CN115619999A - Real-time monitoring method and device for power equipment, electronic equipment and readable medium - Google Patents
Real-time monitoring method and device for power equipment, electronic equipment and readable medium Download PDFInfo
- Publication number
- CN115619999A CN115619999A CN202110798702.9A CN202110798702A CN115619999A CN 115619999 A CN115619999 A CN 115619999A CN 202110798702 A CN202110798702 A CN 202110798702A CN 115619999 A CN115619999 A CN 115619999A
- Authority
- CN
- China
- Prior art keywords
- real
- target detection
- model
- generate
- power equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 163
- 238000012544 monitoring process Methods 0.000 title claims abstract description 54
- 238000001514 detection method Methods 0.000 claims abstract description 100
- 230000006835 compression Effects 0.000 claims abstract description 76
- 238000007906 compression Methods 0.000 claims abstract description 76
- 238000003062 neural network model Methods 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 238000007781 pre-processing Methods 0.000 claims abstract description 13
- 238000012549 training Methods 0.000 claims description 26
- 238000003860 storage Methods 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 19
- 238000005457 optimization Methods 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 71
- 230000008569 process Effects 0.000 description 23
- 238000013139 quantization Methods 0.000 description 13
- 238000013138 pruning Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000012423 maintenance Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
本公开涉及一种电力设备实时监测方法、装置、电子设备及计算机可读介质。该方法包括:通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测。本公开涉及的电力设备实时监测方法、装置、电子设备及计算机可读介质,能够将高精度、低复杂度的计算模型布置在边缘计算设备中,以便实时对电力设备进行监控,保证电网安全运行的同时减轻物联网的数据压力。
The present disclosure relates to a real-time monitoring method, device, electronic equipment and computer-readable medium of electric equipment. The method includes: acquiring a real-time image of the power equipment through the Internet of Things; preprocessing the real-time image to generate image data; inputting the image data into a target detection model to generate a target detection result, wherein the target detection model It is a deep neural network model based on Newton's method to optimize the loss function for compression; based on the target detection result, the state of the electric equipment is monitored in real time. The real-time monitoring method, device, electronic device and computer-readable medium of the power equipment involved in the present disclosure can arrange high-precision and low-complexity calculation models in the edge computing equipment, so as to monitor the power equipment in real time and ensure the safe operation of the power grid While reducing the data pressure of the Internet of Things.
Description
技术领域technical field
本公开涉及电力设备运检领域,具体而言,涉及一种电力设备实时监测方法、装置、电子设备及计算机可读介质。The present disclosure relates to the field of power equipment inspection, and in particular, to a real-time monitoring method and device for power equipment, electronic equipment, and a computer-readable medium.
背景技术Background technique
我国电网的变电设备有种类多、分布广泛、结构参数各异的特点,在长期运行的过程中,电力设备出现故障几乎不可避免,引起故障的原因包括制造过程中遗留的设备缺陷,安装检修维护中存在的问题,长期运行后导致的绝缘老化及结构劣化等因素。目前,变电站内的巡视业务多利用智能化巡视设备进行,如无人机、机器人、智能头盔等,大大减轻了运维工作人员的工作量,降低电力设备日常运维的成本,通过对设备状态进行实时拍摄,会产生大量的设备图像数据,并需要人工根据图像判断设备状态是否正常,这个过程增加了运维工作人员的工作量,占用大量人力,因此运用智能识别技术对数据进行分析处理,获取关键信息,进而实现数据处理自动化是非常有必要的。The substation equipment in my country's power grid has the characteristics of many types, wide distribution, and different structural parameters. In the process of long-term operation, power equipment failures are almost inevitable. The causes of failures include equipment defects left in the manufacturing process, installation and maintenance Problems in maintenance, insulation aging and structural deterioration after long-term operation. At present, the inspection service in the substation is mostly carried out by using intelligent inspection equipment, such as drones, robots, smart helmets, etc., which greatly reduces the workload of operation and maintenance staff and reduces the cost of daily operation and maintenance of power equipment. Real-time shooting will generate a large amount of equipment image data, and it is necessary to manually judge whether the equipment status is normal based on the image. This process increases the workload of the operation and maintenance staff and takes up a lot of manpower. Therefore, the intelligent recognition technology is used to analyze and process the data. It is very necessary to obtain key information and then automate data processing.
边缘计算让更多的监控应用程序的计算任务能够在网络边缘的分散节点上执行,所以可以利用这些边缘设备减少时间延迟,并且可以实现实时在线决策。在电力设备运维和检测领域,需要对电力物联网环境下的电力设备进行实时状态监测,由于电力企业部署的电力物联网由大量的电力终端设备构成,所以一般采用基于边缘计算的电力监控应用系统对采集到的电力设备实时图像进行分析和处理,来监测这些设备是否良好。然而复杂网络模型在终端或边缘设备部署时存在资源限制问题。Edge computing enables more computing tasks of monitoring applications to be performed on distributed nodes at the edge of the network, so these edge devices can be used to reduce time delays and enable real-time online decision-making. In the field of power equipment operation, maintenance and detection, real-time status monitoring of power equipment in the power Internet of Things environment is required. Since the power Internet of Things deployed by power companies is composed of a large number of power terminal devices, power monitoring applications based on edge computing are generally used. The system analyzes and processes the collected real-time images of power equipment to monitor whether the equipment is in good condition. However, complex network models have resource constraints when deploying terminals or edge devices.
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。The above information disclosed in this Background section is only for enhancement of understanding of the background of the disclosure and therefore it may contain information that does not form the prior art that is already known in the art to a person of ordinary skill in the art.
发明内容Contents of the invention
有鉴于此,本公开提供一种电力设备实时监测方法、装置、电子设备及计算机可读介质,能够将高精度、低复杂度的计算模型布置在边缘计算设备中,以便实时对电力设备进行监控,保证电网安全运行的同时减轻物联网的数据压力。In view of this, the present disclosure provides a method, device, electronic device and computer-readable medium for real-time monitoring of power equipment, which can arrange high-precision and low-complexity calculation models in edge computing equipment, so as to monitor power equipment in real time , To ensure the safe operation of the power grid while reducing the data pressure of the Internet of Things.
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。Other features and advantages of the present disclosure will become apparent from the following detailed description, or in part, be learned by practice of the present disclosure.
根据本公开的一方面,提出一种电力设备实时监测方法,该方法包括:通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测。According to one aspect of the present disclosure, a method for real-time monitoring of power equipment is proposed, the method includes: acquiring a real-time image of the power equipment through the Internet of Things; preprocessing the real-time image to generate image data; inputting the image data into the target In the detection model, a target detection result is generated, wherein the target detection model is a deep neural network model based on Newton's method to optimize the loss function for compression; based on the target detection result, the state of the electric equipment is monitored in real time.
在本公开的一种示例性实施例中,还包括:获取电力设备的多个历史图像;对所述多个历史图像进行预处理以生成多个历史图像数据;基于所述多个历史图像数据对深度神经网络模型进行训练以生成初始目标检测模型;基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型。In an exemplary embodiment of the present disclosure, it further includes: acquiring a plurality of historical images of electric equipment; performing preprocessing on the plurality of historical images to generate a plurality of historical image data; based on the plurality of historical image data The deep neural network model is trained to generate an initial target detection model; the loss function is optimized based on Newton's method to compress the initial target detection model to generate the target detection model.
