CN115610707B - On-orbit docking method and docking system for spacecraft - Google Patents
On-orbit docking method and docking system for spacecraft Download PDFInfo
- Publication number
- CN115610707B CN115610707B CN202211630260.8A CN202211630260A CN115610707B CN 115610707 B CN115610707 B CN 115610707B CN 202211630260 A CN202211630260 A CN 202211630260A CN 115610707 B CN115610707 B CN 115610707B
- Authority
- CN
- China
- Prior art keywords
- spacecraft
- docking
- electromagnetic
- control unit
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003032 molecular docking Methods 0.000 title claims abstract description 171
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 238000013459 approach Methods 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims abstract description 9
- 239000012636 effector Substances 0.000 claims description 79
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 230000005288 electromagnetic effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/244—Spacecraft control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/64—Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
- B64G1/646—Docking or rendezvous systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Radar, Positioning & Navigation (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明实施例公开了一种用于航天器的在轨对接方法和对接系统,涉及航天器装置技术领域,用于提高航天器对接容差,降低功耗。对接方法包括:用于捕获目标航天器的主航天器以光学通讯的方式获得目标航天器的位置信息和姿态信息;安装于主航天器上的主动对接模块中的控制单元依据位置信息和姿态信息控制主航天器靠近目标航天器,以使得目标航天器处于可对接距离范围内;控制单元依据位置信息和姿态信息调节主航天器的姿态,以使得目标航天器处于可对接角度范围内;控制单元依据位置信息和姿态信息驱动主航天器与目标航天器对接,并将目标航天器保持在主航天器上。通过该对接方法能够高容差、高精度、低功耗完成对接。
The embodiment of the invention discloses an on-orbit docking method and a docking system for a spacecraft, relates to the technical field of spacecraft devices, and is used to improve the docking tolerance of a spacecraft and reduce power consumption. The docking method includes: the main spacecraft used to capture the target spacecraft obtains the position information and attitude information of the target spacecraft through optical communication; Control the main spacecraft to approach the target spacecraft so that the target spacecraft is within the dockable distance; the control unit adjusts the attitude of the main spacecraft according to the position information and attitude information so that the target spacecraft is within the dockable angle range; the control unit Drive the main spacecraft to dock with the target spacecraft according to the position information and attitude information, and keep the target spacecraft on the main spacecraft. Through the docking method, the docking can be completed with high tolerance, high precision and low power consumption.
Description
技术领域technical field
本发明涉及航天器装置技术领域,尤其涉及一种用于航天器的在轨对接方法和对接系统。The invention relates to the technical field of spacecraft devices, in particular to an on-orbit docking method and a docking system for spacecraft.
背景技术Background technique
空间交会与对接技术是指两个航天器在空间轨道上会合并且在结构上连接成为一个整体的技术,空间交会与对接技术能够广泛应用于各种空间设施建设、在轨装配、回收、补给、维修以及救援等领域。在空间交会与对接的两个航天器中,对接对象可以是在轨的大型航天器,也可以是太空中失控或者出现故障的航天器,整个过程可大致分为地面引导、自动搜寻、逼近、对接合拢四个阶段。Space rendezvous and docking technology refers to the technology of two spacecraft rendezvous on the space orbit and structurally connected as a whole. Space rendezvous and docking technology can be widely used in the construction of various space facilities, on-orbit assembly, recovery, supply, Maintenance and rescue and other fields. In the space rendezvous and docking of the two spacecraft, the docking object can be a large spacecraft in orbit, or a spacecraft that is out of control or malfunctioning in space. The whole process can be roughly divided into ground guidance, automatic search, approach, Docking closes the four stages.
现有技术中对接机构形式主要为碰撞式对接机构,基于对接航天器之间的相对运动实现碰撞捕获,碰撞式对接机构具有对航天器的姿态轨道控制精度有较高要求,对接冲击力较大的技术问题,同时,在进行姿态轨道调整时需要消耗大量燃料,并有可能造成羽流污染。The docking mechanism in the prior art is mainly a collision docking mechanism, which realizes collision capture based on the relative motion between the docked spacecraft. The collision docking mechanism has high requirements for the attitude and orbit control accuracy of the spacecraft, and the docking impact force is relatively large. At the same time, it needs to consume a lot of fuel when adjusting the attitude and orbit, and may cause plume pollution.
现有技术中另一种对接形式是通过磁力捕获实现航天器的对接,磁力捕获是指通过磁力吸附的方式实现航天器对接末段的姿态调整和距离接近,并最终实现对接。通过磁力的主要形式有电磁力对接和永磁力对接,电磁力对接的主要问题在于对接时需要较大功率,消耗电量较大,若想实现长时间连接需要长时间供电或机械结构锁紧;永磁体对接的主要问题是对接后难以释放,同时对接过程中电磁力不可调节。磁力对接方法均对姿态控制精度要求较高。Another form of docking in the prior art is to realize the docking of the spacecraft through magnetic capture. Magnetic capture refers to the attitude adjustment and distance approach of the final docking stage of the spacecraft through magnetic adsorption, and finally realizes the docking. The main forms of magnetic force are electromagnetic force docking and permanent magnetic force docking. The main problem of electromagnetic force docking is that it requires large power and consumes a lot of power. If you want to achieve long-term connection, you need long-term power supply or mechanical structure locking; permanent The main problem of magnet docking is that it is difficult to release after docking, and at the same time, the electromagnetic force cannot be adjusted during the docking process. Magnetic docking methods require high attitude control accuracy.
发明内容Contents of the invention
为解决上述技术问题,本发明实施例期望提供一种用于航天器的在轨对接方法和对接系统,本发明的技术方案是这样实现的:In order to solve the above technical problems, the embodiment of the present invention expects to provide an on-orbit docking method and a docking system for spacecraft, and the technical solution of the present invention is realized in this way:
第一方面,本发明提供了一种用于航天器的在轨对接方法,所述对接方法包括以下步骤:S101、用于捕获目标航天器的主航天器以光学通讯的方式获得所述目标航天器的位置信息和姿态信息;S102、安装于所述主航天器上的主动对接模块中的控制单元依据所述位置信息和所述姿态信息控制所述主航天器靠近所述目标航天器,以使得所述目标航天器处于可对接距离范围内;S103、所述控制单元依据所述位置信息和所述姿态信息调节所述主航天器的姿态,以使得所述目标航天器处于可对接角度范围内;S104、所述控制单元依据所述位置信息和所述姿态信息驱动所述主航天器与所述目标航天器对接,并将所述目标航天器保持在所述主航天器上。In a first aspect, the present invention provides an on-orbit docking method for a spacecraft. The docking method includes the following steps: S101. The main spacecraft used to capture the target spacecraft obtains the target spacecraft by optical communication. position information and attitude information of the spacecraft; S102, the control unit installed in the active docking module on the main spacecraft controls the main spacecraft to approach the target spacecraft according to the position information and the attitude information, so as to Make the target spacecraft within a dockable distance range; S103, the control unit adjusts the attitude of the main spacecraft according to the position information and the attitude information, so that the target spacecraft is within a dockable angle range In; S104, the control unit drives the main spacecraft to dock with the target spacecraft according to the position information and the attitude information, and keeps the target spacecraft on the main spacecraft.
第二方面,本发明提供了一种用于航天器的在轨对接系统,所述对接系统包括主动对接模块和被动对接模块,所述被动对接模块安装在目标航天器上,所述主动对接模块安装在用于与所述目标航天器建立对接的主航天器上,In a second aspect, the present invention provides an on-orbit docking system for a spacecraft, the docking system includes an active docking module and a passive docking module, the passive docking module is installed on the target spacecraft, and the active docking module mounted on a host spacecraft for docking with said target spacecraft,
所述被动对接模块包括底座、设置在所述底座的端面上的标靶单元以及设置在所述底座的端面上的连接单元,其中,所述标靶单元经配置成向所述主航天器提供所述目标航天器的姿态信息和位置信息,所述连接单元经配置成以电磁连接的方式与所述主航天器建立连接;The passive docking module includes a base, a target unit disposed on an end face of the base, and a connecting unit disposed on an end face of the base, wherein the target unit is configured to provide the main spacecraft with Attitude information and position information of the target spacecraft, the connection unit is configured to establish a connection with the main spacecraft in an electromagnetic connection;
所述主动对接模块包括控制单元、捕获板、设置在所述捕获板上的追踪单元以及设置在所述捕获板上的捕获单元,所述捕获板经构造成具有向任意方向倾斜第一角度的倾角,其中,所述主动对接模块经配置成:所述追踪单元以光学通信的方式获取所述位置信息和所述姿态信息,所述控制单元基于所述位置信息和所述姿态信息分别向所述捕获板和所述捕获单元传输捕获板调节指令和电磁调节指令,所述捕获板基于所述捕获板调节指令进行倾斜,所述捕获单元基于所述电磁调节指令与所述连接单元对接或分离,以实现所述主航天器与所述目标航天器的对接或分离。The active docking module includes a control unit, a capture board, a tracking unit disposed on the capture board, and a capture unit disposed on the capture board, and the capture board is configured to have a first angle of inclination to any direction inclination angle, wherein the active docking module is configured such that: the tracking unit obtains the position information and the attitude information by means of optical communication, and the control unit reports to the The capture plate and the capture unit transmit a capture plate adjustment instruction and an electromagnetic adjustment instruction, the capture plate is tilted based on the capture plate adjustment instruction, and the capture unit is docked or separated from the connection unit based on the electromagnetic adjustment instruction , to realize the docking or separation of the host spacecraft and the target spacecraft.
本发明公开了一种用于航天器的在轨对接方法和对接系统,在不同的情况下选择不同的对接策略,增大对接姿态控制的容差,以低功耗长时间将目标航天器保持在主航天器上,还能够实现主航天器与目标航天器的主动分离。The invention discloses an on-orbit docking method and a docking system for spacecraft. Different docking strategies are selected in different situations, the tolerance of docking attitude control is increased, and the target spacecraft is kept for a long time with low power consumption. On the main spacecraft, active separation of the main spacecraft and the target spacecraft can also be realized.
附图说明Description of drawings
图1为本发明的实施例公开的一种用于航天器的在轨对接系统的示意图;Fig. 1 is a schematic diagram of an on-orbit docking system for a spacecraft disclosed in an embodiment of the present invention;
图2为本发明的实施例公开的一种用于航天器的在轨对接系统的被动对接模块的示意图;Fig. 2 is a schematic diagram of a passive docking module used for an on-orbit docking system of a spacecraft disclosed in an embodiment of the present invention;
图3为本发明的实施例公开的一种用于航天器的在轨对接系统的主动对接模块的示意图;FIG. 3 is a schematic diagram of an active docking module for an on-orbit docking system for a spacecraft disclosed in an embodiment of the present invention;
图4为本发明的实施例公开的一种用于航天器的在轨对接系统的捕获板的示意图;Fig. 4 is a schematic diagram of a capture plate used in an on-orbit docking system for a spacecraft disclosed in an embodiment of the present invention;
图5为本发明的实施例公开的一种用于航天器的在轨对接系统的主动对接模块的局部示意图;Fig. 5 is a partial schematic diagram of an active docking module for an on-orbit docking system for a spacecraft disclosed in an embodiment of the present invention;
图6为本发明的实施例公开的一种用于航天器的在轨对接方法的流程图;6 is a flow chart of an on-orbit docking method for a spacecraft disclosed in an embodiment of the present invention;
图7为本发明的实施例公开的一种用于航天器的在轨对接方法中建立捕获板和底座之间夹角示意图;Fig. 7 is a schematic diagram of establishing the angle between the capture plate and the base in an on-orbit docking method for a spacecraft disclosed in an embodiment of the present invention;
图8为本发明的实施例公开的一种用于航天器的在轨对接方法中对底座进行姿态矫正的示意图。Fig. 8 is a schematic diagram of correcting the attitude of the base in an on-orbit docking method for a spacecraft disclosed by an embodiment of the present invention.
其中,附图标记为:1、对接系统;10、主动对接模块;11、捕获板;111、杆状件;112、万向球组件;1121、球;1122、球容置槽;12、追踪单元;13、捕获单元;131、电磁效应器;1311、第二永磁体;1312、电磁铁;20、被动对接模块;21、底座;22、标靶单元;23、连接单元;231、第一永磁体。Wherein, the reference signs are: 1. Docking system; 10. Active docking module; 11. Capturing plate; 111. Rod-shaped member; 112. Universal ball assembly; 1121. Ball; 1122. Ball accommodating groove; 12. Tracking Unit; 13, capture unit; 131, electromagnetic effector; 1311, second permanent magnet; 1312, electromagnet; 20, passive docking module; 21, base; 22, target unit; 23, connection unit; 231, first Permanent magnets.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.
现有的通过电磁捕获实现航天器的对接方式可以分为电磁式对接和永磁式对接,其中,电磁式对接是通过向电磁铁通电以吸引衔铁从而实现对接,电磁铁对接的主要问题在于对接时需要较大功率,消耗电量较大,若想实现长时间连接需要持续供电或者增加额外的机械装置提供机械结构锁紧,并且在对接过程中对主航天器的姿态控制精度要求较高。永磁式对接则是利用永磁体与永磁体或者永磁体与衔铁之间相互吸引从而实现对接,在对接之后难以释放,并且在对接过程中电磁力不可调节。The existing docking methods of spacecraft through electromagnetic capture can be divided into electromagnetic docking and permanent magnet docking. Among them, electromagnetic docking is to achieve docking by energizing the electromagnet to attract the armature. The main problem of electromagnet docking is the docking Higher power is required during the docking process, and the power consumption is larger. If you want to achieve long-term connection, you need to continue to supply power or add an additional mechanical device to provide mechanical structure locking, and the attitude control accuracy of the main spacecraft is required during the docking process. Permanent magnet docking is to use the mutual attraction between permanent magnets and permanent magnets or between permanent magnets and armatures to achieve docking. It is difficult to release after docking, and the electromagnetic force cannot be adjusted during the docking process.
基于此,参见附图1,其示出了本发明的实施例公开了一种用于航天器的在轨对接系统1,所述对接系统1包括主动对接模块10和被动对接模块20,所述被动对接模块20安装在目标航天器上,所述主动对接模块10安装在用于与所述目标航天器建立对接的主航天器上。Based on this, referring to accompanying
参见附图2,其示出了所述被动对接模块20的示意图,所述被动对接模块20包括底座21、设置在所述底座21端面上的标靶单元22以及设置在所述底座21端面上的连接单元23,其中,所述底座21经构造成圆盘状并安装于所述目标航天器的主体;所述标靶单元22设置在所述底座21的端面上,所述标靶单元22用于向所述主航天器提供所述目标航天器的姿态信息和位置信息;所述连接单元23设置在所述底座21表面,所述连接单元23经配置成以电磁吸附的方式与所述主航天器建立连接。Referring to accompanying drawing 2, it has shown the schematic diagram of described
所述标靶单元22经配置成借助光信号传输的方式向所述主航天器提供所述姿态信息和所述位置信息,所述标靶单元22包括信号光反射器,所述信号光反射器经配置成对信号光进行反射处理,所述信号光反射器可以是任何能够对光进行反射的装置、例如反光镜。所述标靶单元22包括至少一个信号光反射器,便于以更多的反射角度和更高的反射强度对信号光进行反射处理,所述至少一个信号光反射器沿所述底座21端面的周向均匀地设置在所述底座21端面内,以使得所述标靶单元22能够更均匀、更全面地接收并反射信号光,优选地,参见附图2,所述信号光反射器的数量是24。The
参见附图1和附图2,所述连接单元23包括以电磁连接的方式与所述主航天器建立连接的第一永磁体231,所述第一永磁体231的磁场方向固定,磁场强度固定。优选地,所述连接单元23包括至少一个第一永磁体231以保证电磁连接强度,所述至少一个第一永磁体231沿所述底座21端面的周向均匀地设置在所述底座21端面上,所述至少一个第一永磁体231经构造成环绕所述信号光反射器布置。优选地,参见附图2,所述第一永磁体231有4个,分别设置在所述底座21端面上的0°、90°、180°以及270°。在本发明的另一实施例中,所述连接单元23还包括设置在所述底座21端面内的环状铁磁体,所述铁磁体环绕所述信号光发射器,所述第一永磁体231设置在所述铁磁体上,其中,所述铁磁体由磁性材料制成,例如铁或者镍等。Referring to accompanying
参见附图3至附图4,其分别示出了所述主动对接模块10的示意图和捕获板11的示意图,所述主动对接模块10包括控制单元(未示出)、捕获板11、设置在所述捕获板11上的追踪单元12以及设置在所述捕获板11上的捕获单元13,所述捕获板11经构造成具有向任意方向倾斜第一角度的倾角,其中,所述主动对接模块10经配置成:所述追踪单元12以光学通信的方式获取所述位置信息和所述姿态信息,所述控制单元基于所述位置信息和所述姿态信息分别向所述捕获板11和所述捕获单元13传输捕获板调节指令和电磁调节指令,所述捕获板11基于所述捕获板调节指令进行倾斜,所述捕获单元13基于所述电磁调节指令与所述连接单元23对接或分离以实现所述主航天器与所述目标航天器的对接或分离。在本发明的另一实施例中,所述主动对接模块10还包括波纹管,所述波纹管用于减少建立对接时冲击对目标航天器的影响。Referring to accompanying drawings 3 to 4, they respectively show a schematic diagram of the
所述捕获板11安装在所述主航天器的主体上,所述捕获板11经构造成能够向任意方向倾斜第一角度的倾角,参见附图4,其示出了所述捕获板11的结构示意图,所述捕获板11通过杆状件111和万向球组件112安装在所述主航天器的主体上,其中,所述捕获板11通过杆状件111与所述万向球组件112连接成一个整体,所述捕获板11借助球1121在球容置槽1122内的移动能够朝向任一方向倾斜一定角度,当需要根据实际情况或者工作需求调节所述第一角度的大小时,则对所述万向球组件112中的球1121和球容置槽1122的开口大小进行调节。优选地,第一角度为30°,则所述捕获板11的作用范围为球心角为60°的球面圆锥。The
所述追踪单元12包括信号光发射器和信号光接收器,所述信号光发射器用于向所述目标航天器发出信号光,具体地,所述信号光发射器向所述信号光反射器发出信号光,优选地,所述信号光发射器由LED灯组构成。所述信号光接收器用于接收经由所述信号光反射器反射处理的信号光,并从经反射处理的信号光中解析出所述目标航天器当下所处的位置以及所述目标航天器的姿态,优选地,所述信号光接收器由双目相机构成。在本发明另一实施例中,为了减少所述信号光接收器识别信号光的误差,所述信号光接收器设置在所述捕获板11的中心,另外,为了保护所述信号光接收器中精密的光学元件,所述捕获板11包括用于保护所述信号光接收器的盖板,所述盖板上与所述信号光接收器和所述信号光发射器相应的位置设置有公有信号光通过的孔洞。The
所述捕获单元13包括至少一个独立工作的电磁效应器131,参见附图1和附图5,附图5示出了所述主动对接模块10的局部示意图,对应于所述至少一个第一永磁体231,全部电磁效应器131以类似于所述第一永磁体231在所述底座21上的布置方式,沿所述捕获板11的周向均匀地设置在所述捕获板11内,优选地,所述至少一个第一永磁体231中的每一个第一永磁体231都具有与其对应的一个电磁效应器131。所述电磁效应器131包括构造成一个整体的第二永磁体1311和电磁铁1312,所述第二永磁体1311经构造成以第一吸附力吸附所述第一永磁体231。所述电磁铁1312通电后可产生相应的磁场以吸附或排斥所述第一永磁体231,具体地,当所述电磁铁1312通入正向电流时,所述电磁铁1312中的线圈产生的磁场方向与所述第一永磁体231的磁场方向相同,在所述电磁铁1312与所述第一永磁体231之间产生吸附力;当所述电磁铁1312通入反向电流时,所述电磁铁1312中的线圈产生的磁场方向与所述第一永磁体231的磁场方向相反,在所述电磁铁1312与所述第一永磁体231之间产生排斥力。另外,在向所述电磁铁1312通入电流时,通过调节电流大小能够改变所述电磁铁1312与所述第一永磁体231之间吸附力或排斥力的大小,示意性地,为了便于控制,将通入所述电磁效应器131的电流划分为0档,一档,二档,其分别为峰值电流的0%,50%、100%,当所述电磁效应器131通入一档正向电流时,可产生与第二永磁体1311强度相同的磁场,所述电磁铁1312以第二吸附力吸附所述第一永磁体231,所述第二吸附力与所述第一吸附力大小相等。The
所述控制单元与所述追踪单元12电连接,当所述信号光接收器解析出所述位置信息和所述姿态信息后,所述控制单元依据所述位置信息和所述姿态信息向所述捕获板11和所述捕获单元13分别发出调节指令,其中,所述捕获板11基于调节指令进行倾斜,所述捕获单元13基于调节指令向所述电磁效应器131通电或使得所述电磁效应器131断电,以改变所述电磁效应器131对所述第一永磁体231的吸附力或排斥力,实现所述捕获单元13与所述连接单元的对接或分离。The control unit is electrically connected to the
基于上述实施例所公开的一种用于航天器的在轨对接系统1,下述实施例中选取所述第一角度为30°作为示例性说明,参见附图6,其示出了本发明实施例公开的一种用于航天器的在轨对接方法的流程图,所述对接方法包括:Based on the on-
S101、用于捕获目标航天器的主航天器以光学通讯的方式获得所述目标航天器的位置信息和姿态信息;S101. The main spacecraft used to capture the target spacecraft obtains the position information and attitude information of the target spacecraft through optical communication;
S102、安装于所述主航天器上的主动对接模块中的控制单元依据所述位置信息和所述姿态信息控制所述主航天器靠近所述目标航天器,以使得所述目标航天器处于可对接距离范围内;S102. The control unit installed in the active docking module on the main spacecraft controls the main spacecraft to approach the target spacecraft according to the position information and the attitude information, so that the target spacecraft is in a possible position Within the docking distance;
S103、所述控制单元依据所述位置信息和所述姿态信息调节所述主航天器的姿态,以使得所述目标航天器处于可对接角度范围内;S103. The control unit adjusts the attitude of the main spacecraft according to the position information and the attitude information, so that the target spacecraft is within a dockable angle range;
S104、所述控制单元依据所述位置信息和所述姿态信息驱动所述主航天器与所述目标航天器对接,并将所述目标航天器保持在所述主航天器上。S104. The control unit drives the main spacecraft to dock with the target spacecraft according to the position information and the attitude information, and keeps the target spacecraft on the main spacecraft.
当所述主航天器以光学通讯的方式获得所述目标航天器的位置信息和姿态信息时,安装于所述主动对接模块10中的追踪单元12的信号光发射器向所述目标航天器发出信号光;所述信号光经由安装于所述目标航天器上的被动对接模块20中的标靶单元22的信号光反射器反射,所述信号光被安装于所述追踪单元12的信号光接收器捕获;所述信号光接收器解析所述信号光以获得所述位置信息和所述姿态信息,并将所述位置信息和所述姿态信息传输至所述控制单元。When the main spacecraft obtains the position information and attitude information of the target spacecraft through optical communication, the signal light emitter of the
当所述控制单元获得所述位置信息和所述姿态信息后,所述控制单元依据所述位置信息和所述姿态信息,计算出安装于所述主动对接模块10中的捕获板11与安装于所述被动对接模块20中的底座21的端面之间的距离,所述控制单元判断所述距离大于第一预设对接距离时,所述控制单元控制姿轨控单机驱动所述主航天器靠近所述目标航天器,以使得所述距离小于所述第一预设对接距离。在所述主航天器接近所述目标航天器的过程中,所述主航天器通过自身的姿轨控单机向所述目标航天器靠近,为了满足能够建立对接的距离条件,示意性地,将所述捕获板11与所述底座21的端面之间的距离划分为三个阶段,具体地,远距离:>1m;中距离:0.1m-1m;近距离:<0.1m,示意性地,所述第一预设对接距离为1m,所述控制单元依据所述位置信息判断所述距离是否进入所述中距离条件,当所述距离不满足所述中距离条件时,所述控制单元控制所述主航天器进行机动以靠近所述目标航天器,直至所述距离小于1m后所述控制单元控制所述主航天器停止机动。After the control unit obtains the position information and the attitude information, the control unit calculates the
当所述距离小于第一距离时,所述控制单元依据所述位置信息和所述姿态信息,计算获得所述捕获板11的初始面与所述底座21的端面之间的夹角,其中所述捕获板11的初始面指的是,在获得当前所述位置信息和所述姿态信息时所述主航天器所处的位置状态和空间状态中,所述捕获板11表面所在的空间位置和姿态,所述控制单元判断所述夹角大于第一预设对接角度时,所述控制单元控制所述姿轨控单机调节所述主航天器的姿态,以使得所述夹角小于所述第一预设对接角度,需要注意的是,当所述主航天器调整姿态后,需要重新获得所述捕获板11的空间位置和姿态以计算新的夹角。当所述主航天器停止机动后,为了满足能够建立对接的姿态条件,所述控制单元依据所述姿态信息获得所述夹角并进行判断。示意性地,参见附图7,其示出了空间中所述捕获板11和所述底座21夹角示意图,其中,所述用于获取所述位置信息和所述姿态信息的追踪单元12位于所述捕获板11的中心,因此以所述捕获板11的中心为坐标原点建立坐标轴,从原点到所述底座21端面中心的向量为r,垂直于所述底座21端面的向量为n,通过计算向量r与向量n的乘积并根据所述第一预设角度设置所述乘积的范围以判断姿态条件是否满足建立对接,示意性地,选取第一预设角度为90°,相应地,当所述乘积为零时,所述姿态满足建立对接的条件,相反的,当所述乘积大于零时,则主航天器需要进行姿态调整后再次进行判断。When the distance is less than the first distance, the control unit calculates and obtains the angle between the initial surface of the
当所述主航天器的姿态满足建立对接的姿态条件后,开始建立对接,所述控制单元判断所述夹角大于第二预设对接角度时,示意性地,选取所述第二预设角度等于所述第一角度30度,此时,仅依靠所述捕获板11的倾斜无法实现所述捕获板11与所述底座21的端面平行,因此,所述控制单元发出第一电磁调节指令和第一捕获板调节指令,所述捕获板11基于所述第一捕获板调节指令朝向所述底座21发生最大角度倾斜,即所述捕获板11向所述底座21倾斜角度为第一角度30°,安装于所述主动对接模块10中的捕获单元13的全部电磁效应器131依据所述第一电磁调节指令对所述底座21进行姿态矫正以使得所述捕获板11与所述底座21的端面平行,When the attitude of the main spacecraft satisfies the attitude condition for establishing docking, it starts to establish docking, and when the control unit judges that the included angle is greater than a second preset docking angle, schematically, selects the second preset angle It is equal to the first angle of 30 degrees. At this time, only relying on the inclination of the
在对所述底座21进行姿态矫正以使得所述捕获板11与所述底座21的端面平行的过程中,对捕获单元13采取分区控制的策略,参见附图8,其示出了对所述底座21进行姿态矫正的示意图,所述控制单元依据每个电磁效应器131与其在所述底座21上的对应区域之间的间距,将全部所述电磁效应器131均分为一类电磁效应器和二类电磁效应器,其中,所述一类电磁效应器中的任一个电磁效应器131相较于所述二类电磁效应器中的任一个电磁效应器131更靠近所述底座21,其中,对捕获单元13采用半断半通的控制策略,依据电磁效应器131与其在所述底座21上的对应区域之间的间距将全部电磁效应器131划分为两个半圆区域,其中,A区域中的电磁效应器131为所述一类电磁效应器,B区域中的电磁效应器131为所述二类电磁效应器,相应地,所述底座21也被划分为与A区域对应的A’区域以及与B区域对应的B’区域,需要注意的是,依据依据电磁效应器131与所述底座21的间距将全部电磁效应器131划分为两个半圆区域仅为本发明的一种实施例,全部所述电磁效应器131还能够划分为更多个区域以提供更精准、更细致的控制,In the process of correcting the posture of the base 21 so that the
所述一类电磁效应器依据所述第一电磁调节指令断电,所述二类电磁效应器依据所述第一电磁调节指令通入正向电流,即,A区域的电磁效应器131停止供电,仅依靠A区域中的第二永磁体1311吸附A’区域中的第一永磁体231,向B区域的电磁效应器131通入正向电流,以使得B区域的电磁铁1312和第二永磁体1311共同吸附B’区域中的第一永磁体231,当B区域产生的吸附力更大时,底座21上的B’区域的移动速度要大于A’区域,因此底座21会在捕获单元13的作用下发生旋转,从而达到对所述底座21的姿态矫正,使得所述捕获板11与所述底座21的端面平行。需要注意的是,在向B区域的电磁效应器131通入正向电流时,基于对所述底座21姿态的调整程度,在所述夹角大于第三预设角度时,所述二类电磁效应器通入二档正向电流,在所述夹角小于所述第三预设角度时,所述二类电磁效应器通入一档正向电流,示意性地,选取所述第三预设角度为60°,当所述夹角大于30°小于60°时,向B区域的电磁效应器131通入一档正向电流,当所述夹角大于60°小于90°时,向B区域的电磁效应器131通入二档正向电流,当所述底座21完成姿态矫正、即所述捕获板11与所述底座21的端面平行后,捕获单元13的全部电磁效应器131通入正向电流,以吸附所述连接单元23,驱动所述底座21靠近所述捕获板11;The first type of electromagnetic effector is powered off according to the first electromagnetic adjustment command, and the second type of electromagnetic effector is powered on according to the first electromagnetic adjustment command, that is, the
当所述控制单元判断所述夹角小于第二预设对接角度时,即所述夹角小于30°时,所述控制单元发出第二电磁调节指令和第二捕获板调节指令,所述捕获板11基于所述第二捕获板调节指令朝向所述底座21倾斜以使得所述捕获板11与所述底座21的端面平行,全部所述电磁效应器131基于所述第二电磁调节指令通入正向电流吸附安装于所述被动对接模块20中的连接单元23的第一永磁体231,优选通入二挡正向电流驱动所述底座21靠近所述捕获板11;When the control unit judges that the included angle is smaller than the second preset docking angle, that is, when the included angle is smaller than 30°, the control unit sends a second electromagnetic adjustment command and a second capture plate adjustment command, and the capture The
在所述底座21靠近所述捕获板11的过程中,出于节省能源的目的,所述控制单元判断,当所述捕获板11与所述底座21的端面之间的间距等于或小于第二预设对接距离时,全部所述电磁效应器131断电,仅通过所述电磁效应器131中的第二永磁体1311吸附所述第一永磁体231,以驱动所述底座21靠近直至接触所述捕获板11,从而将所述底座21保持在所述捕获板11上实现所述目标航天器与所述主航天器的对接,示意性地,所述第二预设对接距离为所述近距离,即当所述捕获板11与所述底座21端面之间的距离小于0.1m时,为了节省能源,捕获单元13断电以通过第二永磁体1311吸附所述第一永磁体231,驱动所述底座21靠近并接触所述捕获板11,并且通过第二永磁体1311将所述底座21保持在所述捕获板11上,而不需要持续向电磁效应器131通电。In the process of the base 21 approaching the
当所述主航天器与所述目标航天器建立对接后,需要与所述目标航天器分离时,仍对全部电磁效应器131采取分区控制的策略,所述控制单元发出第三电磁调节指令,基于所述第三电磁调节指令,全部所述电磁效应器131上与所述第一永磁体231相对应电磁效应器131划分为第一电磁效应器,全部所述电磁效应器131上不与所述第一永磁体231相对应电磁效应器131划分为第二电磁效应器。采取分区控制的策略,向所述第一电磁效应器通入二档反向电流,使得所述第一电磁效应器中的第一电磁铁与所述第一永磁体231产生第一排斥力,所述第一排斥力大于所述第一吸附力,所述第一排斥力用于中和所述第一吸附力,还用于排斥所述第一永磁体231;为了防止所述第二电磁效应器影响分离,向所述第二电磁效应器通入一档反向电流,通过第二电磁铁产生的磁场中和所述第二电磁效应器中的第二永磁体1311的磁场,使得所述第二电磁效应器的总磁场为零,不与所述连接单元23产生任何力的作用。在通电结束后,所述控制单元控制所述姿轨控单机驱动所述主航天器离开所述目标航天器,从而实现所述主航天器与所述目标航天器的分离。When the main spacecraft is docked with the target spacecraft and needs to be separated from the target spacecraft, the strategy of partition control is still adopted for all
本发明通过在被动对接模块中安装第一永磁体,以增大主动对接模块与被动对接模块的吸引力,同时还有利于被动对接模块的顺利释放,还根据不同的情况对主动对接模块施加不同的控制策略,可以增大姿态的容差,有利于完成高精度,低冲击的对接。The present invention installs the first permanent magnet in the passive docking module to increase the attractive force between the active docking module and the passive docking module, and at the same time facilitates the smooth release of the passive docking module. The control strategy can increase the attitude tolerance, which is conducive to the completion of high-precision, low-impact docking.
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。It should be noted that: the technical solutions described in the embodiments of the present invention can be combined arbitrarily if there is no conflict.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211630260.8A CN115610707B (en) | 2022-12-19 | 2022-12-19 | On-orbit docking method and docking system for spacecraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211630260.8A CN115610707B (en) | 2022-12-19 | 2022-12-19 | On-orbit docking method and docking system for spacecraft |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115610707A CN115610707A (en) | 2023-01-17 |
CN115610707B true CN115610707B (en) | 2023-04-04 |
Family
ID=84880915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211630260.8A Active CN115610707B (en) | 2022-12-19 | 2022-12-19 | On-orbit docking method and docking system for spacecraft |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115610707B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000142598A (en) * | 1998-11-13 | 2000-05-23 | Nec Eng Ltd | Spacecraft coupling / separation device using electromagnet and coupling / separation method |
CN103407586B (en) * | 2013-08-30 | 2016-04-20 | 中国人民解放军国防科学技术大学 | Electromagnetic butt joint system |
EP3584178A4 (en) * | 2017-02-15 | 2020-11-25 | Astroscale Japan Inc. | DETECTION SYSTEM, SPACE NAVIGATION BODY AND PLATE-SHAPED BODY |
EP3730412B1 (en) * | 2017-02-15 | 2022-08-10 | Astroscale Japan Inc. | Aerospace vehicle for capturing a target object in space |
CN109466808B (en) * | 2018-12-14 | 2021-04-09 | 哈尔滨工业大学 | Electromagnetic docking device and method based on linear motor |
CN209351628U (en) * | 2018-12-30 | 2019-09-06 | 中国科学院沈阳自动化研究所 | space electromagnetic docking device |
CN115402540B (en) * | 2022-11-02 | 2023-02-28 | 哈尔滨工业大学 | Adaptation device for assisting in orbital transfer and orbital transfer method |
-
2022
- 2022-12-19 CN CN202211630260.8A patent/CN115610707B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115610707A (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4550850B2 (en) | Piezoelectric motor system | |
US10326348B2 (en) | Multi-degree of freedom electromagnetic machine | |
JP2017212873A (en) | Multi-degree-of-freedom electromagnetic machine | |
WO2020164222A1 (en) | Scanning device and laser radar | |
US9372340B2 (en) | Ball joint gimbal imaging system with an off-gimbal directional electro-optic component | |
JP4897016B2 (en) | Piezoelectric motor | |
CN115610707B (en) | On-orbit docking method and docking system for spacecraft | |
CN101502406A (en) | Floor processing system as well as rapid butt-joint method for floor treating device and charging stand | |
KR102510772B1 (en) | plunger coil actuator | |
JP3976683B2 (en) | Surface orientation method and apparatus | |
CN105301763A (en) | Two-dimensional rapid deflection apparatus and method based on secondary bridge type displacement amplifier | |
CN111332497B (en) | An ultra-stable satellite platform and an attitude adjustment control method | |
JPH03264911A (en) | Light beam control mechanism | |
CN117645010A (en) | Unmanned flight platform of survey and drawing | |
US11824400B2 (en) | Electromagnetic payload orientation control | |
US11835711B2 (en) | Pointing apparatuses and methods involving magnetic-contrast bearings | |
CN1318766A (en) | Two-dimensional laser beam director | |
US11077961B2 (en) | Satellites attitude control system | |
JP3751937B2 (en) | Actuators and actuator systems | |
EP4259298A1 (en) | Surface-mounted vehicle having a rail coupling system | |
CN117348187B (en) | Modular optical mirror ground simulation installation and adjustment system and method | |
CN115610713A (en) | An on-orbit docking device and docking system for spacecraft | |
CN213457487U (en) | Camera shooting module | |
KR102516470B1 (en) | A wireless power supply system for ship | |
JP2002022915A (en) | Element with variable characteristic, mirror with variable focus, actuator and actuator system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |