CN115651291A - In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof - Google Patents
In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof Download PDFInfo
- Publication number
- CN115651291A CN115651291A CN202210820506.1A CN202210820506A CN115651291A CN 115651291 A CN115651291 A CN 115651291A CN 202210820506 A CN202210820506 A CN 202210820506A CN 115651291 A CN115651291 A CN 115651291A
- Authority
- CN
- China
- Prior art keywords
- carbon dot
- resin material
- fluorescent carbon
- fluorescent
- multicolor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 131
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 239000000463 material Substances 0.000 title claims abstract description 117
- 239000011347 resin Substances 0.000 title claims abstract description 99
- 229920005989 resin Polymers 0.000 title claims abstract description 99
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 230000012010 growth Effects 0.000 title claims abstract description 15
- 239000002243 precursor Substances 0.000 claims abstract description 37
- 238000001125 extrusion Methods 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 50
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 27
- 229920001684 low density polyethylene Polymers 0.000 claims description 20
- 239000004702 low-density polyethylene Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 12
- QBPFLULOKWLNNW-UHFFFAOYSA-N chrysazin Chemical compound O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O QBPFLULOKWLNNW-UHFFFAOYSA-N 0.000 claims description 10
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 9
- 239000004327 boric acid Substances 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- GUEIZVNYDFNHJU-UHFFFAOYSA-N quinizarin Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=CC=C2O GUEIZVNYDFNHJU-UHFFFAOYSA-N 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 229960001577 dantron Drugs 0.000 claims description 5
- 229920001903 high density polyethylene Polymers 0.000 claims description 5
- 239000004700 high-density polyethylene Substances 0.000 claims description 5
- 229960002645 boric acid Drugs 0.000 claims description 3
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 3
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims 1
- 229920000193 polymethacrylate Polymers 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 6
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 4
- 238000000746 purification Methods 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract 1
- 231100000956 nontoxicity Toxicity 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 13
- 230000005284 excitation Effects 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000295 emission spectrum Methods 0.000 description 10
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 5
- 230000029553 photosynthesis Effects 0.000 description 5
- 238000010672 photosynthesis Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910014033 C-OH Inorganic materials 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于发光材料技术领域,具体涉及一种原位生长多色荧光碳点树脂材料及其制备方法及应用。The invention belongs to the technical field of luminescent materials, and in particular relates to an in-situ growth multicolor fluorescent carbon dot resin material and its preparation method and application.
背景技术Background technique
太阳辐射是植物进行光合作用不可或缺的能量来源,太阳光主要是由紫外光、可见光和红外光组成。其中,波长范围在400~500nm的蓝光可以被类胡萝卜素和叶绿素强烈吸收从而促进植物茎叶的生长,能够提高农作物的产量;波长为540~600nm的黄光虽然对植物光合作用不大,大部分被植物叶片反射,但是可以促进植物的色泽,有利于提高苗圃观赏植物的价值。而紫外光低于不利于光合作用,抑制植物生长成熟。转光材料则是一类能将太阳光中对植物光合作用有害的紫外光转化为光合作用所需光的材料。Solar radiation is an indispensable energy source for plants to carry out photosynthesis, and sunlight is mainly composed of ultraviolet light, visible light and infrared light. Among them, the blue light with a wavelength range of 400-500nm can be strongly absorbed by carotenoids and chlorophyll to promote the growth of plant stems and leaves, and can increase the yield of crops; although the yellow light with a wavelength of 540-600nm has little effect on plant photosynthesis, it has a large Partly reflected by plant leaves, but can promote the color of plants, which is beneficial to improve the value of ornamental plants in nurseries. The lower ultraviolet light is not conducive to photosynthesis and inhibits plant growth and maturity. Light-converting materials are materials that can convert ultraviolet light in sunlight that is harmful to plant photosynthesis into light needed for photosynthesis.
碳点(CDs)通常是指尺寸小于10nm,主要由sp2碳核sp3碳组成,具有荧光性质的纳米材料。而且凭借出色性能受到人们高度重视。在一般情况下,CDs具有以下几个优点,包括抗光漂白性、荧光可调性、易于制备和良好的生物相容性等,这些优点使它们在离子检测、生物成像及光学设备等领域中发挥着越来越多的作用。Carbon dots (CDs) usually refer to nanomaterials with a size smaller than 10 nm, mainly composed of sp 2 carbon core sp 3 carbon, and possess fluorescent properties. And it is highly valued by people for its excellent performance. In general, CDs have several advantages, including resistance to photobleaching, fluorescence tunability, ease of preparation, and good biocompatibility, which make them ideal for ion detection, bioimaging, and optical devices. play an increasing role.
目前关于专利中报道的碳点复合材料大都是让前驱体先进行反应然后提纯得到碳点,再将碳点与聚合物进行结合,不具有大规模生产的条件。如申请号CN111662524A所述的“一种红色荧光碳点转光膜及其制备方法和应用”,其中研究者是将其合成的红光碳点提纯后再加入到聚乙烯醇溶液中成膜,过程复杂;如申请号CN106590640A所述的“碳点作为农用转光材料在农业生产转光中的应用”,其中研究者是通过溶剂热法,水热法以及管式炉锻烧法合成碳点溶液再提纯得到碳点,没有与基体结合;如申请号CN107214983A所述的“一种光转换塑料薄膜及其制备方法和应用”,其中研究者通过水热法合成并提纯得到碳点,采用简单喷洒方式在普通塑料薄膜基材表面涂覆一薄层碳量子点溶液,自然晾干后得到碳量子点改性处理的光转换塑料薄膜,这样得到的薄膜只是简单地附在了塑料表面,不符合大规模生产的条件。At present, most of the carbon dot composite materials reported in the patents are made by reacting the precursor first and then purifying to obtain the carbon dots, and then combining the carbon dots with the polymer, which does not have the conditions for large-scale production. As described in the application number CN111662524A "a red fluorescent carbon dot light conversion film and its preparation method and application", in which the researcher purified the red light carbon dots synthesized and then added them to the polyvinyl alcohol solution to form a film. The process is complicated; as described in the application number CN106590640A "the application of carbon dots as agricultural light conversion materials in agricultural production light conversion", the researchers synthesized carbon dots by solvothermal method, hydrothermal method and tube furnace calcination method The solution is further purified to obtain carbon dots, which are not combined with the matrix; as described in the application number CN107214983A "A Light Conversion Plastic Film and Its Preparation Method and Application", in which the researchers synthesize and purify the carbon dots by hydrothermal method. By spraying, a thin layer of carbon quantum dot solution is coated on the surface of ordinary plastic film substrates, and after natural drying, a light-converting plastic film modified by carbon quantum dots is obtained. The film thus obtained is simply attached to the plastic surface and does not Eligible for mass production.
发明内容Contents of the invention
有鉴于此,本发明要解决的技术问题在于提供一种原位生长多色荧光碳点树脂材料及其制备方法及应用,本发明提供的荧光碳点树脂材料原料成本低、过程简单、无需提纯,具有大规模生产的条件。In view of this, the technical problem to be solved by the present invention is to provide an in-situ growth multicolor fluorescent carbon dot resin material and its preparation method and application. The fluorescent carbon dot resin material provided by the present invention has low raw material cost, simple process and no need for purification. , with conditions for mass production.
本发明提供了一种原位生长多色荧光碳点树脂材料,由基体树脂和碳点前驱体经过挤出的方式原位生长得到多色荧光碳点树脂材料。The invention provides an in-situ growth multicolor fluorescent carbon dot resin material. The multicolor fluorescent carbon dot resin material is grown in situ by extruding a matrix resin and a carbon dot precursor.
优选的,所述基体树脂与碳点前驱体的质量比为100:(0.33~1)。Preferably, the mass ratio of the matrix resin to the carbon dot precursor is 100:(0.33˜1).
优选的,所述基体树脂包括低密度聚乙烯、线性低密度聚乙烯、高密度聚乙烯、聚丙烯、聚甲基丙烯酸甲酯中的任意一种或多种。Preferably, the matrix resin includes any one or more of low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, and polymethylmethacrylate.
优选的,所述碳点前驱体选自蓝色荧光碳点前驱体、黄色荧光碳点前驱体和白色荧光碳点前驱体中的一种或多种。Preferably, the carbon dot precursor is selected from one or more of blue fluorescent carbon dot precursors, yellow fluorescent carbon dot precursors and white fluorescent carbon dot precursors.
优选的,所述蓝色荧光碳点前驱体包括柠檬酸铵、柠檬酸、尿素中的任意一种或多种;Preferably, the blue fluorescent carbon dot precursor includes any one or more of ammonium citrate, citric acid, and urea;
所述黄色荧光碳点前驱体包括1,4-二羟基蒽醌、1,8-二羟基蒽醌、硼酸中的任意一种或多种;The yellow fluorescent carbon dot precursor includes any one or more of 1,4-dihydroxyanthraquinone, 1,8-dihydroxyanthraquinone, and boric acid;
所述白色荧光碳点前驱体包括柠檬酸铵、柠檬酸、硼酸中的任意一种或多种。The white fluorescent carbon dot precursor includes any one or more of ammonium citrate, citric acid, and boric acid.
优选的,所述多色荧光碳点树脂材料为蓝色荧光树脂材料、黄色荧光树脂材料或白色荧光树脂材料;Preferably, the multicolor fluorescent carbon dot resin material is a blue fluorescent resin material, a yellow fluorescent resin material or a white fluorescent resin material;
所述蓝色荧光树脂材料中的碳点在330~380nm激发下发出峰值波长在400~500nm范围的可见光;The carbon dots in the blue fluorescent resin material emit visible light with a peak wavelength in the range of 400-500 nm when excited at 330-380 nm;
所述黄色荧光树脂材料中的碳点在330~380nm激发下发出峰值波长在540~590nm范围的可见光。The carbon dots in the yellow fluorescent resin material emit visible light with a peak wavelength in the range of 540-590 nm when excited at 330-380 nm.
本发明还提供了一种上述多色荧光碳点树脂材料的制备方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned multicolor fluorescent carbon dot resin material, comprising the following steps:
将基体树脂和碳点前驱体混合后,加入至挤出机中进行反应,原位生长得到多色荧光碳点树脂材料。After the matrix resin and the carbon dot precursor are mixed, they are added to an extruder for reaction, and the multicolor fluorescent carbon dot resin material is obtained by in-situ growth.
优选的,所述挤出机选自双螺杆挤出机,所述挤出温度在170℃~200℃之间,反应时间在2~5min之间。Preferably, the extruder is selected from twin-screw extruders, the extrusion temperature is between 170°C and 200°C, and the reaction time is between 2 and 5 minutes.
本发明还提供了一种上述原位生长多色荧光碳点树脂材料在光致白光LED中的应用,所述多色荧光碳点树脂材料为白色荧光树脂材料。The present invention also provides an application of the above-mentioned in-situ grown multicolor fluorescent carbon dot resin material in a photoluminescent white light LED, wherein the multicolor fluorescent carbon dot resin material is a white fluorescent resin material.
本发明还提供了一种上述原位生长多色荧光碳点树脂材料在转光膜中的应用,所述多色荧光碳点树脂材料为蓝色荧光树脂材料。The present invention also provides an application of the above-mentioned in-situ grown multicolor fluorescent carbon dot resin material in a light conversion film, and the multicolor fluorescent carbon dot resin material is a blue fluorescent resin material.
与现有技术相比,本发明提供了一种原位生长多色荧光碳点树脂材料,由基体树脂和碳点前驱体经过挤出的方式原位生长得到多色荧光碳点树脂材料。本发明提供的碳点材料原料丰富简单,合成过程简便,无毒环保,稳定性高。本发明的制备过程简单,只需将碳点前驱体与树脂投入即可,通过控制挤出温度与时间得到产物,无须提纯,适合大规模生产。Compared with the prior art, the present invention provides an in-situ growth multicolor fluorescent carbon dot resin material, in which the multicolor fluorescent carbon dot resin material is grown in situ by extruding a matrix resin and a carbon dot precursor. The carbon dot material provided by the invention has rich and simple raw materials, simple and convenient synthesis process, non-toxic and environment-friendly, and high stability. The preparation process of the present invention is simple, only needs to put in the carbon dot precursor and resin, and the product is obtained by controlling the extrusion temperature and time, without purification, and is suitable for large-scale production.
附图说明Description of drawings
图1为实施例1所制备的原位生长蓝色荧光碳点树脂材料的透射电镜图。1 is a transmission electron microscope image of the in-situ grown blue fluorescent carbon dot resin material prepared in Example 1.
图2为实施例1的FT-IR光谱图,其中,(a)为所制备蓝色荧光碳点的FT-IR光谱图,图2(b)为低密度聚乙烯与蓝色荧光碳点树脂材料的FT-IR光谱图。Fig. 2 is the FT-IR spectrogram of embodiment 1, wherein, (a) is the FT-IR spectrogram of prepared blue fluorescent carbon dot, and Fig. 2 (b) is low density polyethylene and blue fluorescent carbon dot resin FT-IR spectra of materials.
图3为实施例1所制备蓝色荧光碳点的XRD图像。3 is an XRD image of the blue fluorescent carbon dots prepared in Example 1.
图4为实施例1所制备蓝色荧光碳点的X射线光电子能谱图,其中(a)是碳点的XPS总谱图,(b)是碳点的C1s图谱,(c)是碳点的N1s图谱,(d)是碳点的O1s图谱。Fig. 4 is the X-ray photoelectron energy spectrogram of the blue fluorescent carbon dot prepared in embodiment 1, wherein (a) is the XPS general spectrum diagram of carbon dot, (b) is the C1s collection of illustrative plates of carbon dot, (c) is carbon dot The N1s spectrum of (d) is the O1s spectrum of carbon dots.
图5为实施例1所制备原位生长蓝色荧光碳点树脂材料的紫外吸收图以及在不同激发下的发射光谱图,其中图5(a)为实施例1所制备原位生长蓝色荧光碳点树脂材料的紫外吸收图,图5(b)为实施例1所制备原位生长蓝色荧光碳点树脂材料在不同激发下的发射光谱图。Fig. 5 is the ultraviolet absorption diagram of the in-situ growth blue fluorescent carbon dot resin material prepared in Example 1 and the emission spectrum diagram under different excitations, wherein Fig. 5 (a) is the in-situ growth blue fluorescence prepared in Example 1 The ultraviolet absorption diagram of the carbon dot resin material, FIG. 5( b ) is the emission spectrum diagram of the in-situ grown blue fluorescent carbon dot resin material prepared in Example 1 under different excitations.
图6为实施例6所制备原位生长白色荧光碳点树脂材料的透射电镜图。FIG. 6 is a transmission electron microscope image of the in-situ grown white fluorescent carbon dot resin material prepared in Example 6. FIG.
图7为白色荧光碳点的FT-IR光谱图、X射线光电子能谱图以及XRD图像,其中,图7(a)为所制备白色荧光碳点的FT-IR光谱图,图7(b-e)为实施例6所制备白色荧光碳点的X射线光电子能谱图,其中(b)是碳点的XPS总谱图,(c)是碳点的C1s图谱,(d)是碳点的B1s图谱,(e)是碳点的O1s图谱,图7(f)为实施例6所制备的碳点XRD图像。Figure 7 is the FT-IR spectrum, X-ray photoelectron energy spectrum and XRD image of the white fluorescent carbon dots, wherein Figure 7 (a) is the FT-IR spectrum of the prepared white fluorescent carbon dots, Figure 7 (b-e) For the X-ray photoelectron energy spectrum figure of the white fluorescent carbon dot prepared in embodiment 6, wherein (b) is the XPS general spectrum figure of carbon dot, (c) is the C1s collection of illustrative plates of carbon dot, (d) is the B1s collection of illustrative plates of carbon dot , (e) is the O1s spectrum of carbon dots, and Figure 7(f) is the XRD image of carbon dots prepared in Example 6.
图8为实施例6所制备碳点的水溶液的紫外吸收、激发、发射光谱图以及在不同激发下的发射光谱图,其中,图8(a)为实施例6所制备碳点的水溶液的紫外吸收、激发、发射光谱图,图8(b)为实施例6所制备碳点的水溶液在不同激发下的发射光谱图。Fig. 8 is the ultraviolet absorption, excitation, emission spectrogram of the aqueous solution of carbon dot prepared in embodiment 6 and the emission spectrogram under different excitations, wherein, Fig. 8 (a) is the ultraviolet ray of the aqueous solution of carbon dot prepared in embodiment 6 Absorption, excitation and emission spectra, Figure 8(b) is the emission spectra of the aqueous solution of carbon dots prepared in Example 6 under different excitations.
图9实施例6所制备的白光LED的发射光谱图以及CIE坐标图,其中,图(a)为实施例6所制备的白光LED的发射光谱图,9(b)为CIE坐标图。Fig. 9 is an emission spectrum diagram and a CIE coordinate diagram of the white LED prepared in Example 6, wherein Figure (a) is an emission spectrum diagram of the white LED prepared in Example 6, and Fig. 9 (b) is a CIE coordinate diagram.
图10为实施例1和实施例6所制备原位生长蓝色荧光碳点树脂和白色荧光碳点树脂与低密度聚乙烯在365nm光照射后的实物照片。Fig. 10 is a photo of the in-situ grown blue fluorescent carbon dot resin and white fluorescent carbon dot resin and low-density polyethylene prepared in Example 1 and Example 6 after 365nm light irradiation.
具体实施方式Detailed ways
本发明提供了一种原位生长多色荧光碳点树脂材料,由基体树脂和碳点前驱体经过挤出的方式原位生长得到多色荧光碳点树脂材料。The invention provides an in-situ growth multicolor fluorescent carbon dot resin material. The multicolor fluorescent carbon dot resin material is grown in situ by extruding a matrix resin and a carbon dot precursor.
其中,所述基体树脂与碳点前驱体的质量比为100:(0.33~1),优选为100:0.33、100:0.35、100:0.4、100:0.5、100:0.6、100:0.7、100:0.8、100:0.9、100:1.0,或100:(0.33~1)之间的任意值。Wherein, the mass ratio of the matrix resin to the carbon dot precursor is 100:(0.33~1), preferably 100:0.33, 100:0.35, 100:0.4, 100:0.5, 100:0.6, 100:0.7, 100 :0.8, 100:0.9, 100:1.0, or 100: any value between (0.33~1).
在本发明中,所述基体树脂包括低密度聚乙烯、线性低密度聚乙烯、高密度聚乙烯、聚丙烯、聚甲基丙烯酸甲酯中的任意一种或多种。In the present invention, the matrix resin includes any one or more of low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, and polymethylmethacrylate.
所述碳点前驱体选自蓝色荧光碳点前驱体、黄色荧光碳点前驱体和白色荧光碳点前驱体中的一种或多种。The carbon dot precursor is selected from one or more of blue fluorescent carbon dot precursors, yellow fluorescent carbon dot precursors and white fluorescent carbon dot precursors.
所述蓝色荧光碳点前驱体包括柠檬酸铵、柠檬酸、尿素中的任意一种或多种;The blue fluorescent carbon dot precursor includes any one or more of ammonium citrate, citric acid, and urea;
所述黄色荧光碳点前驱体包括1,4-二羟基蒽醌、1,8-二羟基蒽醌、硼酸中的任意一种或多种;The yellow fluorescent carbon dot precursor includes any one or more of 1,4-dihydroxyanthraquinone, 1,8-dihydroxyanthraquinone, and boric acid;
所述白色荧光碳点前驱体包括柠檬酸铵、柠檬酸、硼酸中的任意一种或多种。The white fluorescent carbon dot precursor includes any one or more of ammonium citrate, citric acid, and boric acid.
所述多色荧光碳点树脂材料为蓝色荧光树脂材料、黄色荧光树脂材料或白色荧光树脂材料;The multicolor fluorescent carbon dot resin material is a blue fluorescent resin material, a yellow fluorescent resin material or a white fluorescent resin material;
所述蓝色荧光树脂材料中的碳点在330~380nm激发下发出峰值波长在400~500nm范围的可见光;The carbon dots in the blue fluorescent resin material emit visible light with a peak wavelength in the range of 400-500 nm when excited at 330-380 nm;
所述黄色荧光树脂材料中的碳点在330~380nm激发下发出峰值波长在540~590nm范围的可见光。The carbon dots in the yellow fluorescent resin material emit visible light with a peak wavelength in the range of 540-590 nm when excited at 330-380 nm.
本发明还提供了一种多色荧光碳点树脂材料的制备方法,包括以下步骤:The present invention also provides a method for preparing a multicolor fluorescent carbon dot resin material, comprising the following steps:
将基体树脂和碳点前驱体混合后,加入至挤出机中进行反应,原位生长得到多色荧光碳点树脂材料。After the matrix resin and the carbon dot precursor are mixed, they are added to an extruder for reaction, and the multicolor fluorescent carbon dot resin material is obtained by in-situ growth.
在本发明中,所述挤出机选自双螺杆挤出机,所述挤出温度在170℃~200℃之间,优选为170、180、190、200,或170℃~200℃之间的任意值,反应时间在2~5min之间,优选为2、3、4、5,或2~5min之间的任意值。In the present invention, the extruder is selected from twin-screw extruders, and the extrusion temperature is between 170°C and 200°C, preferably 170, 180, 190, 200, or between 170°C and 200°C Any value of , the reaction time is between 2 and 5 minutes, preferably 2, 3, 4, 5, or any value between 2 and 5 minutes.
在本发明中,所述碳点前驱体在挤出机中原位反应,在树脂中生成具有荧光的碳点。In the present invention, the carbon dot precursor reacts in situ in the extruder to generate fluorescent carbon dots in the resin.
本发明还提供了一种上述原位生长多色荧光碳点树脂材料在光致白光LED中的应用,其中,所述多色荧光碳点树脂材料为白色荧光树脂材料。The present invention also provides an application of the above-mentioned in-situ grown multicolor fluorescent carbon dot resin material in a photoluminescent white light LED, wherein the multicolor fluorescent carbon dot resin material is a white fluorescent resin material.
本发明还提供了一种上述原位生长多色荧光碳点树脂材料在转光膜中的应用,其中,所述多色荧光碳点树脂材料为蓝色荧光树脂材料,该荧光树脂通过双螺杆挤出机直接挤出得到,得到的成品可用做转光膜母料,母料可以通过吹膜机吹塑成转光薄膜。The present invention also provides an application of the above-mentioned in-situ grown multicolor fluorescent carbon dot resin material in a light conversion film, wherein the multicolor fluorescent carbon dot resin material is a blue fluorescent resin material, and the fluorescent resin passes through a twin-screw It is directly extruded by an extruder, and the obtained finished product can be used as a light conversion film masterbatch, and the masterbatch can be blown into a light conversion film by a blown film machine.
本发明提供的碳点材料原料丰富简单,合成过程简便,无毒环保,稳定性高。本发明的制备过程简单,只需将碳点前驱体与树脂投入即可,通过控制挤出温度与时间得到产物,无须提纯,适合大规模生产。The carbon dot material provided by the invention has rich and simple raw materials, simple and convenient synthesis process, non-toxic and environment-friendly, and high stability. The preparation process of the present invention is simple, only needs to put in the carbon dot precursor and resin, and the product is obtained by controlling the extrusion temperature and time, without purification, and is suitable for large-scale production.
为了进一步理解本发明,下面结合实施例对本发明提供的一种原位生长多色荧光碳点树脂材料及其制备方法及应用进行说明,本发明的保护范围不受以下实施例的限制。In order to further understand the present invention, an in-situ growth multicolor fluorescent carbon dot resin material provided by the present invention and its preparation method and application will be described below in conjunction with examples. The scope of protection of the present invention is not limited by the following examples.
实施例1:Example 1:
蓝色荧光碳点材料的制备方法:称取20mg柠檬酸铵,再称取3g低密度聚乙烯(LDPE),然后将其在烧杯进行混合,将双螺杆挤出机温度调至175℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应3min后,出料。The preparation method of the blue fluorescent carbon dot material: Weigh 20mg of ammonium citrate, then weigh 3g of low-density polyethylene (LDPE), then mix it in a beaker, adjust the temperature of the twin-screw extruder to 175°C, and rotate at Adjust to 44r/min, pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder self-circulation reaction for 3 minutes.
蓝色荧光碳点的制备方法:为了进一步表征原位挤出蓝色荧光碳点材料中的碳点,保持双螺杆挤出机温度为175℃,只称取20mg柠檬酸铵加入到挤出机中反应3min后,将得到的物质溶于超纯水中,然后经0.22μm滤膜过滤去除大颗粒,再通过500Da的透析膜透析24h,最后将透析后的溶液冷冻干燥得到碳点粉末备用。Preparation method of blue fluorescent carbon dots: In order to further characterize the carbon dots in the blue fluorescent carbon dot material extruded in situ, keep the temperature of the twin-screw extruder at 175°C, and only weigh 20 mg of ammonium citrate into the extruder After reacting for 3 minutes, the obtained substance was dissolved in ultrapure water, then filtered through a 0.22 μm filter membrane to remove large particles, and then dialyzed through a 500 Da dialysis membrane for 24 hours, and finally the dialyzed solution was freeze-dried to obtain carbon dot powder for future use.
图1为原位生长蓝色荧光碳点树脂材料的透射电镜图,从图中可以看出大小均一的碳点均匀分散在低密度聚乙烯(LDPE)中,右上角是高倍透射电镜图片,可以看出,该碳点的晶格间距为0.21nm,对应石墨碳的(001)晶面。Figure 1 is a transmission electron microscope image of in-situ grown blue fluorescent carbon dot resin material. It can be seen from the figure that carbon dots of uniform size are evenly dispersed in low-density polyethylene (LDPE). The upper right corner is a high-magnification transmission electron microscope image, which can be It can be seen that the lattice spacing of the carbon dots is 0.21 nm, which corresponds to the (001) crystal plane of graphitic carbon.
图2(a)为实施例1所制备蓝色荧光碳点的FT-IR光谱图,碳点在3431cm-1和3233cm-1的吸收峰分别是-OH和N-H的伸缩振动峰,说明CDs表面含有-OH/-NH,位于1711cm-1和1597cm-1的强吸收峰分别为C=O和C=N双键的吸收振动峰,1409,1360和1187cm-1的吸收峰分别为COO-,C-N,C-O键的伸缩振动峰。图2(b)中的3200cm-1~3400cm-1处多出两个峰为N-H的伸缩振动峰,在1660cm-1和1625cm-1处多出两个峰,分别为C=O和C=N双键的吸收振动峰,说明在原位挤出过程中产生了碳点且均匀地分布在低密度聚乙烯中。Figure 2(a) is the FT-IR spectrum of the blue fluorescent carbon dots prepared in Example 1. The absorption peaks of the carbon dots at 3431cm -1 and 3233cm -1 are the stretching vibration peaks of -OH and NH respectively, indicating that the CDs surface Containing -OH/-NH, the strong absorption peaks at 1711cm -1 and 1597cm -1 are the absorption vibration peaks of C=O and C=N double bonds respectively, and the absorption peaks at 1409, 1360 and 1187cm -1 are COO-, The stretching vibration peaks of CN, CO bonds. In Figure 2(b) there are two extra peaks at 3200cm -1 ~ 3400cm -1 which are stretching vibration peaks of NH, and two extra peaks at 1660cm -1 and 1625cm -1 are C=O and C= The absorption vibration peak of the N double bond indicates that the carbon dots are generated and uniformly distributed in the low-density polyethylene during the in-situ extrusion process.
图3为实施例1所制备蓝色荧光碳点的XRD图像,从图中可以看出在27°处有一个宽峰,对应石墨的(002)的晶面,根据布拉格方程计算得到晶面间距为0.33nm。Fig. 3 is the XRD image of the blue fluorescent carbon dot prepared in embodiment 1, as can be seen from the figure, there is a broad peak at 27°, corresponding to the (002) crystal plane of graphite, and the interplanar spacing is calculated according to the Bragg equation 0.33nm.
图4为实施例1所制备蓝色荧光碳点的X射线光电子能谱图,碳点的C、N、O的元素含量分别为60%、12%、28%。从碳点的C1s的谱图中可以分出4个峰,分别代表C=C/C-C(284.7eV)、C-O/C=N(286.5eV)、C-N(288.1eV)、C=O(289.3eV)。从碳点的N1s的谱图中可以分出3个峰,分别代表C-NH-C(399.1eV)、C=N/-NH2(399.8eV)、石墨化N(401.2eV)。从碳点的O1s的谱图中可以分出3个峰,分别代表C=O(531.2eV)、-OH(531.9eV)、C-O-C/C-OH(533.1eV),这些结果与FT-IR光谱图的分析一致。Fig. 4 is an X-ray photoelectron spectrum diagram of the blue fluorescent carbon dots prepared in Example 1, and the element contents of C, N, and O in the carbon dots are 60%, 12%, and 28%, respectively. From the C1s spectrum of carbon dots, four peaks can be separated, representing C=C/CC (284.7eV), CO/C=N (286.5eV), CN (288.1eV), C=O (289.3eV) ). Three peaks can be separated from the N1s spectrum of carbon dots, representing C-NH-C (399.1eV), C=N/-NH 2 (399.8eV), and graphitized N (401.2eV). From the O1s spectrum of carbon dots, three peaks can be separated, representing C=O (531.2eV), -OH (531.9eV), and COC/C-OH (533.1eV). These results are consistent with the FT-IR spectrum Figure analysis is consistent.
图5(a)为实施例1所制备原位生长蓝色荧光碳点树脂材料的紫外可见吸收光谱图,可以看出原位生长的碳点材料有两个明显的吸收峰。在287nm处有一个明显的吸收峰,这个是sp2碳的π→π*跃迁的结果,另外在363nm处有一个吸收峰,这是C=O的n→π*跃迁的结果。图5(b)为实施例1所制备原位生长蓝色荧光碳点树脂材料在不同激发下的发射光谱图。从图中可以看出,样品的最佳发射峰位在436nm,且随着激发波长的增加,样品的发射强度先增加后降低但峰位置基本保持不变,荧光为典型的非激发波长依赖型。Fig. 5(a) is the ultraviolet-visible absorption spectrum of the in-situ grown blue fluorescent carbon dot resin material prepared in Example 1. It can be seen that the in-situ grown carbon dot material has two obvious absorption peaks. There is an obvious absorption peak at 287nm, which is the result of the π→π* transition of sp 2 carbon, and an absorption peak at 363nm, which is the result of the n→π* transition of C=O. Fig. 5(b) is the emission spectrum of the in-situ grown blue fluorescent carbon dot resin material prepared in Example 1 under different excitations. It can be seen from the figure that the best emission peak of the sample is at 436nm, and with the increase of the excitation wavelength, the emission intensity of the sample increases first and then decreases but the peak position remains basically unchanged. The fluorescence is a typical non-excitation wavelength dependent type. .
实施例2:Example 2:
塑料的共混:称取6g低密度聚乙烯(LDPE)和3g线性低密度聚乙烯(LLDPE),然后在烧杯进行混合,将双螺杆挤出机温度调至180℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环1min后,出料,得到共混比例为2:1的共混料。Blending of plastics: Weigh 6g of low-density polyethylene (LDPE) and 3g of linear low-density polyethylene (LLDPE), then mix them in a beaker, adjust the temperature of the twin-screw extruder to 180°C, and the speed to 44r/min , Pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder circulates for 1 minute to obtain a blended material with a blending ratio of 2:1.
蓝色荧光碳点材料的制备方法:称取20mg柠檬酸铵和5mg尿素,再称取3g共混料,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应4min后,出料。The preparation method of the blue fluorescent carbon dot material: Weigh 20mg of ammonium citrate and 5mg of urea, then weigh 3g of the blend, then mix it in a beaker, adjust the temperature of the twin-screw extruder to 185°C, adjust the speed To 44r/min, the mixed material is poured into a twin-screw extruder for extrusion, and the material is discharged after the extruder self-circulation reaction for 4 minutes.
实施例3:Example 3:
蓝色荧光碳点树脂材料的制备方法:称取20mg柠檬酸和10mg尿素,再称取3g聚丙烯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应4min后,出料。Preparation method of blue fluorescent carbon dot resin material: Weigh 20mg citric acid and 10mg urea, then weigh 3g polypropylene, then mix them in a beaker, adjust the temperature of the twin-screw extruder to 185°C, and adjust the speed to 44r/min, pour the mixed material into the twin-screw extruder for extrusion, and discharge the material after the extruder self-circulation reaction for 4 minutes.
实施例4:Example 4:
塑料的共混:称取6g低密度聚乙烯(LDPE)和2g高密度聚乙烯(HDPE),然后在烧杯进行混合,将双螺杆挤出机温度调至180℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环2min后,出料,得到共混比例为3:1的共混料。Blending of plastics: Weigh 6g of low-density polyethylene (LDPE) and 2g of high-density polyethylene (HDPE), then mix them in a beaker, adjust the temperature of the twin-screw extruder to 180°C, and adjust the speed to 44r/min. Pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder circulates for 2 minutes to obtain a blended material with a blending ratio of 3:1.
蓝色荧光碳点树脂材料的制备方法:称取20mg柠檬酸铵,再称取3g共混料,然后将其在烧杯进行混合,将双螺杆挤出机温度调至175℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应3min后,出料。The preparation method of the blue fluorescent carbon dot resin material: Weigh 20mg of ammonium citrate, then weigh 3g of the blend, then mix it in a beaker, adjust the temperature of the twin-screw extruder to 175°C, and the speed to 44r /min, pour the mixed material into the twin-screw extruder for extrusion, and discharge the material after the extruder self-circulation reaction for 3 minutes.
实施例5:Example 5:
蓝色荧光碳点树脂材料的制备方法:称取20mg柠檬酸铵,再称取3g聚甲基丙烯酸甲酯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至200℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应3min后,出料。The preparation method of the blue fluorescent carbon dot resin material: Weigh 20mg of ammonium citrate, then weigh 3g of polymethyl methacrylate, and then mix them in a beaker, adjust the temperature of the twin-screw extruder to 200°C, and the speed Adjust to 44r/min, pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder self-circulation reaction for 3 minutes.
实施例6:Embodiment 6:
白色荧光碳点材料的制备方法:称取25mg柠檬酸和30mg硼酸,再称取3g低密度聚乙烯(LDPE),然后将其在烧杯进行混合,将双螺杆挤出机温度调至180℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应3min后,出料。The preparation method of the white fluorescent carbon dot material: Weigh 25mg of citric acid and 30mg of boric acid, then weigh 3g of low-density polyethylene (LDPE), then mix them in a beaker, adjust the temperature of the twin-screw extruder to 180°C, Adjust the rotation speed to 44r/min, pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder self-circulates for 3 minutes.
碳点的制备方法:为了进一步表征原位挤出白色荧光碳点材料中的碳点,保持双螺杆挤出机温度为180℃,只称取25mg柠檬酸和30mg加入到挤出机中反应3min后,得到碳点粉末备用。The preparation method of carbon dots: In order to further characterize the carbon dots in the white fluorescent carbon dot material extruded in situ, keep the temperature of the twin-screw extruder at 180°C, and only weigh 25mg of citric acid and 30mg into the extruder to react for 3min Finally, the carbon dot powder is obtained for subsequent use.
光致LED的制备:将通过原位挤出得到的白色荧光碳点树脂热压成膜,然后附在365nm的紫外发光芯片上,即得到白光LED。Preparation of photoluminescent LED: The white fluorescent carbon dot resin obtained by in-situ extrusion is hot-pressed into a film, and then attached to a 365nm ultraviolet light-emitting chip to obtain a white light LED.
图6为实施例6所制备原位生长白荧光碳点树脂材料的透射电镜图,从图中可以看出大小均一的碳点均匀分散在低密度聚乙烯(LDPE)中,右上角是高倍透射电镜图片,可以看出,该碳点的晶格间距为0.21nm,对应石墨碳的(001)晶面。Figure 6 is a transmission electron microscope image of the in-situ grown white fluorescent carbon dot resin material prepared in Example 6. It can be seen from the figure that the carbon dots of uniform size are evenly dispersed in low-density polyethylene (LDPE), and the upper right corner is a high-magnification transmission electron microscope. From the electron microscope pictures, it can be seen that the lattice spacing of the carbon dots is 0.21nm, corresponding to the (001) crystal plane of graphitic carbon.
图7(a)为实施例6所制备荧光碳点的FT-IR光谱图,在3226cm-1处的明显吸收带属于-OH的伸缩振动,在1628cm-1、1429cm-1和1190cm-1处的吸收带分别对应C=O、B-O和B-O-C的伸缩振动。图7(b-e)显示O、C、B元素含量分别为39%、33%、28%,从碳点的C1s的谱图中可以分出3个峰,分别代表C=C/C-C、C-O、C=O。从碳点的B1s的谱图中可以分出3个峰,分别代表B2O3、BCO2、B-O。从碳点的O1s的谱图中可以分出2个峰,分别代表C=O、C-O,这些结果与FT-IR光谱图的分析一致。Figure 7(a) is the FT-IR spectrum of the fluorescent carbon dots prepared in Example 6. The obvious absorption band at 3226cm -1 belongs to the stretching vibration of -OH, at 1628cm -1 , 1429cm -1 and 1190cm -1 The absorption bands of correspond to the stretching vibrations of C=O, BO and BOC, respectively. Figure 7(be) shows that the contents of O, C, and B elements are 39%, 33%, and 28%, respectively, and three peaks can be separated from the C1s spectrum of carbon dots, representing C=C/CC, CO, and C=O. Three peaks can be separated from the B1s spectrum of carbon dots, representing B 2 O 3 , BCO 2 , and BO. Two peaks can be separated from the O1s spectrum of carbon dots, representing C=O and CO respectively. These results are consistent with the analysis of the FT-IR spectrum.
图7(f)中碳点在14.6°、28.0°、28.6°和40.3°处具有典型的B2O3峰。The carbon dots in Figure 7(f) have typical B2O3 peaks at 14.6°, 28.0°, 28.6°, and 40.3 °.
图8(a)为实施例6所制备碳点的水溶液的紫外吸收、激发、发射光谱图,图8(b)为实施例6所制备碳点的水溶液在不同激发下的发射光谱图。其碳点水溶液的荧光光谱呈现出激发波长依赖的特性,在375nm激发下,在465nm处具有最强发射。Figure 8(a) is the ultraviolet absorption, excitation and emission spectrum of the aqueous solution of carbon dots prepared in Example 6, and Figure 8(b) is the emission spectrum of the aqueous solution of carbon dots prepared in Example 6 under different excitations. The fluorescence spectrum of its carbon dot aqueous solution exhibits excitation wavelength-dependent characteristics, and has the strongest emission at 465 nm under excitation at 375 nm.
图9(a)为实施例6所制备的白光LED的发射光谱图,9(b)为CIE坐标图,得到的白光CIE坐标为(0.33,0.33),CRI为80。Figure 9(a) is the emission spectrum diagram of the white LED prepared in Example 6, and Figure 9(b) is the CIE coordinate diagram, the CIE coordinates of the obtained white light are (0.33, 0.33), and the CRI is 80.
实施例7:Embodiment 7:
白色荧光碳点材料的制备方法:称取20mg柠檬酸铵和30mg硼酸,再称取3g聚丙烯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应3min后,出料。The preparation method of the white fluorescent carbon dot material: Weigh 20mg of ammonium citrate and 30mg of boric acid, then weigh 3g of polypropylene, then mix them in a beaker, adjust the temperature of the twin-screw extruder to 185°C, and adjust the speed to 44r /min, pour the mixed material into the twin-screw extruder for extrusion, and discharge the material after the extruder self-circulation reaction for 3 minutes.
实施例8:Embodiment 8:
黄色荧光碳点树脂材料的制备方法:分别称取20mg 1,4-二羟基蒽醌和20mg 1,8-二羟基蒽醌,再称取3g低密度聚乙烯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应5min后,出料。Preparation method of yellow fluorescent carbon dot resin material: Weigh 20mg 1,4-dihydroxyanthraquinone and 20mg 1,8-dihydroxyanthraquinone respectively, then weigh 3g low-density polyethylene, and then mix them in a beaker, Adjust the temperature of the twin-screw extruder to 185°C, adjust the speed to 44r/min, pour the mixed material into the twin-screw extruder for extrusion, and discharge the material after the extruder self-circulates for 5 minutes.
实施例9:Embodiment 9:
黄色荧光碳点树脂材料的制备方法:分别称取20mg 1,4-二羟基蒽醌和20mg 1,8-二羟基蒽醌,再称取3g聚丙烯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应5min后,出料。Preparation method of yellow fluorescent carbon dot resin material: Weigh 20mg 1,4-dihydroxyanthraquinone and 20mg 1,8-dihydroxyanthraquinone respectively, then weigh 3g polypropylene, then mix them in a beaker, and mix the two The temperature of the screw extruder was adjusted to 185°C, and the speed was adjusted to 44r/min. The mixed material was poured into the twin-screw extruder for extrusion. After the extruder self-circulated for 5 minutes, the material was discharged.
实施例10:Example 10:
黄色荧光碳点树脂材料的制备方法:分别称取20mg 1,4-二羟基蒽醌和20mg硼酸,再称取3g低密度聚乙烯,然后将其在烧杯进行混合,将双螺杆挤出机温度调至185℃,转速调至44r/min,将混合后的材料倒入双螺杆挤出机进行挤出,待挤出机自循环反应5min后,出料。The preparation method of the yellow fluorescent carbon dot resin material: Weigh 20mg 1,4-dihydroxyanthraquinone and 20mg boric acid respectively, then weigh 3g low-density polyethylene, then mix them in a beaker, and set the temperature of the twin-screw extruder to Adjust the temperature to 185°C, adjust the speed to 44r/min, pour the mixed material into a twin-screw extruder for extrusion, and discharge the material after the extruder self-circulates for 5 minutes.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, and it should be pointed out that for those of ordinary skill in the art, some improvements and modifications can also be made without departing from the principles of the present invention. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210820506.1A CN115651291A (en) | 2022-07-13 | 2022-07-13 | In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210820506.1A CN115651291A (en) | 2022-07-13 | 2022-07-13 | In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115651291A true CN115651291A (en) | 2023-01-31 |
Family
ID=85024233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210820506.1A Pending CN115651291A (en) | 2022-07-13 | 2022-07-13 | In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115651291A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107057321A (en) * | 2017-04-20 | 2017-08-18 | 宁波浙铁大风化工有限公司 | Excellent weatherable polycarbonate material of a kind of color and preparation method thereof |
CN111662524A (en) * | 2020-05-26 | 2020-09-15 | 华南农业大学 | Red fluorescent carbon dot light conversion film and preparation method and application thereof |
CN113603993A (en) * | 2021-07-13 | 2021-11-05 | 南京工业大学 | Preparation method of self-healing polymer-nano composite material |
CN114591737A (en) * | 2022-03-16 | 2022-06-07 | 北京化工大学 | A kind of multicolor fluorescent carbon dot, its preparation method and application |
CN114685921A (en) * | 2020-12-31 | 2022-07-01 | 苏州国纳思新材料科技有限公司 | Preparation method of quantum dot resin material |
-
2022
- 2022-07-13 CN CN202210820506.1A patent/CN115651291A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107057321A (en) * | 2017-04-20 | 2017-08-18 | 宁波浙铁大风化工有限公司 | Excellent weatherable polycarbonate material of a kind of color and preparation method thereof |
CN111662524A (en) * | 2020-05-26 | 2020-09-15 | 华南农业大学 | Red fluorescent carbon dot light conversion film and preparation method and application thereof |
CN114685921A (en) * | 2020-12-31 | 2022-07-01 | 苏州国纳思新材料科技有限公司 | Preparation method of quantum dot resin material |
CN113603993A (en) * | 2021-07-13 | 2021-11-05 | 南京工业大学 | Preparation method of self-healing polymer-nano composite material |
CN114591737A (en) * | 2022-03-16 | 2022-06-07 | 北京化工大学 | A kind of multicolor fluorescent carbon dot, its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups | |
He et al. | Double carbon dot assembled mesoporous aluminas: Solid-state dual-emission photoluminescence and multifunctional applications | |
CN107214983A (en) | A kind of light conversion plastic sheeting and its preparation method and application | |
CN108219785B (en) | High-fluorescence-intensity silicon-doped carbon quantum dot and photochemical synthesis method and application thereof | |
CN104844833A (en) | Novel red light conversion film and preparation method and application thereof | |
CN109825288A (en) | A kind of red solid-state fluorescent carbon dot and its preparation method and application | |
CN113045978B (en) | Preparation method of carbon quantum dot-water-soluble polyurethane solution | |
CN109364951A (en) | A kind of visible light catalytic composite material and its preparation method and application | |
CN106497561B (en) | Preparation of graphene quantum dot yellow phosphor or mixture thereof and method for preparing white light LED device | |
Ma et al. | Preparation of multicolor carbon quantum dots by hydrothermal method and their functionalization applications | |
CN110396107B (en) | High-stability yellow luminous chiral nano silver cluster material and application thereof in white light LED | |
CN114181699B (en) | Silicon-doped carbon dot with high fluorescence quantum yield and preparation method and application thereof | |
CN115651291A (en) | In-situ growth multicolor fluorescent carbon dot resin material and preparation method and application thereof | |
CN105154069A (en) | Multi-colored adjustable light-emitting material of nitrogen-doped carbon dot coordination rare earth and preparation method thereof | |
CN1887942B (en) | Weather resistant light-converting luminous farm film and its making process | |
WO2012052041A1 (en) | Luminescent polymer with quantum dots | |
KR102484955B1 (en) | Down-shifting nanophosphors, synthesis method thereof, and luminescent solar concentrator using the same | |
CN111662524B (en) | A red fluorescent carbon dot light-converting film and its preparation method and application | |
EP2475925A1 (en) | Illuminating means based on nanoscale structures | |
CN100509625C (en) | Composite hollow sphere composed of radially closely packed zinc silicate nanowires and preparation method thereof | |
CN107722974A (en) | A kind of biomass coke tar derives the preparation method of carbon quantum dot | |
CN1069115C (en) | Mecerized fabrics and additives and production thereof | |
CN113684019B (en) | Light conversion film for promoting plant growth and preparation method thereof | |
CN110564413B (en) | A method for preparing solid fluorescent carbon dots from waste plastics | |
CN110041914B (en) | Carbon quantum dot organic silicon resin with adjustable fluorescence and luminescence, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230131 |
|
RJ01 | Rejection of invention patent application after publication |