在本公开的一种示例性实施例中,对所述多个历史图像进行预处理以生成多个历史图像数据,包括:对所述多个历史图像进行数据清洗以生成多个历史图像数据;和/或对所述多个历史图像进行数据转换以生成多个历史图像数据;和/或对所述多个历史图像进行数据归一化处理以生成多个历史图像数据。In an exemplary embodiment of the present disclosure, performing preprocessing on the multiple historical images to generate multiple historical image data includes: performing data cleaning on the multiple historical images to generate multiple historical image data; And/or performing data conversion on the multiple historical images to generate multiple historical image data; and/or performing data normalization processing on the multiple historical images to generate multiple historical image data.
在本公开的一种示例性实施例中,基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型,包括:生成指数损失函数;生成压缩函数;基于牛顿法对所述指数损失函数进行优化计算以得到最小化指数损失函数和其对应的模型参数;解耦所述压缩函数以获取压缩后的所述目标检测模型的权重;基于所述模型参数和所述权重生成所述目标检测模型。In an exemplary embodiment of the present disclosure, optimizing the loss function based on Newton's method to compress the initial target detection model to generate the target detection model includes: generating an exponential loss function; generating a compression function; The exponential loss function is optimized and calculated to obtain the minimized exponential loss function and its corresponding model parameters; decoupling the compression function to obtain the weight of the compressed target detection model; based on the model parameters and the weight Generate the object detection model.
在本公开的一种示例性实施例中,生成指数损失函数,包括:获取初始化参数,所述初始化参数包括压缩目标、算法迭代次数、样本迭代次数;基于所述初始化参数生成所述指数损失函数。In an exemplary embodiment of the present disclosure, generating an exponential loss function includes: obtaining an initialization parameter, the initialization parameter including a compression target, the number of algorithm iterations, and the number of sample iterations; generating the exponential loss function based on the initialization parameter .
在本公开的一种示例性实施例中,生成压缩函数,包括:获取所述初始目标检测模型的原始权重张量;基于所述原始权重张量生成所述压缩函数。In an exemplary embodiment of the present disclosure, generating the compression function includes: acquiring an original weight tensor of the initial target detection model; and generating the compression function based on the original weight tensor.
在本公开的一种示例性实施例中,基于牛顿法对所述指数损失函数进行优化计算以得到最小化指数损失函数和其对应的模型参数,包括:确定迭代初始值;确定搜索方向;基于所述搜索方向进行迭代计算以求解最小化指数函数;基于所述最小化指数函数确定所述模型参数。In an exemplary embodiment of the present disclosure, the exponential loss function is optimized and calculated based on Newton's method to obtain the minimized exponential loss function and its corresponding model parameters, including: determining the iteration initial value; determining the search direction; based on The search direction is iteratively calculated to solve a minimized exponential function; and the model parameters are determined based on the minimized exponential function.
在本公开的一种示例性实施例中,确定搜索方向,包括:基于所述迭代初始值通过Hessian矩阵在梯度上进行线性变换得到搜索方向。In an exemplary embodiment of the present disclosure, determining the search direction includes: performing linear transformation on the gradient through a Hessian matrix based on the iteration initial value to obtain the search direction.
在本公开的一种示例性实施例中,解耦所述压缩函数以获取压缩后的所述目标检测模型的权重,包括:确定对偶变量;基于所述对偶变量和交替方向乘子法解耦所述压缩函数;基于迭代计算对解耦后的所述压缩函数进行计算以获取所述目标检测模型的权重。In an exemplary embodiment of the present disclosure, decoupling the compression function to obtain the weight of the compressed target detection model includes: determining a dual variable; decoupling based on the dual variable and an alternating direction multiplier method The compression function: calculating the decoupled compression function based on iterative calculation to obtain the weight of the target detection model.
根据本公开的一方面,提出一种电力设备实时监测装置,该装置包括:图像模块,用于通过物联网获取电力设备的实时图像;处理模块,用于对所述实时图像进行预处理,生成图像数据;计算模块,用于将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;监测模块,用于基于所述目标检测结果对所述电力设备的状态进行实时监测。According to one aspect of the present disclosure, a real-time monitoring device for electric equipment is proposed, which includes: an image module, used to acquire real-time images of electric equipment through the Internet of Things; a processing module, used for preprocessing the real-time images, and generating Image data; Calculation module, for inputting said image data in target detection model, generate target detection result, wherein, said target detection model is the deep neural network model based on Newton's method optimization loss function to compress; Monitoring module, It is used to monitor the state of the electric equipment in real time based on the target detection result.
在本公开的一种示例性实施例中,还包括:模型训练模块,用于获取电力设备的多个历史图像;对所述多个历史图像进行预处理以生成多个历史图像数据;基于所述多个历史图像数据对深度神经网络模型进行训练以生成初始目标检测模型;基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型。In an exemplary embodiment of the present disclosure, it further includes: a model training module, configured to acquire a plurality of historical images of electric equipment; perform preprocessing on the plurality of historical images to generate a plurality of historical image data; based on the The plurality of historical image data are used to train the deep neural network model to generate an initial target detection model; the loss function is optimized based on Newton's method to compress the initial target detection model to generate the target detection model.
根据本公开的一方面,提出一种电子设备,该电子设备包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上文的方法。According to an aspect of the present disclosure, an electronic device is proposed, which includes: one or more processors; a storage device for storing one or more programs; when one or more programs are executed by one or more processors Execution causes one or more processors to implement the method as above.
根据本公开的一方面,提出一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如上文中的方法。According to one aspect of the present disclosure, a computer-readable medium is provided, on which a computer program is stored, and when the program is executed by a processor, the above method is implemented.
根据本公开的电力设备实时监测方法、装置、电子设备及计算机可读介质,通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测的方式,能够将高精度、低复杂度的计算模型布置在边缘计算设备中,以便实时对电力设备进行监控,保证电网安全运行的同时减轻物联网的数据压力。According to the power equipment real-time monitoring method, device, electronic equipment and computer-readable medium of the present disclosure, the real-time image of the power equipment is obtained through the Internet of Things; the real-time image is preprocessed to generate image data; the image data is input to the target In the detection model, a target detection result is generated, wherein the target detection model is a deep neural network model based on Newton’s method to optimize the loss function for compression; the method of real-time monitoring of the state of the electric equipment based on the target detection result , can arrange high-precision, low-complexity computing models in edge computing devices, so as to monitor power devices in real time, ensure the safe operation of the power grid, and reduce the data pressure of the Internet of Things.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。It is to be understood that both the foregoing general description and the following detailed description are exemplary only and are not restrictive of the present disclosure.
附图说明Description of drawings
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。The above and other objects, features and advantages of the present disclosure will become more apparent by describing in detail example embodiments thereof with reference to the accompanying drawings. The drawings described below are only some embodiments of the present disclosure, and those skilled in the art can obtain other drawings according to these drawings without creative efforts.
图1是根据一示例性实施例示出的一种电力设备实时监测方法及装置的系统框图。Fig. 1 is a system block diagram of a method and device for real-time monitoring of electrical equipment according to an exemplary embodiment.
图2是根据一示例性实施例示出的一种电力设备实时监测方法的流程图。Fig. 2 is a flowchart of a real-time monitoring method for electric equipment according to an exemplary embodiment.
图3是根据另一示例性实施例示出的一种电力设备实时监测方法的流程图。Fig. 3 is a flow chart of a real-time monitoring method for electric equipment according to another exemplary embodiment.
图4是根据另一示例性实施例示出的一种电力设备实时监测方法的流程图。Fig. 4 is a flowchart of a real-time monitoring method for electric equipment according to another exemplary embodiment.
图5是根据另一示例性实施例示出的一种电力设备实时监测方法的示意图。Fig. 5 is a schematic diagram of a real-time monitoring method for electric equipment according to another exemplary embodiment.
图6是根据另一示例性实施例示出的一种电力设备实时监测方法的示意图。Fig. 6 is a schematic diagram of a real-time monitoring method for electric equipment according to another exemplary embodiment.
图7是根据一示例性实施例示出的一种电力设备实时监测装置的框图。Fig. 7 is a block diagram of a real-time monitoring device for electric equipment according to an exemplary embodiment.
图8是根据一示例性实施例示出的一种电子设备的框图。Fig. 8 is a block diagram of an electronic device according to an exemplary embodiment.
图9是根据一示例性实施例示出的一种计算机可读介质的框图。Fig. 9 is a block diagram showing a computer-readable medium according to an exemplary embodiment.
具体实施方式detailed description
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本公开将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art. The same reference numerals denote the same or similar parts in the drawings, and thus their repeated descriptions will be omitted.
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本公开的各方面。Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the present disclosure. However, those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details, or other methods, components, means, steps, etc. may be employed. In other instances, well-known methods, apparatus, implementations, or operations have not been shown or described in detail to avoid obscuring aspects of the present disclosure.
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。The block diagrams shown in the drawings are merely functional entities and do not necessarily correspond to physically separate entities. That is, these functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different networks and/or processor devices and/or microcontroller devices entity.
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。The flow charts shown in the drawings are only exemplary illustrations, and do not necessarily include all contents and operations/steps, nor must they be performed in the order described. For example, some operations/steps can be decomposed, and some operations/steps can be combined or partly combined, so the actual order of execution may be changed according to the actual situation.
应理解,虽然本文中可能使用术语第一、第二、第三等来描述各种组件,但这些组件不应受这些术语限制。这些术语乃用以区分一组件与另一组件。因此,下文论述的第一组件可称为第二组件而不偏离本公开概念的教示。如本文中所使用,术语“及/或”包括相关联的列出项目中的任一个及一或多者的所有组合。It will be understood that although the terms first, second, third etc. may be used herein to describe various components, these components should not be limited by these terms. These terms are used to distinguish one component from another. Thus, a first component discussed below could be termed a second component without departing from the teachings of the disclosed concepts. As used herein, the term "and/or" includes any one and all combinations of one or more of the associated listed items.
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本公开所必须的,因此不能用于限制本公开的保护范围。Those skilled in the art can understand that the drawings are only schematic diagrams of exemplary embodiments, and the modules or processes in the drawings are not necessarily necessary for implementing the present disclosure, and thus cannot be used to limit the protection scope of the present disclosure.
物联网环境下的网络设备积累了大量的数据,云计算相关技术在处理这些海量数据方面具有成功的潜力,但针对大多数的典型监控应用来说,处理和分析海量监控数据依然是一个挑战。复杂网络模型在终端或边缘设备部署时存在资源限制问题,研究神经网络模型压缩技术,在保证模型精度的前提下,实现神经网络模型在终端或边缘设备的移植和计算优化成为基于监视应用的降低边缘计算复杂度的关键。Network devices in the Internet of Things environment have accumulated a large amount of data, and cloud computing-related technologies have the potential to be successful in processing these massive amounts of data. However, for most typical monitoring applications, processing and analyzing massive monitoring data is still a challenge. Complex network models have resource limitations when deployed on terminals or edge devices. Research on neural network model compression technology, on the premise of ensuring model accuracy, realizes the transplantation and calculation optimization of neural network models on terminals or edge devices. The key to edge computing complexity.
本申请的发明人发现,在过去的几年里,人们提出了各种压缩DNN(深度神经网络)模型的技术。剪枝和量化是实践中应用最为广泛的两种方法。剪枝方法除了使用权重剪枝进行模型压缩外,还提出了信道(过滤器/神经元)剪枝来去除CNN权重的整个过滤器,从而实现了推理加速。除了通过剪枝减少参数外,量化被认为是压缩DNN的另一个方向。量化间隔可以是均匀的或非均匀的,通常,非均匀量化可以获得更高的压缩率,而均匀量化可以提供加速。量化比特宽度可以通过Hoffman编码进一步减小。除了标量量化外,矢量量化也可应用于DNN模型压缩。The inventors of the present application found that in the past few years, various techniques for compressing DNN (Deep Neural Network) models have been proposed. Pruning and quantization are the two most widely used methods in practice. In addition to using weight pruning for model compression, the pruning method also proposes channel (filter/neuron) pruning to remove the entire filter of CNN weights, thus achieving inference acceleration. Besides reducing parameters by pruning, quantization is considered as another direction to compress DNNs. Quantization interval can be uniform or non-uniform, in general, non-uniform quantization can achieve higher compression ratio, while uniform quantization can provide speedup. The quantization bit width can be further reduced by Hoffman coding. Besides scalar quantization, vector quantization can also be applied to DNN model compression.
为了使压缩性能最大化,有一些方法会将剪枝和量化一起执行训练,但是在这种情况下存在分层的稀疏度和量化比特宽相互影响的问题,并且这些方法依赖于设置超参数来压缩层,增加了手动选择压缩比或超参数调整的难度。有鉴于现有技术中存在的技术瓶颈,本申请提供出了一种电力设备实时监测方法。In order to maximize compression performance, there are some methods that perform training together with pruning and quantization, but in this case there is a problem of layer sparsity and quantization bit width interacting, and these methods rely on setting hyperparameters to Compression layers, increasing the difficulty of manual selection of compression ratios or hyperparameter tuning. In view of the technical bottlenecks in the prior art, the present application provides a real-time monitoring method for electric equipment.
在本公开的电力设备实时监测方法中,以电力设备运维检修的监控应用为例进行具体的技术描述,可理解的是,本公开的方法还可以应用与其他的领域,本申请不以此为限。In the real-time monitoring method of power equipment disclosed in the present disclosure, the specific technical description is given by taking the monitoring application of power equipment operation and maintenance as an example. It is understandable that the method disclosed in the present disclosure can also be applied to other fields, and this application does not limit.
更具体的,在配电运维目标识别任务中,首先采集配电运维中巡视业务所采用的智能巡视设备拍摄到的实时设备状态图像,从中选取合适的研究样本。之后采用图像增强技术对数据进行预处理。其次,对图像进行人工标注,得到电力设备目标检测的数据集。然后可以利用该图像数据集进行基于边缘计算的目标检测任务。在本文提出的自动DNN压缩框架中,首先需要对图像数据集进行预处理,对图像数据进行数据清洗,去除脏数据,然后将图像数据转换成张量,之后设定均值和方差逐通道地对图像进行归一化;然后基于处理好的图像数据集进行模型训练,采用优化的自动DNN压缩方法对训练后的模型进行压缩,并利用损失函数的优化方法来加快损失函数的训练收敛过程,最终得到压缩后的神经网络模型。More specifically, in the target recognition task of power distribution operation and maintenance, first collect the real-time equipment status images captured by the intelligent patrol equipment used in the patrol business in power distribution operation and maintenance, and select appropriate research samples from them. Afterwards, image enhancement techniques are used to preprocess the data. Secondly, the images are manually annotated to obtain a data set of electric equipment target detection. This image dataset can then be leveraged for edge computing-based object detection tasks. In the automatic DNN compression framework proposed in this paper, it is first necessary to preprocess the image data set, perform data cleaning on the image data, remove dirty data, and then convert the image data into tensors, and then set the mean and variance to perform channel-by-channel The image is normalized; then model training is performed based on the processed image data set, and the optimized automatic DNN compression method is used to compress the trained model, and the optimization method of the loss function is used to speed up the training convergence process of the loss function, and finally Get the compressed neural network model.
在本公开的电力设备实时监测方法中提出的目标检测模型,相较于现有技术中的DNN模型具有更高的压缩率与准确度,显著减少了DNN模型的大小,还能够有效降低模型的复杂度。下面借助于具体的实施例,对本公开中的方法进行描述。Compared with the DNN model in the prior art, the target detection model proposed in the disclosed real-time monitoring method of electric power equipment has a higher compression rate and accuracy, significantly reduces the size of the DNN model, and can effectively reduce the the complexity. The methods in the present disclosure are described below with the help of specific examples.
图1是根据一示例性实施例示出的一种电力设备实时监测方法及装置的系统框图。Fig. 1 is a system block diagram of a method and device for real-time monitoring of electrical equipment according to an exemplary embodiment.
如图1所示,系统架构10可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 1 , the
终端设备101、102、103可通过网络104与服务器105交互,以接收或发送数据等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如视频监测类应用、网页浏览器应用、即时数据传输类应用、邮箱客户端等。The
终端设备101、102、103可以是具有监测功能并且支持数据传输或计算的各种电子设备,包括但不限于电力电子设备、智能摄像头、智能监测仪表等。
终端设备101、102、103可例如通过物联网获取电力设备的实时图像;终端设备101、102、103可例如对所述实时图像进行预处理,生成图像数据;终端设备101、102、103可例如将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;终端设备101、102、103可例如基于所述目标检测结果对所述电力设备的状态进行实时监测。
服务器105可以是提供各种服务的服务器,例如终端设备101、102、103所处理的任务提供支持的后台服务器。后台服务器可以对接收到的请求进行分析等处理,并将处理结果(压缩后的监测模型)反馈给终端设备。The
服务器105可例如获取电力设备的多个历史图像;服务器105可例如对所述多个历史图像进行预处理以生成多个历史图像数据;服务器105可例如基于所述多个历史图像数据对深度神经网络模型进行训练以生成初始目标检测模型;服务器105可例如基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型。The
服务器105可以是一个实体的服务器,还可例如为多个服务器组成,需要说明的是,本公开实施例所提供的电力设备实时监测方法可以由服务器105和/或终端设备101、102、103执行,相应地,电力设备实时监测装置可以设置于服务器105和/或终端设备101、102、103中。The
图2是根据一示例性实施例示出的一种电力设备实时监测方法的流程图。电力设备实时监测方法20可应用在物联网的边缘设备中,至少包括步骤S202至S208。Fig. 2 is a flowchart of a real-time monitoring method for electric equipment according to an exemplary embodiment. The
如图2所示,在S202中,通过物联网获取电力设备的实时图像。其中,物联网(IOT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网中的边缘设备可获取实时图像并进行处理,其中,边缘设备(edgedevice)是向企业或服务提供商核心网络提供入口点的设备。As shown in Fig. 2, in S202, the real-time image of the electric equipment is obtained through the Internet of Things. Among them, the Internet of Things (IOT) refers to the real-time collection of any object or process that needs to be monitored, connected, and interacted through various devices and technologies such as information sensors, radio frequency identification technology, global positioning system, infrared sensors, and laser scanners. , to collect various required information such as sound, light, heat, electricity, mechanics, chemistry, biology, location, etc., and realize the ubiquitous connection between things and things, things and people through various possible network accesses, and realize the Intelligent perception, identification and management of processes and processes. Edge devices in the Internet of Things can acquire real-time images and process them, where an edge device (edgedevice) is a device that provides an entry point to the core network of an enterprise or service provider.
在S204中,对所述实时图像进行预处理,生成图像数据。为了净化数据集,对于获取的原始电力设备图像数据,需要对其进行一定规模的筛选处理,将模糊图像、重复图像及受损图像文件进行剔除,避免对训练模型质量产生不必要的影响,保留目标比较清晰的图像数据。In S204, the real-time image is preprocessed to generate image data. In order to purify the data set, it is necessary to perform a certain scale screening process on the acquired original power equipment image data, to eliminate blurred images, repeated images, and damaged image files, so as to avoid unnecessary impact on the quality of the training model, and retain Image data with relatively clear targets.
其中,数据转换可将获取的图像数据集按照标签将不同类别的训练数据分别存储在不同的文件夹中,然后对数据进行加载,图像灰度范围从[0,255]变换到[0,1]之间。将给定图像随机裁剪为不同的大小和宽高比,然后缩放裁剪得到的图像为制定的大小,以给定的概率随机水平翻转给定的PIL图像。将图像转化成内存中的存储格式,将字节以流的形式输入,转换成一维的张量,对张量进行重新组织和转置,并将当前张量的每个元素除以255,输出张量。Among them, the data conversion can store the acquired image data set in different folders according to the label, and then load the data, and the gray scale of the image is transformed from [0,255] to [0,1]. between. Randomly crop the given image into different sizes and aspect ratios, then scale the cropped image to the specified size, and randomly flip the given PIL image horizontally with a given probability. Convert the image into a storage format in memory, input the bytes as a stream, convert it into a one-dimensional tensor, reorganize and transpose the tensor, divide each element of the current tensor by 255, and output tensor.
为了加快模型的收敛速度,逐通道地对图像进行标准化,计算公式如公式(1)所示,其中mean代表各通道的均值,std表示各通道的标准差。利用该公式可以将数据标准化,标准化结果均值为0,标准差为1。In order to speed up the convergence speed of the model, the image is normalized channel by channel. The calculation formula is shown in formula (1), where mean represents the mean value of each channel, and std represents the standard deviation of each channel. Using this formula, the data can be standardized, and the mean of the standardized result is 0, and the standard deviation is 1.
output=(input-mean)/std(1)output=(input-mean)/std(1)
在S206中,将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型。In S206, the image data is input into a target detection model to generate a target detection result, wherein the target detection model is a deep neural network model based on Newton's method to optimize a loss function for compression.
在S208中,基于所述目标检测结果对所述电力设备的状态进行实时监测。可在检测结果中包含预设目标时,生成警告信息。预设目标可为,标志着电力设备损坏的图像。In S208, the state of the electrical equipment is monitored in real time based on the target detection result. A warning message can be generated when detection results contain preset targets. The preset target may be an image indicating damage to electrical equipment.
根据本公开的电力设备实时监测方法,通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测的方式,能够将高精度、低复杂度的计算模型布置在边缘计算设备中,以便实时对电力设备进行监控,保证电网安全运行的同时减轻物联网的数据压力。According to the real-time monitoring method for power equipment of the present disclosure, the real-time image of the power equipment is obtained through the Internet of Things; the real-time image is preprocessed to generate image data; the image data is input into the target detection model to generate a target detection result, wherein , the target detection model is a deep neural network model based on Newton’s method to optimize the loss function for compression; the method of real-time monitoring of the state of the power equipment based on the target detection result can be used to integrate high-precision, low-complexity The computing model is arranged in the edge computing device to monitor the power equipment in real time, to ensure the safe operation of the power grid and reduce the data pressure of the Internet of Things.
应清楚地理解,本公开描述了如何形成和使用特定示例,但本公开的原理不限于这些示例的任何细节。相反,基于本公开公开的内容的教导,这些原理能够应用于许多其它实施例。It should be clearly understood that this disclosure describes how to make and use specific examples, but that the principles of the disclosure are not limited to any details of these examples. Rather, these principles can be applied to many other embodiments based on the teachings of the present disclosure.
图3是根据另一示例性实施例示出的一种电力设备实时监测方法的流程图。电力设备实时监测方法30可应用在支持边缘计算设备的服务器中,图3所示的流程30是对图2所示的流程的补充描述。Fig. 3 is a flow chart of a real-time monitoring method for electric equipment according to another exemplary embodiment. The
如图3所示,在S302中,获取电力设备的多个历史图像。As shown in FIG. 3 , in S302 , multiple historical images of the electrical equipment are acquired.
在S304中,对所述多个历史图像进行预处理以生成多个历史图像数据。包括:对所述多个历史图像进行数据清洗以生成多个历史图像数据;和/或对所述多个历史图像进行数据转换以生成多个历史图像数据;和/或对所述多个历史图像进行数据归一化处理以生成多个历史图像数据。In S304, perform preprocessing on the multiple historical images to generate multiple historical image data. Including: performing data cleaning on the multiple historical images to generate multiple historical image data; and/or performing data conversion on the multiple historical images to generate multiple historical image data; and/or performing data conversion on the multiple historical images Images are normalized to generate multiple historical image data.
在S306中,基于所述多个历史图像数据对深度神经网络模型进行训练以生成初始目标检测模型。经过数据预处理后的图像数据输入到DNN模型中进行训练生成初始目标检测模型。In S306, the deep neural network model is trained based on the plurality of historical image data to generate an initial target detection model. The image data after data preprocessing is input into the DNN model for training to generate an initial target detection model.
在S308中,基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型。可例如,生成指数损失函数;生成压缩函数;基于牛顿法对所述指数损失函数进行优化计算以得到最小化指数损失函数和其对应的模型参数;解耦所述压缩函数以获取压缩后的所述目标检测模型的权重;基于所述模型参数和所述权重生成所述目标检测模型。In S308, the loss function is optimized based on Newton's method to compress the initial target detection model to generate the target detection model. For example, generate an exponential loss function; generate a compression function; optimize and calculate the exponential loss function based on Newton's method to obtain a minimized exponential loss function and its corresponding model parameters; decouple the compression function to obtain all compressed The weight of the target detection model; generating the target detection model based on the model parameters and the weight.
本公开的电力设备实时监测方法中,提出了一个面向电力设备智能检测的深度神经网络模型压缩优化方法,该方法基于模型的剪枝和量化的联合,在对电力设备图像数据进行数据预处理的前提下,通过计算模型原始权重、初始化参数以及利用交替迭代乘子算法(ADMM)对参数进行解耦,该方法不需要使用任何超参数来手动设置每层的压缩率,可以同时学习压缩率和压缩模型权重。In the disclosed real-time monitoring method for electric power equipment, a deep neural network model compression optimization method for intelligent detection of electric power equipment is proposed. Under the premise, by calculating the original weight of the model, initializing parameters, and decoupling the parameters using the Alternate Iterative Multiplier Algorithm (ADMM), this method does not need to use any hyperparameters to manually set the compression rate of each layer, and can simultaneously learn the compression rate and Compress model weights.
本公开的电力设备实时监测方法中,提出一种基于牛顿法损失函数的模型压缩优化技术。不同于传统的信息熵、均方差等经典损失函数,本专利采用牛顿法以加快损失函数的训练收敛过程,同时提高模型分类结果的精度。In the disclosed real-time monitoring method for electric equipment, a model compression optimization technology based on Newton's method loss function is proposed. Different from traditional classic loss functions such as information entropy and mean square error, this patent uses Newton's method to speed up the training convergence process of loss functions and improve the accuracy of model classification results.
实验结果表明,与目前流行的方法相比,本专利提出的方法具有更高的压缩率与准确度,减少了DNN模型的大小,能够有效降低模型的复杂度。The experimental results show that, compared with the current popular methods, the method proposed in this patent has higher compression rate and accuracy, reduces the size of the DNN model, and can effectively reduce the complexity of the model.
图4是根据另一示例性实施例示出的一种电力设备实时监测方法的流程图。图4所示的流程40是对图3所示的流程中S308“基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型”的详细描述。Fig. 4 is a flowchart of a real-time monitoring method for electric equipment according to another exemplary embodiment. The
如图4所示,在S402中,生成指数损失函数。包括:获取初始化参数,所述初始化参数包括压缩目标、算法迭代次数、样本迭代次数;基于所述初始化参数生成所述指数损失函数。As shown in Fig. 4, in S402, an exponential loss function is generated. The method includes: acquiring initialization parameters, where the initialization parameters include compression targets, algorithm iteration times, and sample iteration times; generating the exponential loss function based on the initialization parameters.
在S404中,生成压缩函数。包括:获取所述初始目标检测模型的原始权重张量;基于所述原始权重张量生成所述压缩函数。In S404, a compression function is generated. The method includes: obtaining an original weight tensor of the initial target detection model; and generating the compression function based on the original weight tensor.
在S406中,基于牛顿法对所述指数损失函数进行优化计算以得到最小化指数损失函数和其对应的模型参数。包括:确定迭代初始值;确定搜索方向;基于所述搜索方向进行迭代计算以求解最小化指数函数;基于所述最小化指数函数确定所述模型参数。In S406, the exponential loss function is optimized and calculated based on Newton's method to obtain a minimized exponential loss function and its corresponding model parameters. The method includes: determining an initial iteration value; determining a search direction; performing iterative calculation based on the search direction to solve a minimized exponential function; determining the model parameters based on the minimized exponential function.
其中,确定搜索方向,包括:基于所述迭代初始值通过Hessian矩阵在梯度上进行线性变换得到搜索方向。Wherein, determining the search direction includes: performing linear transformation on the gradient through the Hessian matrix based on the iterative initial value to obtain the search direction.
在S408中,解耦所述压缩函数以获取压缩后的所述目标检测模型的权重。包括:确定对偶变量;基于所述对偶变量和交替方向乘子法解耦所述压缩函数;基于迭代计算对解耦后的所述压缩函数进行计算以获取所述目标检测模型的权重。In S408, the compression function is decoupled to obtain compressed weights of the target detection model. The method includes: determining a dual variable; decoupling the compression function based on the dual variable and an alternating direction multiplier method; and calculating the decoupled compression function based on iterative calculation to obtain the weight of the target detection model.
在S410中,基于所述模型参数和所述权重生成所述目标检测模型。In S410, the target detection model is generated based on the model parameters and the weights.
在一个实施例中,可计算模型的原始权重张量W,初始化参数包括模型压缩的目标大小、算法总的SGD迭代次数、将训练集中的全部样本训练一次所需的迭代次数。然后定义损失函数l,本公开采用指数损失函数(Exponential Loss)进行损失的计算,如公式(2)所示。其中n为样本数量,y为样本的真实值,f(xi)是第i次迭代模型的权重。In one embodiment, the original weight tensor W of the model can be calculated, and the initialization parameters include the target size of model compression, the total number of SGD iterations of the algorithm, and the number of iterations required to train all samples in the training set once. Then define a loss function l, the disclosure uses an exponential loss function (Exponential Loss) to calculate the loss, as shown in formula (2). Among them, n is the number of samples, y is the real value of the sample, and f( xi ) is the weight of the i-th iteration model.
DNN压缩的一般函数如公式(3)所示,它受压缩DNN权重总大小的约束,目标是最小化损失函数。其中是拥有L层DNN的权重向量集,b(W(i))是编码W中所有非零元素的最小比特宽,L0范数||W||0是W中非零元素的个数,Z为模型目标大小,l为损失函数。The general function of DNN compression is shown in Equation (3), which is constrained by the total size of compressed DNN weights, and the goal is to minimize the loss function. in is the weight vector set with L-layer DNN, b(W (i) ) is the minimum bit width of all non-zero elements in encoding W, L0 norm ||W|| 0 is the number of non-zero elements in W, Z is the model target size, and l is the loss function.
由于b(.)和||.‖0是不可微函数,无法通过正常训练算法求解它,在本申请的实施例中,可采用ADMM方法来解耦它的L0范数和比特宽部分,具体可如公式(4)所示。通过引入对偶变量并将等式约束吸收到增广拉格朗日函数中,其中λ>0,是一个超参数。是DNN权重W的副本。Since b(.) and || .‖0 are non-differentiable functions, they cannot be solved by normal training algorithms. In the embodiment of this application, the ADMM method can be used to decouple its L0 norm and bit width part, specifically It can be shown in formula (4). By introducing a dual variable And absorb the equality constraint into the augmented Lagrangian function, where λ>0 is a hyperparameter. is a copy of the DNN weight W.
利用ADMM方法能够使基于联合剪枝和量化的模型压缩方法能够正常训练,通过迭代更新公式(4)中的3个变量W,V和Y可以解决b(.)和‖.‖0不可微的问题。最后,输出压缩后DNN模型的权重。Using the ADMM method can enable the model compression method based on joint pruning and quantization to be able to train normally. By iteratively updating the three variables W, V and Y in formula (4), the non-differentiable problem of b(.) and ‖.‖0 can be solved question. Finally, output the weights of the compressed DNN model.
为了对损失函数l进行优化,在本公开中,可利用牛顿法的思想通过Hessian矩阵在梯度上进行线性变换得到搜索方向,进而加快损失函数的收敛过程。首先需要选定迭代初值x0∈Ω,选取ε>0,重复以下的操作。若则停止循环。接着开始计算梯度G,如公式(5)所示,其中训练样本总数为n,t=0,1,...,n,f(x)为损失函数,x为优化的参数对象:In order to optimize the loss function l, in the present disclosure, the idea of Newton's method can be used to perform linear transformation on the gradient of the Hessian matrix to obtain the search direction, thereby speeding up the convergence process of the loss function. First, it is necessary to select the initial value of iteration x0∈Ω, select ε>0, and repeat the following operations. like then stop the loop. Then start to calculate the gradient G, as shown in formula (5), where the total number of training samples is n, t=0,1,...,n, f(x) is the loss function, and x is the optimized parameter object:
Hessian矩阵H的计算如公式(6)所示;The calculation of the Hessian matrix H is shown in formula (6);
搜索方向d的计算如公式(7)所示:The calculation of the search direction d is shown in formula (7):
最后更新迭代点的计算如公式(8)所示:The calculation of the last update iteration point is shown in formula (8):
xt+1=xt-dt (8)x t+1 =x t -d t (8)
如上所示,通过不断迭代求解函数的最小值,最终得到最小化的损失函数和模型参数值,实现模型的参数优化。As shown above, by continuously iteratively solving the minimum value of the function, the minimized loss function and model parameter values are finally obtained to realize the parameter optimization of the model.
下面根据一个具体的实验结果说明本公开提到的模型压缩方法的使用效果:The effect of using the model compression method mentioned in the present disclosure is described below based on a specific experimental result:
实验设置与数据集Experimental Setup and Datasets
实验使用Win10、带GTX1070和8G内存的GPU和CUDA/CUDNN来进行。训练数据集是采集到的5944幅电力设备状态图像,其中包括呼吸器、表计、绝缘子、渗漏油、异物、金属锈蚀等六类设备状态图像。对采集到的数据集进行标准的训练/测试数据划分,将整个数据集中的70%用于模型的训练即作为训练集,整个数据集中的30%用于模型的测试即作为测试集。采用AlexNet作为训练和测试电力图像数据的DNN模型,来测试本公开压缩方法的性能。Experiments are carried out using Win10, GPU with GTX1070 and 8G memory and CUDA/CUDNN. The training data set consists of 5,944 state images of electrical equipment collected, including six types of equipment state images such as respirators, meters, insulators, oil leakage, foreign objects, and metal corrosion. The collected data set is divided into standard training/test data, 70% of the entire data set is used for model training as the training set, and 30% of the entire data set is used for model testing as the test set. AlexNet is used as a DNN model for training and testing power image data to test the performance of the disclosed compression method.
可将批处理大小设置为128,使用动量SGD来优化指数损失函数l(W),初始化学习率为0.005,使用余弦退火策略来衰减学习率,设置超参数λ=0.05。为了使方法之间比较的效果更加明显,还可将压缩预算Z设置为与比较方法相比相近或更小的值。实验在包含4160个训练实例的数据集上进行了120次迭代。The batch size can be set to 128, the momentum SGD is used to optimize the exponential loss function l(W), the initial learning rate is 0.005, the cosine annealing strategy is used to decay the learning rate, and the hyperparameter λ=0.05 is set. In order to make the effect of the comparison between the methods more obvious, the compression budget Z can also be set to a value similar to or smaller than that of the comparison method. Experiments are performed for 120 iterations on a dataset containing 4160 training instances.
实验指标Experimental indicators
为了评估模型压缩的性能,使用压缩倍数和准确度作为评价指标,如公式(9)和公式(10)所示。In order to evaluate the performance of model compression, the compression ratio and accuracy are used as evaluation indicators, as shown in formula (9) and formula (10).
其中,RC表示压缩倍数,Noriginal表示原始模型参数数量,Ncompressed表示压缩后模型参数数量。Among them, R C represents the compression factor, N original represents the number of original model parameters, and N compressed represents the number of model parameters after compression.
其中,A表示准确率,Ncorrect表示分类正确的样本数量,Ntest表示测试集所有样本数量。在准确率指标中,样本分类正确指的是预测的label取最后概率向量里面最大的那一个作为预测结果,如果预测结果中概率最大的那个分类正确,则预测正确,然后计算分类正确的频率即为准确率。Among them, A represents the accuracy rate, N correct represents the number of correctly classified samples, and N test represents the number of all samples in the test set. In the accuracy rate index, the correct sample classification means that the predicted label takes the largest one in the final probability vector as the prediction result. If the classification with the highest probability in the prediction result is correct, the prediction is correct, and then the frequency of correct classification is calculated. for the accuracy rate.
对比方法comparison method
为了验证采用的联合剪枝和量化策略的自动神经网络压缩方法的有效性,本公开将该自动DNN压缩方法与目前比较流行的模型压缩方法深度压缩中的剪枝方法进行比较。与本公开采用的端到端框架不同,该方法需要设置裁剪率作为超参数。In order to verify the effectiveness of the automatic neural network compression method adopted by the joint pruning and quantization strategy, the present disclosure compares the automatic DNN compression method with the pruning method in deep compression, a currently popular model compression method. Different from the end-to-end framework adopted in this disclosure, this method needs to set the clipping rate as a hyperparameter.
下面对该剪枝方法进行介绍。该方法首先通过正常的网络训练学习连接。接下来,修剪小权重连接,即将所有权重低于阈值的连接都从网络中删除。最后,重新训练网络来学习剩余稀疏连接的最终权重。该剪枝方法减少了模型的参数数量。The pruning method is introduced below. The method first learns connections through normal network training. Next, small weight connections are pruned, i.e. all connections with weights below a threshold are removed from the network. Finally, the network is retrained to learn the final weights of the remaining sparse connections. This pruning method reduces the number of parameters of the model.
实验结果和分析Experimental Results and Analysis
本实验中,分别使用本公开所采用的方法和用于对比的深度压缩方法在AlexNet模型上进行训练测试,训练测试数据均采用电力设备运检图像数据集,对不同状态设备进行检测,如图5和图6所示,分别显示了这两种方法的模型压缩倍数与压缩后模型分类准确度的实验结果。In this experiment, the method used in this disclosure and the deep compression method used for comparison are used to perform training and testing on the AlexNet model. The training and testing data are all using the power equipment operation inspection image data set to detect equipment in different states, as shown in the figure Figure 5 and Figure 6 show the experimental results of the model compression factor and the classification accuracy of the compressed model for the two methods, respectively.
图5显示采用自动DNN压缩方法对AlexNet模型进行压缩的压缩倍数明显高于深度压缩方法产生的压缩倍数。Figure 5 shows that the compression factor of the AlexNet model using the automatic DNN compression method is significantly higher than that produced by the deep compression method.
分别采用自动神经网络压缩方法和深度压缩方法对AlexNet模型进行压缩后,重新用训练集对压缩后的模型进行训练,用测试集对训练好的压缩模型进行测试。如图6所示,利用本公开方法压缩后的模型比利用深度压缩方法具有更高的分类准确度。After the AlexNet model is compressed by the automatic neural network compression method and the deep compression method, the compressed model is retrained with the training set, and the trained compressed model is tested with the test set. As shown in FIG. 6 , the model compressed by the disclosed method has higher classification accuracy than the deep compression method.
综合图5和图6分析,本公开引入的压缩方法比现有技术中的神经网络压缩方法更有效,拥有更高的压缩倍数和准确度,这种方法非常适合用于边缘计算环境中需要处理和分析大量图像数据的模型中。因此,本公开所采用的方法在基于电力设备图像目标检测的应用中是有效的,特别是在达到较高的模型预测精度的同时,减少了DNN模型的大小,降低了模型复杂度,进而降低了边缘计算的负载。Based on the analysis of Figures 5 and 6, the compression method introduced in this disclosure is more effective than the neural network compression method in the prior art, and has a higher compression factor and accuracy. This method is very suitable for edge computing environments that require processing and in models that analyze large amounts of image data. Therefore, the method adopted in this disclosure is effective in the application of target detection based on power equipment images, especially while achieving high model prediction accuracy, it reduces the size of the DNN model, reduces the model complexity, and further reduces edge computing load.
本公开引入了一种优化的联合剪枝和量化策略的自动神经网络压缩方法,并给出了在电力设备运维检修领域运用该方法的具体实现措施,在本公开中,采用牛顿法来加快损失函数的训练收敛过程的损失函数优化方法。通过大量实验验证了该方法对神经网络压缩的有效性和实用性。该方法可用于处理和分析实时电力设备缺陷图像数据的目标检测边缘服务中,减小模型复杂度,降低边缘计算的负载,特别是在达到较高的模型预测精度的同时,减少了模型的大小。This disclosure introduces an optimized automatic neural network compression method combined with pruning and quantization strategies, and provides specific implementation measures for using this method in the field of power equipment operation and maintenance. In this disclosure, Newton's method is used to speed up A loss function optimization method for the training convergence process of the loss function. The effectiveness and practicability of this method for neural network compression are verified by a large number of experiments. This method can be used in target detection edge services for processing and analyzing real-time power equipment defect image data, reducing model complexity, reducing the load of edge computing, especially reducing the size of the model while achieving high model prediction accuracy .
本领域技术人员可以理解实现上述实施例的全部或部分步骤被实现为由CPU执行的计算机程序。在该计算机程序被CPU执行时,执行本公开提供的上述方法所限定的上述功能。所述的程序可以存储于一种计算机可读存储介质中,该存储介质可以是只读存储器,磁盘或光盘等。Those skilled in the art can understand that all or part of the steps for implementing the above embodiments are implemented as computer programs executed by a CPU. When the computer program is executed by the CPU, the above-mentioned functions defined by the above-mentioned methods provided in the present disclosure are executed. The program can be stored in a computer-readable storage medium, which can be a read-only memory, a magnetic disk or an optical disk, and the like.
此外,需要注意的是,上述附图仅是根据本公开示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。In addition, it should be noted that the above-mentioned figures are only schematic illustrations of processes included in the method according to the exemplary embodiments of the present disclosure, and are not intended to be limiting. It is easy to understand that the processes shown in the above figures do not imply or limit the chronological order of these processes. In addition, it is also easy to understand that these processes may be executed synchronously or asynchronously in multiple modules, for example.
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。The following are device embodiments of the present disclosure, which can be used to implement the method embodiments of the present disclosure. For details not disclosed in the disclosed device embodiments, please refer to the disclosed method embodiments.
图7是根据一示例性实施例示出的一种电力设备实时监测装置的框图。如图7所示,电力设备实时监测装置70包括:图像模块702,处理模块704,计算模块706,监测模块708,模型训练模块710。Fig. 7 is a block diagram of a real-time monitoring device for electric equipment according to an exemplary embodiment. As shown in FIG. 7 , the real-
图像模块702用于通过物联网获取电力设备的实时图像;The
处理模块704用于对所述实时图像进行预处理,生成图像数据;The
计算模块706用于将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;The
监测模块708用于基于所述目标检测结果对所述电力设备的状态进行实时监测。The
模型训练模块710用于获取电力设备的多个历史图像;对所述多个历史图像进行预处理以生成多个历史图像数据;基于所述多个历史图像数据对深度神经网络模型进行训练以生成初始目标检测模型;基于牛顿法优化损失函数以对所述初始目标检测模型进行压缩生成所述目标检测模型。The
根据本公开的电力设备实时监测装置,通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测的方式,能够将高精度、低复杂度的计算模型布置在边缘计算设备中,以便实时对电力设备进行监控,保证电网安全运行的同时减轻物联网的数据压力。According to the real-time monitoring device for power equipment of the present disclosure, the real-time image of the power equipment is obtained through the Internet of Things; the real-time image is preprocessed to generate image data; the image data is input into the target detection model to generate a target detection result, wherein , the target detection model is a deep neural network model based on Newton’s method to optimize the loss function for compression; the method of real-time monitoring of the state of the power equipment based on the target detection result can be used to integrate high-precision, low-complexity The computing model is arranged in the edge computing device to monitor the power equipment in real time, to ensure the safe operation of the power grid and reduce the data pressure of the Internet of Things.
图8是根据一示例性实施例示出的一种电子设备的框图。Fig. 8 is a block diagram of an electronic device according to an exemplary embodiment.
下面参照图8来描述根据本公开的这种实施方式的电子设备800。图8显示的电子设备800仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。An
如图8所示,电子设备800以通用计算设备的形式表现。电子设备800的组件可以包括但不限于:至少一个处理单元810、至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830、显示单元840等。As shown in FIG. 8,
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元810可以执行如图2,图3,图4中所示的步骤。Wherein, the storage unit stores program codes, and the program codes can be executed by the
所述存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以进一步包括只读存储单元(ROM)8203。The
所述存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。The
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备800也可以与一个或多个外部设备800’(例如键盘、指向设备、蓝牙设备等)通信,使得用户能与该电子设备800交互的设备通信,和/或该电子设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,电子设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器860可以通过总线830与电子设备800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,如图9所示,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行根据本公开实施方式的上述方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, as shown in Figure 9, the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, and the software product can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, or a mobile hard disk). etc.) or on the network, including several instructions to make a computing device (which may be a personal computer, server, or network device, etc.) execute the above method according to the embodiments of the present disclosure.
所述软件产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The software product may utilize any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
所述计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。The computer readable storage medium may include a data signal carrying readable program code in baseband or as part of a carrier wave traveling as a data signal. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A readable storage medium may also be any readable medium other than a readable storage medium that can send, propagate or transport a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the readable storage medium may be transmitted by any suitable medium, including but not limited to wireless, cable, optical cable, RF, etc., or any suitable combination of the above.
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、C++等,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural Programming language - such as "C" or similar programming language. The program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute. In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider). business to connect via the Internet).
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如下功能:通过物联网获取电力设备的实时图像;对所述实时图像进行预处理,生成图像数据;将所述图像数据输入目标检测模型中,生成目标检测结果,其中,所述目标检测模型为基于牛顿法优化损失函数以进行压缩的深度神经网络模型;基于所述目标检测结果对所述电力设备的状态进行实时监测。The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by one of the devices, the computer-readable medium realizes the following functions: obtain real-time images of electric equipment through the Internet of Things; The real-time image is preprocessed to generate image data; the image data is input into a target detection model to generate a target detection result, wherein the target detection model is a deep neural network model based on Newton's method to optimize the loss function for compression; The target detection result monitors the state of the electric equipment in real time.
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。Those skilled in the art can understand that the above-mentioned modules can be distributed in the device according to the description of the embodiment, and corresponding changes can also be made in one or more devices that are only different from the embodiment. The modules in the above embodiments can be combined into one module, and can also be further split into multiple sub-modules.
通过以上的实施例的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施例的方法。Through the description of the above embodiments, those skilled in the art can easily understand that the exemplary embodiments described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, server, mobile terminal, or network device, etc.) execute the method according to the embodiment of the present disclosure.
以上具体地示出和描述了本公开的示例性实施例。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。Exemplary embodiments of the present disclosure have been specifically shown and described above. It should be understood that the disclosure is not limited to the detailed structures, arrangements or methods of implementation described herein; on the contrary, the disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110798702.9A CN115619999A (en) | 2021-07-15 | 2021-07-15 | Real-time monitoring method and device for power equipment, electronic equipment and readable medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110798702.9A CN115619999A (en) | 2021-07-15 | 2021-07-15 | Real-time monitoring method and device for power equipment, electronic equipment and readable medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115619999A true CN115619999A (en) | 2023-01-17 |
Family
ID=84854489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110798702.9A Pending CN115619999A (en) | 2021-07-15 | 2021-07-15 | Real-time monitoring method and device for power equipment, electronic equipment and readable medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115619999A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116880438A (en) * | 2023-04-03 | 2023-10-13 | 材谷金带(佛山)金属复合材料有限公司 | Fault detection method and system for annealing equipment control system |
CN117176560A (en) * | 2023-11-03 | 2023-12-05 | 山东智云信息科技有限公司 | Monitoring equipment supervision system and method based on Internet of things |
-
2021
- 2021-07-15 CN CN202110798702.9A patent/CN115619999A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116880438A (en) * | 2023-04-03 | 2023-10-13 | 材谷金带(佛山)金属复合材料有限公司 | Fault detection method and system for annealing equipment control system |
CN116880438B (en) * | 2023-04-03 | 2024-04-26 | 材谷金带(佛山)金属复合材料有限公司 | Fault detection method and system for annealing equipment control system |
CN117176560A (en) * | 2023-11-03 | 2023-12-05 | 山东智云信息科技有限公司 | Monitoring equipment supervision system and method based on Internet of things |
CN117176560B (en) * | 2023-11-03 | 2024-01-26 | 山东智云信息科技有限公司 | Monitoring equipment supervision system and method based on Internet of things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024000852A1 (en) | Data processing method and apparatus, device, and storage medium | |
US20240127795A1 (en) | Model training method, speech recognition method, device, medium, and apparatus | |
CN116882591B (en) | Information generation methods, devices, electronic equipment and computer-readable media | |
CN115619999A (en) | Real-time monitoring method and device for power equipment, electronic equipment and readable medium | |
US11645540B2 (en) | Deep graph de-noise by differentiable ranking | |
CN115019209A (en) | A method and system for state detection of power towers based on deep learning | |
CN116109004A (en) | A method, device, equipment and medium for predicting insulator leakage current | |
Liu et al. | High-performance effective scientific error-bounded lossy compression with auto-tuned multi-component interpolation | |
CN117786321A (en) | Method for predicting residual service life of proton exchange membrane fuel cell | |
Shang et al. | A model compression based framework for electrical equipment intelligent inspection on edge computing environment | |
CN118465552A (en) | A method, system, device and medium for evaluating the health status of a smart battery cell | |
CN118377787A (en) | Regional carbon emission accounting system and method | |
CN116881792A (en) | Power quality signal identification method based on MEEMD-CNN-BiLSTM-ATT hybrid model | |
CN114237962B (en) | Alarm root cause judging method, model training method, device, equipment and medium | |
CN116401372A (en) | Knowledge graph representation learning method and device, electronic equipment and readable storage medium | |
CN115619700A (en) | Method and device for detecting equipment defects, electronic equipment and computer readable medium | |
CN115222111A (en) | Transformer health state evaluation method, device, equipment and readable storage medium | |
CN116450445A (en) | API information processing and LSTM model training method and device, equipment and medium | |
CN116708313B (en) | Flow detection method, flow detection device, storage medium and electronic equipment | |
CN112579429A (en) | Problem positioning method and device | |
CN118396651B (en) | Digital management and control system and method for power grid marketing business risks | |
Zhuang et al. | Fault diagnosis of GIS equipment based on voice print recognition and algorithm research | |
CN116854111B (en) | Purification method and system of electronic grade lithium hexafluorophosphate | |
CN119094251B (en) | Network security situation awareness system and method based on machine learning | |
CN113627556B (en) | Method and device for realizing image classification, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |