CN115660135A - 基于贝叶斯方法和图卷积的交通流预测方法及系统 - Google Patents
基于贝叶斯方法和图卷积的交通流预测方法及系统 Download PDFInfo
- Publication number
- CN115660135A CN115660135A CN202211072087.4A CN202211072087A CN115660135A CN 115660135 A CN115660135 A CN 115660135A CN 202211072087 A CN202211072087 A CN 202211072087A CN 115660135 A CN115660135 A CN 115660135A
- Authority
- CN
- China
- Prior art keywords
- traffic flow
- matrix
- model
- data
- representing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000011159 matrix material Substances 0.000 claims abstract description 109
- 238000013398 bayesian method Methods 0.000 claims abstract description 15
- 238000005457 optimization Methods 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims description 44
- 238000005070 sampling Methods 0.000 claims description 36
- 238000009792 diffusion process Methods 0.000 claims description 24
- 238000010276 construction Methods 0.000 claims description 18
- 238000013527 convolutional neural network Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 15
- 238000007781 pre-processing Methods 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000002759 z-score normalization Methods 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 24
- 230000019771 cognition Effects 0.000 abstract 1
- 230000001364 causal effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 230000001149 cognitive effect Effects 0.000 description 3
- 238000000547 structure data Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011425 standardization method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211072087.4A CN115660135A (zh) | 2022-09-02 | 2022-09-02 | 基于贝叶斯方法和图卷积的交通流预测方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211072087.4A CN115660135A (zh) | 2022-09-02 | 2022-09-02 | 基于贝叶斯方法和图卷积的交通流预测方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115660135A true CN115660135A (zh) | 2023-01-31 |
Family
ID=84984244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211072087.4A Pending CN115660135A (zh) | 2022-09-02 | 2022-09-02 | 基于贝叶斯方法和图卷积的交通流预测方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115660135A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115809747A (zh) * | 2023-02-06 | 2023-03-17 | 东南大学 | 一种基于金字塔式因果网络的耦合信息流长期预测方法 |
CN116129659A (zh) * | 2023-03-06 | 2023-05-16 | 河北工业大学 | 一种基于自适应二维图卷积的起讫点交通流量预测方法 |
CN116504076A (zh) * | 2023-06-19 | 2023-07-28 | 贵州宏信达高新科技有限责任公司 | 基于etc门架数据的高速公路车流量预测方法 |
CN116957166A (zh) * | 2023-08-25 | 2023-10-27 | 南京纳尼亚科技有限公司 | 一种基于鸿蒙系统的隧道交通情况预测方法及系统 |
CN117454762A (zh) * | 2023-10-30 | 2024-01-26 | 昆明理工大学 | Markov-神经网络的穿煤隧道掌子面瓦斯浓度预测方法 |
-
2022
- 2022-09-02 CN CN202211072087.4A patent/CN115660135A/zh active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115809747A (zh) * | 2023-02-06 | 2023-03-17 | 东南大学 | 一种基于金字塔式因果网络的耦合信息流长期预测方法 |
CN115809747B (zh) * | 2023-02-06 | 2023-05-09 | 东南大学 | 一种基于金字塔式因果网络的耦合信息流长期预测方法 |
CN116129659A (zh) * | 2023-03-06 | 2023-05-16 | 河北工业大学 | 一种基于自适应二维图卷积的起讫点交通流量预测方法 |
CN116504076A (zh) * | 2023-06-19 | 2023-07-28 | 贵州宏信达高新科技有限责任公司 | 基于etc门架数据的高速公路车流量预测方法 |
CN116957166A (zh) * | 2023-08-25 | 2023-10-27 | 南京纳尼亚科技有限公司 | 一种基于鸿蒙系统的隧道交通情况预测方法及系统 |
CN116957166B (zh) * | 2023-08-25 | 2024-04-26 | 南京纳尼亚科技有限公司 | 一种基于鸿蒙系统的隧道交通情况预测方法及系统 |
CN117454762A (zh) * | 2023-10-30 | 2024-01-26 | 昆明理工大学 | Markov-神经网络的穿煤隧道掌子面瓦斯浓度预测方法 |
CN117454762B (zh) * | 2023-10-30 | 2024-05-24 | 昆明理工大学 | Markov-神经网络的穿煤隧道掌子面瓦斯浓度预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115660135A (zh) | 基于贝叶斯方法和图卷积的交通流预测方法及系统 | |
CN113053115B (zh) | 一种基于多尺度图卷积网络模型的交通预测方法 | |
Ren et al. | Mtrajrec: Map-constrained trajectory recovery via seq2seq multi-task learning | |
CN115240425B (zh) | 一种基于多尺度时空融合图网络的交通预测方法 | |
CN112988723A (zh) | 一种基于空间自注意力图卷积循环神经网络的交通数据修复方法 | |
CN113570859B (zh) | 一种基于异步时空膨胀图卷积网络的交通流量预测方法 | |
CN113190688B (zh) | 基于逻辑推理和图卷积的复杂网络链接预测方法及系统 | |
CN110570035B (zh) | 同时建模时空依赖性和每日流量相关性的人流量预测系统 | |
CN111639791A (zh) | 交通流预测方法、系统、存储介质及终端 | |
CN113762595B (zh) | 通行时间预测模型训练方法、通行时间预测方法及设备 | |
CN116822382A (zh) | 基于时空多重特性图卷积的海表面温度预测方法及网络 | |
CN115935796A (zh) | 一种基于时空异质的和同步的图卷积网络交通流预测方法 | |
CN116311880A (zh) | 基于局部-全局时空特征融合的交通流量预测方法及设备 | |
CN115062779A (zh) | 基于动态知识图谱的事件预测方法及装置 | |
CN114926742A (zh) | 一种基于二阶注意力机制的回环检测及优化方法 | |
CN118069868A (zh) | 一种融合llm大模型的知识图谱的纠错方法 | |
CN117690289A (zh) | 一种基于掩码图注意力机制的交通路网编码表征学习方法 | |
CN117671952A (zh) | 基于时空同步动态图注意力网络的交通流预测方法及系统 | |
CN117975710A (zh) | 一种交通流流量预测方法、装置、设备及存储介质 | |
Prabowo et al. | Traffic forecasting on new roads unseen in the training data using spatial contrastive pre-training | |
CN117408336A (zh) | 一种结构与属性注意力机制的实体对齐方法 | |
CN117593877A (zh) | 一种基于集成图卷积神经网络的短时交通流预测方法 | |
CN115953902B (zh) | 一种基于多视图时空图卷积网络的交通流预测方法 | |
CN117111464A (zh) | 一种多工况下的自适应故障诊断方法 | |
CN114566048B (zh) | 一种基于多视角自适应时空图网络的交通控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Lei Inventor after: Mu Xiaolei Inventor after: Qian Meng Inventor after: Liu Zhichao Inventor after: Long Yufeng Inventor after: Li Quanle Inventor after: Li Daguo Inventor after: Zhang Yixuan Inventor before: Wang Lei Inventor before: Zhang Yixuan Inventor before: Guo Deke Inventor before: Mu Xiaolei Inventor before: Qian Meng Inventor before: Liu Zhichao Inventor before: Long Yufeng Inventor before: Li Xiaoling Inventor before: Li Quanle Inventor before: Li Daguo |