CN115587461A - 一种铁路选线搜索过程中约束的处理方法 - Google Patents

一种铁路选线搜索过程中约束的处理方法 Download PDF

Info

Publication number
CN115587461A
CN115587461A CN202211587197.4A CN202211587197A CN115587461A CN 115587461 A CN115587461 A CN 115587461A CN 202211587197 A CN202211587197 A CN 202211587197A CN 115587461 A CN115587461 A CN 115587461A
Authority
CN
China
Prior art keywords
constraint
grid
line
lines
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211587197.4A
Other languages
English (en)
Other versions
CN115587461B (zh
Inventor
蒲浩
万昕洁
李伟
宋陶然
冉杨
樊晓孟
彭利辉
熊斌
钟晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202211587197.4A priority Critical patent/CN115587461B/zh
Publication of CN115587461A publication Critical patent/CN115587461A/zh
Application granted granted Critical
Publication of CN115587461B publication Critical patent/CN115587461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/51Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/53Querying
    • G06F16/532Query formulation, e.g. graphical querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种铁路选线搜索过程中约束的处理方法,先将各种约束分类并抽象成线几何类型、带几何类型和面几何类型三种,并进一步归并为约束线和约束面;再将研究区域抽象为一系列的格网集,并根据格网集将约束线离散为一系列约束顶点,约束面分割为一系列块状区域;为约束线设计分布式存储策略,将约束顶点与格网的索引关系值存入对应格网,约束顶点的具体坐标存入外部点集,实现在线路搜索过程中能实时检索并提取相关约束,可以在不显著增加储存空间的基础上,实现控制性约束的实时检索,提高线路搜索的效率。

Description

一种铁路选线搜索过程中约束的处理方法
技术领域
本发明涉及铁路选线技术领域,具体涉及一种铁路选线搜索过程中约束的处理方法。
背景技术
铁路选线设计是铁路建设总领全局的核心工作,对铁路的施工运营的经济和安全起着决定性的作用。西部的山区铁路和东部的城际铁路都面临着复杂的控制性约束条件。如山区中广泛分布的地质灾害、河流、断裂带;城市地区密集分布的建筑物、历史保护区、地下管线等。这些约束的分布往往广泛而密集。约束种类多样,且各自的处治方法不同。
目前,在工程实际中,铁路选线主要依赖于人工设计。在广布密集的复杂约束条件下,找到一条满足所有约束条件的可行线路方案需要耗费大量的时间和精力。由于人的时间,精力限制,一些有价值的方案难免会被遗漏。
为了解决这个问题,国内外学者提出了很多计算机辅助的线路自动生成方法。考虑造价、环境等目标函数,在约束条件简单的研究区域,这些方法能快速自动搜索出目标函数最优的线路方案,为人工设计提供有价值的参考。但在复杂控制性约束区域,线路自动搜索过程中需要耗费大量的计算资源和时间来检索和处治这些约束,极大降低了搜索效率。
现已有学者提出的约束预处理方法,预先将约束的部分特征性质离散到格网中,减少线路搜索过程中的约束检索的工作量。但此方法将约束过度简化,造成约束具体几何信息的丢失。若将约束的全部几何信息存入格网中,会导致储存空间呈指数级增长。
因此,在铁路选线设计中(尤其是针对复杂环境地区),迫切需要一种约束处理方法,在不显著增加储存空间的情况下,快速提取甚至是处治约束,提高线路搜索的效率。
发明内容
本发明目的在于提供一种铁路选线搜索过程中约束的处理方法,能够适用于广布密集的复杂约束条件地区(即复杂环境地区),在不显著增加储存空间的情况下,快速提取甚至是处治约束,提高线路搜索的效率具体技术方案如下:
一种铁路选线搜索过程中约束的处理方法,包含约束的提取,具体包含以下步骤:
步骤S1、获取铁路选线搜索过程中约束,并将约束划分线几何类型、带几何类型、面几何类型三种;将线几何类型、带几何类型、面几何类型划分为约束线和约束面,其中:约束线包括线几何类型的约束、带几何类型中的中线、带几何类型中的边界线以及面几何类型中的边界线中的至少一种;约束面包括带几何类型中的包围区域以及面几何类型中边界线围成的区域中的至少一种;
步骤S2、将研究区域抽象为一系列的格网集;针对每一个格网集:若存在约束线,则将该格网集中的约束线离散为一系列的约束顶点;若存在约束面,则将约束面分割成以格网为单位的块状区域;
步骤S3、记录约束线的存在特性和具体点坐标值,并将约束顶点坐标存入外部点集中,用一个无符号整型数UINT和一个整型数组INTARRAY来建立约束顶点与对应格网的索引关系,并将索引关系存入对应的格网中;
记录约束面的存在特性,并将对应约束面的存在特性存入相应格网中;
步骤S4、铁路选线搜索过程中实时检测并提取格网的相关约束。
优选的,所述步骤S1中:线几何类型包括地下管线、高压线以及断裂带中至少一种;
带几何类型包括既有的道路、铁路、城市轨道交通以及河流中至少一种;
面几何类型包括自然保护区、历史文化保护区、永久农田保护区、不良地质区域、采石场、湖泊、水库以及环境敏感区中至少一种,不良地质区域包括崩塌、泥石流以及岩溶中至少一种。
优选的,所述步骤S2中:
格网的宽度为w,则通过格网行列号索引到当前格网左下角的坐标值,如下式所示:
Figure 380917DEST_PATH_IMAGE001
其中:x i y i 为分别为当前格网的左下角的横坐标值和纵坐标值;x 0y 0为研究区域格网集左下角格网的左下角的横坐标值和纵坐标值;rc为格网的横向行列号和纵向行列号。
本发明方案考虑了各项约束条件(即在复杂约束条件下),适用于复杂环境地区铁路选线设计。
优选的,对约束线进行如下处理:
由线段两端点的坐标得到两端点所处的格网的横向行列号和纵向行列号,若线段两端点处于一个格网中,则计算下一条线段的端点在格网中的位置;若线段两端点位于不同格网,计算此线段穿过的格网的xy轴方向边界线,并将线段与其穿过格网的xy轴方向边界线合集分别求交,并在交点处打断,将线段离散在不同格网中。
针对于约束线,采用打断离散处理,与格网对应关联,便于后续数据储存和提取。
优选的,采用下式计算线段穿过的格网的xy轴方向边界线:
Figure 298057DEST_PATH_IMAGE002
其中:XY为线段穿过格网的xy轴方向边界线合集;x mini y mini 分别为线段两端点的较小横坐标值和纵坐标值;λμ分别为线段穿越的行数和列数;r min c min 为格网的最小横向行列号和最小纵向行列号;r max c max 为格网的最大横向行列号和最大纵向行列号。
优选的,若约束线由一系列闭合的多段线组成,则还需进行如下处理:
循环每个闭合多的段线,形成如下式的闭合多段线的包围盒:
Figure 687581DEST_PATH_IMAGE003
其中:x L y L x R y R 分别为包围盒左下角和右上角的坐标;x k y k 为闭合多段线上各点的横坐标和纵坐标,k =1、2、3、......、b
判断格网中的点是否在闭合多段线中,若格网中的点在闭合多段线中,且格网中不存在边界约束线,则此格网中存在约束面,约束面被格网划分为块状区域。
针对于闭合的多段线组成的约束线,实现约束面的识别并将其用格网划分为块状区域,与格网对应关联,便于后续数据储存和提取。
优选的,所述步骤S3具体包括如下步骤:
S3-1、遍历所有约束线和约束面,在研究区域的格网中用一个无符号整型数UINT来储存存在特性,具体是:将格网中的UINT的每一位都初始化为0,代表初始状态下,格网中不存在任何控制性约束条件;按类型遍历所有约束,检测约束相关格网,将第a(1, 2, …,n)类控制性约束的存在特性存入相关格网的UINT中;
S3-2、遍历所有约束线,并将其约束顶点依次存入外部点集P set 中,如下式:
Figure 82791DEST_PATH_IMAGE004
其中:ijk分别表示不同类型的约束线的顶点个数;n为约束线的种类,
Figure 14671DEST_PATH_IMAGE005
Figure 837133DEST_PATH_IMAGE006
表示第1种约束线上的第1至第i个顶点;
Figure 104167DEST_PATH_IMAGE007
Figure 303067DEST_PATH_IMAGE008
表示第2种约束线上的第1至第j个顶点;
Figure 581732DEST_PATH_IMAGE009
Figure 575096DEST_PATH_IMAGE010
表示第n种约束线上的第1至第k个顶点;
顶点坐标记录为对应格网左下角的相对坐标,如下式:
Figure 329426DEST_PATH_IMAGE011
其中:x c y c 为控制性约束顶点的实际坐标值;Δx、Δy为控制性约束顶点相对于对应格网左下角点的相对坐标值;
S3-3、在研究区域格网中用一个整型数组INTARRAY来储存约束线的约束顶点索引值,INTARRAY顺序存储第a(1,2,…,n)类约束顶点在P set 中的起点和终点索引值,如下式:
Figure 66437DEST_PATH_IMAGE012
;其中:m a m a+1 (a=1,2,…,n)为a类约束顶点在外部点集P set 中的起点和终点索引值。
用一个无符号整型数UINT和一个整型数组INTARRAY来储存约束的存在特性和索引关系值,大大压缩了储存空间。
优选的,若p, q分别为两个UINT,|和&运算的公式如下:
Figure 465189DEST_PATH_IMAGE013
用一个第a位为1的UINT和相关格网中UINT的第a位做|运算,并将运算后的结果赋予格网中的UINT的第a位:
Figure 895033DEST_PATH_IMAGE014
,此式表示用UINT的末尾6位来储存约束的存在性质,并将第3、6位约束存在特性赋为存在。
优选的,还包括约束的处治,具体是:检测约束是否存在,若存在则进行处治,若不存在则不进行处治。
优选的,约束的处治具体包括约束面的处治和约束线的处治,如下:
若格网中存在约束面,线路通过时应进行绕避或穿越,具体是:若约束面为采石场这类控制性约束区域,应该进行绕避,绕避时满足净距要求;若约束面为不良地质这类控制性约束区域,应尽量绕避,绕避不开的则选择穿越时需要考虑结构物形式和净空要求;若线路需要穿越泥石流区域时,应在满足净空条件下以桥梁形式通过,通过其流通区的线路还需要满足交角要求。
若格网中存在约束线,线路通过时若与其交叉,应满足交角和净空要求;若与其并行,应满足净距要求。
格网中不同的要素采用不同的处治方法,在提高线路搜索的效率的基础上,进一步提高铁路选线质量。
应用本发明的处理方法,效果是:先将各种约束分类并抽象成线几何类型、带几何类型和面几何类型三种,并进一步归并为约束线和约束面;再将研究区域抽象为一系列的格网集,并根据格网集将约束线离散为一系列约束顶点,约束面分割为一系列块状区域;为约束线设计分布式存储策略,将约束顶点与格网的索引关系值存入对应格网,约束顶点的具体坐标存入外部点集,实现在线路搜索过程中能实时检索并提取相关约束,可以在不显著增加储存空间的基础上,实现控制性约束的实时检索,提高线路搜索的效率。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例中约束分类示意图,其中:(a)为线几何类型示意图;(b)为带几何类型示意图;(c)为面几何类型示意图;
图2是本发明实施例中约束特性的存储示意图。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
实施例:
一种铁路选线搜索过程中约束的处理方法,包含约束的提取,详情如下:
包含约束的提取具体包含以下步骤:
步骤S1、获取铁路选线搜索过程中约束,并将约束划分线几何类型、带几何类型、面几何类型三种;
将线几何类型、带几何类型、面几何类型划分为约束线和约束面,其中:
线几何类型包括地下管线、高压线以及断裂带中至少一种,详见图1;
带几何类型包括既有的道路、铁路、城市轨道交通以及河流中至少一种,详见图1;
面几何类型包括自然保护区、历史文化保护区、永久农田保护区、不良地质区域、采石场、湖泊、水库以及环境敏感区中至少一种,不良地质区域包括崩塌、泥石流以及岩溶中至少一种,详见图1;
约束线包括线几何类型的约束、带几何类型中的中线、带几何类型中的边界线以及面几何类型中的边界线中的至少一种;
约束面包括带几何类型中的包围区域以及面几何类型中边界线围成的区域中的至少一种;
步骤S2、将研究区域抽象为一系列的格网集;针对每一个格网集:若存在约束线,则将该格网集中的约束线离散为一系列的约束顶点;若存在约束面,则将约束面分割成以格网为单位的块状区域;具体是:
格网的宽度为w,则通过格网行列号索引到当前格网左下角的坐标值,如下式所示:
Figure 136659DEST_PATH_IMAGE001
其中:x i y i 为分别为当前格网的左下角的横坐标值和纵坐标值;x 0y 0为研究区域格网集左下角格网的左下角的横坐标值和纵坐标值;rc为格网的横向行列号和纵向行列号。
对约束线进行如下处理:
由线段两端点的坐标得到两端点所处的格网的横向行列号和纵向行列号,若线段两端点处于一个格网中,则计算下一条线段的端点在格网中的位置;若线段两端点位于不同格网,计算此线段穿过的格网的xy轴方向边界线,并将线段与其穿过格网的xy轴方向边界线合集分别求交,并在交点处打断,将线段离散在不同格网中。优选的,采用下式计算线段穿过的格网的xy轴方向边界线:
Figure 411782DEST_PATH_IMAGE002
其中:XY为线段穿过格网的xy轴方向边界线合集;x mini y mini 分别为线段两端点的较小横坐标值和纵坐标值;λμ分别为线段穿越的行数和列数;r min c min 为格网的最小横向行列号和最小纵向行列号;r max c max 为格网的最大横向行列号和最大纵向行列号。
若约束线由一系列闭合的多段线组成,则还需进行如下处理:循环每个闭合多的段线,形成如下式的闭合多段线的包围盒:
Figure 55253DEST_PATH_IMAGE003
其中:x L y L x R y R 分别为包围盒左下角和右上角的坐标;x k y k 为闭合多段线上各点的横坐标和纵坐标,k =1、2、3、......、b
判断格网中的点是否在闭合多段线中,若格网中的点在闭合多段线中,且格网中不存在边界约束线,则此格网中存在约束面,约束面被格网划分为块状区域。
步骤S3、记录约束线的存在特性和具体点坐标值,并将约束顶点坐标存入外部点集中,用一个无符号整型数UINT和一个整型数组INTARRAY来建立约束顶点与对应格网的索引关系,并将索引关系存入对应的格网中;记录约束面的存在特性,并将对应约束面的存在特性存入相应格网中,详见图2。优选的,步骤S3具体包括如下步骤:
S3-1、遍历所有约束线和约束面,在研究区域的格网中用一个无符号整型数UINT来储存存在特性,具体是:将格网中的UINT的每一位都初始化为0,代表初始状态下,格网中不存在任何控制性约束条件;按类型遍历所有约束,检测约束相关格网,将第a(1, 2, …,n)类控制性约束的存在特性存入相关格网的UINT中,比如,若p, q分别为两个UINT,|和&运算的公式如下:
Figure 531365DEST_PATH_IMAGE013
用一个第a位为1的UINT和相关格网中UINT的第a位做|运算,并将运算后的结果赋予格网中的UINT的第a位:
Figure 260287DEST_PATH_IMAGE014
,此式表示用UINT的末尾6位来储存约束的存在性质,并将第3、6位约束存在特性赋为存在;
S3-2、遍历所有约束线,并将其约束顶点依次存入外部点集P set 中,如下式:
Figure 339101DEST_PATH_IMAGE004
其中:ijk分别表示不同类型的约束线的顶点个数;n为约束线的种类,
Figure 837079DEST_PATH_IMAGE005
Figure 218512DEST_PATH_IMAGE006
表示第1种约束线上的第1至第i个顶点;
Figure 169151DEST_PATH_IMAGE007
Figure 51656DEST_PATH_IMAGE008
表示第2种约束线上的第1至第j个顶点;
Figure 404140DEST_PATH_IMAGE009
Figure 346688DEST_PATH_IMAGE010
表示第n种约束线上的第1至第k个顶点;
顶点坐标记录为对应格网左下角的相对坐标,如下式:
Figure 659989DEST_PATH_IMAGE011
其中:x c y c 为控制性约束顶点的实际坐标值;Δx、Δy为控制性约束顶点相对于对应格网左下角点的相对坐标值;
S3-3、在研究区域格网中用一个整型数组INTARRAY来储存约束线的约束顶点索引值,INTARRAY顺序存储第a(1,2,…,n)类约束顶点在P set 中的起点和终点索引值,如下式:
Figure 80606DEST_PATH_IMAGE012
;其中:m a m a+1 (a=1,2,…,n)为a类约束顶点在外部点集P set 中的起点和终点索引值。
步骤S4、铁路选线搜索过程中实时检测并提取格网的相关约束。
本实施例铁路选线搜索过程中约束的处理方法还包括约束的处治,具体是:检测约束是否存在,若存在则进行处治,若不存在则不进行处治。具体包含约束面的处治和约束线的处治,详见表1,如下:
若格网中存在约束面,线路通过时应进行绕避或穿越,具体是:若约束面为采石场这类控制性约束区域,应该进行绕避,绕避时满足净距要求;若约束面为不良地质这类控制性约束区域,应尽量绕避,绕避不开的则选择穿越时需要考虑结构物形式和净空要求;若线路需要穿越泥石流区域时,应在满足净空条件下以桥梁形式通过,通过其流通区的线路还需要满足交角要求。
若格网中存在约束线,线路通过时若与其交叉,应满足交角和净空要求;若与其并行,应满足净距要求。
表1 约束线和约束面的处治原则统计表
Figure 553176DEST_PATH_IMAGE016
将本实施例的方案应用于国内某条铁路段上,该段铁路选线区域存在5条断裂带、6条河流、3个采石场、21个泥石流、54个滑坡和119个崩塌区域,属于具有复杂约束的区域。具体如下:
约束的提取包括如下步骤:
第一步、获取铁路选线搜索过程中约束,并将约束划分线几何类型、带几何类型、面几何类型三种,具体是:断裂带归为线几何类型(即线状约束);河流归为带几何类型(即带状约束);采石场、泥石流、滑坡和崩塌区域归为面几何类型(即面状约束);
进一步得到7种约束线(断裂带中线、河流中线、河流边界线、面状区域边界线)和5种约束面(河流包围区、面状约束包围区);
第二步、以90m格网划分研究区域,得到行×列为313×363的格网集;
基于以上格网集将7类约束线离散为一系列约束顶点,其中:断裂带中线、河流中线和河流边线分别被离散为1112个、1256个和2568个约束顶点;采石场、泥石流、滑坡和崩塌分别被离散为241个、731个、1957个和3773个约束顶点;河流带状区域、采石场、泥石流、滑坡和崩塌包围区分别被格网集分割为808块、3794块、2565块、1092块和7191块区域;
第三步、将约束线和约束面的特性存入相应格网中。用一个无符号整型数UINT记录所有约束的存在特性;设计分布存储策略将约束线的坐标索引值存入对应格网,具体坐标存入外部点集。具体是:
此区域有12种控制性约束,用UINT的末尾12位来存储约束的存在特性,从末位起UINT为代表的约束分别为断裂带中线、河流中线、河流边界线、河流包围区域、采石场、泥石流、滑坡和崩塌的边界线和包围区域,则一个格网中存在河流中线和滑坡边界线的UINT编码为000001000010;
约束线基于格网离散的约束顶点共11638个;
若一个格网中整型数组INTARRAY为[4,7,7,7,12,12,18,18],则说明此格网中存在断裂带中线、采石场边界线和滑坡边界线三种约束。其约束顶点对应外部点集的索引值分别为第4-7个点、第7-12个点和第12-18个点。
第四步、铁路选线搜索过程中实时检测并提取格网的相关约束,具体是:约束提取速度达0.5m/s。
约束的处治,具体是:若格网中存在约束线,则根据INTARRAY的值从外部点集中索引具体点坐标,并根据表1中的处治原则进行处治;若格网中存在约束面,则直接根据表1中的处治原则进行处治。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种铁路选线搜索过程中约束的处理方法,其特征在于,包含约束的提取,具体包含以下步骤:
步骤S1、获取铁路选线搜索过程中的约束,并将约束划分为线几何类型、带几何类型、面几何类型三种;将线几何类型、带几何类型、面几何类型划分为约束线和约束面,其中:约束线包括线几何类型的约束、带几何类型中的中线、带几何类型中的边界线以及面几何类型中的边界线中的至少一种;约束面包括带几何类型中的包围区域以及面几何类型中边界线围成的区域中的至少一种;
步骤S2、将研究区域抽象为一系列的格网集;针对每一个格网集:若存在约束线,则将该格网集中的约束线离散为一系列的约束顶点;若存在约束面,则将约束面分割成以格网为单位的块状区域;
步骤S3、记录约束线的存在特性和具体点坐标值,并将约束顶点坐标存入外部点集中,用一个无符号整型数UINT和一个整型数组INTARRAY来建立约束顶点与对应格网的索引关系,并将索引关系存入对应的格网中;
记录约束面的存在特性,并将对应约束面的存在特性存入相应格网中;
步骤S4、铁路选线搜索过程中实时检测并提取格网的相关约束。
2.根据权利要求1所述的铁路选线搜索过程中约束的处理方法,其特征在于,所述步骤S1中:线几何类型包括地下管线、高压线以及断裂带中至少一种;带几何类型包括既有的道路、铁路、城市轨道交通以及河流中至少一种;面几何类型包括自然保护区、历史文化保护区、永久农田保护区、不良地质区域、采石场、湖泊、水库以及环境敏感区中至少一种,不良地质区域包括崩塌、泥石流以及岩溶中至少一种。
3.根据权利要求1所述的铁路选线搜索过程中约束的处理方法,其特征在于,所述步骤S2中:
格网的宽度为w,则通过格网行列号索引到当前格网左下角的坐标值,如下式所示:
Figure 904445DEST_PATH_IMAGE001
其中:x i y i 分别为第i个格网的左下角的横坐标值和纵坐标值;x 0y 0为研究区域格网集左下角格网的左下角的横坐标值和纵坐标值;rc为格网的横向行列号和纵向行列号。
4.根据权利要求3所述的铁路选线搜索过程中约束的处理方法,其特征在于,对约束线进行如下处理:
由线段两端点的坐标得到两端点所处的格网的横向行列号和纵向行列号,若线段两端点处于一个格网中,则计算下一条线段的端点在格网中的位置;若线段两端点位于不同格网,计算此线段穿过的格网的xy轴方向边界线,并将线段与其穿过格网的xy轴方向边界线合集分别求交,并在交点处打断,将线段离散在不同格网中。
5.根据权利要求4所述的铁路选线搜索过程中约束的处理方法,其特征在于,采用下式计算线段穿过的格网的xy轴方向边界线:
Figure 872401DEST_PATH_IMAGE002
其中:XY为线段穿过格网的xy轴方向边界线合集;x mini y mini 分别为线段两端点的较小横坐标值和纵坐标值;λμ分别为线段穿越的行数和列数;r min c min 为格网的最小横向行列号和最小纵向行列号;r max c max 为格网的最大横向行列号和最大纵向行列号。
6.根据权利要求4所述的铁路选线搜索过程中约束的处理方法,其特征在于,若约束线由一系列闭合的多段线组成,还包括如下处理:
循环每个闭合多的段线,形成如下式的闭合多段线的包围盒:
Figure 739773DEST_PATH_IMAGE003
其中:x L y L x R y R 分别为包围盒左下角和右上角的坐标;x k y k 为闭合多段线上各点的横坐标和纵坐标,k =1、2、3、......、b
判断格网中的点是否在闭合多段线中,若格网中的点在闭合多段线中,且格网中不存在边界约束线,则此格网中存在约束面,约束面被格网划分为块状区域。
7.根据权利要求3所述的铁路选线搜索过程中约束的处理方法,其特征在于,所述步骤S3具体包括如下步骤:
S3-1、遍历所有约束线和约束面,在研究区域的格网中用一个无符号整型数UINT来储存存在特性,具体是:将格网中的UINT的每一位都初始化为0,代表初始状态下,格网中不存在任何控制性约束条件;按类型遍历所有约束,检测约束相关格网,将第a(1, 2, …, n)类控制性约束的存在特性存入相关格网的UINT中;
S3-2、遍历所有约束线,并将其约束顶点依次存入外部点集P set 中,如下式:
Figure 700645DEST_PATH_IMAGE004
其中:ijk分别表示不同类型的约束线的顶点个数;n为约束线的种类,
Figure 752783DEST_PATH_IMAGE005
Figure 829324DEST_PATH_IMAGE006
表示第1种约束线上的第1至第i个顶点;
Figure 412752DEST_PATH_IMAGE007
Figure 849418DEST_PATH_IMAGE008
表示第2种约束线上的第1至第j个顶点;
Figure 834692DEST_PATH_IMAGE009
Figure 82133DEST_PATH_IMAGE010
表示第n种约束线上的第1至第k个顶点;
顶点坐标记录为对应格网左下角的相对坐标,如下式:
Figure 152858DEST_PATH_IMAGE011
其中:x c y c 为控制性约束顶点的实际坐标值;Δx、Δy为控制性约束顶点相对于对应格网左下角点的相对坐标值;
S3-3、在研究区域格网中用一个整型数组INTARRAY来储存约束线的约束顶点索引值,INTARRAY顺序存储第a(1,2,…,n)类约束顶点在P set 中的起点和终点索引值,如下式:
Figure 206264DEST_PATH_IMAGE012
;其中:m a m a+1 (a=1,2,…,n)为a类约束顶点在外部点集P set 中的起点和终点索引值。
8.根据权利要求7所述的铁路选线搜索过程中约束的处理方法,其特征在于,若p, q分别为两个UINT,|和&运算的公式如下:
Figure 46044DEST_PATH_IMAGE013
用一个第a位为1的UINT和相关格网中UINT的第a位做|运算,并将运算后的结果赋予格网中的UINT的第a位:
Figure 526704DEST_PATH_IMAGE014
,此式表示用UINT的末尾6位来储存约束的存在性质,并将第3、6位约束存在特性赋为存在。
9.根据权利要求8所述的铁路选线搜索过程中约束的处理方法,其特征在于,还包括约束的处治,具体是:检测约束是否存在,若存在则进行处治,若不存在则不进行处治。
10.根据权利要求9所述的铁路选线搜索过程中约束的处理方法,其特征在于,约束的处治具体包括约束面的处治和约束线的处治,如下:
若格网中存在约束面,线路通过时应进行绕避或穿越,具体是:若约束面为采石场这类控制性约束区域,应该进行绕避,绕避时满足净距要求;若约束面为不良地质这类控制性约束区域,应尽量绕避,绕避不开的则选择穿越时需要考虑结构物形式和净空要求;若线路需要穿越泥石流区域时,应在满足净空条件下以桥梁形式通过,通过其流通区的线路还需要满足交角要求;
若格网中存在约束线,线路通过时若与其交叉,应满足交角和净空要求;若与其并行,应满足净距要求。
CN202211587197.4A 2022-12-12 2022-12-12 一种铁路选线搜索过程中约束的处理方法 Active CN115587461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211587197.4A CN115587461B (zh) 2022-12-12 2022-12-12 一种铁路选线搜索过程中约束的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211587197.4A CN115587461B (zh) 2022-12-12 2022-12-12 一种铁路选线搜索过程中约束的处理方法

Publications (2)

Publication Number Publication Date
CN115587461A true CN115587461A (zh) 2023-01-10
CN115587461B CN115587461B (zh) 2023-03-10

Family

ID=84783391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211587197.4A Active CN115587461B (zh) 2022-12-12 2022-12-12 一种铁路选线搜索过程中约束的处理方法

Country Status (1)

Country Link
CN (1) CN115587461B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502318A (zh) * 2023-06-27 2023-07-28 中南大学 一种提取铁路站场相交设备空间信息的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500008A2 (en) * 2002-04-26 2005-01-26 BAE Systems PLC Optimisation of the design of a component
CN101540020A (zh) * 2009-04-01 2009-09-23 江西省交通设计院 一种公路三维选线方法
CN101833789A (zh) * 2010-01-26 2010-09-15 南京师范大学 一种顾及特征约束的四面体网格离散算法
JP2011180855A (ja) * 2010-03-02 2011-09-15 Hitachi Ltd 経路生成装置、及び経路生成プログラム
CN103077282A (zh) * 2013-01-15 2013-05-01 西南交通大学 一种基于基元组合与多层次语义约束的高速铁路场景快速建模方法
CN105243233A (zh) * 2015-11-04 2016-01-13 中南大学 一种复杂山区铁路线站协同优化方法
US9558670B1 (en) * 2011-12-06 2017-01-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and system for air traffic rerouting for airspace constraint resolution
CN111932655A (zh) * 2020-07-28 2020-11-13 中铁第六勘察设计院集团有限公司 基于AutoCAD构建铁路线路信息模型的自动处理方法
CN112085280A (zh) * 2020-09-11 2020-12-15 东南大学 一种考虑地理因素的输电通道路径优化方法
CN113946888A (zh) * 2021-12-22 2022-01-18 四川省交通勘察设计研究院有限公司 一种隧道工程的正向设计系统及方法
CN115526140A (zh) * 2022-10-17 2022-12-27 东南大学 一种考虑先进制程约束和单元移动的全局布线方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1500008A2 (en) * 2002-04-26 2005-01-26 BAE Systems PLC Optimisation of the design of a component
CN101540020A (zh) * 2009-04-01 2009-09-23 江西省交通设计院 一种公路三维选线方法
CN101833789A (zh) * 2010-01-26 2010-09-15 南京师范大学 一种顾及特征约束的四面体网格离散算法
JP2011180855A (ja) * 2010-03-02 2011-09-15 Hitachi Ltd 経路生成装置、及び経路生成プログラム
US9558670B1 (en) * 2011-12-06 2017-01-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and system for air traffic rerouting for airspace constraint resolution
CN103077282A (zh) * 2013-01-15 2013-05-01 西南交通大学 一种基于基元组合与多层次语义约束的高速铁路场景快速建模方法
CN105243233A (zh) * 2015-11-04 2016-01-13 中南大学 一种复杂山区铁路线站协同优化方法
CN111932655A (zh) * 2020-07-28 2020-11-13 中铁第六勘察设计院集团有限公司 基于AutoCAD构建铁路线路信息模型的自动处理方法
CN112085280A (zh) * 2020-09-11 2020-12-15 东南大学 一种考虑地理因素的输电通道路径优化方法
CN113946888A (zh) * 2021-12-22 2022-01-18 四川省交通勘察设计研究院有限公司 一种隧道工程的正向设计系统及方法
CN115526140A (zh) * 2022-10-17 2022-12-27 东南大学 一种考虑先进制程约束和单元移动的全局布线方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANG M W: "Applicability of Highway Alignment Optimization Models", 《RESEARCH,PART C》 *
蒲浩等: "基于约束线路群的铁路枢纽数字化关联选线方法", 《中南大学学报(自然科学版)》 *
陈国等: "一种高效的带状地形模型和公路模型的建立及无缝叠加方法", 《江西科学》 *
龙喜安等: "铁路三维空间智能选线研究及开发", 《高速铁路技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502318A (zh) * 2023-06-27 2023-07-28 中南大学 一种提取铁路站场相交设备空间信息的方法
CN116502318B (zh) * 2023-06-27 2023-09-05 中南大学 一种提取铁路站场相交设备空间信息的方法

Also Published As

Publication number Publication date
CN115587461B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
Pu et al. A three‐dimensional distance transform for optimizing constrained mountain railway alignments
CN115587461B (zh) 一种铁路选线搜索过程中约束的处理方法
CN102981182B (zh) 基于无监督分类的二维地震数据全层位自动追踪方法
Fwa et al. Optimal vertical alignment analysis for highway design
CN109447493B (zh) 一种基于物源活动强度的震后泥石流危险性评价方法
Huang et al. Automated tunnel rock classification using rock engineering systems
CN113032876A (zh) 一种铁路沿线自动改移既有道路的立交通道布设方法、系统、终端及可读存储介质
Agayan et al. FDPS algorithm in stability assessment of the Earth's crust structural tectonic blocks
CN102253411B (zh) 含逆断层的复杂地质构造三维地震解释层位插值的方法
CN108595857B (zh) 铁路线路防护栅栏自动设计方法
Lotfeali Ayeneh et al. Evaluation of geological hazard of the subway (case study: Ahvaz subway, southwest of Iran)
Elfick Contouring by use of a triangular mesh
Hajarian et al. A new developed model to determine waste dump site selection in open pit mines: An approach to minimize haul road construction cost
CN107230176A (zh) 一种基于包络线图分析的历史资源点关联度评价方法
Azadi et al. Evaluating the effect of block aggregation approach on ultimate pit limit characteristics using the linear programming model
Mutsvanga et al. Numerical modeling application in the design of regional pillars for an ore-replacement project: underground platinum mining case study
Crnogorac et al. Fuzzy logic model for stability assessment of underground facilities
Guler Hydrogeochemical evaluation of the groundwater resources of Indian Wells-Owens Valley area, Southeastern California
Jalalian et al. Geological investigations and production planning by identification of the discontinuities and rock mass blocks in dimension stone quarries: a case study
Ovanic Economic optimization of stope geometry
Ali Elbeblawi et al. Principles of Surface Mining of Mineral Deposits
Díaz et al. Semi-Automatic Generation of Ramps in Open Pit Mining Using Mathematical Programming
Balambigai et al. Soft Computing Approach To Prevent Derailments Due To Landslides
Green Down the rabbit hole: identifying physical controls on sinkhole formation in the UK
Raggi et al. Cost Risk Assessment of 13 km Long Headrace Tunnel in the Himalayas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant