CN115656235A - Use method of all-solid-state lithium ion in-situ testing device - Google Patents
Use method of all-solid-state lithium ion in-situ testing device Download PDFInfo
- Publication number
- CN115656235A CN115656235A CN202211259407.7A CN202211259407A CN115656235A CN 115656235 A CN115656235 A CN 115656235A CN 202211259407 A CN202211259407 A CN 202211259407A CN 115656235 A CN115656235 A CN 115656235A
- Authority
- CN
- China
- Prior art keywords
- solid
- neutron
- lithium ion
- state lithium
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 47
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 36
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000001683 neutron diffraction Methods 0.000 claims abstract description 36
- 238000002474 experimental method Methods 0.000 claims abstract description 24
- 230000006835 compression Effects 0.000 claims description 19
- 238000007906 compression Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 12
- 241000237983 Trochidae Species 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims 1
- 229910001093 Zr alloy Inorganic materials 0.000 abstract description 21
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 13
- 229910052582 BN Inorganic materials 0.000 abstract description 12
- 239000003365 glass fiber Substances 0.000 abstract description 11
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 abstract description 9
- 238000009413 insulation Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 238000007789 sealing Methods 0.000 description 16
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 8
- 229920002530 polyetherether ketone Polymers 0.000 description 8
- 238000011160 research Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001956 neutron scattering Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明涉及电池测试技术领域,具体涉及一种适用于中子衍射实验的全固态锂离子原位测试装置的使用方法,采用的温控系统中与正极片、负极片相接触的部件材料选择为钛锆合金,因为是钛锆合金对中子衍射没有衍射峰,同时正极片、负极片与钛锆合金电池外壳的绝缘处理采用玻璃纤维,其经中子衍射后会产生微小的杂乱的中子衍射背底,其对正极片以及负极片产生规律的中子衍射信号几乎没有影响,这对正极片与负极片的中子衍射峰的获取至关重要,不会对其信号产生影响,另外不是直接接触的零部件虽然有影响材料,但是在外围罩上一层屏蔽装置‑氮化硼,这样入射此方向的中子会被氮化硼吸收,不会在相关材料上产生衍射信号。
The invention relates to the technical field of battery testing, in particular to a method for using an all-solid-state lithium ion in-situ testing device suitable for neutron diffraction experiments. The temperature control system used in the temperature control system is selected as follows: Titanium-zirconium alloy, because titanium-zirconium alloy has no diffraction peak for neutron diffraction, and the insulation treatment of positive electrode, negative electrode and titanium-zirconium alloy battery shell is made of glass fiber, which will produce tiny messy neutrons after neutron diffraction Diffraction background, which has almost no effect on the regular neutron diffraction signals produced by the positive and negative plates, which is very important for the acquisition of neutron diffraction peaks of the positive and negative plates, and will not affect their signals. In addition, it is not Although the parts in direct contact will affect the material, a layer of shielding device-boron nitride is placed on the periphery, so that the neutrons incident in this direction will be absorbed by the boron nitride and will not generate diffraction signals on the relevant materials.
Description
技术领域technical field
本发明涉及电池测试技术领域,尤其涉及一种适用于中子衍射实验的全固态锂离子原位测试装置的使用方法。The invention relates to the technical field of battery testing, in particular to a method for using an all-solid-state lithium ion in-situ testing device suitable for neutron diffraction experiments.
背景技术Background technique
近年来随着先进通讯终端、电动汽车、规模储能等领域快速发展,对高能量密度二次电池需求十分迫切。在各种商业化可充放电化学储能装置中,锂离子电池拥有最高的能量密度。In recent years, with the rapid development of advanced communication terminals, electric vehicles, large-scale energy storage and other fields, the demand for high energy density secondary batteries is very urgent. Among various commercial rechargeable and discharge chemical energy storage devices, lithium-ion batteries have the highest energy density.
固态电池技术是可能同时实现高能量密度兼具高安全性的解决方案之一,全固态锂电池采用不含有机溶剂的固态电解质,具有不挥发、不易燃、在高温和空气等条件下稳定、电化学窗口宽、机械强度大、防止锂枝晶造成短路等优点,可以大幅提高安全性;另一方面,固态电池可采用金属锂作为负极材料,大大提升了电池的能量密度。Solid-state battery technology is one of the solutions that can achieve high energy density and high safety at the same time. All-solid-state lithium batteries use solid-state electrolytes that do not contain organic solvents, which are non-volatile, non-flammable, stable under high temperature and air conditions, and The advantages of wide electrochemical window, high mechanical strength, and prevention of short circuit caused by lithium dendrites can greatly improve safety; on the other hand, solid-state batteries can use metal lithium as the negative electrode material, which greatly improves the energy density of the battery.
中子实验技术在针对上述关键科学问题研究中具有独特而不可替代的优势。中子与物质的作用方式与电子和X射线不同。中子与原子核相互作用是一种短程交互作用,其散射长度随原子序数没有明显的变化规律。因此,中子散射相比于其他方法,在探测轻质元素(如氢、锂、氧等)方面更加灵敏和准确。此外种子具有很好的穿透性,非常适合进行非破坏性的电池服役于工作状态实时原位表征。因此中子技术在固态锂电池材料与器件研究中具有不可取代的独特优势。Neutron experimental technology has unique and irreplaceable advantages in the research on the above key scientific issues. Neutrons interact with matter differently than electrons and X-rays. The interaction between neutrons and atomic nuclei is a short-range interaction, and the scattering length has no obvious change law with the atomic number. Therefore, neutron scattering is more sensitive and accurate in detecting light elements (such as hydrogen, lithium, oxygen, etc.) than other methods. In addition, the seed has good penetrability, which is very suitable for non-destructive real-time in-situ characterization of the battery in service and working state. Therefore, neutron technology has irreplaceable unique advantages in the research of solid-state lithium battery materials and devices.
散裂中子源是中子散射研究和应用的大型研究平台,对材料科学技术,物理,化学化工,资源环境,新能源,生命科学,医药,纳米科学等诸多领域的前沿研究,和解决国家的许多重大战略需求的关键问题提供先进的研究平台。The spallation neutron source is a large-scale research platform for neutron scattering research and application. Provide an advanced research platform on key issues of many major strategic needs.
中子散射谱仪适用于中子散射实验的装置,主要研究物质的微观结构和运动。本次发明主要在通用粉末衍射谱仪和小角散射谱仪进行实验。The neutron scattering spectrometer is a device suitable for neutron scattering experiments, mainly studying the microstructure and motion of matter. This invention is mainly experimented with a general-purpose powder diffraction spectrometer and a small-angle scattering spectrometer.
通用粉末衍射谱仪(GPPD)属于弹性散射谱仪,主要用于研究物质的晶体结构和磁结构。GPPD采用中子的飞行时间技术,选择合适的慢化器到样品的距离(30m),并拥有三组不同角度的探测器。低角探测器(30°)适于测定较大晶体的结构;高角度背散射探测器(150°) 适于分辨率较高的研究,分辨率可达到0.2%;中角探测器(90°) 可有效避免样品腔的散射。适于在特殊样品环境下的结构研究。The General Purpose Powder Diffraction Spectrometer (GPPD) is an elastic scattering spectrometer, which is mainly used to study the crystal structure and magnetic structure of substances. GPPD uses neutron time-of-flight technology, selects the appropriate distance from the moderator to the sample (30m), and has three sets of detectors with different angles. Low-angle detectors (30°) are suitable for determining the structure of larger crystals; high-angle backscatter detectors (150°) are suitable for studies with higher resolution, and the resolution can reach 0.2%; medium-angle detectors (90° ) can effectively avoid the scattering of the sample cavity. Suitable for structural research in special sample environments.
CSNS小角散射仪是通用型飞行时间小角散射仪,它利用从耦合液氢慢化器出来的的脉冲中子束,测量样品I(q)-q散射强度曲线,并通过模型拟合获得样品中纳米尺度不均匀结构信息。CSNS 小角散射谱仪采用经典点聚焦针孔相机几何,由准直器和中子光阑限束实现中子束的准直与聚焦。谱仪采用短直束线设计,总长度为16 米,样品到慢化器表面的距离为12米,到探测器(可移动)的距离可在2~4米范围内调整。其测量的Q范围为可用于探测物质体系在1~100nm尺度内的微观和介观结构。相对于同步辐射,具备独特的衬度变换技术。可通过同位素替代(如氘代)实现对材料结构中某些特殊区域或片段的“标记”和选择性观测。The CSNS small-angle scatterometer is a general-purpose time-of-flight small-angle scatterometer, which uses the The pulsed neutron beam of the sample is used to measure the I(q)-q scattering intensity curve of the sample, and the nanoscale inhomogeneous structure information in the sample is obtained through model fitting. The CSNS small-angle scattering spectrometer adopts the classic point-focusing pinhole camera geometry, and the neutron beam is collimated and focused by the collimator and the neutron aperture to limit the beam. The spectrometer adopts a short straight beamline design with a total length of 16 meters. The distance from the sample to the surface of the moderator is 12 meters, and the distance from the detector (movable) can be adjusted within the range of 2 to 4 meters. Its measured Q range is It can be used to detect the microscopic and mesoscopic structure of the material system in the scale of 1-100nm. Compared with synchrotron radiation, it has unique contrast transformation technology. The "marking" and selective observation of some special regions or fragments in the material structure can be achieved by isotope substitution (such as deuterium).
目前,市场上针对全固态锂离子电池进行中子衍射实验的原位装置较少,并且仅有的装置中针对全固态锂离子电池所需的实验条件涵盖不够,例如专利《一种电池原位测试装置》(申请公布号: CN213658936U),虽然专利中兼具温控系统以及充放电系统,但是缺少必要的真空环境,并且在通用粉末谱仪以及小角散射谱仪的样品环境下无法匹配连接装置且更换起来较繁琐,还有就是适用范围广泛,导致针对中子衍射实验没有相关的优化,部分零部件选择的材料会对中子衍射实验产生不利影响。At present, there are few in-situ devices for neutron diffraction experiments on all-solid-state lithium-ion batteries on the market, and the experimental conditions required for all-solid-state lithium-ion batteries in the only device are not covered enough. For example, the patent "A battery in-situ Test Device" (application publication number: CN213658936U), although the patent includes a temperature control system and a charging and discharging system, but it lacks the necessary vacuum environment, and it cannot match the connection device in the sample environment of the general powder spectrometer and the small angle scattering spectrometer Moreover, it is cumbersome to replace, and it has a wide range of applications, resulting in no relevant optimization for neutron diffraction experiments, and the materials selected for some parts will have an adverse effect on neutron diffraction experiments.
亟需设计一种可以用于全固态锂离子电池的关于中子衍射实验的专用原位测试装置,且更换样品简单,兼具温控系统、充放电系统以及真空环境,并对电池正负级有预压效果,并可以适应不同的样品尺寸。There is an urgent need to design a special in-situ test device for neutron diffraction experiments that can be used for all-solid-state lithium-ion batteries. It has a preload effect and can be adapted to different sample sizes.
发明内容Contents of the invention
本发明针对现有技术中的一个或多个问题,提供一种适用于全固态锂离子电池中子衍射实验专用的全固态锂离子原位测试装置的使用方法。The present invention aims at one or more problems in the prior art, and provides a method for using an all-solid-state lithium ion in-situ testing device suitable for neutron diffraction experiments of all-solid-state lithium-ion batteries.
在本发明的一个方面,提出了一种全固态锂离子原位测试装置,其适用于中子衍射实验的全固态锂离子电池的原位测试。In one aspect of the present invention, an all-solid-state lithium ion in-situ test device is proposed, which is suitable for in-situ test of all-solid-state lithium-ion batteries in neutron diffraction experiments.
在本发明的另一个方面,提出了一种全固态锂离子原位测试装置的使用方法,主要包括如下步骤:In another aspect of the present invention, a method for using an all-solid lithium ion in-situ test device is proposed, which mainly includes the following steps:
S1:在手套箱中组装电池体,并将其拿出手套箱;S1: Assemble the battery body in the glove box and take it out of the glove box;
S2:将加热棒和热敏电阻分别安装于电池体的顶部垫片和底部垫片中;S2: install the heating rod and the thermistor in the top gasket and the bottom gasket of the battery body respectively;
S3:接着,将顶壳和底壳通过上压紧螺帽和下压紧螺帽把电池体挂接安装在链接杆的下端,得到电池组件;S3: Next, mount the battery body on the lower end of the connecting rod by hooking the top case and the bottom case through the upper compression nut and the lower compression nut to obtain the battery assembly;
S4:电池组件安装在样品杆下端,接着,样品杆上端安装在连接组件的安装法兰上;S4: The battery assembly is installed on the lower end of the sample rod, and then the upper end of the sample rod is installed on the mounting flange of the connection assembly;
S5:将测试装置整体固定安装在谱仪样品六维调整台上;S5: Fix and install the test device as a whole on the six-dimensional adjustment table of the spectrometer sample;
S6:温控仪分别与加热棒和热敏电阻电性连接,接着,充放电系统与接线槽电性连接,并通过数据线与谱仪散射室外部的PC端进行连接。S6: The temperature controller is electrically connected to the heating rod and the thermistor, and then the charging and discharging system is electrically connected to the junction slot, and connected to the PC terminal outside the spectrometer scattering chamber through the data cable.
S7:启动温控仪,给正极片和负极片进行加热,达到实验所需要的环境温度,启动充放电测试系统,确认无误后,离开散射室;S7: Start the temperature controller, heat the positive electrode and negative electrode to reach the ambient temperature required for the experiment, start the charge and discharge test system, and leave the scattering room after confirming that it is correct;
S8:打开谱仪中子束线开关,实现中子束流的导通;S8: Turn on the neutron beamline switch of the spectrometer to realize the conduction of the neutron beam;
S9:根据预定的实验方案,开始进行实验,并保存相关数据。S9: According to the predetermined experiment plan, start the experiment and save the relevant data.
在本发明的另一个方面,提出了一种全固态锂离子原位测试装置的应用,该应用包括中子衍射分析,其是一种中子衍射实验专用的实验方法。In another aspect of the present invention, an application of an all-solid-state lithium ion in-situ test device is proposed, which includes neutron diffraction analysis, which is a special experimental method for neutron diffraction experiments.
本发明的有益效果是:The beneficial effects of the present invention are:
1、采用的温控系统中与正极片、负极片相接触的部件材料选择为钛锆合金,因为是钛锆合金对中子衍射没有衍射峰,同时正极片、负极片与钛锆合金电池外壳的绝缘处理采用玻璃纤维,其经中子衍射后会产生微小的杂乱的中子衍射背底,其对正极片以及负极片产生规律的中子衍射信号几乎没有影响,这对正极片与负极片的中子衍射峰的获取至关重要,不会对其信号产生影响,另外不是直接接触的零部件虽然有影响材料,但是在外围罩上一层屏蔽装置-氮化硼,这样入射此方向的中子会被氮化硼吸收,不会在相关材料上产生衍射信号;1. In the temperature control system used, the material of the parts in contact with the positive electrode and negative electrode is titanium-zirconium alloy, because titanium-zirconium alloy has no diffraction peak for neutron diffraction, and at the same time, the positive electrode, negative electrode and titanium-zirconium alloy battery shell The insulation treatment uses glass fiber, which will produce a tiny messy neutron diffraction background after neutron diffraction, which has almost no effect on the regular neutron diffraction signals produced by the positive and negative electrodes, which will affect the positive and negative electrodes. The acquisition of the neutron diffraction peak is very important, and it will not affect its signal. In addition, although the components that are not in direct contact have an impact material, a layer of shielding device-boron nitride is covered on the periphery, so that the incident direction Neutrons will be absorbed by boron nitride and will not produce diffraction signals on related materials;
2、采用的连接装置,适用于中国散裂中子源的通用粉末衍射谱仪以及小角衍射谱仪,同时也适用于其他的谱仪,避免实验人员重复设计配套的连接装置;2. The connection device used is suitable for the general powder diffraction spectrometer and small angle diffraction spectrometer of China Spallation Neutron Source, and is also suitable for other spectrometers, so as to avoid repeated design of supporting connection devices by experimenters;
3、在更换样品操作时,不需要完全拆除电池体,只需要拆除下面的底部PEEK压紧螺母、底部钛锆合金垫片、PEEK绝缘套以及大O 型密封圈即可,无需其他繁琐的操作;3. When replacing the sample, it is not necessary to completely dismantle the battery body. It is only necessary to remove the bottom PEEK compression nut, bottom titanium-zirconium alloy gasket, PEEK insulating sleeve and large O-ring, without other cumbersome operations. ;
4、当标定实验样品位置时,较少样品与中子束流对中的时间,因为在实验开始前,提前标定好正极片与负极片位置,并在电池体外部画线,以便于调节谱仪样品环境位移台时对齐,同时,为了更换正极片或负极片时,不改变样品位置,将小O型密封圈安装于顶部钛锆合金下部,并且顶部钛锆合金与电池外壳之间的绝缘采用粘贴Capton 胶带的形式,以防正极片或者负极片的位置改变;4. When the position of the experimental sample is calibrated, the time for the centering of the sample and the neutron beam is less, because before the start of the experiment, the positions of the positive electrode and the negative electrode are calibrated in advance, and lines are drawn outside the battery body to facilitate the adjustment of the spectrum. At the same time, in order not to change the position of the sample when replacing the positive electrode or negative electrode, the small O-shaped sealing ring is installed on the lower part of the top titanium-zirconium alloy, and the insulation between the top titanium-zirconium alloy and the battery case Use the form of sticking Capton tape to prevent the position of the positive or negative electrode from changing;
5本发明采用的全固态锂离子原位测试装置组成的零部件较少,且便于生产加工,电池装置装配形式采用螺纹与挂接的方式,便于操作,有利于之后实际生活以及生产中的使用,且为了使电池充放电过程中与集流体表面保持紧密接触的压紧机构由原来的弹簧改为螺纹预压结构,减少电池装置的零部件个数,使整体装置更加紧凑;5. The all-solid-state lithium ion in-situ testing device used in the present invention consists of fewer parts and is convenient for production and processing. The assembly form of the battery device adopts the method of thread and hook, which is easy to operate and is beneficial to the use in actual life and production. , and in order to keep the pressing mechanism in close contact with the surface of the current collector during the charging and discharging process of the battery, the original spring is changed to a thread preloading structure, so as to reduce the number of parts of the battery device and make the overall device more compact;
6、本发明全固态锂离子原位测试装置采用O型密封圈密封,上部采用两个小O型密封圈,下部采用1个大O型密封圈,同时,将正极片、负极片的充放电以及加热引线由电极本身转移到与其接触的钛锆合金垫片,消除孔隙对密封性能的影响;6. The all-solid-state lithium ion in-situ test device of the present invention is sealed with an O-ring, the upper part uses two small O-rings, and the lower part adopts a large O-ring. At the same time, the charging and discharging of the positive and negative plates And the heating lead is transferred from the electrode itself to the titanium-zirconium alloy gasket in contact with it, eliminating the influence of pores on the sealing performance;
7、本发明全固态锂离子原位测试装置通过匹配了可控的温度环境以及原位充放电装置,温度范围为20~100℃,满足绝大部分电池的测试环境;7. The all-solid-state lithium ion in-situ test device of the present invention is matched with a controllable temperature environment and an in-situ charge and discharge device, and the temperature range is 20-100°C, which meets the test environment of most batteries;
8、通过匹配不同厚度的钛锆合金垫片实现更换正极片/负极片以及正极片/负极片的操作。8. The operation of replacing positive electrode/negative electrode and positive electrode/negative electrode is realized by matching titanium-zirconium alloy gaskets of different thicknesses.
附图说明Description of drawings
图1是全固态锂离子原位测试装置使用时的原理架构示意图;Figure 1 is a schematic diagram of the principle architecture of the all-solid-state lithium-ion in-situ test device in use;
图2是全固态锂离子原位测试装置的结构示意图;Fig. 2 is a structural schematic diagram of an all-solid-state lithium ion in-situ test device;
图3是全固态锂离子原位测试装置中连接装置的等轴侧视示意图;3 is a schematic isometric side view of the connecting device in the all-solid-state lithium ion in-situ testing device;
图4是全固态锂离子原位测试装置中电池体的剖视示意图;4 is a schematic cross-sectional view of a battery body in an all-solid-state lithium ion in-situ testing device;
图5是全固态锂离子原位测试装置中加热棒和负极接线槽的位置示意图;Fig. 5 is a schematic diagram of the position of the heating rod and the negative electrode junction slot in the all-solid-state lithium ion in-situ test device;
图6是全固态锂离子原位测试装置中热敏电阻和正极接线槽的位置示意图。Fig. 6 is a schematic diagram of the position of the thermistor and the positive junction slot in the all-solid-state lithium ion in-situ test device.
具体实施方式Detailed ways
下面将结合具体实施例及附图对本发明全固态锂离子原位测试装置的使用方法做进一步详细描述。The method of using the all-solid-state lithium ion in-situ testing device of the present invention will be further described in detail below in conjunction with specific embodiments and accompanying drawings.
实施例1Example 1
参照图1,本发明一非限制实施例,一种全固态锂离子原位测试装置,其整体可拆卸式安装于谱仪样品六维调整台上,用于中子衍射分析,是一种中子衍射实验专用的实验装置。Referring to Fig. 1, a non-limiting embodiment of the present invention is an all-solid-state lithium ion in-situ test device, which is detachably installed on a six-dimensional adjustment table of a spectrometer sample for neutron diffraction analysis. An experimental device dedicated to sub-diffraction experiments.
参照图1,本发明一非限制实施例,一种全固态锂离子原位测试装置具体包括样品装置1、探测器装置2、温控系统3、充放电系统6 以及光源5,样品装置1可拆卸式安装于谱仪样品环境六维调整台上,温控系统3设置在样品装置1的外侧,充放电系统6与样品装置1电性连接,探测器装置2设置在样品装置1的外侧,光源5用于产生中子束流。Referring to Fig. 1, a non-limiting embodiment of the present invention, a kind of all-solid-state lithium ion in-situ testing device specifically comprises
参照图2,本发明一非限制实施例,样品装置1包括连接组件7、样品杆15和电池组件8,连接组件7可拆卸式安装于谱仪样品六维调整台上,电池组件8通过样品杆与15与连接组件7相通连接;Referring to Fig. 2, a non-limiting embodiment of the present invention, the
另外,样品杆15的长度取决于谱仪样品环境六维调整台到谱仪中心束流线之间的高度。In addition, the length of the
参照图3,本发明一非限制实施例,连接组件7包括圆环状的连接法兰9以及用于安装样品杆的安装法兰10,连接组件7通过连接法兰9可拆卸式安装于谱仪样品六维调整台上,安装法兰10安装于连接法兰9的圆环中心处,且安装法兰10的外径与连接法兰9的内径相等,以提高密封性;接着,安装法兰10上设置有便于样品杆15 安装的导向部14,以及,安装法兰10上表面上分别设置有至少两个小吊环螺钉11和导向销12,用于固定安装样品杆于安装法兰10上的作用,连接法兰9上表面上设置有至少两个大吊环螺钉13,用于移动连接法兰9的作用。Referring to FIG. 3 , a non-limiting embodiment of the present invention, the connection assembly 7 includes an annular connection flange 9 and a mounting
参照图4,本发明一非限制实施例,电池组件8包括顶壳19、链接杆21、电池体和底壳17,顶壳19的顶部开设有用于链接杆21从顶壳19内向外伸出的通孔,该通孔内径与链接杆21外径相等,且链接杆21末端是敞开型凹槽,其外径小于或等于顶壳19内径,使得顶壳19以挂接于链接杆21末端的上方,以提高电池组件8的密封性,链接杆21一端与样品杆15相通连接,另一端通过上压紧螺帽20抵压在电池体的上部,底壳17通过下压紧螺帽16压紧在电池体的下部,同时,电池体设置在顶壳19与底壳17之间;接着,电池体包括外壳 18、顶部垫片22、底部垫片29、绝缘套28、正极片25、负极片24 和玻璃纤维26,外壳18一端通过上压紧螺帽20抵压在链接杆21的下端,另一端通过下压紧螺帽16压紧在底壳17上,然后,顶部垫片22和底部垫片29可拆卸式安装在外壳18内,并设置在上压紧螺帽20和下压紧螺帽16之间;正极片25、负极片24和玻璃纤维26设置在顶部垫片22与底部垫片29之间,且所述玻璃纤维26包覆在正极片25和负极片24的外侧;更具体的说明:外壳18内从上到下排布设置有顶部垫片22、负极片24、正极片25和底部垫片29。With reference to Fig. 4, a non-limiting embodiment of the present invention, battery assembly 8 comprises top shell 19, link bar 21, battery body and bottom shell 17, and the top of top shell 19 is provided with for link bar 21 to protrude outward from top shell 19 The through hole, the inner diameter of the through hole is equal to the outer diameter of the link rod 21, and the end of the link rod 21 is an open groove, the outer diameter of which is less than or equal to the inner diameter of the top case 19, so that the top case 19 can be hooked on the end of the link rod 21 In order to improve the sealing performance of the battery assembly 8, one end of the link rod 21 communicates with the sample rod 15, and the other end presses against the upper part of the battery body through the upper compression nut 20, and the bottom case 17 passes through the lower compression nut 16 Compress the lower part of the battery body, and at the same time, the battery body is arranged between the top case 19 and the bottom case 17; then, the battery body includes a shell 18, a top gasket 22, a bottom gasket 29, an insulating sleeve 28, a positive electrode sheet 25, Negative electrode sheet 24 and glass fiber 26, one end of casing 18 is pressed against the lower end of link rod 21 by upper compression nut 20, and the other end is pressed on bottom case 17 by lower compression nut 16, then, top gasket 22 and the bottom gasket 29 are detachably installed in the shell 18, and are arranged between the upper compression nut 20 and the lower compression nut 16; the positive electrode sheet 25, the negative electrode sheet 24 and the glass fiber 26 are arranged on the top gasket 22 and the bottom gasket 29, and the glass fiber 26 is wrapped on the outside of the positive electrode sheet 25 and the negative electrode sheet 24; more specific description: the top gasket 22 and the negative electrode sheet are arranged from top to bottom in the casing 18 24. Positive plate 25 and
本实施例过程中,需要说明的是:顶壳19和底壳17均是氮化硼;链接杆21为铝材;电池体的外壳18是钛锆合金电池外壳;上压紧螺母20和下压紧螺母16为PEEK所制;顶部垫片22和底部垫片29均是钛锆合金垫片。In the process of this embodiment, it should be noted that: both the
参照图4,本发明一非限制实施例,顶部垫片22和底部垫片29 与外壳18之间分别设置有至少一O型密封圈,底部垫片19与外壳 18之间设置有绝缘套28,为了区分明了,顶部垫片22与外壳18之间设置有至少两个O型上密封圈23,底部垫片29与外壳18之间设置有至少一个O型下密封圈27。进一步来说:绝缘套28是台阶状的,且采用PEEK,并包裹于底部垫片29的外侧,所以,下密封圈27是设置在绝缘套28的台阶与外壳18的台阶之间,而顶部垫片22侧面上开设有用于内嵌密封圈23的凹槽,玻璃纤维26包覆在负极片24 和正极片25的外侧,以隔绝负极片24和正极片25与外壳的接触。Referring to FIG. 4 , in a non-limiting embodiment of the present invention, at least one O-ring is provided between the
由此可知,顶部垫片22、底部垫片29以及外壳18共同构成一个密封腔体,用于提供正极片25以及负极片24真空需求的样品环境条件,并且顶部垫片22、底部垫片29和外壳18之间的连接处通过绝缘套28、上密封圈23和下密封圈27提供真空密封。It can be seen that the
因此,电池组件8在装配完成之前,需要先进行样品处的标定工作,首先确定顶部22的下表面的位置,即负极片24的上表面的位置,并在外壳18外表面的相同位置进行画线操作,此为粗调节电池组件 8位置的基准,最后通过探测器装置2接收到的经电池组件8内部正极片25和负极片24中子衍射后的信号进行精调节。Therefore, before the battery assembly 8 is assembled, it is necessary to carry out the calibration work at the sample place, first determine the position of the lower surface of the top 22, that is, the position of the upper surface of the
本领域技术人员容易理解的是,顶壳(顶部氮化硼)19和底壳 (底部氮化硼)17共同构成电池组件8的屏蔽体,其用于屏蔽除正极片25和负极片24以外其他材料产生的中子衍射信号,避免对中子衍射背底的影响,电池组件8靠近正极片25以及负极片24的零部件材料除玻璃纤维26外选择钛锆合金,这样中子衍射峰几乎为零,玻璃纤维26经中子衍射后会产生微小的杂乱的中子衍射背底,能对正极片25和负极片24产生规律的中子衍射信号几乎没有影响,并且其中PEEK绝缘套28、下密封圈27和上密封圈23虽然对中子衍射的背底产生影响,但是其外侧有氮化硼17,19,会吸收中子,不会产生中子信号。Those skilled in the art can easily understand that the top shell (top boron nitride) 19 and the bottom shell (bottom boron nitride) 17 together constitute the shielding body of the battery assembly 8, which is used to shield the positive electrode sheet 25 and the
另外,顶部垫片22与外壳18之间的绝缘处理还粘贴Capton胶带,而外壳18与正极片25和负极片24之间的绝缘是通过玻璃纤维 26实现的,并且,在外壳上端和下端均是采用PEEK压紧螺帽20,16 压紧,他们都具有绝缘作用,防止实验测试时实验人员误触,造成危险。In addition, the insulation treatment between the
参照图1至图6,本发明一非限制实施例,温控系统3包括温控仪、加热棒30和热敏电阻33,加热棒30设置在顶部垫片上,热敏电阻33设置在底部垫片上,温控仪分别与加热棒30和热敏电阻33 电性连接,温控仪无需附加电源,可直接通过插头连接在民用电上。1 to 6, a non-limiting embodiment of the present invention, the
参照图5,本发明一非限制实施例,顶部垫片22上开设有用于安装加热棒30的第一凹槽和用于负极片24引线的负极接线槽31。Referring to FIG. 5 , which is a non-limiting embodiment of the present invention, the
因此对应的,链接杆21上开设有用于与加热棒30和负极接线槽 31的引出线以电性连接的引线孔。Correspondingly, the connecting
参照图6,本发明一非限制实施例,底部垫片29开设有用于安装热敏电阻33的第二凹槽和用于正极片25引线的正极接线槽32。Referring to FIG. 6 , which is a non-limiting embodiment of the present invention, the
参照图1至图6,本发明一非限制实施例,加热棒30通过热传递的方式分别给正极片25和负极片24加热,达到反应所需温度,并且温度继续传递,通过热敏电阻33实现反馈调节,以保证样品环境温度的的需要。Referring to Figures 1 to 6, a non-limiting embodiment of the present invention, the
参照图1至图6,热敏电阻33为铂热电阻。1 to 6, the
参照图1至图6,温控仪的温度范围为20℃~100℃。Referring to Figures 1 to 6, the temperature range of the temperature controller is 20°C to 100°C.
参照图1至图6,充放电系统6包括电池测试系统和与池测试系统电性连接的PC端4,同时,电池测试系统分别与正极接线槽32和负极接线槽31电性连接,实现对充放电条件以及测试内容进行设定。Referring to Figures 1 to 6, the charging and discharging system 6 includes a battery testing system and a PC terminal 4 electrically connected to the battery testing system. Charge and discharge conditions and test content are set.
参照图1,探测器装置2用于接收来自于光源5接收经电池散射 /衍射的信号。Referring to FIG. 1 , the detector device 2 is used to receive the signal from the light source 5 scattered/diffraction by the cell.
实施例2Example 2
基于固态锂离子电池测试,上述全固态锂离子原位测试装置的使用方法主要包括如下步骤,Based on solid-state lithium-ion battery testing, the method of using the above-mentioned all-solid-state lithium-ion in-situ testing device mainly includes the following steps,
S1:在手套箱中,将外壳、顶部垫片、底部垫片、正极片、负极片、玻璃纤维、绝缘套、上压紧螺帽、下压紧螺帽、上密封圈和下密封圈等组装成电池体,并将其拿出手套箱;S1: In the glove box, put the shell, top gasket, bottom gasket, positive electrode sheet, negative electrode sheet, glass fiber, insulating sleeve, upper compression nut, lower compression nut, upper sealing ring and lower sealing ring, etc. Assemble the battery body and take it out of the glove box;
S2:将温控系统3的加热棒30和热敏电阻33分别安装于顶部垫片22和底部垫片29中,将顶部垫片22中的正极接线槽32和底部垫片29中的负极接线槽31分别与充放电系统6连接,链接杆21通过螺纹配合与电池组件8进行连接;S2: Install the
S3:将顶部氮化硼19和底部氮化硼17分别通过上压紧螺帽20 和下压紧螺帽16把电池体挂接安装在链接杆21的下端,得到电池组件8;S3: The
S4:电池组件8通过链接杆21与样品杆15下端螺纹配合连接,样品杆15上端通过导向部安装在连接组件7的安装法兰10上;S4: The battery assembly 8 is threadedly connected to the lower end of the
S5:实验人员将测试装置整体固定安装在谱仪样品环境六维调整台上;S5: The experimenter fixed and installed the test device as a whole on the six-dimensional adjustment table of the sample environment of the spectrometer;
S6:温控仪分别与加热棒30和热敏电阻33电性连接,接着,充放电系统6分别与正极接线槽32和负极接线槽31电性连接,并通过数据线与谱仪散射室外部的PC端4进行连接;S6: The temperature controller is electrically connected to the
S7:启动温控仪,给正极片25和负极片24进行加热,达到实验所需要的环境温度,启动充放电系统6,确认无误后,离开散射室;S7: Start the temperature controller, heat the positive electrode sheet 25 and the
S8:打开谱仪中子束线开关,实现中子束流的导通;S8: Turn on the neutron beamline switch of the spectrometer to realize the conduction of the neutron beam;
S9:根据预定的实验方案,开始进行实验,并保存相关数据。S9: According to the predetermined experiment plan, start the experiment and save the relevant data.
参照图1至图6,本发明全固态锂离子原位测试装置的使用方法与现有技术相比,具有如下有益效果:Referring to Figures 1 to 6, compared with the prior art, the method for using the all-solid lithium ion in-situ testing device of the present invention has the following beneficial effects:
1、采用的温控系统中与正极片、负极片相接触的部件材料选择为钛锆合金,因为是钛锆合金对中子衍射没有衍射峰,同时正极片、负极片与钛锆合金电池外壳的绝缘处理采用玻璃纤维,其经中子衍射后会产生微小的杂乱的中子衍射背底,其对正极片以及负极片产生规律的中子衍射信号几乎没有影响,这对正极片与负极片的中子衍射峰的获取至关重要,不会对其信号产生影响,另外不是直接接触的零部件虽然有影响材料,但是在外围罩上一层屏蔽装置-氮化硼,这样入射此方向的中子会被氮化硼吸收,不会在相关材料上产生衍射信号;1. In the temperature control system used, the material of the parts in contact with the positive electrode and negative electrode is titanium-zirconium alloy, because titanium-zirconium alloy has no diffraction peak for neutron diffraction, and at the same time, the positive electrode, negative electrode and titanium-zirconium alloy battery shell The insulation treatment uses glass fiber, which will produce a tiny messy neutron diffraction background after neutron diffraction, which has almost no effect on the regular neutron diffraction signals produced by the positive and negative electrodes, which will affect the positive and negative electrodes. The acquisition of the neutron diffraction peak is very important, and it will not affect its signal. In addition, although the components that are not in direct contact have an impact material, a layer of shielding device-boron nitride is covered on the periphery, so that the incident direction Neutrons will be absorbed by boron nitride and will not produce diffraction signals on related materials;
2、采用的连接装置,适用于中国散裂中子源的通用粉末衍射谱仪以及小角衍射谱仪,同时也适用于其他的谱仪,避免实验人员重复设计配套的连接装置;2. The connection device used is suitable for the general powder diffraction spectrometer and small angle diffraction spectrometer of China Spallation Neutron Source, and is also suitable for other spectrometers, so as to avoid repeated design of supporting connection devices by experimenters;
3、在更换样品操作时,不需要完全拆除电池体,只需要拆除下面的底部PEEK压紧螺母、底部钛锆合金垫片、PEEK绝缘套以及大O 型密封圈即可,无需其他繁琐的操作;3. When replacing the sample, it is not necessary to completely dismantle the battery body. It is only necessary to remove the bottom PEEK compression nut, bottom titanium-zirconium alloy gasket, PEEK insulating sleeve and large O-ring, without other cumbersome operations. ;
4、当标定实验样品位置时,较少样品与中子束流对中的时间,因为在实验开始前,提前标定好正极片与负极片位置,并在电池体外部画线,以便于调节谱仪样品环境位移台时对齐,同时,为了更换正极片或负极片时,不改变样品位置,将小O型密封圈安装于顶部钛锆合金下部,并且顶部钛锆合金与电池外壳之间的绝缘采用粘贴Capton 胶带的形式,以防正极片或者负极片的位置改变;4. When the position of the experimental sample is calibrated, the time for the centering of the sample and the neutron beam is less, because before the start of the experiment, the positions of the positive electrode and the negative electrode are calibrated in advance, and lines are drawn outside the battery body to facilitate the adjustment of the spectrum. At the same time, in order not to change the position of the sample when replacing the positive electrode or negative electrode, the small O-shaped sealing ring is installed on the lower part of the top titanium-zirconium alloy, and the insulation between the top titanium-zirconium alloy and the battery case Use the form of sticking Capton tape to prevent the position of the positive or negative electrode from changing;
5本发明采用的全固态锂离子原位测试装置组成的零部件较少,且便于生产加工,电池装置装配形式采用螺纹与挂接的方式,便于操作,有利于之后实际生活以及生产中的使用,且为了使电池充放电过程中与集流体表面保持紧密接触的压紧机构由原来的弹簧改为螺纹预压结构,减少电池装置的零部件个数,使整体装置更加紧凑;5. The all-solid-state lithium ion in-situ testing device used in the present invention consists of fewer parts and is convenient for production and processing. The assembly form of the battery device adopts the method of thread and hook, which is easy to operate and is beneficial to the use in actual life and production. , and in order to keep the pressing mechanism in close contact with the surface of the current collector during the charging and discharging process of the battery, the original spring is changed to a thread preloading structure, so as to reduce the number of parts of the battery device and make the overall device more compact;
6、本发明全固态锂离子原位测试装置采用O型密封圈密封,上部采用两个小O型密封圈,下部采用1个大O型密封圈,同时,将正极片、负极片的充放电以及加热引线由电极本身转移到与其接触的钛锆合金垫片,消除孔隙对密封性能的影响;6. The all-solid-state lithium ion in-situ test device of the present invention is sealed with an O-ring, the upper part uses two small O-rings, and the lower part adopts a large O-ring. At the same time, the charging and discharging of the positive and negative plates And the heating lead is transferred from the electrode itself to the titanium-zirconium alloy gasket in contact with it, eliminating the influence of pores on the sealing performance;
7、本发明全固态锂离子原位测试装置通过匹配了可控的温度环境以及原位充放电装置,温度范围为20~100℃,满足绝大部分电池的测试环境;7. The all-solid-state lithium ion in-situ test device of the present invention is matched with a controllable temperature environment and an in-situ charge and discharge device, and the temperature range is 20-100°C, which meets the test environment of most batteries;
8、通过匹配不同厚度的钛锆合金垫片实现更换正极片/负极片以及正极片/负极片的操作。8. The operation of replacing positive electrode/negative electrode and positive electrode/negative electrode is realized by matching titanium-zirconium alloy gaskets of different thicknesses.
在本发明的描述中,需要理解的是,术语诸如“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it is to be understood that terms such as "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inner", "outer" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device Or that an element must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the invention.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
上述实施例仅为本发明的具体实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些显而易见的替换形式均属于本发明的保护范围。The above-mentioned embodiments are only specific embodiments of the present invention, and their descriptions are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these obvious replacement forms all belong to the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211259407.7A CN115656235A (en) | 2022-10-14 | 2022-10-14 | Use method of all-solid-state lithium ion in-situ testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211259407.7A CN115656235A (en) | 2022-10-14 | 2022-10-14 | Use method of all-solid-state lithium ion in-situ testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115656235A true CN115656235A (en) | 2023-01-31 |
Family
ID=84987605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211259407.7A Pending CN115656235A (en) | 2022-10-14 | 2022-10-14 | Use method of all-solid-state lithium ion in-situ testing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115656235A (en) |
-
2022
- 2022-10-14 CN CN202211259407.7A patent/CN115656235A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Borkiewicz et al. | The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements | |
CN111504914B (en) | An in-situ test device for solid-state batteries | |
CN109813662B (en) | Device capable of carrying out in-situ optical test on metal-air battery under electrochemical condition | |
CN103149192B (en) | In-situ electrochemical-Raman combined testing device for non-aqueous system | |
CN102590253A (en) | High-temperature fused salt synchrotron radiation in-situ research device | |
CN110361337B (en) | Transmission mode electrochemistry normal position optical testing arrangement | |
CN210198972U (en) | Lithium battery in-situ microscopic imaging device and in-situ high-temperature microscopic imaging device | |
KR101359333B1 (en) | Multi-electrode cell test apparatus | |
CN108398446B (en) | In-situ setup for testing synchrotron radiation X-ray absorption spectra of battery electrode materials | |
Liao et al. | Thermal runaway warning of lithium‐ion batteries based on photoacoustic spectroscopy gas sensing technology | |
CN110412013B (en) | An in-situ optical testing device suitable for button batteries | |
CN113030138A (en) | All-solid-state battery reaction chamber for in-situ XRD and Raman tests and test method | |
Jena et al. | Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in‐situ neutron diffraction technique | |
CN112485275A (en) | Synchrotron radiation X-ray absorption spectrum and mass spectrum combined battery device and test method | |
CN112697850A (en) | Can observe electrochemistry testing arrangement of electrode cross section | |
CN219302321U (en) | All-solid-state lithium ion in-situ testing device | |
CN115656235A (en) | Use method of all-solid-state lithium ion in-situ testing device | |
CN115656236A (en) | All-solid-state lithium ion in-situ testing device | |
CN115575427A (en) | An all-solid-state lithium ion in-situ test device and its application method | |
CN111504906B (en) | A lithium battery in-situ spectral reaction cell | |
CN212301792U (en) | Be used for lithium cell thermal runaway frock | |
CN219303749U (en) | a battery device | |
CN208171894U (en) | For testing the device in situ of the synchrotron radiation X-ray absorption spectra of battery electrode material | |
CN216525538U (en) | A temperature-controllable in-situ X-ray diffraction spectrum testing device for lithium batteries | |
CN102589964A (en) | Heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |