CN115618195A - Sensor circuit fault diagnosis method, system, medium and device - Google Patents
Sensor circuit fault diagnosis method, system, medium and device Download PDFInfo
- Publication number
- CN115618195A CN115618195A CN202210981035.2A CN202210981035A CN115618195A CN 115618195 A CN115618195 A CN 115618195A CN 202210981035 A CN202210981035 A CN 202210981035A CN 115618195 A CN115618195 A CN 115618195A
- Authority
- CN
- China
- Prior art keywords
- data
- sensor circuit
- time
- frequency
- fault diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000000605 extraction Methods 0.000 claims abstract description 43
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000013528 artificial neural network Methods 0.000 claims description 66
- 238000003860 storage Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 17
- 230000015654 memory Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 5
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 230000009977 dual effect Effects 0.000 abstract description 4
- 230000004927 fusion Effects 0.000 abstract description 3
- 238000012407 engineering method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000007774 longterm Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006403 short-term memory Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011425 standardization method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y30/00—IoT infrastructure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
技术领域technical field
本发明属于传感器电路故障诊断领域,涉及一种传感器电路故障诊断方法、系统、介质及装置。The invention belongs to the field of sensor circuit fault diagnosis, and relates to a sensor circuit fault diagnosis method, system, medium and device.
背景技术Background technique
随着物联网技术和电子线路行业的迅猛发展,包含多种元器件的传感器电路开始广泛应用于工业生产和日常生活的各个领域中,人们对传感器电路运行可靠性的要求也越来越高。传感器电路中的大多故障源于传感器电路的元器件故障。实际生产过程中的工艺偏差、焊接过程中的接触不良以及外界环境中的各类非理想因素都可能导致传感器电路的部分元器件故障,进而引发传感器电路故障,影响设备运作,严重时可造成重大经济损失,甚至衍生危险事故。而随着传感器电路元器件复杂度的提升,传统故障排查方式难以满足现有诊断需求,如何迅速定位传感器电路故障元器件位置逐渐成为学术界和产业界的研究热点。With the rapid development of the Internet of Things technology and the electronic circuit industry, sensor circuits containing a variety of components have been widely used in various fields of industrial production and daily life, and people have higher and higher requirements for the reliability of sensor circuits. Most of the faults in the sensor circuit originate from the failure of the components of the sensor circuit. Process deviation in the actual production process, poor contact in the welding process, and various non-ideal factors in the external environment may cause some components of the sensor circuit to fail, which in turn will cause sensor circuit failure, affect the operation of the equipment, and cause major damage in severe cases. Economic losses, and even derivative dangerous accidents. With the increase in the complexity of sensor circuit components, traditional troubleshooting methods are difficult to meet the existing diagnostic needs. How to quickly locate the location of sensor circuit fault components has gradually become a research hotspot in academia and industry.
传感器电路等硬件电路的故障诊断,是通过对电路的输出信号进行处理和分析,从而精确定位电路的故障发生点。目前,传感器电路等硬件电路的故障诊断方法主要存在两种方法,一种方法是对电路输出信号进行特征提取,获得与电路故障相关的少量特征,再利用SVM等机器学习方法进行故障分类;另一种方法是直接利用电路输出的时序信号或者频域信号,将信号输入到神经网络进行高维数据处理并输出分类信息,进而完成对电路故障的诊断。但是,这两种方法的诊断准确度均较低。The fault diagnosis of hardware circuits such as sensor circuits is to accurately locate the fault point of the circuit by processing and analyzing the output signal of the circuit. At present, there are mainly two methods for fault diagnosis of hardware circuits such as sensor circuits. One method is to extract features from the circuit output signal to obtain a small number of features related to circuit faults, and then use machine learning methods such as SVM to classify faults. One method is to directly use the timing signal or frequency domain signal output by the circuit, input the signal to the neural network for high-dimensional data processing and output classification information, and then complete the diagnosis of circuit faults. However, the diagnostic accuracy of both methods is low.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术的缺点,提供一种传感器电路故障诊断方法、系统、介质及装置。The object of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a sensor circuit fault diagnosis method, system, medium and device.
为达到上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to achieve:
本发明第一方面,提供一种传感器电路故障诊断方法,包括:The first aspect of the present invention provides a sensor circuit fault diagnosis method, including:
获取传感器电路输出的时域连续电压信号;对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据;根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。Obtain the time-domain continuous voltage signal output by the sensor circuit; perform time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data; according to the time-domain continuous voltage signal, time-domain The characteristic data and frequency domain characteristic data are used to call the preset sensor circuit fault diagnosis model to obtain the sensor circuit fault diagnosis result.
可选的,所述对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据包括:获取时域连续电压信号的最大值、最小值、平均值、标准差、峰度以及偏度中的一个或几个,得到时域特征数据;将时域连续电压信号进行时频转换,得到频域连续电压信号,获取频域连续电压信号的带宽和中心频率中的一个或几个,得到频域特征数据。Optionally, performing time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data includes: obtaining the maximum value, minimum value, and average value of the time-domain continuous voltage signal One or several of , standard deviation, kurtosis and skewness to obtain time-domain characteristic data; perform time-frequency conversion on the time-domain continuous voltage signal to obtain the frequency-domain continuous voltage signal, and obtain the bandwidth and center of the frequency-domain continuous voltage signal One or several of the frequencies are used to obtain frequency-domain characteristic data.
可选的,所述根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果包括:组合时域特征数据和频域特征数据,得到时频混合数据;将时域连续电压信号和时频混合数据均进行归一化处理,得到归一化时频电压数据和归一化时频混合数据;将归一化时频电压数据和归一化时频混合数据输入预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。Optionally, calling a preset sensor circuit fault diagnosis model according to the time domain continuous voltage signal, time domain characteristic data and frequency domain characteristic data to obtain a sensor circuit fault diagnosis result includes: combining time domain characteristic data and frequency domain domain characteristic data to obtain time-frequency mixed data; normalize time-domain continuous voltage signal and time-frequency mixed data to obtain normalized time-frequency voltage data and normalized time-frequency mixed data; The frequency-voltage data and normalized time-frequency mixed data are input into the preset sensor circuit fault diagnosis model to obtain the sensor circuit fault diagnosis result.
可选的,所述预设的传感器电路故障诊断模型包括DNN神经网络、LSTM 神经网络、全连接层网络以及SoftMax层网络;DNN神经网络用于输入归一化时频混合数据,输出DNN神经网络输出数据至全连接层网络;LSTM神经网络用于输入归一化时频电压数据,输出LSTM神经网络输出数据至全连接层网络;全连接层网络用于将DNN神经网络输出数据和LSTM神经网络输出数据进行全连接处理,得到全连接层网络输出数据并输出至SoftMax层网络;SoftMax层网络用于根据输入的全连接层网络输出数据,得到传感器电路故障诊断结果并输出。Optionally, the preset sensor circuit fault diagnosis model includes DNN neural network, LSTM neural network, fully connected layer network and SoftMax layer network; DNN neural network is used to input normalized time-frequency mixed data, and output DNN neural network Output data to fully connected layer network; LSTM neural network is used to input normalized time-frequency voltage data, output LSTM neural network output data to fully connected layer network; fully connected layer network is used to output data from DNN neural network and LSTM neural network The output data is fully connected, and the output data of the fully connected layer network is obtained and output to the SoftMax layer network; the SoftMax layer network is used to output data according to the input fully connected layer network, and the sensor circuit fault diagnosis result is obtained and output.
可选的,所述SoftMax层网络的SoftMax函数为:Optionally, the SoftMax function of the SoftMax layer network is:
其中,fc_out(m)[i]为第m组时域连续电压信号的全连接层网络输出数据的第i个数据,fc_out(m)[j]为第m组时域连续电压信号的全连接层网络输出数据的第j个数据,m为时域连续电压信号的获取组数,K为传感器电路的故障类型数;s(fc_out(m)[i])为传感器电路故障诊断结果的第i个数据,i>0时表示传感器电路元件i发生故障的概率,i=0时表示传感器电路不发生故障的概率。Among them, fc_out(m)[i] is the i-th data of the fully connected layer network output data of the m-th group of time-domain continuous voltage signals, and fc_out(m)[j] is the full connection of the m-th group of time-domain continuous voltage signals The jth data of the layer network output data, m is the number of acquisition groups of time-domain continuous voltage signals, K is the number of fault types of the sensor circuit; s(fc_out(m)[i]) is the i-th fault diagnosis result of the sensor circuit When i>0, it means the probability that the sensor circuit element i fails, and when i=0, it means the probability that the sensor circuit does not fail.
本发明第二方面,提供一种传感器电路故障诊断系统,包括:The second aspect of the present invention provides a sensor circuit fault diagnosis system, including:
数据获取模块,用于获取传感器电路输出的时域连续电压信号;The data acquisition module is used to acquire the time-domain continuous voltage signal output by the sensor circuit;
特征提取模块,用于对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据;The feature extraction module is used to perform time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data;
诊断模块,用于根据所述时域连续电压信号,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。The diagnosis module is used to invoke a preset sensor circuit fault diagnosis model according to the time-domain continuous voltage signal to obtain a sensor circuit fault diagnosis result.
可选的,所述诊断模块具体用于:组合时域特征数据和频域特征数据,得到时频混合数据;将时域连续电压信号和时频混合数据均进行归一化处理,得到归一化时频电压数据和归一化时频混合数据;将归一化时频电压数据和归一化时频混合数据输入预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。Optionally, the diagnostic module is specifically used to: combine time-domain feature data and frequency-domain feature data to obtain time-frequency mixed data; normalize time-domain continuous voltage signals and time-frequency mixed data to obtain normalized Normalized time-frequency voltage data and normalized time-frequency mixed data; input the normalized time-frequency voltage data and normalized time-frequency mixed data into the preset sensor circuit fault diagnosis model to obtain the sensor circuit fault diagnosis result.
可选的,所述预设的传感器电路故障诊断模型包括DNN神经网络、LSTM 神经网络、全连接层网络以及SoftMax层网络;DNN神经网络用于输入归一化时频混合数据,输出DNN神经网络输出数据至全连接层网络;LSTM神经网络用于输入归一化时频电压数据,输出LSTM神经网络输出数据至全连接层网络;全连接层网络用于将DNN神经网络输出数据和LSTM神经网络输出数据进行全连接处理,得到全连接层网络输出数据并输出至SoftMax层网络;SoftMax层网络用于根据输入的全连接层网络输出数据,得到传感器电路故障诊断结果并输出。Optionally, the preset sensor circuit fault diagnosis model includes DNN neural network, LSTM neural network, fully connected layer network and SoftMax layer network; DNN neural network is used to input normalized time-frequency mixed data, and output DNN neural network Output data to fully connected layer network; LSTM neural network is used to input normalized time-frequency voltage data, output LSTM neural network output data to fully connected layer network; fully connected layer network is used to output data from DNN neural network and LSTM neural network The output data is fully connected, and the output data of the fully connected layer network is obtained and output to the SoftMax layer network; the SoftMax layer network is used to output data according to the input fully connected layer network, and the sensor circuit fault diagnosis result is obtained and output.
本发明第三方面,提供一种传感器电路故障诊断装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述传感器电路故障诊断方法的步骤。The third aspect of the present invention provides a sensor circuit fault diagnosis device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program Steps for realizing the above-mentioned sensor circuit fault diagnosis method.
本发明第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述传感器电路故障诊断方法的步骤。According to the fourth aspect of the present invention, a computer-readable storage medium is provided, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the above sensor circuit fault diagnosis method are realized.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明传感器电路故障诊断方法,通过对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据,进而根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果,在进行传感器电路故障诊断时,实现了特征提取和时序信号的联合处理,不仅考虑到了时域连续电压信号本身与传感器电路故障的相关性,还利用特征工程的方法,对时域连续电压信号进行时域和频域的两重特征提取,最后将这些数据共同输入到预设的传感器电路故障诊断模型进行融合,最终获取传感器电路的故障诊断结果,使得传感器电路故障诊断结果的准确性得到较大提高。The sensor circuit fault diagnosis method of the present invention obtains time-domain feature data and frequency-domain feature data by performing time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal, and then according to the time-domain continuous voltage signal, time-domain feature Data and frequency domain feature data, call the preset sensor circuit fault diagnosis model, and get the sensor circuit fault diagnosis result. When performing sensor circuit fault diagnosis, the joint processing of feature extraction and time series signal is realized, not only considering the time domain continuous voltage The correlation between the signal itself and the fault of the sensor circuit, and the feature engineering method is also used to extract the dual features of the time domain and frequency domain from the time domain continuous voltage signal, and finally these data are jointly input into the preset sensor circuit fault diagnosis model The fusion is carried out to finally obtain the fault diagnosis result of the sensor circuit, so that the accuracy of the fault diagnosis result of the sensor circuit is greatly improved.
附图说明Description of drawings
图1为本发明实施例的传感器电路故障诊断方法流程图;Fig. 1 is the flowchart of the sensor circuit fault diagnosis method of the embodiment of the present invention;
图2为本发明实施例的传感器电路故障诊断模型结构框图;Fig. 2 is a structural block diagram of a sensor circuit fault diagnosis model of an embodiment of the present invention;
图3为本发明实施例的LSTM神经网络原理示意图;Fig. 3 is the principle schematic diagram of the LSTM neural network of the embodiment of the present invention;
图4为本发明实施例的传感器电路故障诊断系统结构框图。Fig. 4 is a structural block diagram of a sensor circuit fault diagnosis system according to an embodiment of the present invention.
具体实施方式detailed description
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
如背景技术中所介绍的,目前传感器电路的故障诊断方法主要存在两种方法,一种方法是对电路输出信号进行特征提取,获得与电路故障相关的少量特征,再利用SVM等机器学习方法进行故障分类;另一种方法是直接利用电路输出的时序信号或者频域信号,将信号输入到神经网络进行高个数据处理并输出分类信息,进而完成对电路故障的诊断。但是,这两种方法都存在诊断准确度较低的问题。As introduced in the background technology, there are currently two methods for fault diagnosis of sensor circuits. One method is to extract features from the circuit output signal to obtain a small number of features related to circuit faults, and then use machine learning methods such as SVM to perform Fault classification; another method is to directly use the timing signal or frequency domain signal output by the circuit, input the signal to the neural network for high data processing and output classification information, and then complete the diagnosis of circuit faults. However, both methods have the problem of low diagnostic accuracy.
为了改善上述问题,本发明实施例提供了一种传感器电路故障诊断方法,包括:获取传感器电路输出的时域连续电压信号;对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据;根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。实现了特征提取和时序信号的联合处理,不仅考虑到了时域连续电压信号本身与传感器电路故障的相关性,还利用特征工程的方法,对时域连续电压信号进行时域和频域的两重特征提取,最后将这些数据共同输入到传感器电路故障诊断模型进行融合,最终获取传感器电路的故障诊断结果,准确性得到较大提高。下面结合附图对本发明做进一步详细描述:In order to improve the above problems, an embodiment of the present invention provides a sensor circuit fault diagnosis method, including: acquiring the time-domain continuous voltage signal output by the sensor circuit; performing time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data; according to the time-domain continuous voltage signal, time-domain feature data and frequency-domain feature data, call a preset sensor circuit fault diagnosis model to obtain a sensor circuit fault diagnosis result. The joint processing of feature extraction and time-series signals is realized, not only considering the correlation between the time-domain continuous voltage signal itself and the sensor circuit fault, but also using the method of feature engineering to perform dual time-domain and frequency-domain analysis of the time-domain continuous voltage signal Feature extraction, and finally these data are jointly input into the sensor circuit fault diagnosis model for fusion, and finally the fault diagnosis result of the sensor circuit is obtained, and the accuracy is greatly improved. The present invention is described in further detail below in conjunction with accompanying drawing:
参见图1,本发明一实施例中,提供一种传感器电路故障诊断方法,提出将特征提取和时序特征处理互相融合的思路,以此来提升传感器电路故障诊断的准确度,最终实现对传感器电路的故障类型进行精准分类和定位。Referring to Fig. 1, in one embodiment of the present invention, a sensor circuit fault diagnosis method is provided, and the idea of integrating feature extraction and sequential feature processing is proposed, so as to improve the accuracy of sensor circuit fault diagnosis, and finally realize the detection of sensor circuit faults. Accurately classify and locate fault types.
具体的,该传感器电路故障诊断方法包括以下步骤:Specifically, the sensor circuit fault diagnosis method includes the following steps:
S1:获取传感器电路输出的时域连续电压信号。S1: Obtain the time-domain continuous voltage signal output by the sensor circuit.
S2:对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据。S2: Perform time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data.
S3:根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。S3: Calling a preset sensor circuit fault diagnosis model according to the time domain continuous voltage signal, time domain characteristic data and frequency domain characteristic data to obtain a sensor circuit fault diagnosis result.
可选的,所述S1中,在获取传感器电路输出的时域连续电压信号时,可以通过对目标传感器电路进行仿真,得到目标模拟电路并将目标模拟电路的输出端作为测试点(即数据采集点),获得时域连续电压信号,并以时间间隔ΔT进行采样,共采集N个电压值点,表示为V(m)=[v1,v2,...,vN],其中,m表示时域连续电压信号的获取组数,时域连续电压信号的获取组数的总数为M,对于每一组时域连续电压信号,其故障类型可以表示为{F0,F1,...,FK},其中,Fi,i∈{1,2,...,K}表示传感器电路的元件i发生故障,F0表示传感器电路无故障。Optionally, in the S1, when obtaining the time-domain continuous voltage signal output by the sensor circuit, the target sensor circuit can be simulated to obtain the target analog circuit and the output terminal of the target analog circuit can be used as a test point (i.e., data acquisition points), to obtain continuous voltage signals in the time domain, and to sample at time intervals ΔT, to collect N voltage value points in total, expressed as V(m)=[v 1 ,v 2 ,...,v N ], where, m represents the number of acquisition groups of time-domain continuous voltage signals, and the total number of acquisition groups of time-domain continuous voltage signals is M. For each group of time-domain continuous voltage signals, its fault type can be expressed as {F 0 , F 1 ,. ..,F K }, where, F i ,i∈{1,2,...,K} means that component i of the sensor circuit is faulty, and F 0 means that the sensor circuit is not faulty.
可选的,预设的传感器电路故障诊断模型可以通过神经网络进行构建,根据时域连续电压信号、时域特征数据和频域特征数据的不同特点,进行高维度特征的提取、处理和融合,最终获取传感器电路故障的定位和分类预测作为诊断结果。Optionally, the preset sensor circuit fault diagnosis model can be constructed through a neural network, and high-dimensional features are extracted, processed and fused according to the different characteristics of time-domain continuous voltage signals, time-domain feature data and frequency-domain feature data, Finally, the location and classification prediction of sensor circuit faults are obtained as the diagnosis results.
综上,本发明传感器电路故障诊断方法,通过对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据,根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果,在进行传感器电路故障诊断时,实现了特征提取和时序信号的联合处理,不仅考虑到了时域连续电压信号本身与传感器电路故障的相关性,还利用特征工程的方法,对时域连续电压信号进行时域和频域的两重特征提取,最后将这些数据共同输入到预设的传感器电路故障诊断模型进行融合,最终获取传感器电路的故障诊断结果,使得传感器电路故障诊断结果的准确性得到较大提高。In summary, the sensor circuit fault diagnosis method of the present invention obtains time-domain feature data and frequency-domain feature data by performing time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal, and according to the time-domain continuous voltage signal, time-domain feature domain characteristic data and frequency domain characteristic data, call the preset sensor circuit fault diagnosis model, and obtain the sensor circuit fault diagnosis result. The correlation between the continuous voltage signal itself and the fault of the sensor circuit also uses the method of feature engineering to perform dual feature extraction in the time domain and frequency domain on the continuous voltage signal in the time domain, and finally these data are jointly input into the preset sensor circuit fault The diagnosis model is fused, and finally the fault diagnosis result of the sensor circuit is obtained, so that the accuracy of the sensor circuit fault diagnosis result is greatly improved.
在一种可能的实施方式中,所述对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据包括:获取时域连续电压信号的最大值、最小值、平均值、标准差、峰度以及偏度中的一个或几个,得到时域特征数据;将时域连续电压信号进行时频转换,得到频域连续电压信号,获取频域连续电压信号的带宽和中心频率中的一个或几个,得到频域特征数据。In a possible implementation manner, performing time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal, and obtaining time-domain feature data and frequency-domain feature data includes: obtaining the maximum value of the time-domain continuous voltage signal, One or more of the minimum value, average value, standard deviation, kurtosis, and skewness to obtain time-domain characteristic data; perform time-frequency conversion on time-domain continuous voltage signals to obtain frequency-domain continuous voltage signals, and obtain frequency-domain continuous voltage One or several of the bandwidth and center frequency of the signal are used to obtain frequency domain characteristic data.
具体的,关于时域连续电压信号的时域特征提取,本实施方式中,以最大值、最小值、平均值、标准差、峰度以及偏度作为时域特征指标,对时域连续电压信号进行时域特征提取,就是获取时域连续电压信号的最大值、最小值、平均值、标准差、峰度以及偏度,可以将时域特征数据表示为td(m):Specifically, regarding the time-domain feature extraction of time-domain continuous voltage signals, in this embodiment, the maximum value, minimum value, average value, standard deviation, kurtosis and skewness are used as time-domain feature indicators, and the time-domain continuous voltage signal To perform time-domain feature extraction is to obtain the maximum value, minimum value, average value, standard deviation, kurtosis and skewness of the time-domain continuous voltage signal, and the time-domain feature data can be expressed as td(m):
td(m)=[vmax(m),vmin(m),vavg(m),vstd(m),vpeak(m),vske(m)]td(m)=[v max (m), v min (m), v avg (m), v std (m), v peak (m), v ske (m)]
其中,vmax(m)=max(V(m))为时域连续电压信号的最大值,vmin(m)=min(V(m))为时域连续电压信号的最小值,为时域连续电压信号的平均值,为时域连续电压信号的标准差,为时域连续电压信号的峰度,用于表征概率密度分布曲线在平均值处峰值高低,为时域连续电压信号的偏度,用于表征概率分布密度曲线相对于平均值不对称程度。Among them, v max (m)=max(V(m)) is the maximum value of the time-domain continuous voltage signal, v min (m)=min(V(m)) is the minimum value of the time-domain continuous voltage signal, is the average value of the continuous voltage signal in the time domain, is the standard deviation of the time-domain continuous voltage signal, is the kurtosis of the continuous voltage signal in the time domain, which is used to characterize the peak value of the probability density distribution curve at the average value, is the skewness of the time-domain continuous voltage signal, which is used to characterize the degree of asymmetry of the probability distribution density curve relative to the average value.
关于时域连续电压信号的频域特征提取,首先要进行时频转换,得到频域连续电压信号,接着,对频域连续电压信号进行特征提取,本实施方式中,以带宽和中心频率作为频域特征指标,获取频域连续电压信号的带宽和中心频率,得到频域特征数据,可以将频域特征数据表示为fd(m):Regarding the frequency-domain feature extraction of the time-domain continuous voltage signal, it is first necessary to perform time-frequency conversion to obtain the frequency-domain continuous voltage signal, and then perform feature extraction on the frequency-domain continuous voltage signal. In this embodiment, the bandwidth and center frequency are used as the frequency domain. The domain characteristic index obtains the bandwidth and center frequency of the continuous voltage signal in the frequency domain, and obtains the characteristic data in the frequency domain. The characteristic data in the frequency domain can be expressed as fd(m):
fd(m)=[band(m),freq(m)]fd(m)=[band(m), freq(m)]
其中,band(m)为频域连续电压信号的带宽,freq(m)为频域连续电压信号的中心频率。Wherein, band(m) is the bandwidth of the continuous voltage signal in the frequency domain, and freq(m) is the center frequency of the continuous voltage signal in the frequency domain.
在一种可能的实施方式中,所述根据所述时域连续电压信号、时域特征数据和频域特征数据,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果包括:组合时域特征数据和频域特征数据,得到时频混合数据;将时域连续电压信号和时频混合数据均进行归一化处理,得到归一化时频电压数据和归一化时频混合数据;将归一化时频电压数据和归一化时频混合数据输入预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。In a possible implementation manner, the calling a preset sensor circuit fault diagnosis model according to the time-domain continuous voltage signal, time-domain characteristic data and frequency-domain characteristic data to obtain a sensor circuit fault diagnosis result includes: domain characteristic data and frequency domain characteristic data to obtain time-frequency mixed data; normalize time domain continuous voltage signal and time-frequency mixed data to obtain normalized time-frequency voltage data and normalized time-frequency mixed data; The normalized time-frequency voltage data and the normalized time-frequency mixed data are input into the preset sensor circuit fault diagnosis model to obtain the sensor circuit fault diagnosis result.
具体的,首先将时域特征数据和频域特征数据进行组合构成时频混合数据,表示为tf(m):tf(m)=[fd(m),td(m)]。Specifically, the time-domain characteristic data and the frequency-domain characteristic data are firstly combined to form time-frequency mixed data, expressed as tf(m): tf(m)=[fd(m),td(m)].
然后,对每一组时频混合数据进行归一化处理,获得对应的归一化时频混合数据norm_tf(m),并对每一组时域连续电压信号进行归一化处理,获得对应的归一化时频电压数据norm_V(m)。Then, normalize each group of time-frequency mixed data to obtain the corresponding normalized time-frequency mixed data norm_tf(m), and normalize each group of time-domain continuous voltage signals to obtain the corresponding Normalized time-frequency voltage data norm_V(m).
可选的,对每一组时频混合数据进行归一化处理时,采用min-max标准化方法,通过下式实现每一组时频混合数据的归一化:Optionally, when performing normalization processing on each set of time-frequency mixed data, the min-max normalization method is used to realize the normalization of each set of time-frequency mixed data through the following formula:
其中,tfi(m)表示第m组时频混合数据中的第i个数据,tfi *(m)表示tfi(m)归一化后的数值大小,tfmin(m)表示tf(m)的最小值,tfmax(m)表示tf(m)的最大值。Among them, tf i (m) represents the i-th data in the m-th group of time-frequency mixed data, tf i * (m) represents the normalized value of tf i (m), and tf min (m) represents tf( The minimum value of m), tf max (m) represents the maximum value of tf(m).
可选的,对每一组时域连续电压信号进行归一化处理,也可采用min-max标准化方法,通过下式实现每一组时域连续电压信号的归一化:Optionally, normalize each group of time-domain continuous voltage signals, or use the min-max standardization method to realize the normalization of each group of time-domain continuous voltage signals through the following formula:
其中,vi(m)表示第m组时域连续电压信号中的第i个数据,表示vi(m) 归一化后的数值大小。Among them, v i (m) represents the i-th data in the m-th group of time-domain continuous voltage signals, Indicates the normalized numerical value of v i (m).
在一种可能的实施方式中,参见图2,传感器电路故障诊断模型包括DNN神经网络、LSTM神经网络、全连接层网络以及SoftMax(分类网络)层网络。In a possible implementation manner, referring to FIG. 2 , the sensor circuit fault diagnosis model includes a DNN neural network, an LSTM neural network, a fully connected layer network, and a SoftMax (classification network) layer network.
全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的分布式特征表示映射到样本标记空间的作用。在实际使用中全连接层可由卷积操作实现。Softmax层将若干个(-∞,+∞) 的实数映射为相同数量的(0,1)的实数(可表示概率),同时保证它们之和为1。Fully connected layers (FC) play the role of "classifier" in the entire convolutional neural network. If operations such as the convolutional layer, pooling layer, and activation function layer map the original data to the hidden layer feature space, the fully connected layer plays the role of mapping the learned distributed feature representation to the sample label space. In practice, fully connected layers can be implemented by convolution operations. The Softmax layer maps several (-∞, +∞) real numbers to the same number of (0,1) real numbers (which can represent probabilities), while ensuring that their sum is 1.
其中,DNN神经网络用于输入归一化时频混合数据,输出DNN神经网络输出数据至全连接层网络;LSTM神经网络用于输入归一化时频电压数据,输出 LSTM神经网络输出数据至全连接层网络;全连接层网络用于将DNN神经网络输出数据和LSTM神经网络输出数据进行全连接处理,得到全连接层网络输出数据并输出至SoftMax层网络;SoftMax层网络用于根据输入的全连接层网络输出数据,得到传感器电路故障诊断结果并输出。Among them, the DNN neural network is used to input the normalized time-frequency mixed data, and output the output data of the DNN neural network to the fully connected layer network; the LSTM neural network is used to input the normalized time-frequency voltage data, and output the output data of the LSTM neural network to the full network Connection layer network; the fully connected layer network is used to perform full connection processing on the output data of the DNN neural network and the output data of the LSTM neural network to obtain the output data of the fully connected layer network and output it to the SoftMax layer network; Connect layer network to output data, get sensor circuit fault diagnosis result and output.
其中,将归一化时频电压数据和归一化时频混合数据输入预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果的具体过程为:Among them, the normalized time-frequency voltage data and normalized time-frequency mixed data are input into the preset sensor circuit fault diagnosis model, and the specific process of obtaining the sensor circuit fault diagnosis result is as follows:
步骤1:将归一化时频混合数据norm_tf(m)输入到DNN神经网络,获取DNN 神经网络输出数据d_out(m)。Step 1: Input the normalized time-frequency mixed data norm_tf(m) into the DNN neural network to obtain the output data d_out(m) of the DNN neural network.
步骤2:将归一化时频电压数据norm_V(m)输入到LSTM神经网络,获取 LSTM神经网络输出数据l_out(m)。Step 2: Input the normalized time-frequency voltage data norm_V(m) into the LSTM neural network to obtain the output data l_out(m) of the LSTM neural network.
步骤3:将步骤1中的DNN神经网络输出数据d_out(m)和步骤2中的LSTM 神经网络输出数据l_out(m)联合,输入到全连接层网络,获取全连接层网络输出数据fc_out(m),且fc_out(m)为K+1维向量,其中,K为传感器电路的故障类型数,传感器电路的故障类型数与传感器电路的元件数相关,传感器电路共有K个元件,则故障类型为{元件1故障,元件2故障,…,元件K故障}。Step 3: Combine the output data d_out(m) of the DNN neural network in
步骤4:将全连接层网络输出数据fc_out(m)作为SoftMax层网络的输入,经过SoftMax层网络计算后得到维度为K+1的向量,即传感器电路故障诊断结果。Step 4: Take the output data fc_out(m) of the fully connected layer network as the input of the SoftMax layer network, and obtain a vector with a dimension of K+1 after calculation by the SoftMax layer network, which is the result of the fault diagnosis of the sensor circuit.
具体的,本实施方式中,根据时频混合数据和时频电压数据的不同特点,分别利用DNN(Deep Neural Networks,深度神经网络)决策神经网络和LSTM(Long Short TermMemory,长短期记忆网络)神经网络进行特征提取,在最后将两种网络数据结合,获取最后预测值,以提升传感器电路故障诊断模型的预测能力。Specifically, in this embodiment, according to the different characteristics of time-frequency mixed data and time-frequency voltage data, DNN (Deep Neural Networks, deep neural network) decision-making neural network and LSTM (Long Short Term Memory, long-term short-term memory network) neural network are used respectively. The network performs feature extraction, and finally combines the two network data to obtain the final predicted value, so as to improve the predictive ability of the sensor circuit fault diagnosis model.
可选的,所述DNN神经网络为包含一个输入层、一个输出层和两个隐含层的全连接神经网络。其中,隐含层的前向传播函数为:Optionally, the DNN neural network is a fully connected neural network including an input layer, an output layer and two hidden layers. Among them, the forward propagation function of the hidden layer is:
其中,yi为该隐含层第i个输出,xj为该隐含层第j个输入,wi,j为第i个输出对应的第j个输入的权重,bi对应第i个输入的偏置。需要说明,本实施方式中涉及的全连接层网络的前向传播公式与上式一致。Among them, y i is the i-th output of the hidden layer, x j is the j-th input of the hidden layer, w i,j is the weight of the j-th input corresponding to the i-th output, b i corresponds to the i-th input bias. It should be noted that the forward propagation formula of the fully connected layer network involved in this embodiment is consistent with the above formula.
可选的,参见图3,所述LSTM神经网络的每一个细胞通过输入门、遗忘门和输出门来实现前向传播。Optionally, referring to FIG. 3 , each cell of the LSTM neural network implements forward propagation through an input gate, a forget gate and an output gate.
其中,遗忘门的更新可以表示为:Among them, the update of the forget gate can be expressed as:
ft=σ·(Wfht-1+Ufxt+bf)f t = σ·(W f h t-1 +U f x t +b f )
其中,σ为sigmoid激活函数,Wf,Uf和bf为遗忘门的系数和偏倚,均为可训练参数,ht-1为第t-1个细胞的隐藏输出状态,xt为本序列的第t个输入,对应本轮次输入的归一化时频电压数据norm_V(m)的第t个元素的值,ft为第t个遗忘门更新后的状态。Among them, σ is the sigmoid activation function, W f , U f and b f are the coefficients and biases of the forgetting gate, all of which are trainable parameters, h t-1 is the hidden output state of the t-1th cell, x t is the The t-th input of the sequence corresponds to the value of the t-th element of the normalized time-frequency voltage data norm_V(m) input in this round, and f t is the updated state of the t-th forget gate.
输入门的更新可以表示为:The update of the input gate can be expressed as:
it=σ·(Wiht-1+Uixt+bi)i t = σ·(W i h t-1 +U i x t +b i )
Ct=ft·Ct-1+it·Ct C t =f t ·C t-1 +i t ·C t
其中,Wi,Ui,bi,Wc,Uc和bc为输入门的系数和偏倚,均为可训练参数, Ct-1为上一时刻的长期状态,Ct为第t个输入门更新后的状态,表示当前时刻的长期状态,it和均为输入门的中间状态量,表示当前的记忆状态,it表示对的遗忘能力。Among them, W i , U i , b i , W c , U c and b c are the coefficients and biases of the input gates, all of which are trainable parameters, C t-1 is the long-term state at the previous moment, and C t is the t-th The updated state of the input gate represents the long-term state at the current moment , it and Both are the intermediate state quantities of the input gates, Represents the current memory state, it represents the pair forgetting ability.
输出门的更新可以表示为:The update of the output gate can be expressed as:
ot=σ·(Woht-1+Uoxt+bo)o t =σ·(W o h t-1 +U o x t +b o )
ht=ot·tanh(Ct)h t =o t ·tanh(C t )
其中,Wo,Uo和bo为输出门的系数和偏置,均为可训练参数,ht为第t个细胞的隐藏输出状态,Ot表示对当前时刻长期状态的遗忘能力。Among them, W o , U o and b o are the coefficients and biases of the output gate, all of which are trainable parameters, h t is the hidden output state of the tth cell, O t represents the forgetting ability of the long-term state at the current moment.
至此,LSTM神经网络的一个细胞实现了完整的前向传播。So far, one cell of the LSTM neural network has achieved a complete forward propagation.
在一种可能的实施方式中,所述SoftMax层网络的SoftMax函数为:In a possible implementation manner, the SoftMax function of the SoftMax layer network is:
其中,fc_out(m)[i]为第m组时域连续电压信号的全连接层网络输出数据的第i个数据,fc_out(m)[j]为第m组时域连续电压信号的全连接层网络输出数据的第j个数据,m为时域连续电压信号的获取组数,K为传感器电路的故障类型数; s(fc_out(m)[i])为传感器电路故障诊断结果的第i个数据,i>0时表示传感器电路元件i发生故障的概率,i=0时表示传感器电路不发生故障的概率。Among them, fc_out(m)[i] is the i-th data of the fully connected layer network output data of the m-th group of time-domain continuous voltage signals, and fc_out(m)[j] is the full connection of the m-th group of time-domain continuous voltage signals The jth data of the layer network output data, m is the number of time-domain continuous voltage signal acquisition groups, K is the number of fault types of the sensor circuit; s(fc_out(m)[i]) is the i-th fault diagnosis result of the sensor circuit When i>0, it means the probability that the sensor circuit element i fails, and when i=0, it means the probability that the sensor circuit does not fail.
最终,将s(m)=[s(fc_out(m)[0]),s(fc_out(m)[1]),...,s(fc_out(m)[K])]作为传感器电路故障诊断结果进行输出,以此来体现传感器电路及内部各元件发生故障的概率。Finally, take s(m)=[s(fc_out(m)[0]),s(fc_out(m)[1]),...,s(fc_out(m)[K])] as sensor circuit failure The diagnostic results are output to reflect the probability of failure of the sensor circuit and internal components.
下述为本发明的装置实施例,可以用于执行本发明方法实施例。对于装置实施例中未披露的细节,请参照本发明方法实施例。The following are device embodiments of the present invention, which can be used to implement the method embodiments of the present invention. For details not disclosed in the device embodiment, please refer to the method embodiment of the present invention.
参见图4,本发明再一实施例中,提供一种传感器电路故障诊断系统,能够用于实现上述的传感器电路故障诊断系统方法,具体的,该传感器电路故障诊断系统包括数据获取模块、特征提取模块以及诊断模块。Referring to Fig. 4, in another embodiment of the present invention, a sensor circuit fault diagnosis system is provided, which can be used to implement the above sensor circuit fault diagnosis system method, specifically, the sensor circuit fault diagnosis system includes a data acquisition module, feature extraction modules and diagnostic modules.
其中,数据获取模块用于获取传感器电路输出的时域连续电压信号;特征提取模块用于对时域连续电压信号进行时域特征提取和频域特征提取,得到时域特征数据和频域特征数据;诊断模块用于根据所述时域连续电压信号,调用预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。Among them, the data acquisition module is used to obtain the time-domain continuous voltage signal output by the sensor circuit; the feature extraction module is used to perform time-domain feature extraction and frequency-domain feature extraction on the time-domain continuous voltage signal to obtain time-domain feature data and frequency-domain feature data ; The diagnostic module is used to invoke a preset sensor circuit fault diagnosis model according to the time-domain continuous voltage signal to obtain a sensor circuit fault diagnosis result.
在一种可能的实施方式中,所述诊断模块具体用于:组合时域特征数据和频域特征数据,得到时频混合数据;将时域连续电压信号和时频混合数据均进行归一化处理,得到归一化时频电压数据和归一化时频混合数据;将归一化时频电压数据和归一化时频混合数据输入预设的传感器电路故障诊断模型,得到传感器电路故障诊断结果。In a possible implementation manner, the diagnostic module is specifically configured to: combine time-domain feature data and frequency-domain feature data to obtain time-frequency mixed data; normalize both the time-domain continuous voltage signal and the time-frequency mixed data processing to obtain normalized time-frequency voltage data and normalized time-frequency mixed data; input the normalized time-frequency voltage data and normalized time-frequency mixed data into the preset sensor circuit fault diagnosis model to obtain sensor circuit fault diagnosis result.
在一种可能的实施方式中,所述传感器电路故障诊断模型包括DNN神经网络、LSTM神经网络、全连接层网络以及SoftMax层网络;DNN神经网络用于输入归一化时频混合数据,输出DNN神经网络输出数据至全连接层网络;LSTM 神经网络用于输入归一化时频电压数据,输出LSTM神经网络输出数据至全连接层网络;全连接层网络用于将DNN神经网络输出数据和LSTM神经网络输出数据进行全连接处理,得到全连接层网络输出数据输出至SoftMax层网络;SoftMax 层网络用于根据输入的全连接层网络输出数据,得到传感器电路故障诊断结果并输出。In a possible implementation, the sensor circuit fault diagnosis model includes a DNN neural network, an LSTM neural network, a fully connected layer network, and a SoftMax layer network; the DNN neural network is used to input normalized time-frequency mixed data, and output DNN The neural network outputs data to the fully connected layer network; the LSTM neural network is used to input normalized time-frequency voltage data, and the output data of the LSTM neural network is output to the fully connected layer network; the fully connected layer network is used to combine the output data of the DNN neural network with the LSTM The output data of the neural network is fully connected, and the output data of the fully connected layer network is obtained and output to the SoftMax layer network; the SoftMax layer network is used to output data according to the input fully connected layer network, and obtain and output the fault diagnosis result of the sensor circuit.
在一种可能的实施方式中,所述特征提取模块具体用于:获取时域连续电压信号的最大值、最小值、平均值、标准差、峰度以及偏度中的一个或几个,得到时域特征数据;将时域连续电压信号进行时频转换,得到频域连续电压信号,获取频域连续电压信号的带宽和中心频率中的一个或几个,得到频域特征数据。In a possible implementation, the feature extraction module is specifically configured to: obtain one or more of the maximum value, minimum value, average value, standard deviation, kurtosis and skewness of the continuous voltage signal in the time domain, and obtain Time-domain characteristic data: time-frequency conversion is performed on the time-domain continuous voltage signal to obtain a frequency-domain continuous voltage signal, and one or more of the bandwidth and center frequency of the frequency-domain continuous voltage signal is obtained to obtain frequency-domain characteristic data.
在一种可能的实施方式中,所述SoftMax层网络的SoftMax函数为:In a possible implementation manner, the SoftMax function of the SoftMax layer network is:
其中,fc_out(m)[i]为第m组时域连续电压信号的全连接层网络输出数据的第i个数据,fc_out(m)[j]为第m组时域连续电压信号的全连接层网络输出数据的第j个数据,m为时域连续电压信号的获取组数,K为传感器电路的故障类型数; s(fc_out(m)[i])为传感器电路故障诊断结果的第i个数据,i>0时表示传感器电路元件i发生故障的概率,i=0时表示传感器电路不发生故障的概率。Among them, fc_out(m)[i] is the i-th data of the fully connected layer network output data of the m-th group of time-domain continuous voltage signals, and fc_out(m)[j] is the full connection of the m-th group of time-domain continuous voltage signals The jth data of the layer network output data, m is the number of time-domain continuous voltage signal acquisition groups, K is the number of fault types of the sensor circuit; s(fc_out(m)[i]) is the i-th fault diagnosis result of the sensor circuit When i>0, it means the probability that the sensor circuit element i fails, and when i=0, it means the probability that the sensor circuit does not fail.
前述的传感器电路故障诊断方法的实施例涉及的各步骤的所有相关内容均可以援引到本发明施例中的传感器电路故障诊断系统所对应的功能模块的功能描述,在此不再赘述。All relevant content of each step involved in the foregoing embodiment of the sensor circuit fault diagnosis method can be referred to the functional description of the corresponding functional modules of the sensor circuit fault diagnosis system in the embodiment of the present invention, and will not be repeated here.
本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本发明各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用传感器的形式实现,也可以采用软件功能模块的形式实现。The division of modules in the embodiments of the present invention is schematic, and is only a logical function division. In actual implementation, there may be other division methods. In addition, each functional module in each embodiment of the present invention can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module. The above-mentioned integrated modules can be implemented in the form of sensors or in the form of software function modules.
本发明再一个实施例中,提供了一种传感器电路故障诊断装置,该传感器电路故障诊断装置包括处理器以及存储器,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于执行所述计算机存储介质存储的程序指令。处理器可能是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路 (Application Specific IntegratedCircuit,ASIC)、现成可编程门阵列(Field- Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其是终端的计算核心以及控制核心,其适于实现一条或一条以上指令,具体适于加载并执行计算机存储介质内一条或一条以上指令从而实现相应方法流程或相应功能;本发明实施例所述的处理器可以用于传感器电路故障诊断方法的操作。In yet another embodiment of the present invention, a sensor circuit fault diagnosis device is provided, the sensor circuit fault diagnosis device includes a processor and a memory, the memory is used to store a computer program, the computer program includes program instructions, and the processing The device is used to execute the program instructions stored in the computer storage medium. The processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gates Array (Field-Programmable GateArray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc., which are the computing core and control core of the terminal, are suitable for implementing one or more instructions, and are specifically suitable for To load and execute one or more instructions in the computer storage medium to realize the corresponding method flow or corresponding functions; the processor described in the embodiment of the present invention can be used for the operation of the sensor circuit fault diagnosis method.
本发明再一个实施例中,本发明还提供了一种存储介质,具体为计算机可读存储介质(Memory),所述计算机可读存储介质是计算机设备中的记忆设备,用于存放程序和数据。可以理解的是,此处的计算机可读存储介质既可以包括计算机设备中的内置存储介质,当然也可以包括计算机设备所支持的扩展存储介质。计算机可读存储介质提供存储空间,该存储空间存储了终端的操作系统。并且,在该存储空间中还存放了适于被处理器加载并执行的一条或一条以上的指令,这些指令可以是一个或一个以上的计算机程序(包括程序代码)。需要说明的是,此处的计算机可读存储介质可以是高速RAM存储器,也可以是非不稳定的存储器 (non-volatile memory),例如至少一个磁盘存储器。可由处理器加载并执行计算机可读存储介质中存放的一条或一条以上指令,以实现上述实施例中有关传感器电路故障诊断方法的相应步骤。In yet another embodiment of the present invention, the present invention also provides a storage medium, specifically a computer-readable storage medium (Memory). The computer-readable storage medium is a memory device in a computer device for storing programs and data. . It can be understood that the computer-readable storage medium here may include a built-in storage medium in the computer device, and of course may also include an extended storage medium supported by the computer device. The computer-readable storage medium provides storage space, and the storage space stores the operating system of the terminal. Moreover, one or more instructions suitable for being loaded and executed by the processor are also stored in the storage space, and these instructions may be one or more computer programs (including program codes). It should be noted that the computer-readable storage medium here may be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one magnetic disk memory. One or more instructions stored in the computer-readable storage medium can be loaded and executed by the processor, so as to realize the corresponding steps of the sensor circuit fault diagnosis method in the above-mentioned embodiments.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention shall fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210981035.2A CN115618195A (en) | 2022-08-16 | 2022-08-16 | Sensor circuit fault diagnosis method, system, medium and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210981035.2A CN115618195A (en) | 2022-08-16 | 2022-08-16 | Sensor circuit fault diagnosis method, system, medium and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115618195A true CN115618195A (en) | 2023-01-17 |
Family
ID=84856330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210981035.2A Pending CN115618195A (en) | 2022-08-16 | 2022-08-16 | Sensor circuit fault diagnosis method, system, medium and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115618195A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116484263A (en) * | 2023-05-10 | 2023-07-25 | 江苏圣骏智能科技有限公司 | Intelligent self-service machine fault detection system and method |
CN117200203A (en) * | 2023-09-07 | 2023-12-08 | 航电所(成都)科技有限公司 | Operation optimization methods and systems applied to power systems |
CN119939358A (en) * | 2025-04-03 | 2025-05-06 | 国网山东省电力公司营销服务中心(计量中心) | Current transformer error state evaluation method and system based on multistage CNN cascade |
-
2022
- 2022-08-16 CN CN202210981035.2A patent/CN115618195A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116484263A (en) * | 2023-05-10 | 2023-07-25 | 江苏圣骏智能科技有限公司 | Intelligent self-service machine fault detection system and method |
CN116484263B (en) * | 2023-05-10 | 2024-01-05 | 江苏圣骏智能科技有限公司 | Intelligent self-service machine fault detection system and method |
CN117200203A (en) * | 2023-09-07 | 2023-12-08 | 航电所(成都)科技有限公司 | Operation optimization methods and systems applied to power systems |
CN119939358A (en) * | 2025-04-03 | 2025-05-06 | 国网山东省电力公司营销服务中心(计量中心) | Current transformer error state evaluation method and system based on multistage CNN cascade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109902832B (en) | Training method of machine learning model, anomaly prediction method and related devices | |
CN115618195A (en) | Sensor circuit fault diagnosis method, system, medium and device | |
JP6742554B1 (en) | Information processing apparatus and electronic apparatus including the same | |
CN111310672A (en) | Video emotion recognition method, device and medium based on time sequence multi-model fusion modeling | |
CN111665819A (en) | Deep learning multi-model fusion-based complex chemical process fault diagnosis method | |
WO2022116570A1 (en) | Microphone array-based method for locating and identifying fault signal in industrial equipment | |
CN113095370A (en) | Image recognition method and device, electronic equipment and storage medium | |
CN113743528A (en) | Voltage source inverter fault diagnosis method and system based on convolutional neural network | |
CN106055579B (en) | Vehicle performance data cleaning system and method based on artificial neural network | |
JP2022078310A (en) | Image classification model generation method, device, electronic apparatus, storage medium, computer program, roadside device and cloud control platform | |
CN114611617A (en) | A Deep Domain Adaptive Image Classification Method Based on Prototype Network | |
CN116593917A (en) | A Lithium Battery State of Health Estimation Method Based on Time-Frequency Dual-Stream Characterization | |
CN114298290A (en) | Neural network coding method and coder based on self-supervision learning | |
CN115686908A (en) | A data processing method and related equipment | |
CN112632854B (en) | Fault prediction method and system of TSK fuzzy model based on human-like learning ability | |
Liu et al. | An anomaly detection method based on double encoder–decoder generative adversarial networks | |
Chen et al. | Reinforced convolutional neural network fault diagnosis of industrial production systems | |
WO2023184188A1 (en) | Method and apparatus for fault monitoring of neural network model in autonomous driving system | |
Shi et al. | A new adaptive feature fusion and selection network for intelligent transportation systems | |
Zhou et al. | A dendritic neuron model for exchange rate prediction | |
CN117011219A (en) | Method, apparatus, device, storage medium and program product for detecting quality of article | |
CN115409262A (en) | Trend prediction method and anomaly identification method for key performance indicators of railway data center | |
Huang et al. | Ship trajectory anomaly detection based on multi-feature fusion | |
CN115271045A (en) | A neural network model optimization method and system based on machine learning | |
CN116484513A (en) | Rolling bearing fault diagnosis method based on multi-level abstract temporal feature fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |