≠0,β 1,β 2>0,q1为未加入滤波器的线性回归方程的可测量,λ 1为观测器增益,λ 1>0,m、ω为中间变量。s1 is a differential operator, α 1 , α 2 , β 1 , and β 2 are filter parameters, satisfying α 1 , α 2 ≠0, β 1 , β 2 >0, and
进一步的,求解中间变量m、ω,包括:Further, solve the intermediate variables m, ω , including:
基于广义参数估计观测器的理论,重构q轴电流i q ,得到下式:Based on the theory of generalized parameter estimation observer, the q-axis current i q is reconstructed, and the following formula is obtained:
其中,表示q轴电流i q 的重构状态的导数,ξ y 为q轴电流i q 的重构状态;in, Denotes the derivative of the reconstruction state of the q-axis current i q , ξ y is the reconstruction state of the q-axis current i q ;
基于线性系统理论得到重构状态ξ y 的状态转移矩阵X Ax :The state transition matrix X Ax of the reconstructed state ξ y is obtained based on the linear system theory:
其中,为状态转移矩阵对时间的导数,X Ax (0)为状态转移矩阵的初始值;in, is the derivative of the state transition matrix with respect to time, and X Ax (0) is the initial value of the state transition matrix;
则q轴电流的真实值表示为:Then the true value of the q-axis current is expressed as:
其中,为初始值误差,i q (0)表示q轴电流的初始值,ξ y (0)表示q轴电流i q 的重构状态的初始值;in, is the initial value error, i q (0) represents the initial value of the q-axis current, ξ y (0) represents the initial value of the reconstruction state of the q-axis current i q ;
重构,表示为:refactor ,Expressed as:
然后将m和ω的式子转换成微分方程的形式,表示为:Then convert the formulas of m and ω into the form of differential equations, expressed as:
其中,为状态转移矩阵的转置,m(0)为m的初始值;in, is the transposition of the state transition matrix, m (0) is the initial value of m ;
求解所述微分方程,得到中间变量m、ω。Solve the differential equation to obtain the intermediate variables m, ω .
进一步的,采用基于广义观测理论结合动态回归扩展方法确定所述q轴电流的估计值和负载转矩T L 的估计值。Further, the estimated value of the q-axis current is determined by using a generalized observation theory combined with a dynamic regression extension method and an estimate of the load torque T L .
进一步的,所述确定滑模控制器的过程,包括:Further, the process of determining the sliding mode controller includes:
以给定机械角速度与传感器测得的机械角速度之差作为滑模控制器的输入,The difference between the given mechanical angular velocity and the mechanical angular velocity measured by the sensor is used as the input of the sliding mode controller,
表示为:Expressed as:
其中,e为滑模控制器的输入,为转子的机械角速度的参考值;Among them, e is the input of the sliding mode controller, is the reference value of the mechanical angular velocity of the rotor;
设计滑模面s,表示为:The design sliding surface s is expressed as:
其中,c为滑模面参数,满足c>0,表示输入误差对时间的导数;Among them, c is the sliding mode surface parameter, satisfying c > 0, Indicates the derivative of the input error with respect to time;
结合广义参数估计观测器,得到控制律u q 为:Combined with the generalized parameter estimation observer, the control law u q is obtained as:
其中,sgn(s)为符号函数,为q轴电流i q 的估计值,为负载转矩T L 的估计值,a为中间参数,,k为控制率参数,k>0。Among them, sgn (s) is a symbolic function, is the estimated value of the q-axis current i q , is the estimated value of load torque T L , a is an intermediate parameter, , k is the control rate parameter, k >0.
一种基于广义参数估计观测器的滑模控制系统,包括:A sliding mode control system based on a generalized parameter estimation observer, comprising:
变换模块,用于获取三相永磁同步电机的自然坐标系下的数学模型,通过Clark坐标变换和Park坐标变换,并选取永磁同步电机q轴电流作为状态变量,机械角速度ω r 作为输出以及状态变量,将自然坐标系下的数学模型转换为三相永磁同步电机的d-q轴同步旋转坐标系下的数学模型;The transformation module is used to obtain the mathematical model under the natural coordinate system of the three-phase permanent magnet synchronous motor, through Clark coordinate transformation and Park coordinate transformation, and select the q-axis current of the permanent magnet synchronous motor as the state variable, the mechanical angular velocity ω r as the output and The state variable converts the mathematical model under the natural coordinate system into a mathematical model under the dq axis synchronous rotating coordinate system of the three-phase permanent magnet synchronous motor;
第一确定模块,用于根据所述d-q轴同步旋转坐标系下的数学模型,基于广义参数估计观测理论将状态观测转化为参数估计,确定用于估计q轴电流i q 和负载转矩T L 的线性回归方程;The first determination module is used to convert the state observation into parameter estimation based on the generalized parameter estimation observation theory according to the mathematical model in the dq axis synchronous rotating coordinate system, and determine the parameters used to estimate the q-axis current i q and the load torque T L The linear regression equation;
第二确定模块,用于处理所述的线性回归方程,使其符合激励条件,根据预先设置的广义参数估计观测器,确定q轴电流的估计值和负载转矩T L 的估计值;The second determination module is used to process the linear regression equation to make it meet the excitation conditions, estimate the observer according to the preset generalized parameters, and determine the estimated value of the q-axis current and an estimate of the load torque T L ;
输出模块,用于根据广义参数估计观测器的估计信息,设计滑模控制器,根据滑模控制器得到控制量u q ,对控制量u q 进行逆Park坐标变换后,经由SVPWM模块得到三相逆变器的驱动信号,根据所述驱动信号调节三相逆变器的输出。The output module is used to design the sliding mode controller based on the estimation information of the generalized parameter estimation observer, obtain the control variable u q according to the sliding mode controller, and perform the inverse Park coordinate transformation on the control variable u q , and obtain the three-phase through the SVPWM module The driving signal of the inverter, and the output of the three-phase inverter is adjusted according to the driving signal.
本发明所达到的有益效果:The beneficial effect that the present invention reaches:
(1)本发明基于广义参数估计观测器的滑模控制方法运用到永磁同步电机里,将状态观测转化为参数估计通过动态扩展与混合技术实现对q轴电流和负载转矩的同时估计。在保证系统稳定的前提下,减少了电流传感器的使用,降低了系统的成本,整个系统的可靠性也有所提高。(1) The sliding mode control method based on the generalized parameter estimation observer of the present invention is applied to the permanent magnet synchronous motor, and the state observation is transformed into parameter estimation. The q-axis current and load torque are realized through dynamic expansion and hybrid technology. estimated at the same time. Under the premise of ensuring the stability of the system, the use of current sensors is reduced, the cost of the system is reduced, and the reliability of the entire system is also improved.
(2)本发明基于广义参数估计观测器的滑模控制方法运用到永磁同步电机,获得了较好的动态性能又提高了闭环系统抗干扰的能力和鲁棒性,使本发明在工程上可以很好的应用。(2) The sliding mode control method based on the generalized parameter estimation observer of the present invention is applied to the permanent magnet synchronous motor, which obtains better dynamic performance and improves the anti-interference ability and robustness of the closed-loop system, making the present invention more effective in engineering Can be applied very well.
附图说明Description of drawings
图1是本发明的方法应用于永磁同步电机的控制框图;Fig. 1 is the control block diagram that method of the present invention is applied to permanent magnet synchronous motor;
图2为永磁同步电机q轴电流的估计值和真实值;Figure 2 shows the estimated value and real value of the q-axis current of the permanent magnet synchronous motor;
图3为永磁同步电机负载转矩T L 估计值和真实值;Fig. 3 is the estimated value and the real value of the load torque T L of the permanent magnet synchronous motor;
图4为q轴电流的初始值;Figure 4 is the initial value of the q-axis current;
图5为机械角速度的输出值。Figure 5 is the output value of the mechanical angular velocity.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.
如附图1所示是本发明的一种基于广义参数估计观测器的滑模控制方法应用于永磁同步电机的控制框图,其中包括广义参数估计观测器回路、永磁同步电机速度环、光电编码器、滑模控制器;光电编码器得到转子位置角,通过计算得到机械角速度,送入到广义参数估计观测器中,滑模控制器根据给定的机械角速度与实际机械角速度作差作为输入,得到q轴的电压,给定的d轴电流与反馈电路中的d轴电流相减得到d轴电压。u d 和u q 通过了Park以及SVPWM产生脉冲信号然后进入三相逆变换器对永磁同步电机进行控制。广义参数估计观测器和滑模控制相结合,使系统对负载扰动和其他一些不确定因素具有较强的鲁棒性。采用所述装置实现的具体实现步骤如下:As shown in accompanying
步骤(1):step 1):
为了简化永磁同步电机数学模型的建立采用Park变换和Clarke变换将自然坐标系下的数学模型转换为同步旋转坐标系下的数学模型,状态变量为i q ,ω r 既为状态变量又为输出模型如下:In order to simplify the establishment of the permanent magnet synchronous motor mathematical model, Park transformation and Clarke transformation are used to convert the mathematical model in the natural coordinate system into a mathematical model in the synchronous rotating coordinate system. The state variable is i q , and ω r is both the state variable and the output The model is as follows:
其中,为q轴电流对时间的导数,i q 为q轴电流,R s 为定子电阻,L为电感,φ f 为永磁体与定子交链的磁链,u q 为q轴电压同时也是控制输入,ω r 为转子的机械角速度,为转子的机械角速度对时间的导数,P为电机的极对数,J为转动惯量,B为粘滞摩擦系数,T L 为负载转矩。in, is the derivative of the q -axis current to time, i q is the q- axis current, R s is the stator resistance, L is the inductance, φ f is the flux linkage between the permanent magnet and the stator, u q is the q-axis voltage and is also the control input, ω r is the mechanical angular velocity of the rotor, is the derivative of the mechanical angular velocity of the rotor with respect to time, P is the number of pole pairs of the motor, J is the moment of inertia, B is the coefficient of viscous friction, and T L is the load torque.
步骤(2):Step (2):
步骤21利用ω r 和u q 的信息进行状态的重构,基于广义参数观测理论,推导出用于估计q轴电流初始值误差i q0和负载转矩T L 的线性回归方程,其中。Step 21 Use the information of ω r and u q to reconstruct the state, and based on the generalized parameter observation theory, derive the linear regression equation for estimating the initial value error i q 0 of the q-axis current and the load torque T L ,in .
为了获得测量未知q轴电流和负载转矩的线性回归方程,根据广义参数估计观测器的理论,先重构未知状态:In order to obtain the linear regression equation for measuring the unknown q -axis current and load torque, according to the theory of the generalized parameter estimation observer, the unknown state is reconstructed first:
其中,表示q轴电流i q 的重构状态的导数,ξ y 为q轴电流i q 的重构状态。in, Indicates the derivative of the reconstruction state of the q-axis current i q , and ξ y is the reconstruction state of the q-axis current i q .
然后获得状态转移矩阵:Then get the state transition matrix:
为状态转移矩阵对时间的导数,X Ax 为状态转移矩阵,为状态转移矩阵的初始值。 is the derivative of the state transition matrix with respect to time, X Ax is the state transition matrix, is the initial value of the state transition matrix.
则电流的真实值可以表示为:Then the real value of the current can be expressed as:
其中初始值误差为:The initial value error is:
i q (0)表示q轴电流的初始值,ξ y (0)表示q轴电流i q 的重构状态的初始值。 i q (0) represents the initial value of the q-axis current, and ξ y (0) represents the initial value of the reconstructed state of the q-axis current i q .
为了更易满足可激励条件且不使用导数的信息避免因为噪声过大影响观测器性能采用如下滤波器的方法:In order to more easily satisfy the incentive condition and do not use The information of the derivative avoids affecting the performance of the observer due to excessive noise, and adopts the following filter method:
整理成微分方程的形式可以得到:Putting it in the form of a differential equation, we get:
其中,为状态转移矩阵的转置,m(0)为m的初始值。in, is the transposition of the state transition matrix, m (0) is the initial value of m .
然后可以得到需要的线性回归方程:Then the required linear regression equation can be obtained:
其中,in,
m、ω为中间变量,λ 1为观测器增益,λ 1>0 m and ω are intermediate variables, λ 1 is the observer gain, λ 1 >0
步骤22:Step 22:
运用动态回归扩展和混合的技术,使用滤波器对步骤21得到的线性回归方程进行扩展得到;然后两边同时乘以伴随矩阵adj{Ω},混合后得到标量线性回归方程和,具体过程如下:Using the technique of dynamic regression extension and mixing, the linear regression equation obtained in step 21 is applied to the filter extended to get ; Then both sides are multiplied by the adj { Ω } at the same time, and the scalar linear regression equation is obtained after mixing and , the specific process is as follows:
得到扩展后的线性回归方程:Get the extended linear regression equation:
根据动态回归扩展混合技术可以得到:Extending the hybrid technique according to dynamic regression gives:
然后可以得到:Then you can get:
其中, Y为可测量, Y 1、Y 2是Y的两个元素,s1为微分算子,, q e 、m e 、r、Ω、Δ为中间变量,α 1、α 2、β 1、β 2为滤波器参数,满足α 1,α 2≠0,β 1,β 2>0,λ 2为增益系数,满足λ 2>0。adj为伴随矩阵,det为行列式,r(0)为r的初始值,ω(0)为ω的初始值,为r的导数,为Ω的导数。Among them, Y is measurable, Y 1 and Y 2 are two elements of Y , s1 is a differential operator, , q e , me , r , Ω , Δ are intermediate variables, α 1 , α 2 , β 1 , β 2 are filter parameters, satisfying α 1 , α 2 ≠0, β 1 , β 2 >0, λ 2 is a gain coefficient, which satisfies λ 2 >0. adj is the companion matrix, det is the determinant, r (0) is the initial value of r , ω (0) is the initial value of ω , is the derivative of r , is the derivative of Ω .
步骤(3):Step (3):
步骤31基于广义观测理论结合动态回归扩展技术估计状态:Step 31 Estimate the state based on the generalized observation theory combined with the dynamic regression extension technique :
为了解决没有足够激励,即(非一致可观性)的情况下仍能实现对参数的估计,基于上式得到的扩展后的线性回归方程在不使用滤波器的情况下推导出新的标量激励回归方程。In order to solve the problem of not having enough incentives, that is, (non-uniform observability), the estimation of parameters can still be achieved, based on the extended linear regression equation obtained by the above formula, a new scalar excitation regression is derived without using a filter equation.
为了得到新的回归变量,以未知量初始值误差为状态之一定义一个新的动力学方程:In order to get new regressors, the unknown initial value error Define a new kinetic equation for one of the states:
z 1是新动力学方程的状态,表示z 1对时间的导数,表示对时间的导数, u 1、u 2、u 3为动力学模型的系统参数,Y 1是步骤(2)最终得到的线性回归方程已知量的第一个元素,z 1(0)表示状态z 1的初始值; z1 is the state of the new kinetic equation, Denotes the derivative of z 1 with respect to time, express Derivatives with respect to time, u 1 , u 2 , u 3 are the system parameters of the dynamic model, Y 1 is the first element of the known quantity of the linear regression equation finally obtained in step (2), z 1 (0) represents the state initial value of z1 ;
然后重构上述动态方程:Then reconstruct the above dynamic equation:
其中,ξ 1为的重构状态、ξ 2为z 1的重构状态,ξ 1(0)表示ξ 1的初始值,ξ 2(0)表示ξ 2的初始值,Δ是步骤(2)最终得到的线性回归方程参数,表示ξ 1的导数,表示ξ 2的导数;Among them, ξ 1 is ξ 2 is the reconstruction state of z 1 , ξ 1 (0) represents the initial value of ξ 1 , ξ 2 (0) represents the initial value of ξ 2 , Δ is the final linear regression obtained in step (2) equation parameter, Denotes the derivative of ξ1 , Represents the derivative of ξ 2 ;
重构动态方程后的状态转移矩阵记为,Φ11、Φ21、Φ12、Φ22为状态转移矩阵中的元素,可以由如下微分方程得到;The state transition matrix after reconstructing the dynamic equation is denoted as , Φ 11 , Φ 21 , Φ 12 , Φ 22 are the elements in the state transition matrix, which can be obtained by the following differential equation;
展开上述方程,得到关于Φ11、Φ21的微分方程如下:Expanding the above equations, the differential equations about Φ 11 and Φ 21 are obtained as follows:
为Φ11的导数,为Φ21的导数;选取系统参数u 1、u 2、u 3为: is the derivative of Φ 11 , is the derivative of Φ 21 ; select system parameters u 1 , u 2 , u 3 as:
通过解上述微分方程可以得到Φ11、Φ21。Φ 11 and Φ 21 can be obtained by solving the above differential equation.
定义新的已知量,然后得到新的回归方程为:Define a new known quantity , and then the new regression equation is obtained as:
为了估计参数采用新的回归方程并将上式代入:In order to estimate the parameters, a new regression equation is used and the above formula is substituted into:
为的估计值,为的导数,γ 1为观测器增益,γ 1>0; for the estimated value of for The derivative of , γ 1 is the observer gain, γ 1 >0;
然后可以得到q轴电流的估计值:An estimate of the q-axis current can then be obtained :
。 .
步骤32基于广义观测理论结合动态回归扩展技术估计负载转矩T L :Step 32 estimates the load torque T L based on the generalized observation theory combined with the dynamic regression extension technique:
同上先以新定义的未知量为状态之一定义一个新的动力学方程:As above, the newly defined unknown Define a new kinetic equation for one of the states:
z 2是新动力学方程的状态,表示z 2对时间的导数,表示对时间的导数,u 12、u 22、u 32为动力学模型的系统参数,Y 2是步骤(2)最终得到的线性回归方程已知向量的第二个元素,z 2(0)表示状态z 2的初始值; z2 is the state of the new kinetic equation, Denotes the derivative of z 2 with respect to time, express Derivatives with respect to time, u 12 , u 22 , u 32 are the system parameters of the dynamic model, Y 2 is the second element of the known vector of the linear regression equation finally obtained in step (2), z 2 (0) represents the state initial value of z2 ;
然后重构上述动态方程,得到:Then reconstruct the above dynamic equations to get:
其中,ξ 12为的重构状态,ξ 22为z 2的重构状态,ξ 12(0)表示ξ 12的初始值,ξ 22(0)表示ξ 22的初始值,表示ξ 12的导数,表示ξ 22的导数;Among them, ξ 12 is ξ 22 is the reconstruction state of z 2 , ξ 12 (0) represents the initial value of ξ 12 , ξ 22 (0) represents the initial value of ξ 22 , Denotes the derivative of ξ 12 , Represents the derivative of ξ 22 ;
上述系统的状态转移矩阵记为,φ112、φ212、φ122、φ222为状态转移矩阵中的元素,可以由如下微分方程得到;The state transition matrix of the above system is written as , φ 112 , φ 212 , φ 122 , φ 222 are the elements in the state transition matrix, which can be obtained by the following differential equation;
展开上述方程,得到关于φ112、φ212的微分方程如下:Expanding the above equation, the differential equations about φ 112 and φ 212 are obtained as follows:
为φ112的导数,为φ212的导数;选取系统参数u 12、u 22、u 32为: is the derivative of φ 112 , is the derivative of φ 212 ; select system parameters u 12 , u 22 , u 32 as:
通过解上述微分方程可以得到φ112、φ212。By solving the above differential equations, φ 112 and φ 212 can be obtained.
定义新的已知量,然后得到新的回归方程为:Define a new known quantity , and then the new regression equation is obtained as:
根据上述回归方程,得到负载转矩的估计值:According to the above regression equation, the estimated value of the load torque is obtained :
其中,为负载转矩T L 的估计值,为的导数,γ 2>0,γ 2为观测器增益。in, is the estimated value of load torque T L , for The derivative of , γ 2 >0, γ 2 is the observer gain.
步骤(4):Step (4):
光电编码器得到转子位置角,通过计算得到机械角速度,送入到广义参数估计观测器中,滑模控制器根据给定的机械角速度与实际机械角速度作差作为输入,得到q轴的电压,给定的d轴电流与反馈电路中的轴电流相减得到轴电压。u d 和u q 通过了Park以及SVPWM产生脉冲信号然后进入三相逆变换器对永磁同步电机进行控制。The photoelectric encoder obtains the rotor position angle, obtains the mechanical angular velocity through calculation, and sends it to the generalized parameter estimation observer. The sliding mode controller takes the difference between the given mechanical angular velocity and the actual mechanical angular velocity as input to obtain the voltage of the q-axis, and gives given d-axis current with the feedback circuit in the Subtract the shaft current to get shaft voltage. U d and u q generate pulse signals through Park and SVPWM and then enter the three-phase inverter to control the permanent magnet synchronous motor.
步骤41以给定机械角速度与传感器测得的机械角速度之差作为滑模控制器的输入:Step 41 takes the difference between the given mechanical angular velocity and the mechanical angular velocity measured by the sensor as the input of the sliding mode controller:
其中,为转子的机械角速度的参考值。in, is the reference value of the mechanical angular velocity of the rotor.
步骤42设计滑模面:Step 42 Design the sliding surface:
其中,c为滑模面参数,满足c>0,表示滑模控制器的输入对时间的导数;Among them, c is the sliding mode surface parameter, satisfying c > 0, Indicates the time derivative of the input of the sliding mode controller;
步骤43结合广义参数估计观测器,得到控制律为u q :Step 43 combines the generalized parameter estimation observer to obtain the control law u q :
其中,sgn(s)为符号函数,为q轴电流i q 的估计值,为负载转矩T L 的估计值,a为中间参数,,k为控制率参数,k>0。Among them, sgn (s) is a symbolic function, is the estimated value of the q-axis current i q , is the estimated value of load torque T L , a is an intermediate parameter, , k is the control rate parameter, k >0.
相应的本发明还提供一种基于广义参数估计观测器的滑模控制系统,其特征在于,包括:Correspondingly, the present invention also provides a sliding mode control system based on a generalized parameter estimation observer, which is characterized in that it includes:
变换模块,用于获取三相永磁同步电机的自然坐标系下的数学模型,通过Clark坐标变换和Park坐标变换,并选取永磁同步电机q轴电流作为状态变量,机械角速度ω r 作为输出以及状态变量,将自然坐标系下的数学模型转换为三相永磁同步电机的d-q轴同步旋转坐标系下的数学模型;The transformation module is used to obtain the mathematical model under the natural coordinate system of the three-phase permanent magnet synchronous motor, through Clark coordinate transformation and Park coordinate transformation, and select the q-axis current of the permanent magnet synchronous motor as the state variable, the mechanical angular velocity ω r as the output and The state variable converts the mathematical model under the natural coordinate system into a mathematical model under the dq axis synchronous rotating coordinate system of the three-phase permanent magnet synchronous motor;
第一确定模块,用于根据所述d-q轴同步旋转坐标系下的数学模型,基于广义参数估计观测理论将状态观测转化为参数估计,确定用于估计q轴电流i q 和负载转矩T L 的线性回归方程;The first determination module is used to convert the state observation into parameter estimation based on the generalized parameter estimation observation theory according to the mathematical model in the dq axis synchronous rotating coordinate system, and determine the parameters used to estimate the q-axis current i q and the load torque T L The linear regression equation;
第二确定模块,用于处理所述的线性回归方程,使其符合激励条件,根据预先设置的广义参数估计观测器,确定q轴电流的估计值和负载转矩T L 的估计值;The second determination module is used to process the linear regression equation to make it meet the excitation conditions, estimate the observer according to the preset generalized parameters, and determine the estimated value of the q-axis current and an estimate of the load torque T L ;
输出模块,用于根据广义参数估计观测器的估计信息,设计滑模控制器,根据滑模控制器得到控制量u q ,对控制量u q 进行逆Park坐标变换后,经由SVPWM模块得到三相逆变器的驱动信号,根据所述驱动信号调节三相逆变器的输出。The output module is used to design the sliding mode controller based on the estimation information of the generalized parameter estimation observer, obtain the control variable u q according to the sliding mode controller, and perform the inverse Park coordinate transformation on the control variable u q , and obtain the three-phase through the SVPWM module The driving signal of the inverter, and the output of the three-phase inverter is adjusted according to the driving signal.
广义参数估计观测器结合动态混合扩展技术将状态观测转换为参数估计,不仅可以实现q轴电流i q 和负载转矩T L 的同时估计,减少了传感器的使用可以提高整个系统的稳定性。基于估计的信息设计滑模控制器以提高系统抗干扰的能力和鲁棒性。The generalized parameter estimation observer combines the dynamic hybrid extension technology to convert the state observation into parameter estimation, which not only realizes the simultaneous estimation of the q-axis current i q and load torque T L , but also reduces the use of sensors and improves the stability of the entire system. Based on the estimated information, a sliding mode controller is designed to improve the system's anti-disturbance ability and robustness.
为了验证本发明所设计的基于广义参数估计观测器的滑模控制方法的有效性,我们在Matlab/simulink仿真平台上测试本发明设计的控制器对永磁同步单机的控制性能。验证所设计的观测器能否准确的快速的估计出电机系统的q轴电流。永磁同步电机在仿真实验中所用参数如表1所示。由图2可以看出观测器可以立即跟踪观测到系统的电流。图3是对负载转矩的跟踪估计图,给定负载转矩T L 为1N·m,观测器可以在0.05s估计到负载转矩的值,图4输出机械角速度在0.05s内可以趋于稳定且和期望的输出值一致,图5输出机械角速度在0.05s内可以趋于稳定且和期望的输出值一致。In order to verify the effectiveness of the sliding mode control method based on the generalized parameter estimation observer designed by the present invention, we tested the control performance of the controller designed by the present invention on the permanent magnet synchronous single machine on the Matlab/simulink simulation platform. Verify that the designed observer can accurately and quickly estimate the q-axis current of the motor system. The parameters used in the simulation experiment of the permanent magnet synchronous motor are shown in Table 1. It can be seen from Figure 2 that the observer can immediately track the observed system current. Figure 3 is the tracking estimation diagram of the load torque, given that the load torque T L is 1N·m, the observer can estimate the value of the load torque within 0.05s, and the output mechanical angular velocity in Figure 4 can tend to Stable and consistent with the expected output value, the output mechanical angular velocity in Figure 5 can tend to be stable and consistent with the expected output value within 0.05s.
仿真结果表明,本发明可以实现对永磁同步电机角速度的控制。在负载转矩未知的情况下,依然可以保证闭环系统的稳定性,同时减少了电流传感器的使用,降低了成本,提高了可靠性,在工程上有很好的应用价值。Simulation results show that the invention can realize the control of the angular velocity of the permanent magnet synchronous motor. In the case of unknown load torque, the stability of the closed-loop system can still be guaranteed, and at the same time, the use of current sensors is reduced, the cost is reduced, and the reliability is improved, which has good application value in engineering.
表1Table 1
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, and it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. It should also be regarded as the protection scope of the present invention.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, and it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. It should also be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211444912.9A CN115664283B (en) | 2022-11-18 | 2022-11-18 | Sliding mode control method and system based on generalized parameter estimation observer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211444912.9A CN115664283B (en) | 2022-11-18 | 2022-11-18 | Sliding mode control method and system based on generalized parameter estimation observer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115664283A true CN115664283A (en) | 2023-01-31 |
CN115664283B CN115664283B (en) | 2023-06-13 |
Family
ID=85017942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211444912.9A Active CN115664283B (en) | 2022-11-18 | 2022-11-18 | Sliding mode control method and system based on generalized parameter estimation observer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115664283B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116599413A (en) * | 2023-07-17 | 2023-08-15 | 南京信息工程大学 | Position-sensor-free control method and device for permanent magnet synchronous motor |
CN118399823A (en) * | 2024-07-01 | 2024-07-26 | 成都航天凯特机电科技有限公司 | Self-adaptive motor control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108923712A (en) * | 2018-08-28 | 2018-11-30 | 青岛大学 | Permanent magnet synchronous motor revolving speed monocycle control method, apparatus and system |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
-
2022
- 2022-11-18 CN CN202211444912.9A patent/CN115664283B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108923712A (en) * | 2018-08-28 | 2018-11-30 | 青岛大学 | Permanent magnet synchronous motor revolving speed monocycle control method, apparatus and system |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
Non-Patent Citations (1)
Title |
---|
任核权等: "一种电动汽车用PMSM速度电流单环控制方法" * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116599413A (en) * | 2023-07-17 | 2023-08-15 | 南京信息工程大学 | Position-sensor-free control method and device for permanent magnet synchronous motor |
CN116599413B (en) * | 2023-07-17 | 2023-09-22 | 南京信息工程大学 | A position sensorless control method and device for a permanent magnet synchronous motor |
CN118399823A (en) * | 2024-07-01 | 2024-07-26 | 成都航天凯特机电科技有限公司 | Self-adaptive motor control method |
Also Published As
Publication number | Publication date |
---|---|
CN115664283B (en) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108092567B (en) | A speed control system and method for a permanent magnet synchronous motor | |
CN108306568B (en) | PMSM load disturbance resistant self-adaptive integral backstepping control method for elevator | |
CN103647490B (en) | A kind of sliding mode control strategy of magneto | |
CN110350835A (en) | A kind of permanent magnet synchronous motor method for controlling position-less sensor | |
CN112701968B (en) | A Robust Performance Improvement Method for Model Predictive Control of Permanent Magnet Synchronous Motors | |
CN115664283B (en) | Sliding mode control method and system based on generalized parameter estimation observer | |
CN103259479B (en) | A kind of permanent magnet synchronous electric machine neural network left inverse state observation method | |
CN103051274B (en) | Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor | |
CN101383585A (en) | A vector control method without speed sensor for AC asynchronous motor | |
CN105915142B (en) | A kind of permanent-magnet synchronous motor rotor position and turn count method based on decoupling self-adaptive observer | |
CN104104301B (en) | Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor | |
CN105577058A (en) | Novel fuzzy active disturbance rejection controller based five-phase fault-tolerant permanent magnet motor speed control method | |
CN104967382B (en) | A kind of permagnetic synchronous motor method for controlling position-less sensor | |
CN105680754A (en) | D-axis and A-axis current vector composite controller of permanent-magnet synchronous motor | |
CN110401390B (en) | Permanent magnet synchronous motor random command filtering fuzzy control method based on observer | |
Olivieri et al. | A novel PLL scheme for a sensorless PMSM drive overcoming common speed reversal problems | |
CN111769779A (en) | PMSM direct torque control method based on improved Luenberger observer | |
CN109560740A (en) | A kind of non-synchronous motor parameter identification method of model reference adaptive | |
CN109936320A (en) | A direct torque control method for dual motors in series based on duty cycle modulation | |
CN117335700A (en) | Dynamic optimization method of electric servo position feedback based on deep reinforcement learning in semi-closed loop scenario | |
CN106788061A (en) | A kind of permagnetic synchronous motor rotary inertia recognition methods based on depression of order electric current loop | |
CN110649851B (en) | Multi-parameter decoupling online identification method for asynchronous motor | |
CN103986392B (en) | A kind of control method of low-speed direct driving type AC servo | |
CN112422002A (en) | Robust permanent magnet synchronous motor single current sensor prediction control method | |
CN103117693B (en) | Wind turbine simulator without operating rotating speed differential and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |