CN115652428A - 一种非线性光学晶体nh3bh3及其制法和用途 - Google Patents

一种非线性光学晶体nh3bh3及其制法和用途 Download PDF

Info

Publication number
CN115652428A
CN115652428A CN202211535536.4A CN202211535536A CN115652428A CN 115652428 A CN115652428 A CN 115652428A CN 202211535536 A CN202211535536 A CN 202211535536A CN 115652428 A CN115652428 A CN 115652428A
Authority
CN
China
Prior art keywords
nonlinear optical
crystal
optical crystal
preparation
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211535536.4A
Other languages
English (en)
Inventor
罗军华
赵三根
周洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202211535536.4A priority Critical patent/CN115652428A/zh
Publication of CN115652428A publication Critical patent/CN115652428A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种非线性光学晶体NH3BH3及其制法和用途。一种NH3BH3化合物在非线性光学晶体上的应用。本发明的非线性光学晶体NH3BH3具有较短的紫外吸收截止边、较大的SHG响应、宽透明度、适中的双折射、物理化学性能稳定、易于加工和保存等优点,可用于制作非线性光学器件。

Description

一种非线性光学晶体NH3BH3及其制法和用途
技术领域
本说明书涉及一种非线性光学晶体NH3BH3及其制法和用途。
技术背景
近年来,深紫外激光光源(λ<200nm)在激光加工技术、生物医学、精密科学研究设备和激光高分辨率光刻等重要领域得到了持续的应用。全固态激光器因其在尺寸、使用方法和光束质量方面的优势,成为深紫外激光应用的最佳选择。此时,作为深紫外全固态激光器的核心器件,深紫外(DUV)非线性光学(NLO)材料的性能已成为深紫外激光器产生和应用的关键。因此,深紫外非线性光学材料已成为当前国内外的研究热点。
经过多年的不懈努力,目前已成功发现众多UV和DUVNLO材料,包括硼酸盐、碳酸盐、硝酸盐和磷酸盐等。但是,在众多已发现的NLO材料中,仅有KBe2BO3F2(KBBF)晶体可以实现深紫外相位匹配输出。尽管如此,由于铍的强分层倾向和急性毒性,高品质KBBF的工业生产仍然受到限制。因此,探索具有优良性能的新型深紫外非线性光学晶体仍然是迫切而必要的。
半个多世纪以来,人们提出了许多基于阴离子基团理论的材料设计策略,以开发新的深紫外NLO晶体。一般来说,DUVNLO材料的结构单元可分为两类:π共轭单元和非π共轭单元。π共轭单元包括[CO3]2-、[BO3]3-、[B3O6]3-等基本构筑单元;非π共轭单元主要集中在[PO4]3-、[SO4]2-、[PO3F]2-等基本单元。然而,DUVNLO分子晶体目前仍未报道。
氨硼烷(NH3BH3)的空间群为I4mm,晶胞参数为
Figure BDA0003977458010000021
Figure BDA0003977458010000022
Z=2。目前为止,除了基本的物理化学性能(包括结构、热稳定性以及光谱测试)以外,关于NH3BH3性能研究主要集中在储氢材料范畴。而NH3BH3作为一种非线性光学晶体材料仍未被报道。
发明内容
本发明的目的在于提供一种非线性光学晶体NH3BH3及其制法和用途。本发明的非线性光学晶体NH3BH3具有较短的紫外吸收截止边、较大的SHG响应、宽透明度、适中的双折射、物理化学性能稳定、易于加工和保存等优点,可用于制作非线性光学器件。
本发明的技术方案如下:
一种NH3BH3化合物在非线性光学晶体上的应用。
非线性光学晶体NH3BH3的制备方法,包括如下步骤:
a.将NH3BH3固体和蒸馏水在室温下搅拌直至溶解成澄清溶液,所述的NH3BH3固体和蒸馏水的比例为NH3BH3:H2O=1~1.5g:1mL;
b.将步骤a得到的澄清溶液用设有多个通气孔的保鲜膜封口,然后在3-5℃下进行缓慢挥发,直至析出无色条状晶体,即得所述的非线性光学晶体NH3BH3
非线性光学晶体NH3BH3的用途,所述的非线性光学晶体NH3BH3用于制备非线性光学器件。
优选地,所述的非线性光学器件包括倍频发生器、上频率转化器、下频率转化器或光参量振荡器。
一种非线性光学器件,由非线性光学晶体NH3BH3制备而成。
较之前的现有技术,本发明具有以下有益效果:
(1)所述的NH3BH3非线性光学晶体具有较短的紫外吸收截止边、较大的SHG响应、宽透明度、适中的双折射、物理化学性能稳定、易于加工和保存等优点;
(2)本发明所述方法中使用的试剂及原料无毒,生长周期短,成本低;
(3)该NH3BH3非线性光学晶体可用于制作非线性光学器件;
(4)本发明非线性光学晶体制作的非线性光学器件可用于光学、高新科技和现代军事技术领域中,例如激光武器、激光投影电视、光计算和光纤通讯等。
附图说明
图1是用NH3BH3晶体制成的一种典型的非线性光学器件的工作原理图,其中1是激光器,2是入射激光束,3是经晶体后处理和光学加工的NH3BH3晶体,4是所产生的激光束,5是滤光片。
图2为NH3BH3分别放置0天和7天的多晶粉末X射线衍射图谱与基于NH3BH3晶体结构模拟的X射线衍射图谱。
图3为NH3BH3晶体结构图。
图4为NH3BH3晶体的透过光谱图。
图5为理论计算NH3BH3晶体在不同波长下的折射率以及双折射。
具体实施方式
下面结合实施例及附图进一步描述本发明。本领域技术人员知晓,下述实施例不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化都在本发明的保护范围之内。
实施例1-3是关于NH3BH3非线性光学晶体及其制备方法。
实施例1
一种NH3BH3非线性光学晶体的制备方法,包括如下步骤:
a.将10g的NH3BH3固体样品直接放入装有10mL蒸馏水的烧杯中,室温下搅拌直至溶解;
b.将步骤a中的澄清溶液用保鲜膜封口并用针戳出小孔,然后置于3℃的环境中进行缓慢挥发直至析出无色条状晶体,得到NH3BH3非线性光学晶体。
如图2所示,本实施例所得的晶体的粉末X射线衍射图谱与根据其单晶结构拟合所得的图谱一致,将该晶体粉末放置7天后,其粉末X射线衍射图谱无变化,表明该晶体的稳定性优异。所得的晶体的结构图如图3所示。
实施例2
a.具体操作步骤是:将15g的NH3BH3固体样品直接溶装有10mL蒸馏水的烧杯中,室温下搅拌直至溶解;
b.将步骤a中的澄清溶液用保鲜膜封口并用针戳出小孔,然后置于5℃的环境中进行缓慢挥发直至析出无色条状晶体,得到NH3BH3非线性光学晶体。
本实施例所得的晶体的粉末X射线衍射图谱与根据其单晶结构拟合所得的图谱一致,将该晶体粉末放置7天后,其粉末X射线衍射图谱无变化,表明该晶体的稳定性优异。所得的晶体的结构图如图3所示。
实施例3
a.具体操作步骤是:将15g的NH3BH3固体样品直接溶装有10mL蒸馏水的烧杯中,室温下搅拌直至溶解;
b.将步骤a中的澄清溶液用保鲜膜封口并用针戳出小孔,然后置于3℃的环境中进行缓慢挥发直至析出无色条状晶体,得到NH3BH3非线性光学晶体。
本实施例所得的晶体的粉末X射线衍射图谱与根据其单晶结构拟合所得的图谱一致,将该晶体粉末放置7天后,其粉末X射线衍射图谱无变化,表明该晶体的稳定性优异。所得的晶体的结构图如图3所示。
将实施例1所得的NH3BH3非线性光学晶体作漫反射光谱测试,如图4所示,该晶体的紫外吸收截止边为185nm;该晶体不易碎裂,不吸潮;将实施例1所得的NH3BH3非线性光学晶体,放在附图1所示装置标号为3的位置处,在室温下,用调QNd:YAG激光器作基频光源,入射波长为1064nm的近红外光,输出波长为532nm的绿色激光,激光强度约相当于KDP的2倍。而且本发明晶体具有适中的双折射(0.056@550nm)(如图5所示),此外该晶体还具有较好的物化稳定性能。
附图1为对本发明采用NH3BH3晶体制作的非线性光学器件的简单说明。由激光器1发出光束2射入NH3BH3晶体3,所产生的出射光束4通过滤波片5,从而获得所需要的激光束。该非线性光学激光器可以是倍频发生器或上、下频率转换器或光参量振荡器等。
上述具体实施方式只是对本发明的技术方案进行详细解释,本发明并不只仅仅局限于上述实施例,本领域技术人员应该明白,凡是依据上述原理及精神在本发明基础上的改进、替代,都应在本发明的保护范围之内。

Claims (5)

1.一种NH3BH3化合物在非线性光学晶体上的应用。
2.非线性光学晶体NH3BH3的制备方法,其特征在于:包括如下步骤:
a.将NH3BH3固体和蒸馏水在室温下搅拌直至溶解成澄清溶液,所述的NH3BH3固体和蒸馏水的比例为NH3BH3:H2O=1~1.5g:1mL;
b.将步骤a得到的澄清溶液用设有多个通气孔的保鲜膜封口,然后在3-5℃下进行缓慢挥发,直至析出无色条状晶体,即得所述的非线性光学晶体NH3BH3
3.非线性光学晶体NH3BH3的用途,其特征在于:所述的非线性光学晶体NH3BH3用于制备非线性光学器件。
4.如权利要求3所述的非线性光学晶体NH3BH3的用途,其特征在于:所述的非线性光学器件包括倍频发生器、上频率转化器、下频率转化器或光参量振荡器。
5.一种非线性光学器件,其特征在于:由非线性光学晶体NH3BH3制备而成。
CN202211535536.4A 2022-12-02 2022-12-02 一种非线性光学晶体nh3bh3及其制法和用途 Pending CN115652428A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211535536.4A CN115652428A (zh) 2022-12-02 2022-12-02 一种非线性光学晶体nh3bh3及其制法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211535536.4A CN115652428A (zh) 2022-12-02 2022-12-02 一种非线性光学晶体nh3bh3及其制法和用途

Publications (1)

Publication Number Publication Date
CN115652428A true CN115652428A (zh) 2023-01-31

Family

ID=85020127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211535536.4A Pending CN115652428A (zh) 2022-12-02 2022-12-02 一种非线性光学晶体nh3bh3及其制法和用途

Country Status (1)

Country Link
CN (1) CN115652428A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060623A (en) * 1999-01-08 2000-05-09 Shiroi Yakuhin Co., Ltd. Process for producing amine borane compound
US20090291039A1 (en) * 2008-05-22 2009-11-26 Battelle Memorial Institute Process for Synthesis of Ammonia Borane for Bulk Hydrogen Storage
CN101717077A (zh) * 2009-11-24 2010-06-02 哈尔滨工业大学 氮化硼纳米管的制备方法
US20110064640A1 (en) * 2009-09-16 2011-03-17 Wildcat Discovery Technologies Method of preparing boron-nitrogen compounds
CN102530870A (zh) * 2010-12-23 2012-07-04 中国科学院大连化学物理研究所 湿化学法制备氨硼烷
CN103025657A (zh) * 2010-05-21 2013-04-03 海瑞克里兹 适于获得高纯度和非常高纯度硼烷氨的硼烷氨获得方法
CN103303867A (zh) * 2013-07-09 2013-09-18 河北工业大学 一种氨硼烷的合成方法
US20140186252A1 (en) * 2012-12-28 2014-07-03 Weylchem Sustainable Materials, Llc Ammonia borane purification method
US20150183646A1 (en) * 2013-12-27 2015-07-02 Weylchem Sustainable Materials, Llc Ammonia borane purification method
US20170305750A1 (en) * 2014-05-23 2017-10-26 Airbus Safran Launchers Sas Method for producing borazane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060623A (en) * 1999-01-08 2000-05-09 Shiroi Yakuhin Co., Ltd. Process for producing amine borane compound
US20090291039A1 (en) * 2008-05-22 2009-11-26 Battelle Memorial Institute Process for Synthesis of Ammonia Borane for Bulk Hydrogen Storage
US20110064640A1 (en) * 2009-09-16 2011-03-17 Wildcat Discovery Technologies Method of preparing boron-nitrogen compounds
CN101717077A (zh) * 2009-11-24 2010-06-02 哈尔滨工业大学 氮化硼纳米管的制备方法
CN103025657A (zh) * 2010-05-21 2013-04-03 海瑞克里兹 适于获得高纯度和非常高纯度硼烷氨的硼烷氨获得方法
CN102530870A (zh) * 2010-12-23 2012-07-04 中国科学院大连化学物理研究所 湿化学法制备氨硼烷
US20140186252A1 (en) * 2012-12-28 2014-07-03 Weylchem Sustainable Materials, Llc Ammonia borane purification method
CN103303867A (zh) * 2013-07-09 2013-09-18 河北工业大学 一种氨硼烷的合成方法
US20150183646A1 (en) * 2013-12-27 2015-07-02 Weylchem Sustainable Materials, Llc Ammonia borane purification method
US20170305750A1 (en) * 2014-05-23 2017-10-26 Airbus Safran Launchers Sas Method for producing borazane

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUIZHEN LI, ET AL.: "Ammonia borane, past as prolog", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 751, 1 February 2014 (2014-02-01), pages 60 - 66, XP028809093, DOI: 10.1016/j.jorganchem.2013.08.044 *
SHELDON G. SHORE, ROBERT W. PARRY: "THE CRYSTALLINE COMPOUND AMMONIA-BORANE, H3NBH3", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 77, no. 22, 1 November 1955 (1955-11-01), pages 6084 *
YANG ZHOU, ET AL.: "A Non-흅-Conjugated Molecular Crystal with Balanced Second-Harmonic Generation, Bandgap, and Birefringence", SMALL, vol. 20, no. 2, 8 September 2023 (2023-09-08), pages 2305473 *
刘超仁;胡青苗;王平;: "氨硼烷低温和室温结构的第一性原理计算", 材料研究学报, no. 01, 25 February 2011 (2011-02-25), pages 13 - 18 *

Similar Documents

Publication Publication Date Title
Niu et al. Passively mode-locked Er-doped fiber laser based on SnS 2 nanosheets as a saturable absorber
Zakery et al. Optical nonlinearities in chalcogenide glasses and their applications
Courrol et al. Color center production by femtosecond pulse laser irradiation in LiF crystals
US9638982B2 (en) Deep ultraviolet non-linear optical crystal of barium borate hydrate, preparation method therefor and use thereof
CN106435737A (zh) 一种红外非线性光学晶体及其制备方法
Liu et al. Application of transition metal dichalcogenides in mid‐infrared fiber laser
JP7212757B2 (ja) アルカリ金属シアヌル酸一水素塩化合物、その結晶並びにその製造方法と応用
Vigneshwaran et al. Studies on nonlinear optical ammonium pentaborate crystals
Jeyaram Study of third-order nonlinear optical properties of basic violet 3 dye in polar protic and aprotic solvents
Dong et al. Band structure tuning of g-C3N4 via sulfur doping for broadband near-infrared ultrafast photonic applications
Yuan et al. Nonlinear absorption, refraction and optical limiting properties of CsPbBr3 perovskite quantum dot organic glass
Yu et al. Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses
Baig et al. Exploring linear-nonlinear optical, dielectric and microscopic traits of sulphamic acid crystal exploiting Zn2+ for photonic device applications
CN106192002B (zh) 铷硼碳氧碘氢和铷硼碳氧碘氢非线性光学晶体及制备方法和用途
CN109295494B (zh) 一种硫酸二氟锑铯非线性光学晶体及其制备方法和应用
CN115652428A (zh) 一种非线性光学晶体nh3bh3及其制法和用途
Packiya Raj et al. Synthesis, growth and optical, mechanical, electrical and surface properties of an inorganic new nonlinear optical crystal: sodium cadmium tetra chloride (SCTC)
Shen et al. (C8H6BrN2O) NO3: A Hybrid Nonlinear Optical Crystal With an Appropriate Birefringence
Kanimozhi et al. Effects of optical and dielectric properties of l-cysteine doped tris thiourea zinc sulphate single crystals
Kifle et al. Low-loss fs-laser-written surface waveguide lasers at> 2 µm in monoclinic Tm 3+: MgWO 4
Jasem et al. Dual‐Wavelength Passively Q‐Switched Erbium‐Doped Fiber Laser Incorporating Calcium Carbonate Nanoparticles as Saturable Absorber
Xu et al. Zeolite templated carbon nanodots for broadband ultrafast pulsed fiber laser generation
CN109160526B (zh) Li8NaRb3(SO4)6·2H2O化合物、非线性光学晶体及其制法和用途
Kyung et al. Direct measurement of photoinduced charge distribution responsible for second-harmonic generation in glasses
Gokila et al. Elucidation of the properties of Lithium bis (2-methyllactato) borate monohydrate crystal for laser applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination