CN115616615A - A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b - Google Patents

A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b Download PDF

Info

Publication number
CN115616615A
CN115616615A CN202211237254.6A CN202211237254A CN115616615A CN 115616615 A CN115616615 A CN 115616615A CN 202211237254 A CN202211237254 A CN 202211237254A CN 115616615 A CN115616615 A CN 115616615A
Authority
CN
China
Prior art keywords
ppp
real
time
parameters
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211237254.6A
Other languages
Chinese (zh)
Inventor
王磊
周海涛
付文举
刘季
张鹏
路莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
707 Research Institute Of China Shipbuilding Corp
Wuhan University WHU
Original Assignee
707 Research Institute Of China Shipbuilding Corp
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 707 Research Institute Of China Shipbuilding Corp, Wuhan University WHU filed Critical 707 Research Institute Of China Shipbuilding Corp
Priority to CN202211237254.6A priority Critical patent/CN115616615A/en
Publication of CN115616615A publication Critical patent/CN115616615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供了一种PPP‑B2b增强的低成本单频GNSS接收机精密定位方法,涉及卫星导航定位技术领域,旨在解决单频观测数据无法有效的抑制电离层误差的问题,采用的技术方案是,通过地面设备接收来自GPS/BDS‑3卫星的导航信号,通过北斗三号GEO卫星播放的PPP‑B2b实时增强改正数对广播星历进行修正,在地面设备中通过采用PPP‑B2b改正数的实时单频精密单点定位算法模型来完成实时单频精密单点定位;通过GEO卫星播发的PPP‑B2b增强改正数据获取高精度的实时GPS/BDS‑3实时精密轨道和钟差数据,摆脱参考站距离限制,利用单个接收机实现实时分米级定位效果;通过等效参数转化的方式将不区分的钟差和电离层参数转化为等效电离层参数,从而实时估计扣除电离层对单频PPP的影响,获得实时分米级定位结果。

Figure 202211237254

The present invention provides a low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b, relates to the technical field of satellite navigation and positioning, aims to solve the problem that single-frequency observation data cannot effectively suppress ionospheric errors, and adopts a technical solution Yes, the ground equipment receives the navigation signal from the GPS/BDS-3 satellite, and corrects the broadcast ephemeris through the PPP-B2b real-time enhanced correction number broadcast by the Beidou-3 GEO satellite, and uses the PPP-B2b correction number in the ground equipment Real-time single-frequency precise point positioning algorithm model to complete real-time single-frequency precise point positioning; through the PPP-B2b enhanced correction data broadcast by GEO satellites to obtain high-precision real-time GPS/BDS-3 real-time precise orbit and clock error data, get rid of The distance limit of the reference station, using a single receiver to achieve real-time decimeter-level positioning effect; the indiscriminate clock error and ionospheric parameters are converted into equivalent ionospheric parameters by means of equivalent parameter conversion, so as to estimate and deduct the ionospheric pair in real time The impact of frequency PPP can be obtained to obtain real-time decimeter-level positioning results.

Figure 202211237254

Description

一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b

技术领域technical field

本发明涉及卫星导航定位技术领域,具体为一种PPP-B2b增强的低成本 单频GNSS接收机精密定位方法。The invention relates to the technical field of satellite navigation and positioning, in particular to a PPP-B2b enhanced low-cost single-frequency GNSS receiver precision positioning method.

背景技术Background technique

全球卫星导航定位系统(GNSS)目前已经得到了广泛的应用,并且人们对 卫星定位的需求向高精度方向发展。然而GNSS提供的标准定位服务精度在数 10米至米级,远不能达到精密定位的精度需求。实现实时精密定位主要的技术 手段有两种,即星基增强和地基增强。地基增强是通过在地面铺设密集的参考 站网实现的,单站作用距离在20公里左右。因此其高精度的定位服务依赖于 参考站的布设,无法在海洋上实现高精度定位服务。星基增强则是利用区域或 者全球的跟踪站网解算卫星的精密轨道和钟差改正数,通过通讯卫星将改正书 信息实时转发给用户,用户端利用卫星播发的改正数信息,再利用双频观测值线性组合消除电离层的影响,从而实现实时分米级的动态定位精度。目前星级 增强服务主要有各GNSS服务商提供,例如美国的天宝公司,荷兰的辉固公司 以及中国的合众思壮和中海达公司等。我国自主研发的北斗三号不仅融合了导 航与通信功能,还具备定位导航授时、星基增强、地基增强、精密单点定位、 短报文通信和国际搜救等多种服务能力。其中,PPP-B2b信号作为数据播发通 道,通过北斗三号GEO卫星播发北斗三号和其他GNSS卫星的精密轨道和钟差 改正数,对广播星历的轨道和钟差进行改正,可实时获取高精度的GPS/BDS-3 实时精密轨道和钟差信息,可为我国及周边地区提供动态分米级、静态厘米级 的精密定位服务。The global satellite navigation and positioning system (GNSS) has been widely used at present, and people's demand for satellite positioning is developing towards high precision. However, the accuracy of standard positioning services provided by GNSS is at the level of tens of meters to meters, which is far from meeting the accuracy requirements of precise positioning. There are two main technical means to achieve real-time precise positioning, namely, satellite-based augmentation and ground-based augmentation. Ground enhancement is achieved by laying a dense network of reference stations on the ground, and the distance of a single station is about 20 kilometers. Therefore, its high-precision positioning service depends on the deployment of reference stations, and cannot achieve high-precision positioning services on the ocean. Satellite-based augmentation is to use regional or global tracking station network to solve the satellite's precise orbit and clock error correction number, and transmit the correction book information to the user in real time through the communication satellite. The user end uses the correction number information broadcast by the satellite, and then uses the dual The linear combination of frequency observations eliminates the influence of the ionosphere, thereby achieving real-time decimeter-level dynamic positioning accuracy. At present, star augmentation services are mainly provided by various GNSS service providers, such as Trimble in the United States, Fugro in the Netherlands, UniStrong and China Hi-Target in China, etc. The Beidou-3 independently developed by my country not only integrates navigation and communication functions, but also has various service capabilities such as positioning and navigation timing, satellite-based augmentation, ground-based augmentation, precise point positioning, short message communication, and international search and rescue. Among them, the PPP-B2b signal is used as a data broadcasting channel to broadcast the precise orbit and clock error correction numbers of Beidou-3 and other GNSS satellites through the Beidou-3 GEO satellite, and correct the orbit and clock error of the broadcast ephemeris, which can obtain high-speed data in real time. The high-precision GPS/BDS-3 real-time precise orbit and clock error information can provide dynamic decimeter-level and static centimeter-level precise positioning services for my country and surrounding areas.

中国专利CN202010036792.3公开了一种基于非差观测模型和消秩亏的 PPP-RTK定位方法,采用的技术方案是,包括以下步骤:选用GNSS系统全球或 区域跟踪站网的伪距和相位观测数据;利用观测数据,构建单系统多频率的原 始观测方程;利用S-basis消秩亏理论,对原始观测方程中的参数进行重新整 合,消除原始观测方程中的数学秩亏,得到新观测方程。本设计以全球或区域 GNSS跟踪站网多频点伪距与相位观测数据为基础,利用S-basis消秩亏理论构 建满秩非差非组合全参数估计模型,实现了卫星钟差、空间大气延迟及基础频 率卫星相位偏差等定位增强参数的统一估计,提供PPP-RTK高精度定位增强服务的同时,能后向兼容PPP、RTK等传统定位模式的服务需求;目前的精密PPP 实时定位服务主要为双频或者多频测量型接收机,上述技术方案中针对非差观 测模型的PPP-RTK定位方法,引入S-basis消秩亏理论对参数进行处理,主要 解决如何利用多频数据进行PPP-RTK定位。目前对低成本大众市场的单频接收 机的PPP实时定位服务并没有深入研究,主要的原因在于单频观测数据无法有 效的抑制电离层误差。Chinese patent CN202010036792.3 discloses a PPP-RTK positioning method based on non-difference observation model and rank-deficiency elimination. The adopted technical solution includes the following steps: select the pseudorange and phase observation of the GNSS system global or regional tracking station network Data; use the observation data to construct the original observation equation of single system and multiple frequencies; use the S-basis rank deficiency theory to reintegrate the parameters in the original observation equation, eliminate the mathematical rank deficiency in the original observation equation, and obtain a new observation equation . This design is based on the global or regional GNSS tracking station network multi-frequency point pseudo-range and phase observation data, and uses the S-basis rank-deficiency theory to construct a full-rank, non-difference, and non-combined full-parameter estimation model, which realizes the satellite clock error, space atmosphere Unified estimation of positioning enhancement parameters such as delay and basic frequency satellite phase deviation, while providing PPP-RTK high-precision positioning enhancement services, can be backward compatible with the service requirements of traditional positioning modes such as PPP and RTK; the current precise PPP real-time positioning services mainly It is a dual-frequency or multi-frequency measurement receiver. In the above technical solution, for the PPP-RTK positioning method of the non-difference observation model, the S-basis rank deficiency theory is introduced to process the parameters, and the main solution is how to use multi-frequency data for PPP-RTK positioning. RTK positioning. At present, there is no in-depth study on the PPP real-time positioning service of single-frequency receivers in the low-cost mass market. The main reason is that single-frequency observation data cannot effectively suppress ionospheric errors.

本发明主要提供了一种利用北斗三号GEO播发的PPP-B2b改正数对广播 星历轨道和钟差进行改正从而得到高精度的实时精密轨道和钟差数据,通过等 效参数转化的方式利用参数估计的方式处理电离层误差,为单频用户提供实时 高精度位置服务。The present invention mainly provides a method of using the PPP-B2b correction number broadcasted by the Beidou-3 GEO to correct the broadcast ephemeris orbit and clock error so as to obtain high-precision real-time precise orbit and clock error data, which can be used in the form of equivalent parameter conversion The method of parameter estimation is used to deal with ionospheric errors and provide real-time high-precision location services for single-frequency users.

发明内容Contents of the invention

鉴于现有技术中所存在的问题,本发明公开了一种PPP-B2b增强的低成 本单频GNSS接收机精密定位方法,采用的技术方案是,采用PPP-B2b改正数 修正轨道和钟差并采用附有电离层参数约束的方法处理电离层误差,从而利用 单频观测数据获得实时分米级定位结果,所述方法包括基于PPP-B2b增强信息 的卫星实时精密轨道和钟差计算,无需额外的通信链路和差分站即可获得分米 级高精度实时定位结果,本发明所述的附有电离层参数约束的实时单频精密单 点定位算法,该方法利用基准转换的方法将电离层参数转换为可估计量,从而 利用单频观测值实现的电离层参数估计,扣除了电离层的不利影响,获得高精 度实时精密单点定位结果。In view of the problems existing in the prior art, the present invention discloses a low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b. The technical solution adopted is to use the PPP-B2b correction number to correct the orbit and clock error The method with ionospheric parameter constraints is used to deal with ionospheric errors, so as to obtain real-time decimeter-level positioning results using single-frequency observation data. The method includes satellite real-time precise orbit and clock error calculation based on PPP-B2b enhanced information, without additional The decimeter-level high-precision real-time positioning results can be obtained by using a communication link and a differential station. The real-time single-frequency precise point positioning algorithm with ionospheric parameter constraints described in the present invention uses the method of reference conversion to convert the ionosphere The parameters are converted into estimable quantities, so that the ionospheric parameter estimation realized by single-frequency observations deducts the adverse effects of the ionosphere, and obtains high-precision real-time precise single-point positioning results.

作为本发明的一种优选技术方案,该方法不需要额外建立通信链路,也 不需要附近布设基站即可实现分米级高精度定位,基于PPP-B2b增强信息的卫 星实时精密轨道和钟差计算步骤包括:As a preferred technical solution of the present invention, this method does not need to establish additional communication links, and does not need to deploy base stations nearby to achieve decimeter-level high-precision positioning, and the real-time precise orbit and clock error of satellites based on PPP-B2b enhanced information Calculation steps include:

S201,对北斗三号GEO卫星实时播发的PPP-B2b轨道和钟差改正数信息进行提 取,分析PPP-B2b轨道和钟差改正数质量情况;S201, extracting the PPP-B2b orbit and the clock error correction number information broadcast in real time by the Beidou No. 3 GEO satellite, and analyzing the PPP-B2b orbit and the clock error correction number quality situation;

S202,获取PPP-B2b增强GPS/BDS-3的轨道改正数,即在径向、法向和切向上 的改正数,对计算得到的粗略GPS/BDS-3卫星位置进行修正;S202, obtain the orbit correction number of PPP-B2b enhanced GPS/BDS-3, promptly the correction number in radial direction, normal direction and tangential direction, correct the rough GPS/BDS-3 satellite position that calculates;

S203,获取PPP-B2b增强GPS/BDS-3的钟差改正数,对计算得到的粗略 GPS/BDS-3卫星钟差进行修正,通过得到高精度的GPS/BDS-3实时高精度轨道 和钟差信息,用于后续的实时精密单点定位服务。S203, obtain the clock error correction number of PPP-B2b enhanced GPS/BDS-3, correct the calculated rough GPS/BDS-3 satellite clock error, and obtain high-precision GPS/BDS-3 real-time high-precision orbit and clock The difference information is used for subsequent real-time precise point positioning services.

作为本发明的一种优选技术方案,利用基准转换的方式将电离层参数转 换为可估参数,并利用合理的近似假设,利用多历元联合求解的方式解决参数 初值确定问题,具体方法如下:As a preferred technical solution of the present invention, the ionospheric parameters are converted into estimable parameters by means of benchmark conversion, and reasonable approximation assumptions are used to solve the problem of determining the initial value of parameters by means of multi-epoch joint solution. The specific method is as follows :

单频精密单点定位的关键在于电离层误差的消除,传统的单频电离层模型主要利用码相组合的方式消除电离层影响,代价是放大了观测噪声。本专利所述的 单频电离层方法使用附有电离层约束的方法对电离层参数进行估计,从而消除 电离层对单频精密定位的影响。对于N颗卫星的码相观测值共可形成2N个观 测方程,方程中共计需要估计3个坐标参数,2个钟差参数,1个对流层参数, N个电离层参数和N个模糊度参数,即2*N+6个参数。显然观测方程的数量少 于参数个数,导致法方程的秩亏,无法直接估计。因为接收机钟差、电离层参 数、模糊度参数具有耦合性和相关性,我们采用基准变换的方式将强相关的钟差参数,电离层参数和模糊度参数转变为可估量。具体实现形式是将第一个历 元的钟差置为基准,强制约束为0,那么基准偏移量会被电离层参数和模糊度 参数吸收,造成这两类参数估值有偏,但这并不影响我们要求解的接收机坐标 参数。这种处理方式就解决了参数之间的秩亏问题。那么观测方程可以转化为:The key to single-frequency precise point positioning lies in the elimination of ionospheric errors. Traditional single-frequency ionospheric models mainly use code-phase combination to eliminate ionospheric effects, at the cost of amplifying observation noise. The single-frequency ionospheric method described in this patent uses a method with ionospheric constraints to estimate ionospheric parameters, thereby eliminating the impact of the ionosphere on single-frequency precise positioning. For the code phase observations of N satellites, a total of 2N observation equations can be formed. In the equation, a total of 3 coordinate parameters, 2 clock error parameters, 1 troposphere parameter, N ionosphere parameters and N ambiguity parameters need to be estimated. That is 2*N+6 parameters. Obviously, the number of observation equations is less than the number of parameters, resulting in the rank deficiency of normal equations, which cannot be directly estimated. Because the receiver clock bias, ionospheric parameters, and ambiguity parameters have coupling and correlation, we use the method of reference transformation to transform the strongly correlated clock bias parameters, ionospheric parameters, and ambiguity parameters into estimable ones. The specific implementation form is to set the clock error of the first epoch as the reference, and force the constraint to be 0, then the reference offset will be absorbed by the ionospheric parameters and ambiguity parameters, resulting in biased estimates of these two types of parameters, but this Does not affect the receiver coordinate parameters we want to solve. This approach solves the rank deficiency problem between parameters. Then the observation equation can be transformed into:

Figure BDA0003880482250000041
Figure BDA0003880482250000041

i表示历元标号;

Figure BDA0003880482250000042
分别表示第i历元的伪距和相位的观测值减去计算值(OMC);
Figure BDA0003880482250000043
表示卫星到接收机的单位向量;Δx表示接收机坐标向量;
Figure BDA0003880482250000044
分别表示相对于第一历元接收机钟差的有偏电离层延迟和模糊度。 其余符号与前面方程表述一致。i represents the epoch label;
Figure BDA0003880482250000042
represent the observed value minus the calculated value (OMC) of the pseudorange and phase of the i-th epoch, respectively;
Figure BDA0003880482250000043
Indicates the unit vector from the satellite to the receiver; Δx indicates the coordinate vector of the receiver;
Figure BDA0003880482250000044
Denote the biased ionospheric delay and ambiguity, respectively, relative to the receiver clock error of the first epoch. The rest of the symbols are consistent with the expressions in the previous equations.

由于参数个数大于观测方程个数,使法方程秩亏。假设接收机位置、对流层参 数、模糊度参数在初始两个历元未发生变化,那么联立初始两个历元的观测方 程,假设每历元有N颗卫星,那么共有4N个伪距和相位观测方程。同时未知 参数有位置参数3个、系统间偏差参数(ISB)一个、接收机钟差参数一个、 对流层参数一个、模糊度参数N个、电离层参数2N个,共3N+6个未知数。那 么只要GPS/BDS-3的可用卫星个数大于6颗,即可解决观测方程秩亏的问题, 即可求解初始的对流层、模糊度参数。Because the number of parameters is greater than the number of observation equations, the normal equation is rank deficient. Assuming that the receiver position, tropospheric parameters, and ambiguity parameters do not change in the initial two epochs, then the observation equations of the initial two epochs are combined, assuming that there are N satellites in each epoch, then there are 4N pseudoranges and phases in total observation equation. At the same time, the unknown parameters include 3 position parameters, one intersystem bias parameter (ISB), one receiver clock error parameter, one troposphere parameter, N ambiguity parameters, and 2N ionospheric parameters, a total of 3N+6 unknowns. Then as long as the number of available satellites of GPS/BDS-3 is greater than 6, the problem of rank deficiency of the observation equation can be solved, and the initial troposphere and ambiguity parameters can be solved.

作为本发明的一种优选技术方案,利用电离层的时间相关特性,通过附 有电离层约束的方法求解电离层参数,从而将电离层不利影响从单频精密单点 定位中扣除,进一步获得实时分米级高精度定位结果,具体方法如下:As a preferred technical solution of the present invention, the time-dependent characteristics of the ionosphere are used to solve the ionosphere parameters through a method with ionosphere constraints, so that the adverse effects of the ionosphere are deducted from the single-frequency precise point positioning, and further real-time Decimeter-level high-precision positioning results, the specific method is as follows:

考虑到对流层湿延迟具有随机游走特性,模糊度参数具有常数的特性,将上个 历元的对流层湿延迟和模糊度参数作为当前历元的约束,可解决观测方程的秩 亏问题,实现每个历元的连续参数求解估计。Considering that the tropospheric wet delay has random walk characteristics and the ambiguity parameters have constant characteristics, taking the tropospheric wet delay and ambiguity parameters of the previous epoch as the constraints of the current epoch can solve the rank deficit problem of the observation equation and realize the Continuous parameter solution estimates for epochs.

假设上个历元有N个观测卫星,那么模糊度参数约束有N个方程,同时加上对 流层约束1个,共产生N+1个约束方程。同时当前历元共有M个观测卫星,那 么共有2M个观测方程,加上约束方程,共有2M+N+1个方程。同时当前历元的 参数有3个位置参数、1个接收机钟差参数、1个ISB参数、1个对流层参数、 M个电离层参数、M个模糊度参数,共计2M+6个参数。那么只要2M+N+1>2M+6, 即N大于5,也即最少有6颗GPS/BDS-3可用卫星,就能够连续利用最小二乘 方法连续的求解每个历元的位置、接收机钟差、ISB、电离层、对流层、模糊 度参数。表明上个历元作为约束的可用GPS/BDS-3卫星数目必须达到6颗,同 时当前历元出现掉星或者新增加卫星均不影响观测方程的建立,这有效解决了 观测过程中观测卫星的掉星和新增加卫星的问题。Assuming that there are N observing satellites in the last epoch, then there are N equations constrained by the ambiguity parameters, and at the same time, one constraint on the troposphere is added, resulting in a total of N+1 constraint equations. At the same time, there are M observation satellites in the current epoch, so there are 2M observation equations in total, plus constraint equations, there are 2M+N+1 equations in total. At the same time, the parameters of the current epoch include 3 position parameters, 1 receiver clock difference parameter, 1 ISB parameter, 1 troposphere parameter, M ionosphere parameters, and M ambiguity parameters, totaling 2M+6 parameters. Then as long as 2M+N+1>2M+6, that is, N is greater than 5, that is, there are at least 6 available GPS/BDS-3 satellites, the least square method can be used to continuously solve the position and reception of each epoch. Clock difference, ISB, ionosphere, troposphere, ambiguity parameters. It shows that the number of GPS/BDS-3 satellites available as a constraint in the last epoch must reach 6, and at the same time, the establishment of the observation equation will not be affected by the loss of satellites or the addition of new satellites in the current epoch, which effectively solves the problem of observing satellites during the observation process. The problem of dropping stars and adding new satellites.

因此,新的观测方程重构为上个历元的N+1个虚拟观测方程(约束方程)和当 前历元的2M个伪距/相位观测方程。单频精密单点定位中重构的观测方程和参 数分别为:Therefore, the new observation equations are reconstructed into N+1 virtual observation equations (constraint equations) of the last epoch and 2M pseudorange/phase observation equations of the current epoch. The reconstructed observation equations and parameters in single-frequency precise point positioning are:

Figure BDA0003880482250000051
Figure BDA0003880482250000051

Figure BDA0003880482250000052
Figure BDA0003880482250000052

Figure BDA0003880482250000056
Ii
Figure BDA0003880482250000054
为上个历元对流层、模糊度参数的虚拟观测值及其方差-协方差矩阵;Ai,Li,
Figure BDA0003880482250000055
分别为当前历元的设计矩阵、OMC值和和对应的观测方差-协方 差矩阵。
Figure BDA0003880482250000056
I i ,
Figure BDA0003880482250000054
are the virtual observation values of troposphere and ambiguity parameters and their variance-covariance matrix in the last epoch; A i , L i ,
Figure BDA0003880482250000055
are the design matrix, OMC value and corresponding observation variance-covariance matrix of the current epoch, respectively.

通过最小二乘估计可以实时解算位置参数。同时需要注意的是,电离层参数存 在于伪距和相位观测方程中,那么伪距观测值中的DCB改正会被吸收进电离层 参数中,同时由于电离层和模糊度参数相关,那么DCB参数会进一步被模糊度 参数吸收,导致解算的电离层参数和模糊度参数为有偏估计,但是这并不影响 对位置参数的估计。The location parameters can be solved in real time by least squares estimation. At the same time, it should be noted that the ionospheric parameters exist in the pseudorange and phase observation equations, then the DCB correction in the pseudorange observations will be absorbed into the ionospheric parameters, and because the ionosphere is related to the ambiguity parameters, the DCB parameters will be further absorbed by the ambiguity parameters, resulting in biased estimates of the resolved ionospheric parameters and ambiguity parameters, but this does not affect the estimation of the position parameters.

本发明的有益效果:本发明通过GEO卫星播发的PPP-B2b增强改正数据 获取高精度的实时GPS/BDS-3实时精密轨道和钟差数据,从而摆脱参考站距离 限制,利用单个接收机实现实时分米级定位效果;本发明通过等效参数转化的 方式将不区分的钟差和电离层参数转化为等效电离层参数,从而通过实时估计 扣除电离层对单频PPP的影响,进而获得实时分米级定位结果。传统单频精密 单点定位主要是通过码相组合消除电离层,但是放大了观测噪声导致定位效果 不佳;本发明通过合理的假设,利用多历元观测值联合解算解决了参数初值确 定时的秩亏问题,从而避免的参数解算不稳定,为实时单频高精度应用提供技 术支撑。Beneficial effects of the present invention: the present invention acquires high-precision real-time GPS/BDS-3 real-time precision orbit and clock error data through the PPP-B2b enhanced correction data broadcast by GEO satellites, thereby getting rid of the distance limitation of reference stations and realizing real-time Decimeter-level positioning effect; the present invention converts indistinguishable clock error and ionospheric parameters into equivalent ionospheric parameters by means of equivalent parameter conversion, thereby deducting the impact of the ionosphere on single-frequency PPP through real-time estimation, and then obtaining real-time Decimeter-level positioning results. Traditional single-frequency precise point positioning mainly eliminates the ionosphere through code-phase combination, but the positioning effect is not good due to the amplification of observation noise; the present invention solves the problem of determining the initial value of parameters by using reasonable assumptions and joint calculation of multi-epoch observation values The problem of rank deficiency in real-time, so as to avoid the instability of parameter calculation, provide technical support for real-time single-frequency high-precision applications.

附图说明Description of drawings

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面 将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有 附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部 分并不一定按照实际的比例绘制。In order to more clearly illustrate the specific embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that are required in the description of the specific embodiments or prior art. Throughout the drawings, similar elements or parts are generally identified by similar reference numerals. In the drawings, elements or parts are not necessarily drawn in actual scale.

图1为本发明框架示意图;Fig. 1 is a schematic diagram of the framework of the present invention;

图2为本发明基于PPP-B2b改正数的单频精密单点定位算法示意图;Fig. 2 is a schematic diagram of the single-frequency precise point positioning algorithm based on the PPP-B2b correction number of the present invention;

图3为本发明利用北斗三号GEO播发的PPP-B2b增强改正数对广播星历 的轨道和钟差进行改正的流程图;Fig. 3 is the flow chart that the present invention utilizes the PPP-B2b enhancement correction number that No. 3 GEO of Big Dipper broadcasts to correct the track and the clock difference of the broadcast ephemeris;

图4为本发明PPP-B2b改正数的单频精密单点定位算法的算法流程图;Fig. 4 is the algorithm flowchart of the single-frequency precise point positioning algorithm of the PPP-B2b correction number of the present invention;

图5为本发明应用的单频GPS/BDS-3动态定位结果示意图。Fig. 5 is a schematic diagram of the single-frequency GPS/BDS-3 dynamic positioning result applied in the present invention.

具体实施方式detailed description

下面将结合附图对本发明的技术方案进行清楚、完整地描述。在本发明 的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、 “竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所 示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不 能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于 描述目的,而不能理解为指示或暗示相正对地重要性。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语 “安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可 以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是 直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于 本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含 义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.

实施例1Example 1

如图1所示,本发明公开了一种PPP-B2b增强的低成本单频GNSS接收 机精密定位方法,采用的技术方案是,地面设备接收来自GPS/BDS-3的导航信 号,通过北斗三号GEO卫星播发的PPP-B2b实时增强改正数对广播星历进行修 正,最终在地面设备中完成实时单频精密单点定位应用。As shown in Figure 1, the present invention discloses a low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b. The technical solution adopted is that ground equipment receives navigation signals from GPS/BDS-3, The PPP-B2b real-time enhanced correction broadcasted by the GEO satellite corrects the broadcast ephemeris, and finally completes the real-time single-frequency precise point positioning application in the ground equipment.

如图2所示,PPP-B2b改正数的实时单频精密单点定位算法模型包括以 下步骤:As shown in Figure 2, the real-time single-frequency precise point positioning algorithm model of PPP-B2b correction number includes the following steps:

S1,基于伪距观测值的单点定位技术;S1, single-point positioning technology based on pseudo-range observations;

S2,基于PPP-B2b增强信息的卫星实时精密轨道和钟差计算;S2, satellite real-time precise orbit and clock error calculation based on PPP-B2b enhanced information;

S3,观测数据预处理与误差模型计算;S3, observation data preprocessing and error model calculation;

S4,基于PPP-B2b改正数的实时单频精密单点定位算法。S4, real-time single-frequency precise point positioning algorithm based on PPP-B2b corrections.

S1中,基于伪距观测值的单点定位技术,包括以下步骤:In S1, the single-point positioning technology based on pseudo-range observations includes the following steps:

在S101中,对接收到的GPS/BDS-3卫星伪距观测数据进行检核,对无伪距数 据的进行剔除,同时计算每个卫星的高度角,剔除低高度角的卫星观测数据;In S101, the received GPS/BDS-3 satellite pseudo-range observation data is checked, and no pseudo-range data is removed, and the elevation angle of each satellite is calculated simultaneously, and the satellite observation data of low elevation angle are removed;

在S102中,广播星历为地面分析中心的外推结果,通过广播星历计算可以得 到精度较差的GPS/BDS-3卫星的实时位置和钟差信息;In S102, the broadcast ephemeris is the extrapolation result of the ground analysis center, and the real-time position and clock error information of GPS/BDS-3 satellites with poor accuracy can be obtained through broadcast ephemeris calculation;

在S103中,对GPS/BDS-3的伪距观测数据泰勒展开线性化,将电离层、对流 层通过模型计算得到。构造关于位置和地面设备钟差的参数的观测方程,并通 过最小二乘迭代计算得到满足精度指标的地面设备的位置和钟差结果;In S103, the pseudo-range observation data of GPS/BDS-3 is Taylor expanded and linearized, and the ionosphere and troposphere are obtained through model calculation. Construct the observation equation about the parameters of the position and the clock error of the ground equipment, and obtain the position and clock error results of the ground equipment that meet the accuracy index through the least squares iterative calculation;

在S104中,对上述定位结果进一步判断,分析其伪距残差信息是否满足要求, 如果满足要求,说明该定位结果可用,否则不可用。In S104, the above positioning result is further judged to analyze whether the pseudorange residual information meets the requirements. If the requirements are met, it means that the positioning result is available, otherwise it is not available.

每历元首先进行S101-S104,可获取当前时刻地面接收机的初始概略位置,为 后续实时精密定位提供初始坐标。In each epoch, S101-S104 is first performed to obtain the initial rough position of the ground receiver at the current moment, and provide initial coordinates for subsequent real-time precise positioning.

如图3所示,是本发明利用北斗三号GEO播发的PPP-B2b增强改正数对 广播星历的轨道和钟差进行改正的流程图。As shown in Figure 3, it is a flow chart of the present invention utilizing the PPP-B2b enhanced correction number broadcasted by Beidou-3 GEO to correct the orbit and the clock error of the broadcast ephemeris.

S2,基于PPP-B2b增强信息的卫星实时精密轨道和钟差计算,基于PPP- B2b增强信息的卫星实时精密轨道和钟差计算,解决实时高精度定位所需的 GPS/BDS-3卫星实时精密坐标和钟差数据,包括以下步骤:S2, satellite real-time precise orbit and clock error calculation based on PPP-B2b enhanced information, satellite real-time precise orbit and clock error calculation based on PPP-B2b enhanced information, to solve the GPS/BDS-3 satellite real-time precision required for real-time high-precision positioning Coordinate and clock data, including the following steps:

S201,对北斗三号GEO卫星实时播发的PPP-B2b轨道和钟差改正数信息进行提 取,分析PPP-B2b轨道和钟差改正数质量情况;S201, extracting the PPP-B2b orbit and the clock error correction number information broadcast in real time by the Beidou No. 3 GEO satellite, and analyzing the PPP-B2b orbit and the clock error correction number quality situation;

S202,获取PPP-B2b增强GPS/BDS-3的轨道改正数,即在径向、法向和切向上 的改正数,对计算得到的粗略GPS/BDS-3卫星位置进行修正;S202, obtain the orbit correction number of PPP-B2b enhanced GPS/BDS-3, promptly the correction number in radial direction, normal direction and tangential direction, correct the rough GPS/BDS-3 satellite position that calculates;

轨道改正信息包括的参数为轨道改正向量δO在径向、切向和法向的分量。 轨道改正值用于计算卫星位置改正向量δX,同时还要联合利用广播星历计算出 的卫星位置向量Xbroadcast。改正的计算公式为:The parameters included in the orbit correction information are the radial, tangential and normal components of the orbit correction vector δO. The orbit correction value is used to calculate the satellite position correction vector δX, and at the same time, the satellite position vector X broadcast calculated by using the broadcast ephemeris is also used. The corrected calculation formula is:

Xorbit=Xbroadcast-δXX orbit =X broadcast -δX

Xorbit表示由轨道改正电文改正得到的卫星位置;Xbroadcast表示广播星历计算得到的卫星位置,其IOD与轨道改正电文的IODN匹配;δX表示卫星位置改正。卫 星位置改正δX的计算公式如下所示:X orbit represents the satellite position corrected by the orbit correction message; X broadcast represents the satellite position calculated by the broadcast ephemeris, and its IOD matches the IODN of the orbit correction message; δX represents the satellite position correction. The calculation formula of satellite position correction δX is as follows:

Figure BDA0003880482250000081
Figure BDA0003880482250000081

Figure BDA0003880482250000082
Figure BDA0003880482250000082

ealong=ecross×eradial e along =e cross ×e radial

δX=[eradial ealong ecross]·δOδX=[e radial e along e cross ]·δO

r=Xbroadcast表示广播星历卫星位置矢量;

Figure BDA0003880482250000083
表示广播星历卫星 速度矢量ei表示方向单位矢量,i={radial along cross}分别对应径向、切向、法 向;δO表示PPP信息中获得的轨道改正矢量,顺序为径向、切向、法向分量。 S203,获取PPP-B2b增强GPS/BDS-3的钟差改正数,对计算得到的粗略 GPS/BDS-3卫星钟差进行修正。r=X broadcast represents the broadcast ephemeris satellite position vector;
Figure BDA0003880482250000083
Represents the broadcast ephemeris satellite velocity vector e i represents the direction unit vector, i={radial along cross} corresponds to the radial direction, tangential direction, and normal direction respectively; δO represents the orbit correction vector obtained in the PPP information, and the order is radial direction, tangential direction , Normal component. S203. Obtain the clock error correction number of the PPP-B2b enhanced GPS/BDS-3, and correct the calculated rough GPS/BDS-3 satellite clock error.

钟差改正电文包括的参数是相对于广播星历钟差的改正参数。该改正参 数的使用方法为:The parameters included in the clock error correction message are correction parameters relative to the clock error of the broadcast ephemeris. The usage method of this correction parameter is:

Figure BDA0003880482250000091
Figure BDA0003880482250000091

tbroadcast表示广播星历计算得到的卫星钟差参数;tsatellite表示经过钟差改正电文得 到的卫星钟差;c表示光速;C0表示PPP-B2b电文中获得的钟差改正参数。 每历元通过广播星历获取GPS/BDS-3的粗略卫星坐标和钟差后,利用PPP-B2b 实时精密改正数对广播星历的卫星轨道和钟差进行改正得到高精度的GPS/BDS- 3实时高精度轨道和钟差信息,用于后续的实时精密单点定位服务。t broadcast indicates the satellite clock error parameter calculated from the broadcast ephemeris; t satellite indicates the satellite clock error obtained through the clock error correction message; c indicates the speed of light; C 0 indicates the clock error correction parameter obtained in the PPP-B2b message. After obtaining the rough satellite coordinates and clock error of GPS/BDS-3 through the broadcast ephemeris in each epoch, the satellite orbit and clock error of the broadcast ephemeris are corrected by using the PPP-B2b real-time precision correction number to obtain high-precision GPS/BDS-3 3 Real-time high-precision orbit and clock error information for subsequent real-time precise single-point positioning services.

S3:观测数据预处理与误差模型计算,观测数据预处理与误差模型计算, 剔除不符合计算要求的GPS/BDS-3的观测数据,为后续精密单点定位服务提供 “干净的”观测数据,同时通过计算可模型化的误差,为后续精密单点定位方 差构建提供可直接计算的误差源信息,包括以下步骤:S3: Observation data preprocessing and error model calculation, observation data preprocessing and error model calculation, eliminate GPS/BDS-3 observation data that do not meet the calculation requirements, and provide "clean" observation data for subsequent precise point positioning services, At the same time, by calculating the error that can be modeled, the error source information that can be directly calculated is provided for the follow-up precision single-point positioning variance construction, including the following steps:

S301,对GPS/BDS-3观测数据进一步检查,剔除观测值中无相位观测信息的观 测数据,同时再次计算卫星高度角,剔除低高度角的卫星观测数据。S301, further check the GPS/BDS-3 observation data, remove the observation data without phase observation information in the observation value, calculate the satellite elevation angle again simultaneously, and reject the satellite observation data with low elevation angle.

S302,对GPS/BDS-3观测数据进行周跳探测和钟差探测,并对发生周跳和钟差 的卫星进行标记。S302. Carry out cycle slip detection and clock error detection on the GPS/BDS-3 observation data, and mark satellites with cycle slip and clock error.

S303~S306,潮汐改正、相对论改正、卫星天线相位缠绕改正、PCO/PCV改正均 可采用相应的误差模型进行改正计算。S303~S306, tidal correction, relativity correction, satellite antenna phase winding correction, PCO/PCV correction can all use the corresponding error model for correction calculation.

S306,利用误差模型计算对流层干延迟以及湿延迟系数。S306, using the error model to calculate the tropospheric dry delay and wet delay coefficients.

本发明采用GPT2模型对对流层延迟进行建模。GPT2模型是基于ERA-Interim2001-2010年全球月平均的气压、气温、比湿的廓线资料建立的气象参 数模型,它能以5°或1°的分辨率提供全球格网点上的气压、温度、湿度垂 直递减率、比湿以及VMF1干湿投影函数的系数,在每个格网点上,每个气象 参数的时间变化通过包含年周期和半年周期的三角函数表达:The present invention uses the GPT2 model to model the tropospheric delay. The GPT2 model is a meteorological parameter model based on the global monthly average pressure, temperature, and specific humidity profile data of ERA-Interim from 2001 to 2010. It can provide pressure and temperature on global grid points with a resolution of 5° or 1° , humidity vertical lapse rate, specific humidity, and the coefficient of the VMF1 dry-humidity projection function. At each grid point, the time variation of each meteorological parameter is expressed by a trigonometric function including the annual cycle and the semi-annual cycle:

Figure BDA0003880482250000101
Figure BDA0003880482250000101

式中的A0,A1,A2,B1,B2事先计算好,并以格网形式保存在一个文件中, 直接调用即可。A 0 , A 1 , A 2 , B 1 , and B 2 in the formula are calculated in advance and saved in a file in the form of a grid, which can be called directly.

A0,A1,A2,B1,B2为气温,气压,比湿的模型系数,分别表示常数偏差, 年周期和半年周期的余弦调和项,以及年周期和半年周期的正弦调和项。A 0 , A 1 , A 2 , B 1 , and B 2 are the model coefficients of air temperature, air pressure, and specific humidity, respectively representing the constant deviation, the cosine harmonic term of the annual cycle and the semi-annual cycle, and the sine harmonic term of the annual cycle and the semi-annual cycle .

在垂直方向上,学者假定地球附近的温度随高度遵循线性变化,而气压 的垂直变化则用指数函数来表达,并采用以下公式对气象参数进行高度改正:In the vertical direction, scholars assume that the temperature near the earth follows a linear change with altitude, while the vertical change of air pressure is expressed by an exponential function, and the meteorological parameters are corrected for altitude with the following formula:

T=T0+dT·dhT=T 0 +dT·dh

P=P0×exp{-c×dh}/100P=P 0 ×exp{-c×dh}/100

c=gm×dMtr/(Rg×Tv)c=g m ×dMtr/(R g ×T v )

gm=9.784×(1.0-2.66×10-3cos(2×lat)-2.8×10-7hg)g m =9.784×(1.0-2.66×10 -3 cos(2×lat)-2.8×10 -7 h g )

Tv=T0×(1+0.6077Q)T v =T 0 ×(1+0.6077Q)

e=Q×P/(0.622+0.378Q)e=Q×P/(0.622+0.378Q)

T0,P0分别是格网点上的气温和气压,T和P分别是由格网点增加dh高度时的 温度和气压,Dt是温度的垂直递减率;Q是比湿;e是水气压;gm是重力加速 度,在GPT2模型中取值为9.80665m/s2;dMtr和Rg分别是大气摩尔质量和气体 常数,其值分别为28.965×10- 3kg/mol,8.3143J/K/mol。T 0 , P 0 are the air temperature and air pressure on the grid point respectively, T and P are the temperature and air pressure when the grid point increases dh height respectively, Dt is the vertical lapse rate of temperature; Q is the specific humidity; e is the water pressure; g m is the gravitational acceleration, which is 9.80665m/s 2 in the GPT2 model; dMtr and R g are the atmospheric molar mass and gas constant, and their values are 28.965×10 - 3 kg/mol, 8.3143J/K/ mol.

当使用GPT2模型时,输入测站的纬度、经度、大地高以及观测时刻的 约化儒略日,模型根据测站坐标查找格网文件中与之相近的气象参数、并利用 上述公式将格网点上的气象参数归算到测站高度,最后利用双线性内插得出站 点的位置的气象参数。可考虑将使用GPT2模型计算的测站位置处的气象参数 带入简化的Saastanmoinen模型来计算测站位置处的天顶对流层延迟:When using the GPT2 model, input the latitude, longitude, geodetic height of the station and the reduced Julian day of the observation time, the model searches for the similar meteorological parameters in the grid file according to the coordinates of the station, and uses the above formula to convert the grid points to The meteorological parameters above are reduced to the height of the station, and finally the meteorological parameters of the location of the station are obtained by bilinear interpolation. The meteorological parameters at the station location calculated using the GPT2 model can be considered into the simplified Saastanmoinen model to calculate the zenith tropospheric delay at the station location:

ZHD=22.2754×P/gm ZHD=22.2754×P/g m

ZWD=22.2754×(1255/T+0.5)×e/gm ZWD=22.2754×(1255/T+0.5)×e/g m

S4,基于PPP-B2b改正数的实时单频精密单点定位算法,通过PPP-B2b 实时精密轨道和钟差改正数对广播星历进行改正,得到精密GPS/BDS-3实时精 密卫星轨道和钟差信息,利用Kalman滤波实时估计地面接收机的实时高精度 位置信息,包括以下步骤:S4, the real-time single-frequency precise point positioning algorithm based on the PPP-B2b correction number, the broadcast ephemeris is corrected by the PPP-B2b real-time precise orbit and clock correction number, and the precise GPS/BDS-3 real-time precise satellite orbit and clock are obtained difference information, using the Kalman filter to estimate the real-time high-precision position information of the ground receiver in real time, including the following steps:

S401,对前面处理后“干净”观测数据,同时得到经过PPP-B2b增强信息改正 的GPS/BDS-3实时精密卫星轨道和钟差数据,对观测值线性化。S401, for the "clean" observation data after the previous processing, obtain the GPS/BDS-3 real-time precise satellite orbit and clock error data corrected by PPP-B2b enhanced information at the same time, and linearize the observation value.

S402,构造单频非差观测方程。GPS/BDS-3单频非差模型线性化可以表示为:S402. Construct a single-frequency non-difference observation equation. The linearization of GPS/BDS-3 single-frequency non-difference model can be expressed as:

Figure BDA0003880482250000111
Figure BDA0003880482250000111

s,r,M分别表示卫星、接收机和导航系统;P,L分别表示伪距和相位观测值;ρ表 示卫星天线和接收机天线之间的站星几何距离,单位为米;dtr,dts分别表示接 收机钟差和卫星钟差;I表示以米为单位的电离层延迟;

Figure BDA0003880482250000112
ZWDr分别表示对 流层湿延迟系数和天顶对流层延迟;λi,
Figure BDA0003880482250000113
分别表示GPS/BDS-3的L1/B1I频点 的波长及其对应的模糊度;
Figure BDA0003880482250000114
分别表示伪距和相位噪声.s, r, M represent the satellite, receiver and navigation system respectively; P, L represent the pseudorange and phase observation values respectively; ρ represents the geometric distance between the satellite antenna and the receiver antenna, in meters; dt r , dt s represent the receiver clock error and the satellite clock error; I represents the ionospheric delay in meters;
Figure BDA0003880482250000112
ZWD r represent the tropospheric wet delay coefficient and zenith tropospheric delay respectively; λ i ,
Figure BDA0003880482250000113
Respectively represent the wavelength of the L1/B1I frequency point of GPS/BDS-3 and its corresponding ambiguity;
Figure BDA0003880482250000114
are the pseudorange and phase noise, respectively.

S403,利用初始两个历元观测方程得到对流层参数和模糊度参数初始解及其方差-协方差矩阵。S403, using the initial two epoch observation equations to obtain initial solutions of tropospheric parameters and ambiguity parameters and variance-covariance matrices thereof.

单频精密单点定位的关键在于电离层误差的消除,传统的单频电离层模型主要利用码相组合的方式消除电离层影响,代价是放大了观测噪声。本专利所述的 单频电离层方法使用附有电离层约束的方法对电离层参数进行估计,从而消除 电离层对单频精密定位的影响。对于N颗卫星的码相观测值共可形成2N个观 测方程,方程中共计需要估计3个坐标参数,2个钟差参数,1个对流层参数, N个电离层参数和N个模糊度参数,即2*N+6个参数。显然观测方程的数量少 于参数个数,导致法方程的秩亏,无法直接估计。因为接收机钟差、电离层参 数、模糊度参数具有耦合性和相关性,我们采用等效参数转化的方式将强相关的钟差参数,电离层参数和模糊度参数转变为可估量。具体实现形式是将第一 个历元的钟差强制约束为0,那么钟差偏移量会被电离层参数和模糊度参数吸 收,造成这两类参数估值有偏,我们称为等效电离层参数和等效模糊度参数。 但这并不影响我们要求解的接收机坐标参数。这种处理方式就解决了参数之间 的秩亏问题。那么观测方程可以转化为:The key to single-frequency precise point positioning lies in the elimination of ionospheric errors. Traditional single-frequency ionospheric models mainly use code-phase combination to eliminate ionospheric effects, at the cost of amplifying observation noise. The single-frequency ionospheric method described in this patent uses a method with ionospheric constraints to estimate ionospheric parameters, thereby eliminating the impact of the ionosphere on single-frequency precise positioning. For the code phase observations of N satellites, a total of 2N observation equations can be formed. In the equation, a total of 3 coordinate parameters, 2 clock error parameters, 1 troposphere parameter, N ionosphere parameters and N ambiguity parameters need to be estimated. That is 2*N+6 parameters. Obviously, the number of observation equations is less than the number of parameters, resulting in the rank deficiency of normal equations, which cannot be directly estimated. Because the receiver clock error, ionospheric parameters, and ambiguity parameters have coupling and correlation, we transform the strongly correlated clock error parameters, ionospheric parameters, and ambiguity parameters into estimable ones by means of equivalent parameter conversion. The specific implementation form is to force the clock bias of the first epoch to be 0, then the clock bias offset will be absorbed by the ionospheric parameters and ambiguity parameters, resulting in biased estimates of these two types of parameters, which we call equivalent Ionospheric parameters and equivalent ambiguity parameters. But this does not affect the receiver coordinate parameters we are solving for. This approach solves the rank deficit problem between parameters. Then the observation equation can be transformed into:

Figure BDA0003880482250000121
Figure BDA0003880482250000121

i表示历元标号;

Figure BDA0003880482250000122
分别表示第i历元的伪距和相位的观测值减去计算值(OMC);
Figure BDA0003880482250000123
表示卫星到接收机的单位向量;Δx表示接收机坐标向量;
Figure BDA0003880482250000124
分别表示相对于第一历元接收机钟差的有偏电离层延迟和模糊度。 其余符号与前面方程表述一致。i represents the epoch label;
Figure BDA0003880482250000122
represent the observed value minus the calculated value (OMC) of the pseudorange and phase of the i-th epoch, respectively;
Figure BDA0003880482250000123
Indicates the unit vector from the satellite to the receiver; Δx indicates the coordinate vector of the receiver;
Figure BDA0003880482250000124
Denote the biased ionospheric delay and ambiguity, respectively, relative to the receiver clock error of the first epoch. The rest of the symbols are consistent with the expressions in the previous equations.

由于参数个数大于观测方程个数,使法方程秩亏。假设接收机位置、对流层参 数、模糊度参数在初始两个历元未发生变化,那么联立初始两个历元的观测方 程,假设每历元有N颗卫星,那么共有4N个伪距和相位观测方程。同时未知 参数有位置参数3个、系统间偏差参数(ISB)一个、接收机钟差参数一个、 对流层参数一个、模糊度参数N个、电离层参数2N个,共3N+6个未知数。那 么只要GPS/BDS-3的可用卫星个数大于6颗,即可解决观测方程秩亏的问题, 即可求解初始的对流层、模糊度参数。Because the number of parameters is greater than the number of observation equations, the normal equation is rank deficient. Assuming that the receiver position, tropospheric parameters, and ambiguity parameters do not change in the initial two epochs, then the observation equations of the initial two epochs are combined, assuming that there are N satellites in each epoch, then there are 4N pseudoranges and phases in total observation equation. At the same time, the unknown parameters include 3 position parameters, one intersystem bias parameter (ISB), one receiver clock error parameter, one troposphere parameter, N ambiguity parameters, and 2N ionospheric parameters, a total of 3N+6 unknowns. Then as long as the number of available satellites of GPS/BDS-3 is greater than 6, the problem of rank deficiency of the observation equation can be solved, and the initial troposphere and ambiguity parameters can be solved.

S404,利用对流层和模糊度参数信息进行约束,结合当前历元的观测方程,利 用最小二乘估计当前历元接收机位置、钟差参数、电离层参数、对流层参数、 模糊度参数和系统间偏差参数。考虑到对流层湿延迟具有随机游走特性,模糊 度参数具有常数的特性,将上个历元的对流层湿延迟和模糊度参数作为当前历 元的约束,可解决观测方程的秩亏问题,实现每个历元的连续参数求解估计。 假设上个历元有N个观测卫星,那么模糊度参数约束有N个方程,同时加上对 流层约束1个,共产生N+1个约束方程。同时当前历元共有M个观测卫星,那 么共有2M个观测方程,加上约束方程,共有2M+N+1个方程。同时当前历元的 参数有3个位置参数、1个接收机钟差参数、1个ISB参数、1个对流层参数、 M个电离层参数、M个模糊度参数,共计2M+6个参数。那么只要2M+N+1>2M+6, 即N大于5,也即最少有6颗GPS/BDS-3可用卫星,就能够连续利用最小二乘 方法连续的求解每个历元的位置、接收机钟差、ISB、电离层、对流层、模糊 度参数。表明上个历元作为约束的可用GPS/BDS-3卫星数目必须达到6颗,同 时当前历元出现掉星或者新增加卫星均不影响观测方程的建立,这有效解决了 观测过程中观测卫星的掉星和新增加卫星的问题。S404, use the troposphere and ambiguity parameter information to constrain, combine the observation equation of the current epoch, use least squares to estimate the current epoch receiver position, clock error parameters, ionospheric parameters, troposphere parameters, ambiguity parameters and inter-system deviation parameter. Considering that the tropospheric wet delay has random walk characteristics and the ambiguity parameters have constant characteristics, taking the tropospheric wet delay and ambiguity parameters of the previous epoch as the constraints of the current epoch can solve the rank deficit problem of the observation equation and realize the Continuous parameter solution estimates for epochs. Assuming that there are N observing satellites in the last epoch, then there are N equations constrained by the ambiguity parameters, and at the same time, one constraint on the troposphere is added, resulting in a total of N+1 constraint equations. At the same time, there are M observation satellites in the current epoch, so there are 2M observation equations in total, plus constraint equations, there are 2M+N+1 equations in total. At the same time, the parameters of the current epoch include 3 position parameters, 1 receiver clock difference parameter, 1 ISB parameter, 1 troposphere parameter, M ionosphere parameters, and M ambiguity parameters, totaling 2M+6 parameters. Then as long as 2M+N+1>2M+6, that is, N is greater than 5, that is, there are at least 6 available GPS/BDS-3 satellites, the least square method can be used to continuously solve the position and reception of each epoch. Clock difference, ISB, ionosphere, troposphere, ambiguity parameters. It shows that the number of available GPS/BDS-3 satellites used as a constraint in the last epoch must reach 6, and at the same time, the establishment of the observation equation will not be affected by the loss of satellites or the addition of new satellites in the current epoch, which effectively solves the problem of satellite observation during the observation process. The problem of dropping stars and adding new satellites.

因此,新的观测方程重构为上个历元的N+1个虚拟观测方程(约束方程)和当 前历元的2M个伪距/相位观测方程。单频精密单点定位中重构的观测方程和参 数分别为:Therefore, the new observation equations are reconstructed into N+1 virtual observation equations (constraint equations) of the last epoch and 2M pseudorange/phase observation equations of the current epoch. The reconstructed observation equations and parameters in single-frequency precise point positioning are:

Figure BDA0003880482250000131
Figure BDA0003880482250000131

Figure BDA0003880482250000132
Figure BDA0003880482250000132

Figure BDA0003880482250000135
Ii,
Figure BDA0003880482250000134
为上个历元对流层、模糊度参数的虚拟观测值及其方差-协方差矩阵;Ai,Li,
Figure BDA0003880482250000136
分别为当前历元的设计矩阵、OMC值和和对应的观测方差-协方 差矩阵。
Figure BDA0003880482250000135
I i ,
Figure BDA0003880482250000134
are the virtual observation values of troposphere and ambiguity parameters and their variance-covariance matrix in the last epoch; A i , L i ,
Figure BDA0003880482250000136
are the design matrix, OMC value and corresponding observation variance-covariance matrix of the current epoch, respectively.

通过最小二乘估计可以实时解算位置参数。同时需要注意的是,电离层参数存 在于伪距和相位观测方程中,那么伪距观测值中的DCB改正会被吸收进电离层 参数中,同时由于电离层和模糊度参数相关,那么DCB参数会进一步被模糊度 参数吸收,导致解算的电离层参数和模糊度参数为有偏估计,但是这并不影响 对位置参数的估计。The location parameters can be solved in real time by least squares estimation. At the same time, it should be noted that the ionospheric parameters exist in the pseudorange and phase observation equations, then the DCB correction in the pseudorange observations will be absorbed into the ionospheric parameters, and because the ionosphere is related to the ambiguity parameters, the DCB parameters will be further absorbed by the ambiguity parameters, resulting in biased estimates of the resolved ionospheric parameters and ambiguity parameters, but this does not affect the estimation of the position parameters.

S405,对对流层参数、模糊度参数的方差-协方差状态矩阵进行更新。为了保 证下个历元观测方程解算顺利进行,即消除观测方程的秩亏问题,提取当前历 元的对流层参数和模糊度参数及其对应的方差-协方差矩阵信息,将这些信息 提交给下个历元的观测方程建立。如此,通过最小二乘估计可以连续的求解接 收机位置参数。S405, updating the variance-covariance state matrix of the troposphere parameter and the ambiguity parameter. In order to ensure the smooth progress of the solution of the observation equation in the next epoch, that is, to eliminate the rank deficiency problem of the observation equation, the tropospheric parameters and ambiguity parameters of the current epoch and their corresponding variance-covariance matrix information are extracted, and these information are submitted to the following The observation equations for each epoch are established. In this way, the receiver position parameters can be solved continuously by least squares estimation.

重复S101-S405的步骤,每个历元利用单频GPS/BDS-3观测数据和PPP-B2b改 正数,利用对流层和模糊度的约束信息构造观测方程,再利用最小二乘即可实 时估计地面接收机实时高精度位置信息。Repeat the steps of S101-S405, use the single-frequency GPS/BDS-3 observation data and PPP-B2b correction number for each epoch, use the constraint information of the troposphere and ambiguity to construct the observation equation, and then use the least squares to estimate the ground surface in real time Receiver real-time high-precision position information.

采用PPP-B2b精密轨道和钟差改正广播星历后,广播星历的钟差精度不再适用 于卫星端轨道和钟差精度计算,需采用新的卫星轨道和钟差精度计算方式:

Figure BDA0003880482250000141
After correcting broadcast ephemeris with PPP-B2b precise orbit and clock error, the clock error accuracy of broadcast ephemeris is no longer applicable to the calculation of satellite orbit and clock error accuracy, and a new calculation method for satellite orbit and clock error accuracy is required:
Figure BDA0003880482250000141

式中,

Figure BDA0003880482250000142
表示卫星s的B2b改正后的轨道和钟差计算精度;URA表示PPP- B2b提供的用户测距精度指数。In the formula,
Figure BDA0003880482250000142
Indicates the B2b corrected orbit and clock error calculation accuracy of satellite s; URA indicates the user ranging accuracy index provided by PPP-B2b.

那么该颗卫星的观测精度计算方式为:Then the calculation method of the observation accuracy of the satellite is:

Figure BDA0003880482250000143
Figure BDA0003880482250000143

Figure BDA0003880482250000144
表示观测噪声、多路径等综合误差,通过高度角定权的方式计算得到。则 观测卫星的伪距和相位观测权模型R为
Figure BDA0003880482250000144
Indicates the comprehensive error of observation noise, multipath, etc., and is calculated by the method of height angle weighting. Then the pseudo-range and phase observation weight model R of the observation satellite is

Figure BDA0003880482250000145
Figure BDA0003880482250000145

Figure BDA0003880482250000146
分别表示无电离层组合的伪距和相位观测值的噪声。
Figure BDA0003880482250000146
denote the noise of the pseudorange and phase observations for the ionospheric-free combination, respectively.

如图4所示,表示基于PPP-B2b改正数的实时单频精密单点定位算法的 详细流程图,主要包括4个模块,分别为:基于伪距观测值的单点定位技术 (S1);基于PPP-B2b增强信息的卫星实时精密轨道和钟差计算(S2);观测数据 预处理与误差模型计算(S3);基于PPP-B2b改正数的实时单频精密单点定位算 法(S4)。以及每个模块里面的具体实现内容。As shown in Figure 4, it represents the detailed flowchart of the real-time single-frequency precise point positioning algorithm based on PPP-B2b correction number, mainly including 4 modules, which are respectively: point positioning technology (S1) based on pseudo-range observation value; Satellite real-time precise orbit and clock error calculation based on PPP-B2b enhanced information (S2); observation data preprocessing and error model calculation (S3); real-time single-frequency precise point positioning algorithm based on PPP-B2b correction number (S4). And the specific implementation content in each module.

如图5所示,利用基于PPP-B2b改正数的实时单频精密单点定位算法对 IGS测站MIZU进行的动态定位测试。实验采用GPS/BDS-3双系统单频仿动态观 测数据,为了分析PPP-B2b改正数对单频精密定位的增强效果,实验同时利用 广播星历(BRDC)和事后精密星历(precise)作为对比。结果表明, GPS/BDS-3双系统单频精密定位在PPP-B2b改正数的增强下,可快速收敛到分 米级。经过PPP-B2b改正后的单频动态定位精度与事后精密星历的定位精度相 当,远远高于广播星历的定位精度,可满足实时高精度定位的需求,为低成本、大范围应用的单频接收机实时精密定位提供了技术支撑。As shown in Fig. 5, the real-time single-frequency precise point positioning algorithm based on the PPP-B2b correction number is used for the dynamic positioning test of the IGS station MIZU. The experiment uses GPS/BDS-3 dual-system single-frequency imitation dynamic observation data. In order to analyze the enhancement effect of PPP-B2b corrections on single-frequency precise positioning, the experiment uses broadcast ephemeris (BRDC) and ex-post precise ephemeris (precise) as Compared. The results show that GPS/BDS-3 dual-system single-frequency precise positioning can quickly converge to decimeter level under the enhancement of PPP-B2b correction number. The single-frequency dynamic positioning accuracy after PPP-B2b correction is equivalent to the positioning accuracy of the post-event precision ephemeris, far higher than the positioning accuracy of the broadcast ephemeris, which can meet the needs of real-time high-precision positioning, and is a low-cost, large-scale application. The real-time precise positioning of the single-frequency receiver provides technical support.

本文中未详细说明的部件为现有技术。Components not specified herein are prior art.

上述虽然对本发明的具体实施例作了详细说明,但是本发明并不限于上 述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发 明宗旨的前提下做出各种变化,而不具备创造性劳动的修改或变形仍在本发明 的保护范围以内。Although the above-mentioned specific embodiments of the present invention have been described in detail, the present invention is not limited to the above-mentioned embodiments. Within the scope of knowledge possessed by those of ordinary skill in the art, various The modification or deformation without creative work is still within the protection scope of the present invention.

Claims (5)

1.一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法,其特征在于:包括通过地面设备接收来自GPS/BDS-3卫星的导航信号,通过北斗三号GEO卫星播放的PPP-B2b实时增强改正数对广播星历进行修正,在地面设备中通过采用PPP-B2b改正数的实时单频精密单点定位算法模型来完成实时单频精密单点定位。1. A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b is characterized in that: it comprises receiving navigation signals from GPS/BDS-3 satellites by ground equipment, and the PPP-BDS broadcast by Beidou No. 3 GEO satellites The B2b real-time enhanced correction corrects the broadcast ephemeris, and the real-time single-frequency precise point positioning is completed by using the real-time single-frequency precise point positioning algorithm model of the PPP-B2b correction number in the ground equipment. 2.根据权利要求1所述的一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法,其特征在于:基于PPP-B2b增强信息的卫星实时精密轨道和钟差计算,不需要额外建立通信链路,也不需要附近布设基站即可实现分米级高精度定位。2. the low-cost single-frequency GNSS receiver precision positioning method of a kind of PPP-B2b enhancement according to claim 1 is characterized in that: based on the satellite real-time precise orbit and clock error calculation of PPP-B2b enhancement information, no additional Establishing a communication link does not require a nearby base station to achieve decimeter-level high-precision positioning. 3.根据权利要求2所述的一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法,其特征在于:PPP-B2b增强信息的卫星实时精密轨道和钟差计算步骤包括:3. the low-cost single-frequency GNSS receiver precision positioning method of a kind of PPP-B2b enhancement according to claim 2, is characterized in that: the satellite real-time precise orbit of PPP-B2b enhancement information and the clock error calculation step comprise: S201,对北斗三号GEO卫星实时播发的PPP-B2b轨道和钟差改正数信息进行提取,分析PPP-B2b轨道和钟差改正数质量情况;S201, extracting the PPP-B2b orbit and clock correction number information broadcast in real time by the Beidou-3 GEO satellite, and analyzing the quality of the PPP-B2b orbit and clock correction number; S202,获取PPP-B2b增强GPS/BDS-3的轨道改正数,即在径向、法向和切向上的改正数,对计算得到的粗略GPS/BDS-3卫星位置进行修正;S202. Obtain the orbit correction number of the PPP-B2b enhanced GPS/BDS-3, that is, the correction number in the radial direction, normal direction and tangential direction, and correct the calculated rough GPS/BDS-3 satellite position; S203,获取PPP-B2b增强GPS/BDS-3的钟差改正数,对计算得到的粗略GPS/BDS-3卫星钟差进行修正,通过得到高精度的GPS/BDS-3实时高精度轨道和钟差信息,用于后续的实时精密单点定位服务。S203, obtain the clock error correction number of PPP-B2b enhanced GPS/BDS-3, correct the calculated rough GPS/BDS-3 satellite clock error, and obtain high-precision GPS/BDS-3 real-time high-precision orbit and clock The difference information is used for subsequent real-time precise point positioning services. 4.根据权利要求1所述的一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法,其特征在于:利用基准转换的方式,对电离层参数进行估算,利用多历元联合求解的方式确定参数初值,使用附有电离层约束的方法预估电离层参数,消除电离层对单频精密定位的影响,并建立观测方程,观测方程的表达式为:4. The low-cost single-frequency GNSS receiver precision positioning method of a kind of PPP-B2b enhancement according to claim 1 is characterized in that: utilize the mode of datum conversion, ionosphere parameter is estimated, utilize multi-epoch joint solution The initial value of the parameters is determined by means of ionospheric constraints, the ionospheric parameters are estimated using the method with ionospheric constraints, the influence of the ionosphere on single-frequency precise positioning is eliminated, and the observation equation is established. The expression of the observation equation is:
Figure FDA0003880482240000021
Figure FDA0003880482240000021
i表示历元标号;
Figure FDA0003880482240000022
分别表示第i历元的伪距和相位的观测值减去计算值(OMC);
Figure FDA0003880482240000023
表示卫星到接收机的单位向量;Δx表示接收机坐标向量;
Figure FDA0003880482240000024
分别表示相对于第一历元接收机钟差的有偏电离层延迟和模糊度。
i represents the epoch label;
Figure FDA0003880482240000022
represent the observed value minus the calculated value (OMC) of the pseudorange and phase of the i-th epoch, respectively;
Figure FDA0003880482240000023
Indicates the unit vector from the satellite to the receiver; Δx indicates the coordinate vector of the receiver;
Figure FDA0003880482240000024
Denote the biased ionospheric delay and ambiguity, respectively, relative to the receiver clock error of the first epoch.
5.根据权利要求1所述的一种PPP-B2b增强的低成本单频GNSS接收机精密定位方法,其特征在于:利用电离层的时间相关特性,通过附有电离层约束的方法求解电离层参数,将电离层不利影响从单频精密单点定位中扣除,进一步获得实时分米级高精度定位结果;将上个历元的对流层湿延迟和模糊度参数作为当前历元的约束,解决观测方程的秩亏问题,实现每个历元的连续参数求解估计。5. the low-cost single-frequency GNSS receiver precision positioning method of a kind of PPP-B2b enhancement according to claim 1 is characterized in that: utilize the time correlation characteristic of ionosphere, solve ionosphere by the method with ionosphere constraint Parameters, the adverse effects of the ionosphere are deducted from the single-frequency precise point positioning, and further obtain real-time decimeter-level high-precision positioning results; the tropospheric wet delay and ambiguity parameters of the previous epoch are used as the constraints of the current epoch to solve the observation A rank-deficient problem for equations that implements continuous parameter-solving estimates for each epoch.
CN202211237254.6A 2022-10-09 2022-10-09 A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b Pending CN115616615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211237254.6A CN115616615A (en) 2022-10-09 2022-10-09 A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211237254.6A CN115616615A (en) 2022-10-09 2022-10-09 A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b

Publications (1)

Publication Number Publication Date
CN115616615A true CN115616615A (en) 2023-01-17

Family

ID=84862194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211237254.6A Pending CN115616615A (en) 2022-10-09 2022-10-09 A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b

Country Status (1)

Country Link
CN (1) CN115616615A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125514A (en) * 2023-02-09 2023-05-16 广州市城市规划勘测设计研究院 Ground disaster monitoring method, device, terminal and medium based on Beidou PPP-RTK virtual observation value
CN116359965A (en) * 2023-02-21 2023-06-30 中国人民解放军战略支援部队信息工程大学 BDS-3PPP-B2B/INS tightly combined navigation method
CN117784179A (en) * 2024-02-23 2024-03-29 中国科学院空天信息创新研究院 Real-time space environment perception monitoring system and method based on PPP-B2b
CN118393538A (en) * 2024-03-29 2024-07-26 中国科学院上海天文台 Beidou B2B-PPP user distance precision factor refinement and user positioning stochastic model optimization method
CN118626866A (en) * 2024-08-09 2024-09-10 武汉大学 PPP-B2b satellite clock error prediction method, device, electronic device and storage medium
CN118915094A (en) * 2024-07-24 2024-11-08 昆明理工大学 Regional ad hoc network disaster monitoring method, equipment, medium and product
CN119881954A (en) * 2025-03-31 2025-04-25 山东省科学院海洋仪器仪表研究所 GNSS-based marine single epoch ionosphere VTEC inversion method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125514A (en) * 2023-02-09 2023-05-16 广州市城市规划勘测设计研究院 Ground disaster monitoring method, device, terminal and medium based on Beidou PPP-RTK virtual observation value
CN116359965A (en) * 2023-02-21 2023-06-30 中国人民解放军战略支援部队信息工程大学 BDS-3PPP-B2B/INS tightly combined navigation method
CN117784179A (en) * 2024-02-23 2024-03-29 中国科学院空天信息创新研究院 Real-time space environment perception monitoring system and method based on PPP-B2b
CN117784179B (en) * 2024-02-23 2024-04-30 中国科学院空天信息创新研究院 PPP-B2B-based real-time space environment sensing monitoring system and method
CN118393538A (en) * 2024-03-29 2024-07-26 中国科学院上海天文台 Beidou B2B-PPP user distance precision factor refinement and user positioning stochastic model optimization method
CN118915094A (en) * 2024-07-24 2024-11-08 昆明理工大学 Regional ad hoc network disaster monitoring method, equipment, medium and product
CN118626866A (en) * 2024-08-09 2024-09-10 武汉大学 PPP-B2b satellite clock error prediction method, device, electronic device and storage medium
CN119881954A (en) * 2025-03-31 2025-04-25 山东省科学院海洋仪器仪表研究所 GNSS-based marine single epoch ionosphere VTEC inversion method

Similar Documents

Publication Publication Date Title
CN115616615A (en) A low-cost single-frequency GNSS receiver precision positioning method enhanced by PPP-B2b
CN110275186B (en) LEO satellite enhanced GNSS ionosphere normalization and fusion modeling method
US10078140B2 (en) Navigation satellite system positioning involving the generation of advanced correction information
JP6165721B2 (en) A differential correction system reinforcement means for characterizing local errors using a target receiver capable of using non-GPS auxiliary PN & T signals
CN103502844B (en) For determining the method for object space, equipment and system
CN102739301B (en) Global navigation satellite wide area augmentation system embedded in cellular network
US20090109090A1 (en) Position determination with reference data outage
CN107907043B (en) A deformation monitoring method for super-large bridges based on medium and long baseline GNSS monitoring network
Gong et al. Evaluation and calibration of BeiDou receiver-related pseudorange biases
CN104316943B (en) A kind of pseudo-distance and Doppler combine differential position system and method
CN114325770A (en) Calibration method of low-orbit satellite downlink navigation signal transmission delay
CN115373005A (en) High-precision product conversion method between satellite navigation signals
CN114779301B (en) Satellite navigation real-time precise single-point positioning method based on broadcast ephemeris
CN105044747A (en) Time synchronization device and method based on multi-satellite common view and filtering
CN114910939B (en) Meteorological correction method for tropospheric delay measured in short-distance and large-height difference RTK
CN110146904B (en) Accurate modeling method suitable for regional ionized layer TEC
CN112946699A (en) Method and system for enhancing GNSS navigation system by using general-purpose low-orbit satellite
CN103543454A (en) Satellite orbit determination system inserted in mobile communication network
CN115902968A (en) PPP terminal positioning method based on Beidou third GEO broadcast enhancement information
Zhang et al. Initial performance evaluation of precise point positioning with triple-frequency observations from BDS-2 and BDS-3 satellites
CN101419274B (en) Method and system for obtaining ionospheric delay error
CN104991265B (en) A kind of Beidou satellite navigation system user uniformity localization method
Basile et al. Analysis on the potential performance of GPS and Galileo Precise Point Positioning using simulated Real-Time Products
TW202208881A (en) Ultra-long baseline rtk
CN111288990B (en) Combined attitude measurement method for overhead maintenance robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination