CN115590956A - MXene composite material modified by ruthenium complex with photo-thermal and photodynamic synergism, and preparation method and application thereof - Google Patents
MXene composite material modified by ruthenium complex with photo-thermal and photodynamic synergism, and preparation method and application thereof Download PDFInfo
- Publication number
- CN115590956A CN115590956A CN202211154796.7A CN202211154796A CN115590956A CN 115590956 A CN115590956 A CN 115590956A CN 202211154796 A CN202211154796 A CN 202211154796A CN 115590956 A CN115590956 A CN 115590956A
- Authority
- CN
- China
- Prior art keywords
- mxene
- ruthenium complex
- photodynamic
- composite material
- photo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012327 Ruthenium complex Substances 0.000 title claims abstract description 112
- 239000002131 composite material Substances 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 230000002195 synergetic effect Effects 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 102
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical class N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 32
- 230000000844 anti-bacterial effect Effects 0.000 claims description 31
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 30
- 229910052707 ruthenium Inorganic materials 0.000 claims description 30
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000002243 precursor Substances 0.000 claims description 19
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 16
- 239000006185 dispersion Substances 0.000 claims description 15
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- -1 carbodiimide salt Chemical class 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229940124350 antibacterial drug Drugs 0.000 claims description 5
- 239000002246 antineoplastic agent Substances 0.000 claims description 5
- 229940041181 antineoplastic drug Drugs 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 2
- 238000005530 etching Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 230000010355 oscillation Effects 0.000 claims 1
- 238000002428 photodynamic therapy Methods 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 12
- 238000007626 photothermal therapy Methods 0.000 abstract description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 10
- 239000002135 nanosheet Substances 0.000 abstract description 7
- 230000001954 sterilising effect Effects 0.000 abstract description 7
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 7
- 210000000170 cell membrane Anatomy 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 4
- 238000009833 condensation Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 2
- 241000894006 Bacteria Species 0.000 description 22
- 239000000523 sample Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 17
- 239000003504 photosensitizing agent Substances 0.000 description 15
- 150000003303 ruthenium Chemical class 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 11
- 239000002086 nanomaterial Substances 0.000 description 11
- 229910052724 xenon Inorganic materials 0.000 description 11
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 11
- 230000000259 anti-tumor effect Effects 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000010992 reflux Methods 0.000 description 9
- ZKSVYBRJSMBDMV-UHFFFAOYSA-N 1,3-diphenyl-2-benzofuran Chemical compound C1=CC=CC=C1C1=C2C=CC=CC2=C(C=2C=CC=CC=2)O1 ZKSVYBRJSMBDMV-UHFFFAOYSA-N 0.000 description 8
- 239000012300 argon atmosphere Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000003642 reactive oxygen metabolite Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical group Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 206010059866 Drug resistance Diseases 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000002390 rotary evaporation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- FXPLCAKVOYHAJA-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 FXPLCAKVOYHAJA-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- FRYSEKUUHUUJPX-UHFFFAOYSA-N 2-pyridin-2-ylpyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C=2N=CC=CC=2)=C1 FRYSEKUUHUUJPX-UHFFFAOYSA-N 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0046—Ruthenium compounds
- C07F15/0053—Ruthenium compounds without a metal-carbon linkage
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
Abstract
Description
技术领域technical field
本发明属于光热、光动力材料技术领域,具体涉及一种具光热、光动力协同的钌配合物修饰的MXene复合材料及其制备方法和应用。The invention belongs to the technical field of photothermal and photodynamic materials, and in particular relates to a MXene composite material modified with a ruthenium complex with photothermal and photodynamic synergy, and a preparation method and application thereof.
背景技术Background technique
为了应对细菌感染和抗生素耐药性这一挑战,科研工作者已经作出了很多努力,提供了许多可行性的选择。现阶段,新型抗菌方式包括抗菌剂、低温等离子体技术、光催化降解、光动力抗菌、光热抗菌等。前述几种抗菌方法由于自身或应用中所具有的缺陷,限制了其在伤口抗菌方面的应用。并且不同于抗生素,光动力杀菌靠产生活性氧,光热杀菌靠良好的光热作用,细菌很难产生耐药性问题,从而能够有效地规避抗生素的过量使用所产生的耐药危机。因此光动力抗菌和光热抗菌具有安全、高效、可避免细菌产生抗生素耐药性等优势,近期被研究者所关注。Efforts have been made to address the challenge of bacterial infection and antibiotic resistance, providing many viable options. At this stage, new antibacterial methods include antibacterial agents, low-temperature plasma technology, photocatalytic degradation, photodynamic antibacterial, photothermal antibacterial, etc. The aforementioned several antibacterial methods have limited their application in wound antibacterial due to their own or application defects. And different from antibiotics, photodynamic sterilization relies on the generation of active oxygen, and photothermal sterilization relies on good photothermal effects. It is difficult for bacteria to develop drug resistance, which can effectively avoid the drug resistance crisis caused by the excessive use of antibiotics. Therefore, photodynamic antibacterial and photothermal antibacterial have the advantages of safety, high efficiency, and the ability to prevent bacteria from developing antibiotic resistance, and have recently attracted the attention of researchers.
光热疗法(Photothermal therap%PTT)是一种用于杀死病原体的光诱导方法,通过光热转换剂将光能转化成热能使细胞组织达到一定温度进而杀死微生物。光动力疗法(Photodynamic therapy,PDT)则是光动力试剂在激光的照射下产生具有强氧化能力的活性氧(ROS),并依靠其与蛋白质、DNA的氧化反应引起细胞毒性,导致蛋白质、DNA变质引起细菌死亡。光动力治疗产生作用主要基于以下三点:光敏剂(PS)、光和氧气,这三种组分的相互作用导致产生活性氧(ROS)。随着科学技术的不断发展,制备纳米级光敏剂或者将光敏剂负载在纳米材料上进行杀菌,被称为纳米光动力杀菌技术,近年来受到了广泛的关注。但是,现有的光敏剂负载在纳米材料上,仅仅依靠光敏剂杀菌,杀菌效果不明显。因此现有的PDT材料和PTT材料不能充分满足在光动力和光热在抗菌和抗肿瘤中的应用。Photothermal therapy (Photothermal therapy%PTT) is a light-induced method for killing pathogens. The photothermal conversion agent converts light energy into heat energy to make cells and tissues reach a certain temperature and then kill microorganisms. Photodynamic therapy (Photodynamic therapy, PDT) is that photodynamic reagents produce reactive oxygen species (ROS) with strong oxidizing ability under the irradiation of laser light, and rely on their oxidation reaction with protein and DNA to cause cytotoxicity, resulting in protein and DNA deterioration. cause bacterial death. The effect of photodynamic therapy is mainly based on the following three points: photosensitizer (PS), light and oxygen, and the interaction of these three components leads to the generation of reactive oxygen species (ROS). With the continuous development of science and technology, the preparation of nano-scale photosensitizers or loading photosensitizers on nano-materials for sterilization is called nano-photodynamic sterilization technology, which has received extensive attention in recent years. However, the existing photosensitizers are loaded on nanomaterials, and only relying on photosensitizers to sterilize, the bactericidal effect is not obvious. Therefore, the existing PDT materials and PTT materials cannot fully meet the application of photodynamic and photothermal in antibacterial and antitumor applications.
发明内容Contents of the invention
为了克服现有技术的不足,本发明的第一个目的在于提供一种具光热、光动力协同的钌配合物修饰的MXene复合材料,同时具备光热和光动力抑菌和杀灭肿瘤细胞的作用,能够光热、光动力协同抗菌和抗肿瘤,通过较低的能量输入,能够协同高效地抗菌和抗肿瘤。In order to overcome the deficiencies of the prior art, the first object of the present invention is to provide a MXene composite material modified with a photothermal and photodynamic synergistic ruthenium complex, which also has the functions of photothermal and photodynamic bacteriostasis and tumor cell killing. The role of photothermal and photodynamic synergistic antibacterial and antitumor, through low energy input, can synergistically and efficiently antibacterial and antitumor.
本发明的第二个目的是为了提供一种具光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法。The second purpose of the present invention is to provide a preparation method of MXene composite material modified by ruthenium complexes with photothermal and photodynamic synergy.
本发明的第三个目的是为了提供一种具光热、光动力协同的钌配合物修饰的MXene复合材料的应用。The third object of the present invention is to provide an application of a ruthenium complex-modified MXene composite material with photothermal and photodynamic synergy.
实现本发明的目的之一可以通过采取如下技术方案达到:Realize that one of the purposes of the present invention can be achieved by taking the following technical solutions:
一种具光热、光动力协同的钌配合物修饰的MXene复合材料,包括钌配合物以及MXene二维材料,所述钌配合物通过共价键负载在所述MXene二维材料表面,形成所述光热、光动力协同的钌配合物修饰的MXene复合材料。A ruthenium complex-modified MXene composite material with photothermal and photodynamic synergy, including a ruthenium complex and a two-dimensional MXene material, the ruthenium complex is loaded on the surface of the two-dimensional MXene material through a covalent bond to form the Ruthenium complex-modified MXene composites with photothermal and photodynamic synergy.
进一步的,所述钌配合物具有式I所示结构:Further, the ruthenium complex has a structure shown in formula I:
为取代或未取代的2,2’-联吡啶,且至少一个为取代的2,2’-联吡啶;所述取代的2,2’-联吡啶中至少有一个具有式II所示结构: is a substituted or unsubstituted 2,2'-bipyridine, and at least one It is a substituted 2,2'-bipyridine; at least one of the substituted 2,2'-bipyridines has the structure shown in formula II:
其中R1、R2、R3、R4、R5和R6为H、碳原子数为1-3的烷基、卤素或羧基中的任一种,且R1、R2、R3、R4、R5或R6至少一个为羧基。Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are any of H, alkyl with 1-3 carbon atoms, halogen or carboxyl, and R 1 , R 2 , R 3 , at least one of R 4 , R 5 or R 6 is a carboxyl group.
进一步的,所述钌配合物为Further, the ruthenium complex is
进一步的,所述MXene二维材料的直径小于500nm,厚度为1-5nm。Further, the diameter of the MXene two-dimensional material is less than 500 nm, and the thickness is 1-5 nm.
实现本发明的目的之二可以通过采取如下技术方案达到:Two of the goals of the present invention can be achieved by taking the following technical solutions:
一种具光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法,包括以下制备步骤:A preparation method of an MXene composite material modified by a ruthenium complex with photothermal and photodynamic synergy, comprising the following preparation steps:
将MXene二维材料分散到水中形成分散液,向所述分散液中加入所述钌配合物,在惰性气体氛围下加热反应,得到光热、光动力协同的钌配合物修饰的MXene复合材料。The MXene two-dimensional material is dispersed in water to form a dispersion liquid, the ruthenium complex is added to the dispersion liquid, and the ruthenium complex is heated and reacted in an inert gas atmosphere to obtain a MXene composite material modified by the ruthenium complex with photothermal and photodynamic synergy.
进一步的,反应在催化剂下进行,所述催化剂为碳二亚胺盐与4-二甲氨基吡啶的复合催化剂,碳二亚胺盐与4-二甲氨基吡啶的质量比为1:(0.5-2)。Further, the reaction is carried out under a catalyst, and the catalyst is a composite catalyst of carbodiimide salt and 4-dimethylaminopyridine, and the mass ratio of carbodiimide salt and 4-dimethylaminopyridine is 1: (0.5- 2).
进一步的,所述钌配合物与MXene二维材料的质量比为1:(0.5-2);加热反应的温度为80-100℃。Further, the mass ratio of the ruthenium complex to the MXene two-dimensional material is 1:(0.5-2); the temperature of the heating reaction is 80-100°C.
进一步的,还包括钌配合物的制备步骤:Further, the preparation step of the ruthenium complex is also included:
S11、钌前体制备:将取代或未取代的2,2’-联吡啶、氯化锂和RuCl3·3H2O溶解于DMF中,在惰性气体氛围下加热反应,反应结束降至室温,所得固体为所述钌前体;所述钌前体具有式III所示结构:S11. Preparation of ruthenium precursor: Dissolve substituted or unsubstituted 2,2'-bipyridine, lithium chloride and RuCl 3 3H 2 O in DMF, heat the reaction under an inert gas atmosphere, and cool down to room temperature after the reaction is completed. Gained solid is the ruthenium precursor; the ruthenium precursor has a structure shown in formula III:
S12、钌配合物制备:将所述钌前体和取代或未取代的2,2’-联吡啶溶解于第二溶剂中,在惰性气体氛围下加热反应,调节pH至碱性后,继续反应,反应结束降至室温,所得固体为钌配合物。S12. Preparation of ruthenium complex: dissolve the ruthenium precursor and substituted or unsubstituted 2,2'-bipyridine in a second solvent, heat the reaction under an inert gas atmosphere, adjust the pH to alkaline, and continue the reaction , the reaction was cooled down to room temperature, and the obtained solid was a ruthenium complex.
进一步的,还包MXene二维材料的制备步骤:Further, the preparation steps of MXene two-dimensional materials are also included:
MXene基料通过原位蚀刻得到直径为1-10μm,厚度为10-20nm的多层MXene的水溶液,将所述多层MXene的水溶液超声震荡0.5-5h,得到所述MXene二维材料。The MXene base material is etched in situ to obtain a multi-layer MXene aqueous solution with a diameter of 1-10 μm and a thickness of 10-20 nm, and the multi-layer MXene aqueous solution is ultrasonically oscillated for 0.5-5 hours to obtain the MXene two-dimensional material.
实现本发明的目的之三可以通过采取如下技术方案达到:Realize the object three of the present invention can reach by taking following technical scheme:
一种上述任一具光热、光动力协同的钌配合物修饰的MXene复合材料或上述任一所述的光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法制备得到的光热、光动力协同的钌配合物修饰的MXene复合材料在制备光热、光动力协同抗菌或抗肿瘤药物中的应用。A kind of above-mentioned any photothermal, photodynamic The photothermal and photodynamic synergistic ruthenium complex modification prepared by the preparation method of the MXene composite material modified by the ruthenium complex modified by force synergy or any one of the above-mentioned photothermal and photodynamic synergistic ruthenium complex materials The application of MXene composites in the preparation of photothermal and photodynamic synergistic antibacterial or antitumor drugs.
相比现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明的光热、光动力协同的钌配合物修饰的MXene复合材料将具有光热效应的MXene二维材料与具有光敏效应的钌配合物通过羧基和羟基的缩合反应键连在一起,使得钌配合物负载在MXene二维材料表面。MXene二维材料在光照下具有良好的近红外吸收和良好的光热转换效率以及光热稳定性,可用作光热抗菌和抗肿瘤;钌配合物作为光敏剂在光照下产生ROS,可作为光动力的抗菌和抗肿瘤物质;因此MXene二维材料负载上钌配合物后形成的复合材料,两者协同抗菌,抗肿瘤。1. The photothermal and photodynamic synergistic ruthenium complex-modified MXene composite material of the present invention connects the MXene two-dimensional material with photothermal effect and the ruthenium complex with photosensitive effect through the condensation reaction of carboxyl and hydroxyl groups, so that Ruthenium complexes are supported on the surface of MXene two-dimensional materials. MXene two-dimensional materials have good near-infrared absorption, good photothermal conversion efficiency and photothermal stability under light, and can be used as photothermal antibacterial and antitumor; ruthenium complexes can be used as photosensitizers to generate ROS under light, which can be used as Photodynamic antibacterial and antitumor substances; therefore, the composite material formed after the MXene two-dimensional material is loaded with ruthenium complexes, the two synergistically antibacterial and antitumor.
2、本发明的光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法,利用MXene二维材料表面丰富的羟基,与含羧基钌配合物进行缩合反应实现键连负载,制备方法简单,不需要复杂的反应过程和苛刻的反应条件,产物可以快速分离提纯,满足工业化生产。2. The preparation method of the photothermal and photodynamic synergistic ruthenium complex-modified MXene composite material of the present invention uses the abundant hydroxyl groups on the surface of the MXene two-dimensional material to carry out condensation reaction with the carboxyl-containing ruthenium complex to realize bond loading. The preparation method It is simple, does not require complex reaction process and harsh reaction conditions, and the product can be quickly separated and purified to meet industrial production.
3、本发明的光热、光动力协同的钌配合物修饰的MXene复合材料具有光热和光动力双重作用,能够实现在较低能量密度(150mW/cm2)、较低浓度(100μg/ml)、较短时间内(15-30min)进行高效杀菌,因此可以在制备光热、光动力协同抗菌或抗肿瘤药物中进行应用。3. The photothermal and photodynamically synergistic ruthenium complex-modified MXene composite material of the present invention has dual functions of photothermal and photodynamic, and can achieve low energy density (150mW/cm 2 ) and low concentration (100μg/ml) , High-efficiency sterilization in a short time (15-30min), so it can be applied in the preparation of photothermal, photodynamic synergistic antibacterial or antitumor drugs.
附图说明Description of drawings
图1为实施例1制备的钌配合物的质谱图;Fig. 1 is the mass spectrogram of the ruthenium complex that
图2为实施例1制备的钌配合物的核磁氢谱图;Fig. 2 is the nuclear magnetic hydrogen spectrogram of the ruthenium complex that
图3为实施例3制备的MXene二维材料与实施例4制备的Ru@MXene的TEM图;Figure 3 is a TEM image of the MXene two-dimensional material prepared in Example 3 and the Ru@MXene prepared in Example 4;
图4为实施例3制备的MXene二维材料的EDS能谱图;Fig. 4 is the EDS energy spectrum of the MXene two-dimensional material prepared in
图5为实施例4制备的Ru@MXene的EDS能谱图;Fig. 5 is the EDS energy spectrum diagram of the Ru@MXene prepared in
图6为实施例3制备的MXene二维材料与实施例4制备的Ru@MXene复合材料的XRD图;Figure 6 is the XRD pattern of the MXene two-dimensional material prepared in Example 3 and the Ru@MXene composite material prepared in Example 4;
图7为实施例3制备的MXene二维材料与实施例4制备的Ru@MXene复合材料的红外光谱图;Fig. 7 is the infrared spectrogram of the MXene two-dimensional material prepared in Example 3 and the Ru@MXene composite material prepared in Example 4;
图8为不同浓度的实施例4制备的Ru@MXene水悬浮液随氙灯照射的升温曲线图;Fig. 8 is the temperature rise curve of the Ru@MXene aqueous suspension prepared in Example 4 with different concentrations along with xenon lamp irradiation;
图9为不同样品(水、实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene)水悬浮液随氙灯照射的升温曲线图;Fig. 9 is a temperature rise curve of different samples (water, the MXene two-dimensional material prepared in Example 3, the ruthenium complex prepared in Example 1 and the Ru@MXene prepared in Example 4) with xenon lamp irradiation;
图10为不同样品(水、实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene)水悬浮液随氙灯照射的热红外图;Fig. 10 is the thermal infrared diagram of different samples (water, the MXene two-dimensional material prepared in Example 3, the ruthenium complex prepared in Example 1 and the Ru@MXene prepared in Example 4) with xenon lamp irradiation;
图11为不同样品(水、实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene)水悬浮液在5个激光开/关周期的温度曲线图;Figure 11 is the temperature curve of different samples (water, MXene two-dimensional material prepared in Example 3, ruthenium complex prepared in Example 1 and Ru@MXene prepared in Example 4) during 5 laser on/off cycles picture;
图12为实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene在光照条件下混合DPBF,在420nm处的吸收变化曲线;Figure 12 is the absorption change curve at 420nm of the MXene two-dimensional material prepared in Example 3, the ruthenium complex prepared in Example 1, and the Ru@MXene prepared in Example 4 mixed with DPBF under light conditions;
图13为实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene在黑暗与光照条件下对大肠杆菌的抗菌效果图;Figure 13 shows the antibacterial effects of the MXene two-dimensional material prepared in Example 3, the ruthenium complex prepared in Example 1, and the Ru@MXene prepared in Example 4 on Escherichia coli under dark and light conditions;
图14为不同浓度的Ru@MXene在黑暗与光照条件下对大肠杆菌的抗菌效果图;Figure 14 shows the antibacterial effects of different concentrations of Ru@MXene on Escherichia coli under dark and light conditions;
图15为实施例3制备的MXene二维材料、实施例1制备的钌配合物和实施例4制备的Ru@MXene在黑暗与光照条件下大肠杆菌的SEM图。Fig. 15 is the SEM images of the MXene two-dimensional material prepared in Example 3, the ruthenium complex prepared in Example 1 and the Ru@MXene prepared in Example 4 under dark and light conditions.
具体实施方式detailed description
下面将结合具体实施例对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with specific embodiments. Apparently, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
MXene二维材料是一类金属碳氮化物新型纳米二维片层,相对于纳米金属粒子(如纳米银等)与光敏感型纳米材料(如ZnO)等纳米抑菌材料,MXene二维材料具有良好的光热转换效率和光热稳定性等优点,在光热治疗,药物载体等方面拥有极大的应用前景。MXene two-dimensional materials are a new type of nano-two-dimensional sheets of metal carbonitrides. Compared with nano-metal particles (such as nano-silver) and light-sensitive nano-materials (such as ZnO) and other nano-antibacterial materials, MXene two-dimensional materials have With the advantages of good photothermal conversion efficiency and photothermal stability, it has great application prospects in photothermal therapy and drug carriers.
不同于抗生素,MXene二维材料的杀菌机制主要是依靠物理损伤作用以及良好的光热作用,因此,细菌很难产生耐药性问题,从而能够有效地规避抗生素的过量使用所产生的耐药危机。特别地,对MXene二维材料进行针对性或者特异性的生物活性修饰,使得MXene二维材料拥有其他诸如靶向性及负荷性的功能,将可提升MXene二维材料的生物相容性,拓展其在生物医学领域如抗肿瘤领域的应用。Different from antibiotics, the bactericidal mechanism of MXene two-dimensional materials mainly relies on physical damage and good photothermal effect. Therefore, it is difficult for bacteria to develop drug resistance, which can effectively avoid the drug resistance crisis caused by the overuse of antibiotics. . In particular, targeted or specific bioactive modification of MXene two-dimensional materials will enable MXene two-dimensional materials to have other functions such as targeting and loading, which will improve the biocompatibility of MXene two-dimensional materials and expand Its application in biomedical field such as anti-tumor field.
Ru(II)配合物具有强可见光吸收能力和丰富的激发态性质。其中,具有长寿命三线态激发态的Ru(II)配合物展现出强的氧化还原特性,有助于分子间电子转移或能量转移。这些性质使得它们作为光敏剂在PDT中得到广泛的应用。Ru(II) complexes have strong visible light absorption ability and abundant excited state properties. Among them, Ru(II) complexes with long-lived triplet excited states exhibit strong redox properties, which facilitate intermolecular electron transfer or energy transfer. These properties make them widely used as photosensitizers in PDT.
Ru(II)配合物被广泛应用到抗菌抗肿瘤药物。光敏剂可以共价或非共价结合的方式与纳米材料结合,控制光敏剂的化学性质如溶解性,避免光敏剂之间的自猝灭,提高活性氧的生成效率;纳米材料还可以改变光敏剂的体内外行为,包括药代动力学和生物分布,通过增强通透性和保留效应(EPR)或通过靶向配体修饰其表面来增强光敏剂的选择性。Ru(II) complexes are widely used in antibacterial and antitumor drugs. Photosensitizers can be combined with nanomaterials in a covalent or non-covalent manner to control the chemical properties of photosensitizers such as solubility, avoid self-quenching between photosensitizers, and improve the generation efficiency of active oxygen; nanomaterials can also change photosensitizers. The in vitro and in vivo behavior of agents, including pharmacokinetics and biodistribution, enhances the selectivity of photosensitizers by enhancing the permeability and retention effect (EPR) or by modifying their surface with targeting ligands.
因此为解决细菌对抗生素的耐药问题、单独光敏剂或者纳米材料治疗效果差的问题,本发明将钌配合物和MXene二维材料通过表面官能团反应自组装形成共价键,从而将钌配合物负载到MXene二维材料表面,形成Ru@MXene纳米复合体系。Therefore, in order to solve the problem of bacterial resistance to antibiotics and the poor therapeutic effect of a single photosensitizer or nanomaterial, the present invention self-assembles the ruthenium complex and the MXene two-dimensional material through surface functional group reactions to form a covalent bond, thereby making the ruthenium complex Loaded onto the surface of MXene two-dimensional materials to form a Ru@MXene nanocomposite system.
一种光热、光动力协同的钌配合物修饰的MXene复合材料,包括钌配合物以及MXene二维材料,所述钌配合物通过共价键负载在所述MXene二维材料表面,形成所述光热、光动力协同的钌配合物修饰的MXene复合材料。A MXene composite material modified by photothermal and photodynamic synergistic ruthenium complexes, including ruthenium complexes and MXene two-dimensional materials, the ruthenium complexes are loaded on the surface of the MXene two-dimensional materials through covalent bonds to form the Ruthenium complex-modified MXene composites with photothermal and photodynamic synergy.
PDT产生的活性氧会增加光热试剂对激光的捕获,PTT的光热作用会增加组织的氧气供应,促进PDT。形成光热治疗以及钌配合物光动力治疗协同抗菌抗肿瘤机制的体系,使得MXene复合材料可以同时实现PTT和PDT联合治疗,具有优异的可控性、微创性、低毒性和无耐药性。The active oxygen generated by PDT will increase the capture of laser light by photothermal reagents, and the photothermal effect of PTT will increase the oxygen supply of tissues and promote PDT. Forming a system of photothermal therapy and photodynamic therapy of ruthenium complexes synergistically antibacterial and antitumor mechanisms, so that MXene composites can simultaneously achieve combined therapy of PTT and PDT, with excellent controllability, minimal invasiveness, low toxicity and no drug resistance .
在其中一个实施方式中,所述钌配合物具有式I所示结构:In one of the embodiments, the ruthenium complex has the structure shown in formula I:
在其中一个实施方式中,为带有π共轭结构的含有两个取代或未取代的吡啶环的化合物,其中,两个吡啶环可以直接相连;两个吡啶环可以通过含孤对电子的元素连接;两个吡啶环还可以通过与环基团形成稠环相连;其中式I中三个可以相同也可以不同,但至少有一个上含有至少一个羧基。In one of these embodiments, It is a compound containing two substituted or unsubstituted pyridine rings with a π-conjugated structure, wherein the two pyridine rings can be directly connected; the two pyridine rings can be connected through an element containing a lone pair of electrons; the two pyridine rings can also be Can be connected by forming a fused ring with a ring group; wherein three in formula I can be the same or different, but at least one contain at least one carboxyl group.
优选的,为取代或未取代的2,2’-联吡啶,且至少一个为取代的2,2’-联吡啶;所述取代的2,2’-联吡啶中至少有一个具有式II所示结构:preferred, is a substituted or unsubstituted 2,2'-bipyridine, and at least one It is a substituted 2,2'-bipyridine; at least one of the substituted 2,2'-bipyridines has the structure shown in formula II:
其中R1-R6为H、碳原子数为1-3的烷基、卤素、羧基中的任一种,且R1-R6中至少一个为羧基。Wherein R 1 -R 6 is any one of H, alkyl with 1-3 carbon atoms, halogen, and carboxyl, and at least one of R 1 -R 6 is carboxyl.
2,2’-联吡啶与钌配位,三个2,2’-联吡啶的六个N原子位于相对对称的位置,因此形成的钌配合物具有较为紧密的稳定结构,在作为光敏剂时稳定性好,可以实现较好的光动力。2,2'-bipyridine coordinates with ruthenium, and the six N atoms of the three 2,2'-bipyridines are located in relatively symmetrical positions, so the formed ruthenium complex has a relatively compact and stable structure, and when used as a photosensitizer It has good stability and can realize better photodynamic force.
在其中一个实施方式中,所述钌配合物中羧基的数量为两个,位于同一个2,2’-联吡啶的4和4’位上。In one of the embodiments, the number of carboxyl groups in the ruthenium complex is two, which are located at the 4 and 4' positions of the same 2,2'-bipyridine.
2,2’-联吡啶形成的钌配合物,其中2,2’-联吡啶的4和4’位含有的两个羧基,位于2,2’-联吡啶的同侧,具有较为一致的键长和键角,因此与MXene二维材料表面的羟基缩合后在具有较小的空间位阻,受力较小形成稳定的复合结构。A ruthenium complex formed by 2,2'-bipyridine, in which the two carboxyl groups contained in the 4 and 4' positions of 2,2'-bipyridine are located on the same side of 2,2'-bipyridine, and have relatively consistent bonds Therefore, after condensation with the hydroxyl groups on the surface of the MXene two-dimensional material, it has less steric hindrance and less force to form a stable composite structure.
其中一个实施方式中,所述钌配合物为In one of the embodiments, the ruthenium complex is
在其中一个实施方式中,所述MXene二维材料的直径小于500nm,厚度为1-5nm。In one embodiment, the diameter of the MXene two-dimensional material is less than 500 nm, and the thickness is 1-5 nm.
其中,MXene二维材料为已知的材料;优选的,所述MXene二维材料为Ti3C2、Ti2C、Nb2C、V2C、(Ti0.5Nb0.5)2C、(V0.5Cr0.5)3C2、Ti3CN和Ta4C3中的任意一种。更优选的,所述MXene二维材料为Ti3C2。Wherein, the MXene two-dimensional material is a known material; preferably, the MXene two-dimensional material is Ti 3 C 2 , Ti 2 C, Nb 2 C, V 2 C, (Ti 0.5 Nb 0.5 ) 2 C, (V Any one of 0.5 Cr 0.5 ) 3 C 2 , Ti 3 CN and Ta 4 C 3 . More preferably, the MXene two-dimensional material is Ti 3 C 2 .
所述MXene二维材料的直径小于500nm,厚度为1-5nm,一方面可以通过钌配合物进行负载修饰,具有较大的比表面;另一方面该尺寸的MXene二维材料负载上钌配合物后,可以在人体内进行转移,并且可以有效的在细菌或者细胞表面聚集充分接触,可以通过光热和光敏起到作用。The diameter of the MXene two-dimensional material is less than 500nm, and the thickness is 1-5nm. On the one hand, it can be loaded and modified by a ruthenium complex, and has a large specific surface; on the other hand, the MXene two-dimensional material of this size is loaded with a ruthenium complex Finally, it can be transferred in the human body, and can effectively accumulate on the surface of bacteria or cells for sufficient contact, and can play a role through photothermal and photosensitive.
本发明还提供一种光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法,包括以下制备步骤:The present invention also provides a method for preparing an MXene composite material modified by a photothermal and photodynamic synergistic ruthenium complex, comprising the following preparation steps:
将MXene二维材料分散到水中形成分散液,向所述分散液中加入所述钌配合物,在惰性气体氛围下加热反应,得到光热、光动力协同的钌配合物修饰的MXene复合材料。The MXene two-dimensional material is dispersed in water to form a dispersion liquid, the ruthenium complex is added to the dispersion liquid, and the ruthenium complex is heated and reacted in an inert gas atmosphere to obtain a MXene composite material modified by the ruthenium complex with photothermal and photodynamic synergy.
在MXene二维材料的表面具有羟基、羰基等亲水性活性基团,可以通过对这些活性基团进行化学反应或者物理吸附,有效地实现对MXene二维材料的修饰,对MXene二维材料功能修饰后能更好地改善其水分散性,有利于其分散于生理环境中。There are hydrophilic active groups such as hydroxyl groups and carbonyl groups on the surface of MXene two-dimensional materials. Through chemical reaction or physical adsorption on these active groups, the modification of MXene two-dimensional materials can be effectively realized, and the functions of MXene two-dimensional materials can be realized. After modification, its water dispersibility can be better improved, which is conducive to its dispersion in the physiological environment.
因此本发明就通过使用含有羧基的钌配合物,钌配合物上的羧基与MXene二维材料的表面的羟基发生缩合反应后就键连形成负载,该反应是本领域常规的羧基和羟基的缩合成酯的反应,因此不需要复杂过程和苛刻的反应条件。Therefore, the present invention uses a ruthenium complex containing a carboxyl group. The carboxyl group on the ruthenium complex is condensed with the hydroxyl group on the surface of the MXene two-dimensional material to form a load. This reaction is a conventional carboxyl group and hydroxyl group in the art. Synthetic ester reaction, so no complicated process and harsh reaction conditions are required.
在其中一个实施方式中,反应在催化剂下进行,所述催化剂为碳二亚胺盐与4-二甲氨基吡啶的复合催化剂,碳二亚胺盐与4-二甲氨基吡啶的质量比为1∶(0.5-2)。In one of the embodiments, the reaction is carried out under a catalyst, the catalyst is a composite catalyst of carbodiimide salt and 4-dimethylaminopyridine, and the mass ratio of carbodiimide salt and 4-dimethylaminopyridine is 1 : (0.5-2).
通过碳二亚胺盐活化羧基后在催化剂4-二甲氨基吡啶催化下,可以促进羧基和羟基的缩合成酯的反应,显著提高收率。优选的,碳二亚胺盐为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI),可以与4-二甲氨基吡啶(DMAP)组成的水溶性复合催化剂,不需要引入有机溶剂,简化了后处理和复合绿色化学要求。After the carboxyl group is activated by the carbodiimide salt, under the catalysis of the catalyst 4-dimethylaminopyridine, the condensation reaction of the carboxyl group and the hydroxyl group to form an ester can be promoted, and the yield can be significantly increased. Preferably, the carbodiimide salt is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), which can be dissolved in water with 4-dimethylaminopyridine (DMAP). It is a permanent composite catalyst without the need to introduce organic solvents, which simplifies post-processing and composite green chemistry requirements.
在其中一个实施方式中,钌配合物与MXene二维材料的质量比为1∶(0.5-2);反应的温度为80-100℃。In one embodiment, the mass ratio of the ruthenium complex to the MXene two-dimensional material is 1:(0.5-2); the reaction temperature is 80-100°C.
在其中一个实施方式中,还包括钌配合物的制备步骤:In one of the embodiments, the preparation step of the ruthenium complex is also included:
S11、钌前体制备:将取代或未取代的2,2’-联吡啶与氯化锂和RuCl3·3H2O溶解DMF中,惰性气体氛围下冷凝回流反应8-36h,反应结束降至室温,所的固体为所述钌前体;所述钌前体具有式III所示结构:S11. Preparation of ruthenium precursor: Dissolve substituted or unsubstituted 2,2'-bipyridyl with lithium chloride and RuCl 3 3H 2 O in DMF, condense and reflux for 8-36 hours under an inert gas atmosphere, and the reaction is completed to At room temperature, the solid obtained is the ruthenium precursor; the ruthenium precursor has a structure shown in formula III:
S12、钌配合物制备:所述钌前体和取代或未取代的2,2’-联吡啶溶解于第二溶剂中,在惰性气体氛围下加热反应,调节pH至碱性后,继续反应,反应结束降至室温,所得固体为钌配合物。S12. Preparation of ruthenium complex: the ruthenium precursor and substituted or unsubstituted 2,2'-bipyridine are dissolved in a second solvent, heated and reacted in an inert gas atmosphere, and the pH is adjusted to alkaline, and then the reaction is continued. After the reaction was completed, the temperature was lowered to room temperature, and the obtained solid was a ruthenium complex.
在其中一个实施方式中,步骤S11中取代或未取代的2,2’-联吡啶,氯化锂和RuCl3·3H2O的摩尔质量比为(1.7-2.2)∶(2.2-3.5)∶1;所述第一溶剂为DMF,DMF的体积为10-30mL;步骤S11中反应的条件为回流反应6-24h。In one embodiment, the molar mass ratio of substituted or unsubstituted 2,2'-bipyridyl, lithium chloride and RuCl 3 ·3H 2 O in step S11 is (1.7-2.2):(2.2-3.5): 1; the first solvent is DMF, and the volume of DMF is 10-30mL; the reaction condition in step S11 is reflux reaction for 6-24h.
在其中一个实施方式中,步骤S12中所述钌前体和取代或未取代的2,2’-联吡啶的摩尔质量比为1:(1.2-2);所述第二溶剂为无水乙醇;无水乙醇的体积为50mL;步骤S12中反应的条件为回流反应8-36h;用NaOH调节pH至碱性。In one embodiment, the molar mass ratio of the ruthenium precursor to the substituted or unsubstituted 2,2'-bipyridine in step S12 is 1:(1.2-2); the second solvent is absolute ethanol The volume of absolute ethanol is 50mL; the reaction condition in step S12 is reflux reaction for 8-36h; the pH is adjusted to alkaline with NaOH.
在其中一个实施方式中,所述惰性气体氛围为氮气或氩气氛围,优选的为氩气氛围。In one embodiment, the inert gas atmosphere is nitrogen or argon atmosphere, preferably argon atmosphere.
在其中一个实施方式中,还包MXene二维材料的制备步骤:In one of the embodiments, the preparation steps of MXene two-dimensional materials are also included:
MXene基料通过原位蚀刻得到直径为1-10μm,厚度为10-20nm的多层MXene的水溶液,将所述多层MXene的水溶液超声震荡0.5-5h,得到所述MXene二维材料。The MXene base material is etched in situ to obtain a multi-layer MXene aqueous solution with a diameter of 1-10 μm and a thickness of 10-20 nm, and the multi-layer MXene aqueous solution is ultrasonically oscillated for 0.5-5 hours to obtain the MXene two-dimensional material.
本发明还提供一种上述任一光热、光动力协同的钌配合物修饰的MXene复合材料或上述任一所述的光热、光动力协同的钌配合物修饰的MXene复合材料的制备方法制备得到的光热、光动力协同的钌配合物修饰的MXene复合材料在制备光热、光动力协同抗菌或抗肿瘤药物中的应用。The present invention also provides a MXene composite material modified by any of the above-mentioned photothermal and photodynamic synergistic ruthenium complexes or any of the above-mentioned photothermal and photodynamic synergistic ruthenium complex modified MXene composite materials prepared by the preparation method Application of photothermal and photodynamic synergistic ruthenium complex modified MXene composites in the preparation of photothermal, photodynamic synergistic antibacterial or antitumor drugs.
实施例1:制备钌配合物Embodiment 1: preparation ruthenium complex
将1.8g的2,2’-联吡啶(bpy),0.7g的氯化锂和1.56g的RuCl3·3H2O溶解于10mL的N,N-二甲基甲酰胺(DMF)中,然后在氩气氛围保护下140℃冷凝回流12h。通过抽滤,重结晶,真空干燥后得到墨绿色微晶为钌前体cis-[Ru(bpy)2Cl2]·2H2O;1.8 g of 2,2'-bipyridine (bpy), 0.7 g of lithium chloride and 1.56 g of RuCl 3 ·3H 2 O were dissolved in 10 mL of N,N-dimethylformamide (DMF), and then Under the protection of argon atmosphere, it was condensed and refluxed at 140°C for 12h. After suction filtration, recrystallization, and vacuum drying, dark green microcrystals were obtained as ruthenium precursor cis-[Ru(bpy) 2 Cl 2 ]·2H 2 O;
将0.52g钌前体cis-[Ru(bpy)2Cl2]·2H2O溶解于无水乙醇中,再加入0.3g的2,2’-联吡啶-4,4’-二羧酸(dcb),在氩气氛围保护下加热至80℃回流,用NaOH调节pH至碱性,溶解后继续回流12h,反应结束后用HCI调节pH,减压条件下旋蒸除去溶剂,得到橙红色固体为钌配合物[Ru(bpy)2(dcb)]2+。Dissolve 0.52g of ruthenium precursor cis-[Ru(bpy) 2 Cl 2 ]·2H 2 O in absolute ethanol, then add 0.3g of 2,2'-bipyridine-4,4'-dicarboxylic acid ( dcb), under the protection of argon atmosphere, heated to 80°C and refluxed, adjusted the pH to alkaline with NaOH, continued to reflux for 12 hours after dissolving, adjusted the pH with HCI after the reaction was completed, and removed the solvent by rotary evaporation under reduced pressure to obtain an orange-red solid It is a ruthenium complex [Ru(bpy) 2 (dcb)] 2+ .
实施例2:制备钌配合物Embodiment 2: preparation ruthenium complex
将2.5g的2,2’-联吡啶-4,4’-二甲基,0.9g氯化锂和1.56g的RuCl3·3H2O溶解于30mL的DMF中,然后在氩气氛围保护下冷凝回流6h。通过抽滤,重结晶,多次提纯并干燥后得到钌前体;Dissolve 2.5g of 2,2'-bipyridine-4,4'-dimethyl, 0.9g of lithium chloride and 1.56g of RuCl 3 ·3H 2 O in 30mL of DMF, and then under the protection of argon atmosphere Condensation reflux 6h. Through suction filtration, recrystallization, repeated purification and drying, the ruthenium precursor is obtained;
将0.52g钌前体溶解于无水乙醇中,再加入0.22g的2,2-联吡啶-4,4’-二羧酸,在氩气氛围保护下加热至回流,用NaOH调节pH至碱性,溶解后继续回流8h,反应结束后用HCI调节pH,减压条件下旋蒸除去溶剂,得到固体为钌配合物。Dissolve 0.52g of ruthenium precursor in absolute ethanol, then add 0.22g of 2,2-bipyridine-4,4'-dicarboxylic acid, heat to reflux under the protection of argon atmosphere, adjust the pH to alkali with NaOH After the dissolution, continue to reflux for 8 hours. After the reaction, adjust the pH with HCI, and remove the solvent by rotary evaporation under reduced pressure to obtain a solid that is a ruthenium complex.
实施例3:制备钌配合物Embodiment 3: preparation ruthenium complex
将1.62g的2,2’-联吡啶,0.57g的氯化锂和1.56g的RuCl3·3H2O溶解于20mL的DMF中,然后在氩气氛围保护下140℃冷凝回流24h。通过抽滤,重结晶,真空干燥后得到钌前体;1.62g of 2,2'-bipyridyl, 0.57g of lithium chloride and 1.56g of RuCl 3 ·3H 2 O were dissolved in 20mL of DMF, and then condensed and refluxed at 140°C for 24h under the protection of argon atmosphere. After suction filtration, recrystallization, and vacuum drying, the ruthenium precursor is obtained;
将0.52g钌前体溶解于无水乙醇中,再加入0.33g的2,2-联吡啶-4-羧酸,在氩气氛围保护下加热至回流,用NaOH调节pH至碱性,溶解后继续回流36h,反应结束后用HCl调节pH,减压条件下旋蒸除去溶剂,得到固体为钌配合物。Dissolve 0.52g of ruthenium precursor in absolute ethanol, then add 0.33g of 2,2-bipyridine-4-carboxylic acid, heat to reflux under the protection of argon atmosphere, adjust the pH to alkaline with NaOH, and dissolve Continue to reflux for 36 h, adjust the pH with HCl after the reaction, and remove the solvent by rotary evaporation under reduced pressure to obtain a solid that is a ruthenium complex.
实施例4:MXene二维材料制备(Ti3C2Tx)Example 4: Preparation of MXene two-dimensional material (Ti 3 C 2 T x )
称取3g氟化锂粉末,加入12M的浓盐酸40mL,搅拌均匀后向其中加入2g Ti3AlC2基料,40℃条件下搅拌两天,通过水洗、乙醇洗的方式得到纯净的多层Ti3C2Tx材料。将多层Ti3C2Tx材料分散在书中,在室温下剧烈震荡并超声3h得到少层Ti3C2Tx二维纳米材料的水悬浮液,冷冻干燥得到Ti3C2Tx二维纳米材料。Weigh 3g of lithium fluoride powder, add 40mL of 12M concentrated hydrochloric acid, stir evenly, add 2g of Ti 3 AlC 2 base material to it, stir at 40°C for two days, and obtain pure multilayer Ti by washing with water and ethanol 3 C 2 T x material. Disperse the multi-layer Ti 3 C 2 T x material in a book, vibrate vigorously at room temperature and ultrasonicate for 3 hours to obtain an aqueous suspension of few-layer Ti 3 C 2 T x two-dimensional nanomaterials, and freeze-dry to obtain Ti 3 C 2 T x Two-dimensional nanomaterials.
实施例5:制备材料Ru@MXeneExample 5: Preparation of materials Ru@MXene
向含有0.1g的Ti3C2Tx二维纳米材料悬浮液中加入0.1g实施例1制备得到的钌配合物[Ru(bpy)2(dcb)]2+,再加入质量比为1∶1的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)和4-二甲氨基吡啶(DMAP)组成的水溶性复合催化剂0.005g混合均匀,在惰性气体氛围100℃下反应3h,反应结束后离心,去除上清液,残余物用去离子水反复离心洗涤,冷冻干燥得到所述光热、光动力协同的钌配合物修饰的MXene复合材料,记为Ru@MXene。Add 0.1 g of the ruthenium complex [Ru(bpy) 2 (dcb)] 2+ prepared in Example 1 to the suspension containing 0.1 g of Ti 3 C 2 T x two-dimensional nanomaterials, and add a mass ratio of 1: 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) and 0.005g of water-soluble composite catalyst composed of 4-dimethylaminopyridine (DMAP) mix homogeneously, in React in an inert gas atmosphere at 100°C for 3 hours, centrifuge after the reaction, remove the supernatant, wash the residue repeatedly with deionized water, and freeze-dry to obtain the MXene composite material modified by the photothermal and photodynamic synergistic ruthenium complex. Denoted as Ru@MXene.
实施例6:制备复合材料Embodiment 6: prepare composite material
向含有0.1g的Ti3C2Tx二维纳米材料悬浮液中加入0.05g实施例2制备得到的钌配合物,再加入质量比为1∶1的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)和4-二甲氨基吡啶(DMAP)组成的水溶性复合催化剂0.01g混合均匀,在惰性气体氛围100℃下反应1h,反应结束后离心,去除上清液,残余物用去离子水反复离心洗涤,冷冻干燥得到所述光热、光动力协同的钌配合物修饰的MXene复合材料。Add 0.05 g of the ruthenium complex prepared in Example 2 to the suspension containing 0.1 g of Ti 3 C 2 T x two-dimensional nanomaterials, and then add 1-(3-dimethylaminopropyl with a mass ratio of 1:1 )-3-ethylcarbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine (DMAP) water-soluble composite catalyst 0.01g mixed uniformly, reacted for 1h under inert gas atmosphere at 100°C, after the reaction After centrifugation, the supernatant was removed, and the residue was repeatedly centrifuged and washed with deionized water, and then freeze-dried to obtain the photothermal and photodynamic synergistic ruthenium complex-modified MXene composite.
实施例7:制备复合材料Embodiment 7: prepare composite material
向含有0.1g的Ti3C2Tx二维纳米材料悬浮液中加入0.2g实施例3制备得到的钌配合物,再加入质量比为1∶1的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)和4-二甲氨基吡啶(DMAP)组成的水溶性复合催化剂0.012g混合均匀,在惰性气体氛围100℃下反应12h,反应结束后离心,去除上清液,残余物用去离子水反复离心洗涤,冷冻干燥得到所述光热、光动力协同的钌配合物修饰的MXene复合材料。Add 0.2 g of the ruthenium complex prepared in Example 3 to the suspension containing 0.1 g of Ti 3 C 2 T x two-dimensional nanomaterials, and then add 1-(3-dimethylaminopropyl with a mass ratio of 1:1 )-3-ethylcarbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine (DMAP) water-soluble composite catalyst 0.012g mixed uniformly, reacted for 12h under
测试例:Test case:
1、将实施例1制备的钌配合物[Ru(bpy)2(dcb)]2+进行质谱分析与核磁分析,结果如图1、图2所示,其中,ESI-MS(CH3OH):m/z:329.04[M]2+,由此可得M为658.08,与相对分子量657.65几乎一致。由核磁分析所得结果为:1H NMR(400MHz,DMSO)δ8.85(d,J=8.2Hz,4H),8.79(s,2H),8.15(dd,J=13.0,6.6Hz,4H),7.74(d,J=5.4Hz,6H),7.66(d,J=5.7Hz,2H),7.53(t,J=6.7Hz,4H),证明得到的钌配合物为[Ru(bpy)2(dcb)]2+。1. The ruthenium complex [Ru(bpy) 2 (dcb)] 2+ prepared in Example 1 is subjected to mass spectrometry and nuclear magnetic analysis, the results are shown in Figure 1 and Figure 2, wherein, ESI-MS (CH 3 OH) : m/z: 329.04[M] 2+ , thus M is 658.08, which is almost consistent with the relative molecular weight of 657.65. The results obtained by nuclear magnetic analysis are: 1 H NMR (400MHz, DMSO) δ8.85 (d, J=8.2Hz, 4H), 8.79 (s, 2H), 8.15 (dd, J=13.0, 6.6Hz, 4H), 7.74 (d, J=5.4Hz, 6H), 7.66 (d, J=5.7Hz, 2H), 7.53 (t, J=6.7Hz, 4H), it is proved that the obtained ruthenium complex is [Ru(bpy) 2 ( dcb)] 2+ .
2、将实施例4制备的MXene二维材料Ti3C2Tx和实施例5制备得到的Ru@MXene在TEM下进行观察,TEM图如图3所示,其中右侧图为实施例4制备的MXene二维材料Ti3C2Tx的TEM图,左侧图为实施例5制备得到的Ru@MXene的TEM图。EDS能谱图如图4和图5所示,其中图4为实施例4制备的MXene二维材料Ti3C2Tx的EDS能谱图,图5为实施例5制备得到的Ru@MXene的EDS能谱图。2. Observe the MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4 and the Ru@MXene prepared in Example 5 under TEM. The TEM image is shown in Figure 3, and the figure on the right is Example 4 The TEM image of the prepared MXene two-dimensional material Ti 3 C 2 T x , the left image is the TEM image of Ru@MXene prepared in Example 5. The EDS energy spectrum is shown in Figure 4 and Figure 5, where Figure 4 is the EDS energy spectrum of the MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4, and Figure 5 is the Ru@MXene prepared in Example 5 The EDS energy spectrum.
从图3可以看出,MXene二维材料Ti3C2Tx呈二维薄片状,经钌配合物修饰后形成的Ru@MXene材料仍为薄片状,尺寸大小在200nm左右。It can be seen from Figure 3 that the MXene two-dimensional material Ti 3 C 2 T x is in the shape of two-dimensional flakes, and the Ru@MXene material formed after modification with ruthenium complexes is still in the shape of flakes, with a size of about 200nm.
从图4可知MXene二维材料Ti3C2Tx含有Ti,O,Cl,F,c元素,而图5的Ru@MXene出现了新的元素N,Ru,证明MXene表面被含Ru物质成功负载。It can be seen from Figure 4 that the MXene two-dimensional material Ti 3 C 2 T x contains Ti, O, Cl, F, and c elements, while Ru@MXene in Figure 5 has new elements N and Ru, which proves that the surface of MXene is successfully covered by Ru-containing substances. load.
3、将实施例4制备的MXene二维材料Ti3C2Tx和实施例5制备得到的Ru@MXene进行XRD检测,XRD图如图6所示。3. The MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4 and the Ru@MXene prepared in Example 5 were subjected to XRD detection, and the XRD pattern is shown in FIG. 6 .
图6中Ru@MXene的(002)峰值往更低的角度偏移了0.91°,对应于Ru@MXene片层与片层之间的层间空间的显著增加,是超薄纳米片结构的形成,有利于超薄纳米片物理切割细胞膜,从而提高抗菌或抗肿瘤效率。In Figure 6, the (002) peak of Ru@MXene shifted to a lower angle by 0.91°, corresponding to the significant increase in the interlayer space between the Ru@MXene sheets and the formation of ultrathin nanosheet structures , which is conducive to the physical cutting of cell membranes by ultrathin nanosheets, thereby improving the antibacterial or antitumor efficiency.
4、将实施例4制备的MXene二维材料Ti3C2Tx和实施例5制备得到的Ru@MXene分别进行红外光谱测试,红外光谱测试图如图7所示。4. The MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4 and the Ru@MXene prepared in Example 5 were respectively subjected to infrared spectrum testing, and the infrared spectrum testing chart is shown in FIG. 7 .
图7中MXene二维材料Ti3C2Tx和Ru@MXene都显示出了在3431cm-1,1632cm-1和562cm-1处的典型特征带,分别对应-OH,C=O和Ti-O的伸缩振动。其中经钌配合物修饰后的Ru@MXene在1088cm-1和1049cm-1处出现了与酯键相关的吸收带,表明钌配合物上的羟基和MXene二维材料Ti3C2Tx上的羟基成功酯化,钌配合物负载在了MXene二维材料Ti3C2Tx纳米片上。In Figure 7, the MXene two-dimensional materials Ti 3 C 2 T x and Ru@MXene both show typical characteristic bands at 3431cm -1 , 1632cm -1 and 562cm -1 , corresponding to -OH, C=O and Ti- The stretching vibration of O. Among them, Ru@MXene modified by ruthenium complexes has absorption bands related to ester bonds at 1088 cm -1 and 1049 cm -1 , indicating that the hydroxyl groups on the ruthenium complexes and the MXene two-dimensional material Ti 3 C 2 T x The hydroxyl groups were successfully esterified, and the ruthenium complexes were supported on the MXene two-dimensional material Ti 3 C 2 T x nanosheets.
试验例:Test example:
1、光热升温效率:1. Photothermal heating efficiency:
将实施例5制备的Ru@MXene分散在水中,制备成不同质量浓度的分散液,使用氙灯(激光功率密度:1.5sun)进行照射,利用红外热成像仪获得了辐照时不同浓度(0μg/mL、20μg/mL、50μg/mL和100μg/mL)的Ru@MXene的温度曲线,温度曲线如图8所示。The Ru@MXene prepared in Example 5 was dispersed in water, prepared into dispersions with different mass concentrations, irradiated with a xenon lamp (laser power density: 1.5sun), and obtained different concentrations (0 μg/ mL, 20 μg/mL, 50 μg/mL and 100 μg/mL) of the temperature curve of Ru@MXene, the temperature curve is shown in Figure 8.
从图8可以看出,Ru@MXene在较低质量浓度(100μg/mL)下,溶液温度经过15min照射就可以达到53℃,表明Ru@MXene可以有效且快速地进行光转换成热能,同时也验证了Ru@MXene光热性能对浓度的依赖性。It can be seen from Figure 8 that at a lower mass concentration (100 μg/mL) of Ru@MXene, the solution temperature can reach 53 °C after 15 minutes of irradiation, indicating that Ru@MXene can efficiently and quickly convert light into heat energy, and at the same time The concentration dependence of the photothermal performance of Ru@MXene was verified.
取相同体积的相同质量浓度的实施例1制备的钌配合物的水溶液、实施例4制备的制备的MXene二维材料Ti3C2Tx的水分散液、实施例5制备得到的Ru@MXene的水分散溶、水,使用氙灯(激光功率密度:1.5sun)进行照射,利用红外热成像仪获得温度曲线,温度曲线如图9所示,热红外图像如图10所示。Take the aqueous solution of the ruthenium complex prepared in Example 1 with the same mass concentration of the same volume, the aqueous dispersion of the MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4, and the Ru@MXene prepared in Example 5 Dispersed in water, dissolved in water, irradiated with a xenon lamp (laser power density: 1.5sun), and obtained a temperature curve using an infrared thermal imager. The temperature curve is shown in Figure 9, and the thermal infrared image is shown in Figure 10.
图9-10中,不同样品:水、钌配合物、MXene二维材料Ti3C2Tx、Ru@MXene)的水溶液在氙灯照射下,其中MXene二维材料Ti3C2Tx和Ru@MXene在氙灯照射下溶液温度在15min内都达到接近53℃,而样品水的温度只有38℃,说明了MXene二维材料Ti3C2Tx和Ru@MXene纳米薄片都具有良好的光热性能。In Fig. 9-10, different samples: water, ruthenium complex, MXene two-dimensional material Ti 3 C 2 T x , Ru@MXene) aqueous solution under the irradiation of xenon lamp, in which MXene two-dimensional material Ti 3 C 2 T x and Ru Under the irradiation of xenon lamp, the solution temperature of @MXene reached close to 53°C within 15 minutes, while the temperature of the sample water was only 38°C, indicating that both MXene two-dimensional materials Ti 3 C 2 T x and Ru@MXene nanosheets have good photothermal properties performance.
2、光热稳定性:2. Light and heat stability:
取相同体积的相同质量浓度的实施例1制备的钌配合物的水溶液、实施例4制备的制备的MXene二维材料Ti3C2Tx的水分散液、实施例5制备得到的Ru@MXene的水分散溶、水,使用氙灯(激光功率密度:1.5sun)进行照射,利用红外热成像仪获得辐照时间为5个激光开/关周期的温度曲线,温度曲线如图11所示。Take the aqueous solution of the ruthenium complex prepared in Example 1 with the same mass concentration of the same volume, the aqueous dispersion of the MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4, and the Ru@MXene prepared in Example 5 Dispersed in water, dissolved in water, irradiated with a xenon lamp (laser power density: 1.5 sun), using an infrared thermal imager to obtain a temperature curve with an irradiation time of 5 laser on/off cycles, the temperature curve is shown in Figure 11.
Ru@MXene的光热性能在整个过程中没有明显恶化,说明其具有良好的光热稳定性。The photothermal performance of Ru@MXene did not deteriorate significantly during the whole process, indicating its good photothermal stability.
3、体外光动力活性:3. In vitro photodynamic activity:
以二苯基异苯并呋喃(DPBF)单线态氧指示荧光探针为探针,测量在532nm LED绿灯照射下样品生成的总ROS;样品分别为:实施例1制备的钌配合物、实施例4制备的制备的MXene二维材料Ti3C2Tx、实施例5制备得到的Ru@MXene、水,具体如下:Using the diphenylisobenzofuran (DPBF) singlet oxygen indicating fluorescent probe as a probe, measure the total ROS generated by the sample under the irradiation of a 532nm LED green light; the samples are respectively: the ruthenium complex prepared in Example 1, the ruthenium complex prepared in Example 4 Prepared MXene two-dimensional material Ti 3 C 2 T x , Ru@MXene prepared in Example 5, and water, as follows:
在石英比色皿中将2.97mL不同质量浓度的实施例1制备的钌配合物、实施例4制备的制备的MXene二维材料Ti3C2Tx、实施例5制备得到的Ru@MXene、水与分别与10mM浓度的DPBF的DMSO溶液30μL搅拌混合;随后用20mw的532nm LED绿灯照射,照射周期为5min。在此过程中,在预先设定的时间点,使用紫外分光光度仪记录DPBF在420nm处的吸光度,吸光度的变化曲线如图12所示。In a quartz cuvette, 2.97 mL of the ruthenium complex prepared in Example 1, the MXene two-dimensional material Ti 3 C 2 T x prepared in Example 4, the Ru@MXene prepared in Example 5, Water was stirred and mixed with 30 μL of DMSO solution of DPBF at a concentration of 10 mM; then irradiated with a 532 nm LED green light of 20 mW, and the irradiation period was 5 min. During this process, at a preset time point, an ultraviolet spectrophotometer was used to record the absorbance of DPBF at 420 nm, and the change curve of the absorbance is shown in FIG. 12 .
图12中,当用532nm LED绿光照射单独的钌配合物溶液时,DPBF在420nm处的吸光度迅速降低,产生大量1O2,而Ru@MXene溶液中的DPBF吸光度变化没有单独的钌配合物明显,仍然产生了较多的的1O2,单独的MXene二维材料Ti3C2Tx溶液中的DPBF吸光度几乎没有变化;表明Ru@MXene负载了钌配合物后具有良好的光动力效应。In Fig. 12, when the ruthenium complex solution alone is irradiated with 532nm LED green light, the absorbance of DPBF at 420nm decreases rapidly, producing a large amount of 1 O 2 , while the DPBF absorbance change in the Ru@MXene solution has no ruthenium complex alone Obviously, more 1 O 2 is still produced, and the DPBF absorbance of the single MXene two-dimensional material Ti 3 C 2 T x solution has almost no change; it shows that Ru@MXene has a good photodynamic effect after loading the ruthenium complex .
4、Ru@MXene的杀菌活性4. Bactericidal activity of Ru@MXene
(1)菌液准备:接种环挑取大肠杆菌单菌落至10mL LB培养液中,放置在37℃、220r/min摇床中培养至菌液OD600在0.5~0.6之间,测定OD值,稀释至0.01(菌液浓度为107CFU/mL),待用。(1) Bacterial solution preparation: Pick a single colony of E. coli with an inoculation loop and put it in 10 mL of LB culture medium, place it in a shaker at 37°C and 220 r/min and cultivate it until the OD600 of the bacterial solution is between 0.5 and 0.6, measure the OD value, and dilute to 0.01 (the concentration of bacteria solution is 10 7 CFU/mL), set aside.
(2)配置样品:分别配置母液30μM的实施例1的钌配合物水溶液、5mg/mL实施例3的MXene二维材料Ti3C2Tx水分散液以及5mg/mL实施例4的Ru@MXene水分散液。(2) Configuration samples: respectively configure the aqueous solution of the ruthenium complex of Example 1 with a mother liquor of 30 μM, the MXene two-dimensional material Ti 3 C 2 T x aqueous dispersion of 5 mg/mL of Example 3, and the Ru@ of Example 4 of 5 mg/mL MXene aqueous dispersion.
取EP管若干,每种菌按如下方式配制:Take several EP tubes, and prepare each bacteria as follows:
样品1)菌:加入50μL菌液和450μL无菌水;Sample 1) Bacteria: Add 50 μL of bacterial solution and 450 μL of sterile water;
样品2)菌+实施例1的钌配合物:加入50μL菌液、30μM的实施例1的钌配合物溶液250μL和无菌水200μL,溶液中实施例1的钌配合物终浓度为15μM。Sample 2) bacteria + ruthenium complex of Example 1: add 50 μL of bacterial liquid, 250 μL of 30 μM ruthenium complex solution of Example 1 and 200 μL of sterile water, and the final concentration of the ruthenium complex of Example 1 in the solution is 15 μM.
样品3)菌+实施例3的MXene二维材料Ti3C2Tx:加入50μL菌液、5mg/mL实施例3的MXene二维材料Ti3C2Tx水分散液10μL和440μL无菌水,溶液中实施例3的MXene二维材料Ti3C2Tx终浓度为100μg/ml;按照相同的办法配置成实施例3的MXene二维材料Ti3C2Tx终浓度为20μg/ml、50μg/ml、200μg/ml的含有50μL菌液的500μL溶液。Sample 3) Bacteria + the MXene two-dimensional material Ti 3 C 2 T x of Example 3: add 50 μL of bacterial solution, 5 mg/mL of the MXene two-dimensional material Ti 3 C 2 T x aqueous dispersion of Example 3 10 μL and 440 μL of sterile Water, the final concentration of the MXene two-dimensional material Ti 3 C 2 T x of Example 3 in the solution is 100 μg/ml; the final concentration of the MXene two-dimensional material Ti 3 C 2 T x of Example 3 is configured in the same way as 20 μg/ml ml, 50 μg/ml, 200 μg/ml of 500 μL solution containing 50 μL bacterial solution.
样品4)菌+实施例4的Ru@MXene:加入50μL菌液、5mg/mL实施例4的Ru@MXene水分散液10μL和440μL无菌水,溶液中实施例4的Ru@MXene终浓度为100μg/ml。Sample 4) Bacteria + Ru@MXene of Example 4: Add 50 μL of bacterial liquid, 10 μL of 5 mg/mL Ru@MXene aqueous dispersion of Example 4 and 440 μL of sterile water, and the final concentration of Ru@MXene of Example 4 in the solution is 100 μg/ml.
5)以配置的样品1)菌;样品2)菌+实施例1的钌配合物;样品3)中菌+终浓度为100μg/ml的实施例3的MXene二维材料Ti3C2Tx;样品4)菌+实施例4的Ru@MXene为检测样品。每种检测样品同时有光照和无光照两组进行处理;光照处理条件为300~2500nm波长范围的氙灯以光强密度为1.50Sun照射30min;5) The configured sample 1) bacteria; sample 2) bacteria + the ruthenium complex of Example 1; sample 3) bacteria + the MXene two-dimensional material Ti 3 C 2 T x of Example 3 with a final concentration of 100 μg/ml ; Ru@MXene of sample 4) bacterium+
注:光强密度1Sun=100mw/cm2。Note: Light intensity density 1Sun=100mw/cm 2 .
6)以配置的样品1)菌;样品3)中菌+终浓度为20μg/ml的实施例3的MXene二维材料Ti3C2Tx;样品3)中菌+终浓度为50μg/ml的实施例3的MXene二维材料Ti3C2Tx;样品3)中菌+终浓度为100μg/ml的实施例3的MXene二维材料Ti3C2Tx;样品3)中菌+终浓度为200μg/ml的实施例3的MXene二维材料Ti3C2Tx为检测样品。每种检测样品同时有光照和无光照两组进行处理;光照处理条件为300~2500nm波长范围的氙灯以光强密度为1.50Sun照射30min。6) The configured sample 1) bacteria; sample 3) medium bacteria + the MXene two-dimensional material Ti 3 C 2 T x of Example 3 with a final concentration of 20 μg/ml; sample 3) medium bacteria + a final concentration of 50 μg/ml The MXene two-dimensional material Ti 3 C 2 T x of Example 3; sample 3) medium bacteria + the final concentration of the MXene two-dimensional material Ti 3 C 2 T x of Example 3 of 100 μg/ml; sample 3) medium bacteria + The MXene two-dimensional material Ti 3 C 2 T x of Example 3 with a final concentration of 200 μg/ml was used as a test sample. Each test sample was treated with two groups of light and no light at the same time; the light treatment condition was a xenon lamp with a wavelength range of 300-2500nm and irradiated with a light intensity of 1.50Sun for 30min.
7)菌落平板培养:取100μL步骤6)中各组样品涂布在琼脂平板上。放置在37℃培养箱中,培养18-24小时,观察结果,记录数据;结果如图13所示。7) Colony plate culture: take 100 μL of samples from each group in step 6) and spread on the agar plate. Place it in a 37°C incubator, cultivate for 18-24 hours, observe the results, and record the data; the results are shown in Figure 13.
8)菌落平板培养:取100μL步骤5)中各组样品涂布在琼脂平板上。放置在37℃培养箱中,培养18-24小时,观察结果,记录数据;结果如图14所示。8) Colony plate culture: Take 100 μL of samples from each group in step 5) and spread them on an agar plate. Place it in a 37°C incubator, culture for 18-24 hours, observe the results, and record the data; the results are shown in Figure 14.
(3)平板培养结果(3) Plate culture results
不同样品光照诱导Ru@MXene的杀菌效果。Bactericidal effect of Ru@MXene induced by light in different samples.
如图13所示,平板培养结果表明,本方法在光强1.5Sun的氙灯下照射30min,15μM实施例1的钌配合物、100μg/mL实施例3的MXene二维材料Ti3C2Tx、110μg/mL实施例4的Ru@MXene的条件下,大肠杆菌的各组菌浓度相对于样品1)纯菌组均有明显的降低;而实施例4的Ru@MXene比实施例3的MXene二维材料Ti3C2Tx单独作用组、实施例1的钌配合物单独作用组的杀菌效果好。As shown in Figure 13, the plate culture results show that this method is irradiated under a xenon lamp with a light intensity of 1.5 Sun for 30 minutes, 15 μM of the ruthenium complex of Example 1, and 100 μg/mL of the MXene two-dimensional material Ti 3 C 2 T x of Example 3 , 110 μg/mL of Ru@MXene in Example 4, the concentration of each group of Escherichia coli was significantly lower than that of the sample 1) pure bacteria group; while the Ru@MXene of Example 4 was significantly lower than the MXene of Example 3 The bactericidal effect of the two-dimensional material Ti 3 C 2 T x single action group and the ruthenium complex of Example 1 single action group is good.
将上述平板培养的样品进行SEM观察,结果如图15所示。The samples cultured on the above plates were observed by SEM, and the results are shown in FIG. 15 .
由图15的SEM图可见,Ru@MXene在细菌表面聚集,并且破坏了细胞壁。由于光照激发钌配合物产生活性氧,破坏细胞壁结构,同时Ru@MXene将光能转变成热能使细菌体内组织温度升高,细胞内容物泄露,最终导致细菌死亡。As can be seen from the SEM images in Figure 15, Ru@MXene aggregated on the bacterial surface and destroyed the cell wall. Light stimulates the ruthenium complex to generate reactive oxygen species, destroying the cell wall structure, and at the same time, Ru@MXene converts light energy into heat energy, which increases the temperature of the tissue in the bacteria, leaks the cell contents, and eventually leads to the death of the bacteria.
对MXene二维材料功能修饰后能更好地改善其水分散性,有利于其分散于生理环境中。Ru@MXene复合体系中,钌配合物产生的活性氧会增加光热材料MXene对激光的捕获,而MXene的光热作用会增加组织的氧气供应,促进钌配合物PDT的产生。Ru@MXene同时具有超薄MXene纳米片物理切割细胞膜,光热治疗以及钌配合物光动力治疗,实现三合一的协同抗菌机制。The functional modification of MXene two-dimensional materials can better improve its water dispersibility, which is conducive to its dispersion in physiological environments. In the Ru@MXene composite system, the active oxygen generated by the ruthenium complex will increase the laser capture of the photothermal material MXene, and the photothermal effect of MXene will increase the oxygen supply of the tissue and promote the generation of PDT of the ruthenium complex. Ru@MXene also has ultra-thin MXene nanosheets to physically cut cell membranes, photothermal therapy and ruthenium complex photodynamic therapy, realizing a three-in-one synergistic antibacterial mechanism.
不同浓度Ru@MXene下光照诱导Ru@MXene的杀菌效果。The bactericidal effect of Ru@MXene was induced by light under different concentrations of Ru@MXene.
如图14显示,随着实施例4的Ru@MXene浓度的增加,黑暗条件下的细菌浓度没有明显变化,光照照射后细菌浓度呈下降趋势,因此本发明的Ru@MXene杀菌显示出Ru@MXene浓度依赖效应。当Ru@MXene浓度达到50μg/ml时,本发明的Ru@MXene对大肠杆菌显示出明显的抑制作用,且随着浓度的升高,抑菌作用越强。As shown in Figure 14, with the increase of Ru@MXene concentration in Example 4, the bacterial concentration under dark conditions did not change significantly, and the bacterial concentration showed a downward trend after light irradiation, so the Ru@MXene sterilization of the present invention showed that Ru@MXene Concentration dependent effect. When the concentration of Ru@MXene reaches 50 μg/ml, the Ru@MXene of the present invention shows obvious inhibitory effect on Escherichia coli, and the antibacterial effect becomes stronger as the concentration increases.
综上所述,本发明将钌配合物和MXene通过表面官能团反应形成共价键,将钌配合物负载到MXene表面,形成Ru@MXene纳米复合材料。在光照下,钌配合物产生的活性氧会增加光热材料MXene对激光的捕获,而MXene的光热作用会增加组织的氧气供应,促进钌配合物PDT的产生。同时超薄MXene纳米片还可以物理切割细胞膜,形成物理切割、光热治疗以及钌配合物光动力治疗三合一的协同抗菌抗肿瘤机制的体系,为替代抗生素治疗和肿瘤药物治疗提供了新的思路。In summary, the present invention reacts the ruthenium complex and MXene to form a covalent bond through the surface functional group, loads the ruthenium complex on the surface of MXene, and forms a Ru@MXene nanocomposite material. Under the light, the reactive oxygen species produced by the ruthenium complex will increase the capture of laser light by the photothermal material MXene, and the photothermal effect of MXene will increase the oxygen supply of the tissue and promote the generation of PDT of the ruthenium complex. At the same time, the ultra-thin MXene nanosheets can also physically cut the cell membrane, forming a three-in-one synergistic antibacterial and anti-tumor mechanism system of physical cutting, photothermal therapy and ruthenium complex photodynamic therapy, which provides a new alternative to antibiotic therapy and tumor drug therapy. train of thought.
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。The above-mentioned embodiment is only a preferred embodiment of the present invention, and cannot be used to limit the protection scope of the present invention. Any insubstantial changes and substitutions made by those skilled in the art on the basis of the present invention belong to the scope of the present invention. Scope of protection claimed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211154796.7A CN115590956B (en) | 2022-09-21 | 2022-09-21 | Ruthenium complex modified MXene composite material with photo-thermal and photodynamic synergism and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211154796.7A CN115590956B (en) | 2022-09-21 | 2022-09-21 | Ruthenium complex modified MXene composite material with photo-thermal and photodynamic synergism and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115590956A true CN115590956A (en) | 2023-01-13 |
CN115590956B CN115590956B (en) | 2024-08-02 |
Family
ID=84844904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211154796.7A Active CN115590956B (en) | 2022-09-21 | 2022-09-21 | Ruthenium complex modified MXene composite material with photo-thermal and photodynamic synergism and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115590956B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108126200A (en) * | 2017-12-30 | 2018-06-08 | 广西师范大学 | A kind of preparation method and applications of hyaluronic acid decorated ruthenium nanometer optothermal material |
CN109967104A (en) * | 2019-03-05 | 2019-07-05 | 华南理工大学 | Nano Ru-modified TiO2-Ti3C2 photocatalyst and preparation method |
CN110384799A (en) * | 2019-08-26 | 2019-10-29 | 同济大学 | PH responsiveness composite nano materials, preparation based on hollow copper sulfide and ruthenium complex and its application in treating cancer drug |
CN111229328A (en) * | 2020-03-25 | 2020-06-05 | 辽宁大学 | A kind of coenzyme B12 modified Ti3C2(OH)X nanosheet composite photocatalyst and its preparation method and application |
CN113694197A (en) * | 2021-10-29 | 2021-11-26 | 深圳市第二人民医院(深圳市转化医学研究院) | Photothermal/photodynamic synergistic tumor phototherapy reagent and preparation method and application thereof |
US20220111358A1 (en) * | 2019-02-19 | 2022-04-14 | King Abdullah University Of Science And Technology | Single atom catalyst having a two dimensional support material |
-
2022
- 2022-09-21 CN CN202211154796.7A patent/CN115590956B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108126200A (en) * | 2017-12-30 | 2018-06-08 | 广西师范大学 | A kind of preparation method and applications of hyaluronic acid decorated ruthenium nanometer optothermal material |
US20220111358A1 (en) * | 2019-02-19 | 2022-04-14 | King Abdullah University Of Science And Technology | Single atom catalyst having a two dimensional support material |
CN109967104A (en) * | 2019-03-05 | 2019-07-05 | 华南理工大学 | Nano Ru-modified TiO2-Ti3C2 photocatalyst and preparation method |
CN110384799A (en) * | 2019-08-26 | 2019-10-29 | 同济大学 | PH responsiveness composite nano materials, preparation based on hollow copper sulfide and ruthenium complex and its application in treating cancer drug |
CN111229328A (en) * | 2020-03-25 | 2020-06-05 | 辽宁大学 | A kind of coenzyme B12 modified Ti3C2(OH)X nanosheet composite photocatalyst and its preparation method and application |
CN113694197A (en) * | 2021-10-29 | 2021-11-26 | 深圳市第二人民医院(深圳市转化医学研究院) | Photothermal/photodynamic synergistic tumor phototherapy reagent and preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
BO YAO等: "Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti3C2@PEI-Ru(dcbpy)32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene", 《ACS APPL. MATER. INTERFACES》, vol. 13, 23 April 2021 (2021-04-23), pages 19816 - 19824 * |
DONG-YANG ZHANG等: "Graphene Oxide Decorated with Ru(II)-Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy", 《ACS APPL. MATER. INTERFACES》, vol. 9, 2 February 2017 (2017-02-02), pages 6761 - 6771 * |
WEI HUANG等: "Two Birds with One Stone: Surface Functionalization and Delamination of Multilayered Ti3C2Tx MXene by Grafting a Ruthenium(II) Complex to Achieve Conductivity-Enhanced Electrochemiluminescence", 《ANAL. CHEM.》, vol. 93, 2 January 2021 (2021-01-02), pages 1834 - 1841 * |
Also Published As
Publication number | Publication date |
---|---|
CN115590956B (en) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Poly (ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy | |
CN107722024B (en) | Aminophenoxy substituted phthalocyanine and its application in pharmaceutical field | |
CN111978313A (en) | Multimodal phototherapeutic agents with aggregation-induced luminescence properties and their preparation and application | |
CN108864106A (en) | The preparation and application of novel two area's small organic molecule fluorescence probe of near-infrared | |
Haider et al. | A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks | |
CN113773667B (en) | Organic small molecule near-infrared second region fluorescent dye and its preparation method and application | |
CN104262350B (en) | Phthalocyanine metal complex as well as preparation method and application thereof | |
CN111569073A (en) | A kind of mesoporous Prussian blue-manganese nanoparticles loaded with photosensitizer and preparation method thereof | |
Yao et al. | π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework | |
Liu et al. | Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity | |
CN113908277B (en) | Preparation method of photoresponse single-atom catalytic function nano-drug material | |
CN113425850B (en) | Photosensitive antibacterial modified porphyrin metal organic framework material and preparation method thereof | |
CN113797334A (en) | Artemisinin & indocyanine green/ultrathin hydrotalcite nanosheet composite material and preparation and application thereof | |
CN107915740A (en) | Substituted phthalocyanine copper and its application in optothermal material and photo-thermal therapy field | |
CN116947855A (en) | Four-arm perylene diimide compound and synthetic method and application thereof | |
CN111939124A (en) | Metal polymer, metal polymer nano micelle, and preparation method and application thereof | |
CN110755640B (en) | A kind of preparation method and application of gold-platinum composite nano-diagnostic agent | |
CN110156072B (en) | Preparation method of connected Ce6 anoxic black titanium dioxide nanoparticles | |
CN107915739A (en) | Metal phthalocyanine and its application in optothermal material and photo-thermal therapy field | |
CN115590956B (en) | Ruthenium complex modified MXene composite material with photo-thermal and photodynamic synergism and preparation method and application thereof | |
CN107746411B (en) | Aminosilicone phthalocyanine-graphene oxide composite nanomaterial, its preparation method and application | |
CN113603698B (en) | Phthalocyanine-perphenazine conjugate with type I photosensitive reaction and photothermal synergistic effect and application in pharmaceutical field | |
CN108752357B (en) | Preparation method and application of water-soluble phthalocyanine nanomaterial with high light-to-heat conversion efficiency | |
CN113350502B (en) | Pd @ TiO 2 Preparation method of @ ZnPc composite system, composite system and application thereof | |
CN116036269B (en) | Water-soluble stable zinc ferrite Schottky heterojunction and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |