CN115661447B - A product image adjustment method based on big data - Google Patents
A product image adjustment method based on big data Download PDFInfo
- Publication number
- CN115661447B CN115661447B CN202211471120.0A CN202211471120A CN115661447B CN 115661447 B CN115661447 B CN 115661447B CN 202211471120 A CN202211471120 A CN 202211471120A CN 115661447 B CN115661447 B CN 115661447B
- Authority
- CN
- China
- Prior art keywords
- area
- feature
- image
- visual
- key
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000000007 visual effect Effects 0.000 claims abstract description 158
- 238000012360 testing method Methods 0.000 claims abstract description 68
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000000694 effects Effects 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims description 39
- 238000004458 analytical method Methods 0.000 claims description 24
- 241000282414 Homo sapiens Species 0.000 claims description 16
- 230000004424 eye movement Effects 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 7
- 230000004434 saccadic eye movement Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims description 4
- 238000004220 aggregation Methods 0.000 claims description 4
- 230000004438 eyesight Effects 0.000 claims description 4
- 238000004445 quantitative analysis Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 39
- 230000009471 action Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及电商领域,尤其涉及一种基于大数据的产品图像调整方法。The invention relates to the field of e-commerce, in particular to a method for adjusting product images based on big data.
背景技术Background technique
电子商务通常是指在全球各地广泛的商业贸易活动中,在因特网开放的网络环境下,基于客户端/服务端应用方式,买卖双方不谋面地进行各种商贸活动,实现消费者的网上购物、商户之间的网上交易和在线电子支付以及各种商务活动、交易活动、金融活动和相关的综合服务活动的一种新型的商业运营模式。E-commerce usually refers to a wide range of commercial and trade activities around the world, under the open network environment of the Internet, based on the client/server application mode, buyers and sellers conduct various business activities without meeting each other, so as to realize consumers' online shopping, It is a new type of business operation mode for online transactions and online electronic payments between merchants, as well as various business activities, transaction activities, financial activities and related comprehensive service activities.
随着人类对信息传递准确性的要求越来越高,图像作为传递信息较为丰富有效的载体,已经成为我们生活中必不可少的元素,人眼在观察图像时虽然视野非常广阔,但注意力集中的范围却很小,在注意点投入的时间比较多,这部分区域时相对于其它区域对图像质量的影响非常大。As human beings have higher and higher requirements for the accuracy of information transmission, images, as a relatively rich and effective carrier for information transmission, have become an indispensable element in our lives. Although the human eye has a very wide field of vision when observing images, its attention The concentration range is very small, and more time is invested in the attention point. Compared with other areas, this part of the area has a greater impact on the image quality.
传统产品的展示图像包含的场景内容过于复杂,产品展示图像的显示效果不理想,使得用户的注意力较为分散,产品展示图像难以凸显出消费者较为感兴趣的产品细节,难以吸引用户的注意力。The scene content contained in the traditional product display image is too complicated, and the display effect of the product display image is not ideal, which makes the user's attention more distracted. The product display image is difficult to highlight the product details that consumers are more interested in, and it is difficult to attract the user's attention .
发明内容Contents of the invention
针对现有技术之不足,本发明提供了一种基于大数据的产品图像调整方法,包括:Aiming at the deficiencies of the prior art, the present invention provides a product image adjustment method based on big data, including:
智慧电商平台的信息获取模块响应于管理终端发送的图像优化请求将目标产品对应的若干展示图像发送至各个测试用户的用户终端,并获取各个测试用户对不同展示图像的图像反馈信息;The information acquisition module of the smart e-commerce platform sends several display images corresponding to the target product to the user terminals of each test user in response to the image optimization request sent by the management terminal, and obtains image feedback information of each test user for different display images;
兴趣识别模块根据测试用户的图像反馈信息分析得到对应测试图像中测试用户对每个图像特征区域的兴趣度,并根据所有测试用户对每个图像特征区域的兴趣度和对应图像特征区域的区域信息量分析得到每个图像特征区域的视觉优先度;The interest recognition module obtains the degree of interest of the test user in each image feature area in the corresponding test image according to the image feedback information analysis of the test user, and according to the interest degree of all test users in each image feature area and the area information of the corresponding image feature area Quantitative analysis to obtain the visual priority of each image feature region;
参数增强模块根据每个图像特征区域的视觉优先度识别对应展示图像中的视觉关键区域,并根据每个视觉关键区域的第一参数区间、第二参数区间和视觉优先度确定对应展示图像中各个视觉关键区域的区域处理参数;The parameter enhancement module identifies the visual key area in the corresponding display image according to the visual priority of each image feature area, and determines each of the corresponding display images according to the first parameter interval, the second parameter interval and the visual priority of each visual key area. Region processing parameters for visually critical regions;
图像处理模块根据所述区域处理参数对相应展示图像中各个视觉关键区域的对比度进行增强以得到对应展示图像的效果增强图像。The image processing module enhances the contrast of each key visual area in the corresponding display image according to the region processing parameters to obtain an effect-enhanced image of the corresponding display image.
根据一个优选实施方式,所述图像优化请求包括设备标识符、产品编号、目标产品的若干展示图像以及展示图像的格式信息;所述展示图像用于对目标产品的形状结构进行展示。According to a preferred embodiment, the image optimization request includes a device identifier, a product number, several display images of the target product, and format information of the display images; the display images are used to display the shape and structure of the target product.
根据一个优选实施方式,所述图像反馈信用于表征测试用户对展示图像不同图像区域的注视信息,其包括图像注视点的位置信息、停留时长、测试用户的视线扫描路径和眼跳数目。According to a preferred embodiment, the image feedback information is used to characterize the gaze information of the test user on different image regions of the display image, which includes the position information of the gaze point of the image, the dwell time, the test user's gaze scanning path and the number of eye saccades.
根据一个优选实施方式,兴趣识别模块根据测试用户的图像反馈信息分析得到对应测试图像中测试用户对每个图像特征区域的兴趣度包括:According to a preferred embodiment, the interest identification module obtains the degree of interest of the test user in each image feature region in the corresponding test image according to the test user's image feedback information analysis including:
兴趣识别模块根据测试用户的图像反馈信息对测试用户的人眼运动状态进行分析以得到对应测试用户的眼动特征,并根据所述眼动特征分析得到测试用户对每个图像特征区域的兴趣度,其中,所述眼动特征用于表征对应测试用户对相应展示图像中各个图像特征区域的停留时长、眼跳数据和扫描轨迹。The interest identification module analyzes the human eye movement state of the test user according to the image feedback information of the test user to obtain the eye movement characteristics of the corresponding test user, and obtains the degree of interest of the test user to each image feature area according to the analysis of the eye movement characteristics , wherein the eye movement feature is used to characterize the corresponding test user's dwell time, eye saccade data, and scanning trajectory for each image feature area in the corresponding display image.
根据一个优选实施方式,兴趣识别模块根据所有测试用户对每个图像特征区域的兴趣度和对应图像特征区域的区域信息量分析得到每个图像特征区域的视觉优先度包括:According to a preferred embodiment, the interest recognition module obtains the visual priority of each image feature area according to the degree of interest of all test users in each image feature area and the area information volume of the corresponding image feature area:
兴趣识别模块根据每个图像特征区域对应的区域信息量确定对应图像特征区域的区域权重值,其中,所述区域信息量用于表征对应图像特征区域包含的目标产品的产品特征的多少;The interest identification module determines the area weight value of the corresponding image feature area according to the area information amount corresponding to each image feature area, wherein the area information amount is used to represent the number of product features of the target product contained in the corresponding image feature area;
兴趣识别模块根据每个图像特征区域的区域权重值对同一图像特征区域对应的所有测试用户的不同兴趣度进行加权融合以得到对应图像特征区域的视觉优先度。The interest recognition module weights and fuses the different interests of all test users corresponding to the same image feature area according to the area weight value of each image feature area to obtain the visual priority of the corresponding image feature area.
根据一个优选实施方式,参数增强模块根据每个视觉关键区域的第一参数区间、第二参数区间和视觉优先度确定对应展示图像中各个视觉关键区域的区域处理参数包括:According to a preferred embodiment, the parameter enhancement module determines the area processing parameters corresponding to each visual key area in the display image according to the first parameter interval, the second parameter interval and the visual priority of each visual key area, including:
参数增强模块获取每个视觉关键区域的像素特征以将其与对应展示图像的全局像素特征进行比较得到每个视觉关键区域的第一区域差异特征,并根据每个视觉关键区域的第一区域差异特征对应的第一特征差异度分析得到对应视觉关键区域的第一参数区间;The parameter enhancement module obtains the pixel features of each visual key area to compare it with the global pixel features of the corresponding display image to obtain the first regional difference feature of each visual key area, and according to the first regional difference of each visual key area The first feature difference degree analysis corresponding to the feature obtains the first parameter interval corresponding to the key visual area;
参数增强模块将每个视觉关键区域的像素特征与其相关的邻接图像特征区域的像素特征进行比较以得到每个视觉关键区域的第二区域差异特征,并根据每个视觉关键区域的第二区域差异特征对应的第二特征差异度分析得到对应视觉关键区域的第二参数区间;The parameter enhancement module compares the pixel features of each visual critical area with the pixel features of its related adjacent image feature areas to obtain the second regional difference feature of each visual critical area, and according to the second regional difference of each visual critical area The second feature difference analysis corresponding to the feature obtains the second parameter interval corresponding to the key visual area;
参数增强模块根据每个视觉关键区域的第一参数区间和第二参数区间确定对应展示图像中视觉优先度大于预设优先度阈值的视觉关键区域的每个像素点的权重系数,并根据每个像素点的像素值和权重系数融合得到对应视觉关键区域的区域处理参数。The parameter enhancement module determines, according to the first parameter interval and the second parameter interval of each visual key area, the weight coefficient of each pixel corresponding to the visual key area in the display image whose visual priority is greater than the preset priority threshold, and according to each The pixel value of the pixel point and the weight coefficient are fused to obtain the area processing parameters corresponding to the key visual area.
根据一个优选实施方式,所述根据每个视觉关键区域的第二区域差异特征对应的第二特征差异度分析得到对应视觉关键区域的第二参数区间包括:According to a preferred embodiment, the analysis of the second feature difference degree corresponding to the second regional difference feature of each visual key area to obtain the second parameter interval corresponding to the visual key area includes:
参数增强模块将每个视觉关键区域对应的第二区域差异特征中各个特征值差量与第二差量阈值进行比较以得到每个视觉关键区域与其相关的邻接图像特征区域之间的第二特征差异度,其中,所述第二特征差异度用于表征每个视觉关键区域与其相关的邻接图像特征区域之间的局部色度对比度和局部亮度对比度;The parameter enhancement module compares the difference of each feature value in the second region difference feature corresponding to each visual key area with the second difference threshold to obtain the second feature between each visual key area and its associated adjacent image feature area degree of difference, wherein the second degree of feature difference is used to characterize the local chromaticity contrast and local luminance contrast between each visual critical area and its associated adjacent image feature area;
参数增强模块根据人眼的最小视觉差和对应视觉关键区域的第二特征差异度确定第二区域差异特征中各个特征值差量的可变换范围以得到对应视觉关键区域的第二参数区间。The parameter enhancement module determines the transformable range of each feature value difference in the second area difference feature according to the minimum visual difference of the human eye and the second feature difference degree of the corresponding key visual area to obtain the second parameter interval corresponding to the key visual area.
根据一个优选实施方式,参数增强模块将每个视觉关键区域的像素特征与其相关的邻接图像特征区域的像素特征进行比较以得到每个视觉关键区域的第二区域差异特征包括:According to a preferred embodiment, the parameter enhancement module compares the pixel features of each key visual area with the pixel features of its associated adjacent image feature areas to obtain the second regional difference features of each key visual area, including:
参数增强模块根据每个视觉关键区域的像素特征为对应视觉关键区域建立相应的第一关键特征矩阵,根据每个与其相关的邻接图像特征区域的像素特征建立相应的第二关键特征矩阵;The parameter enhancement module establishes a corresponding first key feature matrix for the corresponding visual key area according to the pixel features of each visual key area, and establishes a corresponding second key feature matrix according to the pixel features of each adjacent image feature area related to it;
参数增强模块根据每个视觉关键区域对应的第一关键特征矩阵的矩阵方差和每个第一关键特征矩阵对应的第一矩阵邻域熵分析得到每个视觉关键区域的第一关键邻域熵,根据每个视觉关键区域对应的每个邻接图像特征区域对应第二关键特征矩阵的矩阵方差和每个第二关键特征矩阵对应的第二矩阵邻域熵分析得到每个邻接图像特征区域的第二关键邻域熵,其中,所述第一矩阵邻域熵用于表征第一关键特征矩阵中各个特征向量的权重系数;The parameter enhancement module obtains the first key neighborhood entropy of each visual key area according to the matrix variance of the first key feature matrix corresponding to each visual key area and the first matrix neighborhood entropy corresponding to each first key feature matrix, According to the matrix variance of each adjacent image feature area corresponding to each visual key area corresponding to the second key feature matrix and the second matrix neighborhood entropy analysis corresponding to each second key feature matrix, the second value of each adjacent image feature area is obtained. key neighborhood entropy, wherein the first matrix neighborhood entropy is used to characterize the weight coefficients of each feature vector in the first key feature matrix;
参数增强模块将每个视觉关键区域的第一关键邻域熵的特征分量和与其相关的每个邻接图像特征区域的第二关键邻域熵的特征分量投影至不同尺度的特征子空间中以得到每个视觉关键区域与其相关的邻接图像特征区域之间的若干特征值差量,并根据若干特征值差量生成对应视觉关键区域的第二区域差异特征,其中,所述第二区域差异特征用于表征每个视觉关键区域与其相关的邻接图像特征区域之间的像素平均值差量和灰度聚集度差量。The parameter enhancement module projects the feature component of the first key neighborhood entropy of each visual key area and the feature component of the second key neighborhood entropy of each adjacent image feature area related to it to the feature subspace of different scales to obtain A number of eigenvalue differences between each visual critical area and its associated adjacent image feature areas, and generate a second regional difference feature corresponding to the visual key area according to the several eigenvalue differences, wherein the second regional difference feature is used It is used to characterize the pixel average difference and gray-scale aggregation difference between each visual key area and its related adjacent image feature areas.
根据一个优选实施方式,所述第一参数区间用于表征每个视觉关键区域相较于对应展示图像的像素值可增强范围;所述第二参数区间用于表征每个视觉关键区域相较于与其相关的邻接图像特征区域的像素值可增强范围。According to a preferred embodiment, the first parameter interval is used to characterize the enhancement range of the pixel value of each key visual area compared with the corresponding display image; the second parameter interval is used to characterize the range of each key visual area compared to The range of pixel values associated with adjacent image feature regions may be enhanced.
根据一个优选实施方式,所述最小视觉差为系统预存的人体先验知识,其代表人眼可察觉的最小像素值差。According to a preferred embodiment, the minimum visual difference is the prior knowledge of the human body stored in the system, which represents the minimum pixel value difference perceivable by human eyes.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明提供的基于大数据的产品图像调整方法通过获取测试用户在观看产品的不同展示图像时的眼动特征分析得到每个测试用户对产品的展示图像中不同图像区域的兴趣度,并根据每个测试用户的兴趣度分析得到对应展示图像中的视觉关键区域,然后根据各个视觉关键区域的区域处理参数对每个视觉关键区域的对比度进行增强。即本发明通过识别众多用户在商品图像中的视觉兴趣区域,并增强视觉兴趣区域的对比度,显著提高了商品图像的显示效果,有利于商品图像凸显出消费者较为感兴趣的产品细节,提高消费者的购买欲望。The product image adjustment method based on big data provided by the present invention obtains the degree of interest of each test user in different image regions in the product display images by acquiring the eye movement characteristics of the test users when they watch different display images of the product, and according to each According to the analysis of the interest degree of each test user, the key visual areas in the corresponding display images are obtained, and then the contrast of each key visual area is enhanced according to the area processing parameters of each key visual area. That is to say, the present invention significantly improves the display effect of product images by identifying the visual interest areas of many users in the product images and enhancing the contrast of the visual interest regions, which is conducive to product images highlighting product details that consumers are more interested in and improving consumption. consumers' desire to purchase.
附图说明Description of drawings
图1为一示例性实施例提供的基于大数据的产品图像调整方法的流程图。Fig. 1 is a flow chart of a method for adjusting a product image based on big data provided by an exemplary embodiment.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific embodiments and with reference to the accompanying drawings. It should be understood that these descriptions are exemplary only, and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in the present invention is for the purpose of describing particular embodiments only and is not intended to limit the invention. As used herein and in the appended claims, the singular forms "a", "the", and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the terms first, second, third, etc. may be used in the present invention to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present invention, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word "if" as used herein may be interpreted as "at" or "when" or "in response to a determination."
参见图1,在一个实施例中,基于大数据的产品图像调整方法可以包括:Referring to Fig. 1, in one embodiment, the product image adjustment method based on big data may include:
S1、智慧电商平台的信息获取模块响应于管理终端发送的图像优化请求将目标产品对应的若干展示图像发送至各个测试用户的用户终端,并获取各个测试用户对不同展示图像的图像反馈信息。S1. The information acquisition module of the smart e-commerce platform sends several display images corresponding to the target product to the user terminals of each test user in response to the image optimization request sent by the management terminal, and obtains image feedback information of each test user on different display images.
可选地,所述图像优化请求包括设备标识符、产品编号、目标产品的若干展示图像以及展示图像的格式信息;所述展示图像用于对目标产品的形状结构进行展示。Optionally, the image optimization request includes a device identifier, a product number, several display images of the target product, and format information of the display images; the display images are used to display the shape and structure of the target product.
可选地,所述设备标识符用于对管理终端进行唯一标识;所述产品编号用于对产品进行唯一标识;所述格式信息用于表征对应展示图像的压缩格式和解码格式。Optionally, the device identifier is used to uniquely identify the management terminal; the product number is used to uniquely identify the product; and the format information is used to represent the compression format and decoding format of the corresponding display image.
可选地,所述图像反馈信用于表征测试用户对展示图像不同图像区域的注视信息,其包括图像注视点的位置信息、停留时长、测试用户的视线扫描路径和眼跳数目,所述注视信息由对应用户终端通过其外接的摄像装置对康复用户的眼动行为进行实时采集所得。Optionally, the image feedback signal is used to characterize the gaze information of the test user on different image regions of the display image, which includes the position information of the gaze point of the image, the duration of stay, the test user's line of sight scanning path and the number of eye saccades, the gaze information It is obtained by the real-time collection of the eye movement behavior of the rehabilitation user by the corresponding user terminal through its external camera device.
可选地,所述管理终端为产品销售者所使用的具有计算功能、存储功能和通信功能的设备,其包括:智能手机、台式电脑和笔记本电脑。Optionally, the management terminal is a device with computing function, storage function and communication function used by product sellers, which includes: smart phones, desktop computers and notebook computers.
S2、兴趣识别模块根据测试用户的图像反馈信息分析得到对应测试图像中测试用户对每个图像特征区域的兴趣度,并根据所有测试用户对每个图像特征区域的兴趣度和对应图像特征区域的区域信息量分析得到每个图像特征区域的视觉优先度。S2. The interest identification module obtains the degree of interest of the test user in each image feature area in the corresponding test image according to the image feedback information analysis of the test user, and according to the interest of all test users in each image feature area and the corresponding image feature area The visual priority of each image feature region is obtained by analyzing the amount of regional information.
具体地,兴趣识别模块根据测试用户的图像反馈信息分析得到对应测试图像中测试用户对每个图像特征区域的兴趣度包括:Specifically, the interest identification module obtains the degree of interest of the test user in each image feature area in the corresponding test image according to the image feedback information analysis of the test user, including:
兴趣识别模块根据测试用户的图像反馈信息对测试用户的人眼运动状态进行分析以得到对应测试用户的眼动特征,并根据所述眼动特征分析得到测试用户对每个图像特征区域的兴趣度,其中,所述眼动特征用于表征对应测试用户对相应展示图像中各个图像特征区域的停留时长、眼跳数据和扫描轨迹。The interest identification module analyzes the human eye movement state of the test user according to the image feedback information of the test user to obtain the eye movement characteristics of the corresponding test user, and obtains the degree of interest of the test user to each image feature area according to the analysis of the eye movement characteristics , wherein the eye movement feature is used to characterize the corresponding test user's dwell time, eye saccade data, and scanning trajectory for each image feature area in the corresponding display image.
具体地,兴趣识别模块根据所有测试用户对每个图像特征区域的兴趣度和对应图像特征区域的区域信息量分析得到每个图像特征区域的视觉优先度包括:Specifically, the interest recognition module obtains the visual priority of each image feature area according to the interest degree of each test user to each image feature area and the area information amount of the corresponding image feature area:
兴趣识别模块根据每个图像特征区域对应的区域信息量确定对应图像特征区域的区域权重值,其中,所述区域信息量用于表征对应图像特征区域包含的目标产品的产品特征的多少;The interest identification module determines the area weight value of the corresponding image feature area according to the area information amount corresponding to each image feature area, wherein the area information amount is used to represent the number of product features of the target product contained in the corresponding image feature area;
兴趣识别模块根据每个图像特征区域的区域权重值对同一图像特征区域对应的所有测试用户的不同兴趣度进行加权融合以得到对应图像特征区域的视觉优先度。The interest recognition module weights and fuses the different interests of all test users corresponding to the same image feature area according to the area weight value of each image feature area to obtain the visual priority of the corresponding image feature area.
可选地,所述区域权重值的大小用于表征对应图像特征区域的重要程度,即所述图像特征区域包含的产品特征越多,所占区域权重值越大。可选地,所述视觉优先度用于表征对应图像特征区域对人眼视线的吸引程度,即视觉优先度越大则表明对应图像特征区域的用户关注度越大。Optionally, the area weight value is used to represent the importance of the corresponding image feature area, that is, the more product features the image feature area contains, the larger the area weight value it occupies. Optionally, the visual priority is used to characterize the degree of attraction of the corresponding image feature area to human eyesight, that is, the greater the visual priority, the greater the degree of user attention to the corresponding image feature area.
S3、参数增强模块根据每个图像特征区域的视觉优先度识别对应展示图像中的视觉关键区域,并根据每个视觉关键区域的第一参数区间、第二参数区间和视觉优先度确定对应展示图像中各个视觉关键区域的区域处理参数。S3. The parameter enhancement module identifies the visual key area in the corresponding display image according to the visual priority of each image feature area, and determines the corresponding display image according to the first parameter interval, the second parameter interval and the visual priority of each visual key area. Region processing parameters for each visually critical region in .
可选地,所述区域处理参数用于对相应视觉关键区域中各个像素点的像素进行调节。Optionally, the region processing parameters are used to adjust the pixels of each pixel in the corresponding visual critical region.
具体地,参数增强模块根据每个视觉关键区域的第一参数区间、第二参数区间和视觉优先度确定对应展示图像中各个视觉关键区域的区域处理参数包括:Specifically, the parameter enhancement module determines, according to the first parameter interval, the second parameter interval and the visual priority of each visual key area, the area processing parameters corresponding to each visual key area in the display image, including:
参数增强模块获取每个视觉关键区域的像素特征以将其与对应展示图像的全局像素特征进行比较得到每个视觉关键区域的第一区域差异特征,并根据每个视觉关键区域的第一区域差异特征对应的第一特征差异度分析得到对应视觉关键区域的第一参数区间,其中,所述第一区域差异特征用于表征每个视觉关键区域与对应展示图像之间的像素平均值差量和灰度聚集度差量;所述第一特征差异度用于表征每个视觉关键区域与对应展示图像之间的全局色度对比度和全局亮度对比度;The parameter enhancement module obtains the pixel features of each visual key area to compare it with the global pixel features of the corresponding display image to obtain the first regional difference feature of each visual key area, and according to the first regional difference of each visual key area The first feature difference analysis corresponding to the feature obtains the first parameter interval corresponding to the key visual area, wherein the first area difference feature is used to characterize the pixel average difference between each key visual area and the corresponding display image and Gray-scale aggregation difference; the first feature difference is used to characterize the global chromaticity contrast and global brightness contrast between each key visual area and the corresponding display image;
参数增强模块将每个视觉关键区域的像素特征与其相关的邻接图像特征区域的像素特征进行比较以得到每个视觉关键区域的第二区域差异特征,并根据每个视觉关键区域的第二区域差异特征对应的第二特征差异度分析得到对应视觉关键区域的第二参数区间;The parameter enhancement module compares the pixel features of each visual critical area with the pixel features of its related adjacent image feature areas to obtain the second regional difference feature of each visual critical area, and according to the second regional difference of each visual critical area The second feature difference analysis corresponding to the feature obtains the second parameter interval corresponding to the key visual area;
参数增强模块根据每个视觉关键区域的第一参数区间和第二参数区间确定对应展示图像中视觉优先度大于预设优先度阈值的视觉关键区域的每个像素点的权重系数,并根据每个像素点的像素值和权重系数融合得到对应视觉关键区域的区域处理参数。The parameter enhancement module determines, according to the first parameter interval and the second parameter interval of each visual key area, the weight coefficient of each pixel corresponding to the visual key area in the display image whose visual priority is greater than the preset priority threshold, and according to each The pixel value of the pixel point and the weight coefficient are fused to obtain the area processing parameters corresponding to the key visual area.
可选地,所述预设优先度阈值为系统预先设置的用于判断对应图像特征区域对人眼视线的吸引程度是否较大的数值。Optionally, the preset priority threshold is a value preset by the system for judging whether the corresponding image characteristic area is more attractive to human sight.
具体地,所述根据每个视觉关键区域的第二区域差异特征对应的第二特征差异度分析得到对应视觉关键区域的第二参数区间包括:Specifically, according to the second feature difference analysis corresponding to the second regional difference feature of each visual key area, the second parameter interval of the corresponding visual key area includes:
参数增强模块将每个视觉关键区域对应的第二区域差异特征中各个特征值差量与第二差量阈值进行比较以得到每个视觉关键区域与其相关的邻接图像特征区域之间的第二特征差异度,其中,所述第二特征差异度用于表征每个视觉关键区域与其相关的邻接图像特征区域之间的局部色度对比度和局部亮度对比度;The parameter enhancement module compares the difference of each feature value in the second region difference feature corresponding to each visual key area with the second difference threshold to obtain the second feature between each visual key area and its associated adjacent image feature area degree of difference, wherein the second degree of feature difference is used to characterize the local chromaticity contrast and local luminance contrast between each visual critical area and its associated adjacent image feature area;
参数增强模块根据人眼的最小视觉差和对应视觉关键区域的第二特征差异度确定第二区域差异特征中各个特征值差量的可变换范围以得到对应视觉关键区域的第二参数区间。The parameter enhancement module determines the transformable range of each feature value difference in the second area difference feature according to the minimum visual difference of the human eye and the second feature difference degree of the corresponding key visual area to obtain the second parameter interval corresponding to the key visual area.
可选地,所述最小视觉差为系统预存的人体先验知识,其代表人眼可察觉的最小像素值差。Optionally, the minimum visual difference is human prior knowledge pre-stored in the system, which represents the minimum pixel value difference perceivable by human eyes.
具体地,参数增强模块将每个视觉关键区域的像素特征与其相关的邻接图像特征区域的像素特征进行比较以得到每个视觉关键区域的第二区域差异特征包括:Specifically, the parameter enhancement module compares the pixel features of each visual critical area with the pixel features of its related adjacent image feature areas to obtain the second regional difference features of each visual key area, including:
参数增强模块根据每个视觉关键区域的像素特征为对应视觉关键区域建立相应的第一关键特征矩阵,根据每个与其相关的邻接图像特征区域的像素特征建立相应的第二关键特征矩阵;The parameter enhancement module establishes a corresponding first key feature matrix for the corresponding visual key area according to the pixel features of each visual key area, and establishes a corresponding second key feature matrix according to the pixel features of each adjacent image feature area related to it;
参数增强模块根据每个视觉关键区域对应的第一关键特征矩阵的矩阵方差和每个第一关键特征矩阵对应的第一矩阵邻域熵分析得到每个视觉关键区域的第一关键邻域熵,根据每个视觉关键区域对应的每个邻接图像特征区域对应第二关键特征矩阵的矩阵方差和每个第二关键特征矩阵对应的第二矩阵邻域熵分析得到每个邻接图像特征区域的第二关键邻域熵,其中,所述第一矩阵邻域熵用于表征第一关键特征矩阵中各个特征向量的权重系数;The parameter enhancement module obtains the first key neighborhood entropy of each visual key area according to the matrix variance of the first key feature matrix corresponding to each visual key area and the first matrix neighborhood entropy corresponding to each first key feature matrix, According to the matrix variance of each adjacent image feature area corresponding to each visual key area corresponding to the second key feature matrix and the second matrix neighborhood entropy analysis corresponding to each second key feature matrix, the second value of each adjacent image feature area is obtained. key neighborhood entropy, wherein the first matrix neighborhood entropy is used to characterize the weight coefficients of each feature vector in the first key feature matrix;
参数增强模块将每个视觉关键区域的第一关键邻域熵的特征分量和与其相关的每个邻接图像特征区域的第二关键邻域熵的特征分量投影至不同尺度的特征子空间中以得到每个视觉关键区域与其相关的邻接图像特征区域之间的若干特征值差量,并根据若干特征值差量生成对应视觉关键区域的第二区域差异特征,其中,所述第二区域差异特征用于表征每个视觉关键区域与其相关的邻接图像特征区域之间的像素平均值差量和灰度聚集度差量。The parameter enhancement module projects the feature component of the first key neighborhood entropy of each visual key area and the feature component of the second key neighborhood entropy of each adjacent image feature area related to it to the feature subspace of different scales to obtain A number of eigenvalue differences between each visual critical area and its associated adjacent image feature areas, and generate a second regional difference feature corresponding to the visual key area according to the several eigenvalue differences, wherein the second regional difference feature is used It is used to characterize the pixel average difference and gray-scale aggregation difference between each visual key area and its related adjacent image feature areas.
可选地,所述第一参数区间用于表征每个视觉关键区域相较于对应展示图像的像素值可增强范围;所述第二参数区间用于表征每个视觉关键区域相较于与其相关的邻接图像特征区域的像素值可增强范围。Optionally, the first parameter interval is used to characterize the enhancement range of the pixel value of each visual key area compared with the corresponding display image; the second parameter interval is used to characterize the range of each visual key area compared to its related The range of pixel values of adjacent image feature regions can be enhanced.
可选地,所述第二矩阵邻域熵用于表征第二关键特征矩阵中各个特征向量的权重系数;所述第一关键邻域熵用于表征对应视觉关键区域中各个像素点的像素离散度;所述第二关键邻域熵用于表征对应视觉关键区域的邻接图像特征区域中各个像素点的像素离散度。Optionally, the second matrix neighborhood entropy is used to characterize the weight coefficients of each feature vector in the second key feature matrix; the first key neighborhood entropy is used to characterize the pixel discretization of each pixel point in the corresponding visual key area degree; the second key neighborhood entropy is used to characterize the pixel dispersion of each pixel in the adjacent image feature area corresponding to the visual key area.
S4、图像处理模块根据所述区域处理参数对相应展示图像中各个视觉关键区域的对比度进行增强以得到对应展示图像的效果增强图像。S4. The image processing module enhances the contrast of each key visual area in the corresponding display image according to the region processing parameters to obtain an effect-enhanced image of the corresponding display image.
本发明提供的基于大数据的产品图像调整方法通过获取测试用户在观看产品的不同展示图像时的眼动特征分析得到每个测试用户对产品的展示图像中不同图像区域的兴趣度,并根据每个测试用户的兴趣度分析得到对应展示图像中的视觉关键区域,然后根据各个视觉关键区域的区域处理参数对每个视觉关键区域的对比度进行增强。即本发明通过识别众多用户在商品图像中的视觉兴趣区域,并增强视觉兴趣区域的对比度,显著提高了商品图像的显示效果,有利于商品图像凸显出消费者较为感兴趣的产品细节,提高消费者的购买欲望。The product image adjustment method based on big data provided by the present invention obtains the degree of interest of each test user in different image regions in the product display images by acquiring the eye movement characteristics of the test users when they watch different display images of the product, and according to each According to the analysis of the interest degree of each test user, the key visual areas in the corresponding display images are obtained, and then the contrast of each key visual area is enhanced according to the area processing parameters of each key visual area. That is to say, the present invention significantly improves the display effect of product images by identifying the visual interest areas of many users in the product images and enhancing the contrast of the visual interest regions, which is conducive to product images highlighting product details that consumers are more interested in and improving consumption. consumers' desire to purchase.
在一个实施例中,用于执行本发明方法的基于大数据的产品图像调整系统包括管理终端、用户终端和智慧电商平台。智慧电商平台分别与管理终端和用户终端具有通信连接。所述用户终端为产品消费者所使用的具有计算功能、存储功能和通信功能的设备,其包括:智能手机、台式电脑和笔记本电脑。In one embodiment, the big data-based product image adjustment system for implementing the method of the present invention includes a management terminal, a user terminal and a smart e-commerce platform. The smart e-commerce platform has communication connections with the management terminal and the user terminal respectively. The user terminal is a device with computing function, storage function and communication function used by product consumers, which includes: smart phones, desktop computers and notebook computers.
智慧电商平台包括信息获取模块、兴趣识别模块、参数增强模块和图像处理模块。The smart e-commerce platform includes an information acquisition module, an interest identification module, a parameter enhancement module and an image processing module.
信息获取模块用于响应于管理终端发送的图像优化请求将目标产品对应的若干展示图像发送至各个测试用户的用户终端,并获取各个测试用户对不同展示图像的图像反馈信息。The information acquisition module is used to send several display images corresponding to the target product to the user terminals of each test user in response to the image optimization request sent by the management terminal, and obtain image feedback information of each test user for different display images.
兴趣识别模块用于根据测试用户的图像反馈信息分析得到对应测试图像中测试用户对每个图像特征区域的兴趣度,并根据所有测试用户对每个图像特征区域的兴趣度和对应图像特征区域的区域信息量分析得到每个图像特征区域的视觉优先度。The interest recognition module is used to obtain the degree of interest of the test user in each image feature region in the corresponding test image according to the image feedback information analysis of the test user, and according to the interest degree of all test users to each image feature region and the corresponding image feature region The visual priority of each image feature region is obtained by analyzing the amount of regional information.
参数增强模块用于根据每个图像特征区域的视觉优先度识别对应展示图像中的视觉关键区域,并根据每个视觉关键区域的第一参数区间、第二参数区间和视觉优先度确定对应展示图像中各个视觉关键区域的区域处理参数。The parameter enhancement module is used to identify the visual key area in the corresponding display image according to the visual priority of each image feature area, and determine the corresponding display image according to the first parameter interval, the second parameter interval and the visual priority of each visual key area Region processing parameters for each visually critical region in .
图像处理模块用于根据所述区域处理参数对相应展示图像中各个视觉关键区域的对比度进行增强以得到对应展示图像的效果增强图像。The image processing module is configured to enhance the contrast of each key visual region in the corresponding display image according to the region processing parameters to obtain an effect-enhanced image of the corresponding display image.
另外,虽然上面参考特定模块讨论了特定功能,但是应当注意,本文讨论的各个模块的功能可以分为多个模块,和/或多个模块的至少一些功能可以组合成单个模块。另外,本文讨论的特定模块执行动作包括该特定模块本身执行动作,或者替换地该特定模块调用或以其他方式访问执行该动作的另一个组件或模块(或结合该特定模块一起执行动作)。因此,执行动作的特定模块可以包括执行动作的特定模块本身和/或执行动作的该特定模块调用或以其他方式访问的另一模块。Additionally, while specific functions are discussed above with reference to specific modules, it should be noted that the functionality of various modules discussed herein may be divided into multiple modules, and/or at least some of the functionality of multiple modules may be combined into a single module. Additionally, a specific module discussed herein performing an action includes the specific module itself performing the action, or alternatively the specific module calls or otherwise accesses another component or module that performs the action (or performs the action in conjunction with the specific module). Accordingly, the particular module performing the action may include the particular module performing the action itself and/or another module that the particular module performing the action invokes or otherwise accesses.
需要理解的是,尽管第一、第二、第三等术语在本文中可以用来描述各种设备、元件、部件或元素,但是这些设备、元件、部件或元素不应当由这些术语限制。这些术语仅用来将一个设备、元件、部件或元素与另一个设备、元件、部件或元素相区分。It is to be understood that although the terms first, second, third etc. may be used herein to describe various devices, elements, components or elements, these devices, elements, components or elements should not be limited by these terms. These terms are only used to distinguish one device, component, component or element from another device, component, component or element.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211471120.0A CN115661447B (en) | 2022-11-23 | 2022-11-23 | A product image adjustment method based on big data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211471120.0A CN115661447B (en) | 2022-11-23 | 2022-11-23 | A product image adjustment method based on big data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115661447A CN115661447A (en) | 2023-01-31 |
CN115661447B true CN115661447B (en) | 2023-08-04 |
Family
ID=85019192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211471120.0A Active CN115661447B (en) | 2022-11-23 | 2022-11-23 | A product image adjustment method based on big data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115661447B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116778130B (en) * | 2023-08-25 | 2023-12-05 | 江苏盖睿健康科技有限公司 | Intelligent recognition method and system for test result based on image processing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112052809A (en) * | 2020-09-10 | 2020-12-08 | 四川创客知佳科技有限公司 | Facility monitoring and protecting method based on intelligent park |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105023253A (en) * | 2015-07-16 | 2015-11-04 | 上海理工大学 | Visual underlying feature-based image enhancement method |
US20170092007A1 (en) * | 2015-09-24 | 2017-03-30 | Supereye, Inc. | Methods and Devices for Providing Enhanced Visual Acuity |
CN108052973B (en) * | 2017-12-11 | 2020-05-05 | 中国人民解放军战略支援部队信息工程大学 | Map symbol user interest analysis method based on multiple items of eye movement data |
CN110163219B (en) * | 2019-04-17 | 2023-05-16 | 安阳师范学院 | Object Detection Method Based on Image Edge Recognition |
CN113313650B (en) * | 2021-06-09 | 2023-10-13 | 北京百度网讯科技有限公司 | Image quality enhancement method, device, equipment and medium |
CN114298921B (en) * | 2021-12-10 | 2024-06-21 | 苏州创捷传媒展览股份有限公司 | Objective content driving-based method for evaluating visual attention effect of audience |
CN115035114B (en) * | 2022-08-11 | 2022-11-11 | 高密德隆汽车配件制造有限公司 | Hay crusher state monitoring method based on image processing |
CN115345256B (en) * | 2022-09-16 | 2023-10-27 | 北京国联视讯信息技术股份有限公司 | Industrial product testing system applied to intelligent manufacturing |
-
2022
- 2022-11-23 CN CN202211471120.0A patent/CN115661447B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112052809A (en) * | 2020-09-10 | 2020-12-08 | 四川创客知佳科技有限公司 | Facility monitoring and protecting method based on intelligent park |
Also Published As
Publication number | Publication date |
---|---|
CN115661447A (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11892626B2 (en) | Measurement method and system | |
WO2018033155A1 (en) | Video image processing method, apparatus and electronic device | |
US9952427B2 (en) | Measurement method and system | |
US20190122083A1 (en) | Image evaluation | |
US20210065285A1 (en) | Virtual fitting systems and methods for spectacles | |
WO2018033154A1 (en) | Gesture control method, device, and electronic apparatus | |
US20120203640A1 (en) | Method and system of generating an implicit social graph from bioresponse data | |
US9652654B2 (en) | System and method for providing an interactive shopping experience via webcam | |
US20180268453A1 (en) | Composite image generation | |
CN105721936B (en) | A kind of intelligent television program recommendation system based on context aware | |
WO2018214869A1 (en) | Method and device for recommending business object, electronic apparatus, and storage medium | |
US12033190B2 (en) | System and method for content recognition and data categorization | |
CN115661447B (en) | A product image adjustment method based on big data | |
US20220138237A1 (en) | Systems, devices, and methods for content selection | |
Greco et al. | Digital signage by real-time gender recognition from face images | |
JP5600148B2 (en) | VIDEO DISTRIBUTION DEVICE, VIDEO DISTRIBUTION METHOD, AND VIDEO DISTRIBUTION PROGRAM | |
CN113033413A (en) | Glasses recommendation method and device, storage medium and terminal | |
CN109792557A (en) | Enhance the framework of the video data obtained by client device using one or more effects during rendering | |
JP7110738B2 (en) | Information processing device, program and information processing system | |
CN111241385A (en) | Information processing method, information processing apparatus, computer system, and medium | |
WO2015172229A1 (en) | Virtual mirror systems and methods | |
CN115660789A (en) | Product image management system based on intelligent e-commerce platform | |
CN116710966A (en) | System and method for predicting the quality of fit of a head wearable device and use thereof | |
EP3286713A1 (en) | Frame recognition system and method | |
US20230267525A1 (en) | Situationally aware mobile device for automated resource analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230713 Address after: Room 202, Floor 2, No. 11, Lane 1500, Kongjiang Road, Yangpu District, Shanghai, 200092 Applicant after: Shanghai Xingyun Information Technology Co.,Ltd. Address before: No. 508-2A, Baoli Tianji North Block, Qiandenghu, Guicheng Street, Nanhai District, Foshan City, Guangdong Province, 528200 Applicant before: Foshan Haixie Technology Co.,Ltd. Effective date of registration: 20230713 Address after: No. 508-2A, Baoli Tianji North Block, Qiandenghu, Guicheng Street, Nanhai District, Foshan City, Guangdong Province, 528200 Applicant after: Foshan Haixie Technology Co.,Ltd. Address before: No.24, Section 1, Xuefu Road, Southwest Airport Economic Development Zone, Chengdu, Sichuan 610200 Applicant before: CHENGDU University OF INFORMATION TECHNOLOGY |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241129 Address after: 200000 Room 173, 1150 Xuchang Road, Yangpu District, Shanghai Patentee after: Shanghai Haoyun Information Technology Co.,Ltd. Country or region after: China Address before: Room 202, Floor 2, No. 11, Lane 1500, Kongjiang Road, Yangpu District, Shanghai, 200092 Patentee before: Shanghai Xingyun Information Technology Co.,Ltd. Country or region before: China |