CN115586231A - 基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法 - Google Patents

基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法 Download PDF

Info

Publication number
CN115586231A
CN115586231A CN202211197064.6A CN202211197064A CN115586231A CN 115586231 A CN115586231 A CN 115586231A CN 202211197064 A CN202211197064 A CN 202211197064A CN 115586231 A CN115586231 A CN 115586231A
Authority
CN
China
Prior art keywords
solution
exo
sequence
dna
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211197064.6A
Other languages
English (en)
Inventor
吴丽
蔡爱婷
刘金霞
杨露霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202211197064.6A priority Critical patent/CN115586231A/zh
Publication of CN115586231A publication Critical patent/CN115586231A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种基于ExoⅠ和HCR反应的电化学核酸生物传感器及其制备方法,将外切核酸酶Ⅰ和HCR策略相结合,构建了一种针对KRAS基因的超灵敏、无标记的电化学核酸生物传感器。本发明利用DNA模板沉积的银纳米颗粒作为电活性标记,通过ExoⅠ辅助的背景电流抑制来实现高灵敏的固态Ag/AgCl反应。因此,在本发明中,我们通过HCR反应和DNA金属化,实现双重信号放大和靶扩增,引入ExoⅠ,减少背景信号,提高传感器检测性能。该策略对靶DNA检测具有较高的灵敏度,为基于DNA的分子诊断提供了一个通用的传感平台。

Description

基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法
技术领域
本发明涉及生物传感器技术领域,具体涉及一种基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法。
背景技术
循环肿瘤DNA(Circulating Tumor DNA,ctDNA)是指来源于肿瘤基因组,游离在人体血液循环系统中的DNA片段。ctDNA是肿瘤在血液中的“密码”,其含有肿瘤特异性基因改变(单核苷酸变多态性、拷贝数改变、微卫星改变、DNA甲基化变异、杂合性缺失等),保证了其作为肿瘤生物标志物的特异性。因此ctDNA的研究对临床上肿瘤的早期诊断、恶性程度分析、识别耐药突变、动态监测具有重要意义。而且,ctDNA的分析对治疗反应评价、复发预测和微小残留疾病的监测也起着重要作用。KRAS基因突变是ctDNA最常见的分子特异性检测之一,与非小细胞肺癌、结直肠癌和胰腺癌等恶性肿瘤的发生发展密切相关。目前KRAS基因检测已逐步成为恶性肿瘤常规检测项目,正发展成为癌症检测和临床治疗检测技术。
目前对ctDNA的检测多通过基因测序和DNA扩增技术(如聚合酶链式反应PCR)。基因测序因为所耗时间长,基因数据库的制备繁琐且不完善,费用高而不能满足医生和患者的需求。DNA扩增技术依赖于高精密的检测仪器,高水平的检测人员,且操作和实验造成的污染容易造成假阳性或者假阴性的结果。核酸扩增分析最常用的方法-聚合酶链式反应,它往往受到温度循环的精细控制和复杂的引物设计的限制。
因此,寻求一种简单高效的方法至关重要。电化学传感器因检测速度快、准确性高、灵敏度高、制造成本低、不易受样本浊度的影响而广受人们的关注。到目前为止,核酸生物传感器的制备已经提倡了不同的等温放大方法,其中无酶扩增策略是目前的研究热点。
杂交链式反应(Hybridization chain reaction,HCR)是Dirks和Pierce于2004年发现的一种新型的高效等温无酶信号扩增技术。在典型的HCR反应中包含三种反应成分,一条单链引物启动子和两条发夹探针。由启动子引发,发生在两个发夹探针之间的级联自组装反应,最终产生由若干重复单位组成的DNA双螺旋结构。单个启动子就可以触发一个HCR反应形成一条超长链DNA,从而达到信号放大的作用。杂交链式反应无需酶的参与,反应在等温的条件下产生,极大降低了对于实验条件和成本的要求,已被证明是制备电化学核酸生物传感器的一种特别有效的方法。
考虑到通过染料修饰所产生的电化学信号灵敏度和检测限都严重受损,而纳米颗粒放大标记的使用能够为电化学检测提供巨大的信号,并且有着跟PCR相媲美的灵敏度。以DNA为模板的金属化是增加金属示踪剂的量从而放大电化学响应的有效方法。因此我们通过DNA金属化(在施加还原剂或电位后,利用带负电荷的DNA和带正电的金属离子之间的静电引力形成金属纳米线)来实现灵敏的生物传感。我们发现,DNA金属化所带来的背景信号过大。这一瑕疵限制了他的应用。
发明内容
为了解决上述技术问题,本发明引入外切核酸酶Ⅰ(Exo Ⅰ)。Exo Ⅰ以3'→5'方向降解单链DNA,能够酶切掉未与靶标结合的捕获探针,但对与靶标结合的捕获探针不起作用。因此,运用Exo Ⅰ成功地减少了背景电流,提高了检测过程的灵敏度和选择性。
本发明将外切核酸酶Ⅰ和HCR策略相结合,构建了一种针对KRAS基因的超灵敏、无标记的电化学核酸生物传感器。通过启动子序列来引导发夹之间的自组装,达到信号放大的作用。捕获探针通过Au-S键固定在金电极上,MCH用于封闭非特异性位点。当溶液中存在靶标时,捕获探针可以特异性的识别到并与之配对。启动子序列设计成两部分,一部分与捕获的靶标序列相配对结合,另一部分充当启动子的作用引发两个发夹探针之间的交替反应。因为磷酸基团等的原因,核酸骨架带有负电荷。带正电荷的银离子可以通过静电作用与之相吸附结合。硼氢化钠可以将吸附在磷酸骨架上的银离子还原成银金属簇合物,作为电化学检测信号,以此来间接检测靶标的存在。该策略利用DNA模板沉积的银纳米颗粒作为电活性标记,通过Exo Ⅰ辅助的背景电流抑制来实现高灵敏的固态Ag/AgCl反应。因此,在本发明中,我们通过HCR反应和DNA金属化,实现双重信号放大和靶扩增,引入Exo Ⅰ,减少背景信号,提高传感器检测性能。该策略对靶DNA检测具有较高的灵敏度,为基于DNA的分子诊断提供了一个通用的传感平台。
本发明设计了一个基于Exo Ⅰ和HCR反应的电化学核酸生物传感器,该传感器包括:2mm内径的金盘电极、巯基化的捕获探针Capture probe,巯基乙醇MCH,靶标Target,启动子Initiator,发夹H1,发夹H2。
其中,巯基化的捕获探针的序列为:5’-HS-(CH2)6C TAC GCC ACT-3’;
靶标的序列为:5’-GTT GGA GCT AGT GGC GTA G-3’;
启动子的序列为:5’-AGC TCC AAC AGT CTA GGA TTC GGC GTG GGT TAA-3’;
发夹H1的序列为:5’-CAA AGT AGT CTA GGA TTC GGC GTG TTA ACC CAC GCC GAATCC TAG ACT-3’;
发夹H2的序列为:5’-CAC GCC GAA TCC TAG ACT ACT TTG AGT CTA GGA TTC GGCGTG GGT TAA-3’。
技术方案:
1.将2mm内径的金电极用0.05μm粒径的Al2O3粉末抛光打磨,再在0.5M NaOH、0.5MH2SO4、1M KCl+0.5M H2SO4、0.05M H2SO4中进行一系列氧化和还原循环,通过循环伏安法进行电化学清洗;
2.将6μL 0.05μM捕获探针滴到金电极工作区域,在4℃下孵育1.5h形成自组装单分子膜,用HEPES缓冲溶液清洗;
3.再滴加6μL 1mM MCH溶液以填充空白区域并去除非特异性吸附在金电极表面的DNA,从而帮助自组装膜保持良好的界面取向,在4℃下孵育20min,用HEPES缓冲溶液清洗;
4.继续滴加6μL含有KRAS基因突变序列的靶标溶液,在4℃下孵育1h,用HEPES缓冲溶液清洗;
5.接着滴加5μL 0.1U/mL ExoΙ溶液,在37℃下孵育10min,来切割未结合靶标的捕获探针,用HEPES缓冲溶液清洗;
6.随后滴加6μL 0.5μM启动子溶液,在4℃下孵育1h,在电极表面形成夹心杂交模式,留下引发结构域,以触发H1和H2之间的后续聚合。用HEPES缓冲溶液清洗;
7.两个发夹H1和H2分别加热到95℃5min,冷却至室温,然后在DNA杂交缓冲液中混合到最终浓度1.5μM后使用。最后滴加6μL 1.5μM含有发夹H1和H2的溶液,在4℃下孵育1.5h,用HEPES缓冲溶液清洗;
8.将修饰后的金电极浸泡在100μM AgNO3溶液中1h,用HEPES缓冲溶液清洗;
9.随后,将电极浸泡在新制备的10mM NaBH4溶液中10min,并用HEPES缓冲溶液清洗。
其中,捕获探针使用DNA固定缓冲液(10mM TCEP,20mM HEPES,100mM NaNO3,pH7.4)稀释;
靶标、启动子、发夹H1和发夹H2使用DNA杂交缓冲液(50mM Mg(NO3)2·6H2O,20mMHEPES,100mM NaNO3,pH7.4)稀释;
MCH溶液使用超纯水稀释;
AgNO3使用HEPES缓冲溶液(20mM HEPES,100mM NaNO3,pH7.4)稀释;
NaBH4使用HEPES缓冲溶液(20mM HEPES,pH7.4)稀释。
有益效果
1)引入Exo Ⅰ,抑制未结合靶标的捕获探针带来的背景信号,提高检测的准确性和改善生物传感器的分析性能。
2)基于杂交链式反应,形成大量重复片段的DNA纳米结构,增大接触面积,增加银离子的结合位点,进一步放大了电化学信号,进而提高检测的灵敏度。
3)结合Exo Ⅰ酶切性能和HCR信号放大策略,构建了用于检测ctDNA的电化学核酸生物传感器,可以实现简单、高效、灵敏地检测KRAS基因突变,在癌症的早期诊断和治疗中具有重大的意义。
附图说明
图1为本发明中构建的电化学核酸生物传感器的构建过程示意图;
图2为本发明中电化学核酸生物传感器的电化学表征的典型循环伏安(CV)曲线:
图3为本发明中电化学核酸生物传感器的电化学表征的交流阻抗谱(EIS)。
图4中,(a)为在含0.1M NaNO3和0.1M NaCl的水溶液中,分别对不使用(曲线a)和使用(曲线b)ExoΙ进行了伏安响应研究。用靶标(1aM)、MCH和捕获探针修饰电极。扫描速度:0.01V/s。(b)为不使用ExoΙ和使用Exo时的多个CV峰值电流的对比。实验重复3次。
图5中(a)为有HCR(曲线a)、无HCR(曲线b)、仅MCH(曲线c)修饰的CV图。(b)为无或有HCR扩增的传感器的峰值电流。实验重复3次。
图6为银固态相变CV。
具体实施方式
以下实施例中用到的试剂和仪器:氢氧化钠(NaOH,≥98.0%)购于GENERAL-REAGENT化学试剂有限公司、浓硫酸(H2SO4,优级纯)购于国药化学试剂有限公司(中国,上海)、氯化钾(KCl,99.5%)和羟乙基哌嗪乙硫磺酸(HEPES,99%)购于RHAWN化学试剂有限公司、硝酸银(AgNO3,≥99.8%)购于上海凌峰化学试剂有限公司、硼氢化钠(NaBH4,≥97%)购于天津市北联精细化学品开发有限公司、三(2-羧乙基)膦(TCEP,98%)购于阿拉丁化学试剂公司、巯基乙醇(MCH,≥97%)购于Fluka化学试剂有限公司、铁氰化钾(K3FeC6N6、≥99.5%)和无水亚铁氰化钾(K4[Fe(CN)6]、99%)购于麦克林化学试剂有限公司。本研究中的巯基化的捕获探针序列、靶标序列、启动子序列,发夹探针H1序列、发夹探针H2序列由上海生工生物工程股份有限公司合成并纯化。Exo Ⅰ购于上海源叶生物科技有限公司。2mm内径的金电极购于天津市河北区高仕横源实验室设备销售中心。电化学实验中的循环伏安(CV)的测定和交流阻抗谱(EIS)的测定均采用的是AUTOLAB电化学工作站。
实施例1:电化学核酸生物传感器的制备
如图1所示,首先,将2mm内径的金电极用0.05μm粒径的Al2O3粉末抛光打磨,再在0.5M NaOH、0.5M H2SO4、1M KCl+0.5M H2SO4、0.05M H2SO4中进行一系列氧化和还原循环,通过循环伏安法进行电化学清洗。将巯基化的捕获探针(6μL,0.05μM)滴加到金电极表面并在4℃下孵育1.5h。其后将MCH(6μL,1mM)溶液滴加到上述修饰过的金电极表面并孵育20min来封闭剩余的活性位点并用HEPES缓冲溶液清洗几次。接着将含有KRAS基因突变序列的靶标溶液(6μL)滴加到电极表面在4℃下孵育1h。然后滴加Exo Ⅰ溶液(5μL,0.1U/mL),用于酶切掉未与靶标结合的捕获探针;之后滴加启动子溶液(6μL,0.5μM),在4℃下孵育1h,以便引发H1和H2之间的级联杂交反应。最后滴加含有发夹H1和H2的溶液(6μL,1.5μM),在4℃下孵育1.5h,使杂交链式反应在金电极表面产生。将表面发生有HCR反应的金电极浸泡在100μMAgNO3溶液中1h,随后,将电极浸泡在新制备的10mM NaBH4溶液中10min,并用HEPES缓冲溶液清洗。
实施例2:通过循环伏安(CV)对所建立的电化学核酸生物传感器进行电化学表征,来探究所建立的电化学核酸生物传感器制备的成功与否。在金电极表面层层修饰核酸,每修饰一层都进行CV的检测。将不同的核酸修饰金电极的CV曲线进行比较,结果如图2所示。裸金电极呈现一个对称的氧化还原峰,峰电流高,表明裸金电极具有良好的电子转移速率(曲线a)。用捕获探针修饰金电极后,峰电流下降,这是由于带负电荷的DNA分子与[Fe(CN)6]3-/4-之间的排斥作用所致(曲线b)。MCH在电极上的修饰进一步导致了峰电流的降低,因为致密的自组装层阻碍了电子在电极表面的转移(曲线c)。随着靶ctDNA(曲线d)和启动子(曲线e)的加入,峰电流进一步降低。最后,在发夹探针H1和H2的存在下,引发了杂交链式反应,产生了大量的DNA分子,CV峰进一步降低(曲线f)。以上CV结果验证了电化学核酸生物传感器的研制成功。
实施例3:通过交流阻抗谱(EIS)对所建立的电化学核酸生物传感器进行电化学表征,来探究所建立的电化学核酸生物传感器制备的成功与否。在金电极表面层层修饰核酸,每修饰一层都进行EIS的检测。将不同的核酸修饰金电极的EIS曲线进行比较,结果如图3所示。裸金电极EIS曲线半圆直径小,线性范围宽,Ret值小,电子转移电阻小,这表明电子在金电极表面具有较快的传输效率(曲线a)。当金电极表面固定巯基化的捕获探针后,其电子传递过程被DNA磷酸骨架的负电荷所排斥,Ret值增大(曲线b)。MCH的封闭进一步阻碍电子的转移,Ret值继续增大(曲线c)。靶标被捕获探针捕获后,靶标的负电荷进一步阻碍电子传输过程,Ret值进一步增大(d)。启动子的修饰增加了负电荷的密度,增强了对电子的排斥力,Ret值继续增大(曲线e)。当混合发夹H1和发夹H2的溶液修饰上电极,产生杂交链式反应,生产大量的DNA分子,引入丰富的负电荷,Ret值进一步增大(曲线f)。以上EIS结果验证了电化学核酸生物传感器的研制成功。
实施例4:信噪比(SNR)是评价所建传感器传感性能的关键指标之一。虽然DNA金属化是一种很好的电化学信号放大技术,但它常常受到背景信号过大的影响。ExoΙ可以从3'到5'方向消化捕获探针,捕获探针的切割产物最终会通过缓冲器从表面去除。对电极平台进行相同条件孵育,修饰0.05μM捕获探针和1mM MCH,不同的是进行有或无ExoΙ的作用。从图4中(a)可以看出,ExoΙ处理策略有利于明显降低电流峰值,抑制背景信号。经过ExoΙ处理得到的峰值强度值比未经过ExoΙ处理得到的峰值强度值下降94%(图4中(b)),证实了消除背景信号方案的可行性。
实施例5:通过HCR反应扩增的双链DNA创造了更多的DNA金属化位点,从而放大了信号。在相同靶标浓度条件下(1nM),未进行HCR扩增的电流约为1.2μA(曲线b),而进行HCR扩增的电流约为4.9μA(曲线a)(图5中(a))。经过HCR后,电流强度大大增加,比没有HCR时高约5倍,证实了放大策略是绝对可行的(图5中(b))。
实施例6:DNA金属化是在我们的系统中实现自由标记电化学信号放大的途径。HCR产生的负DNA纳米结构能吸引溶液中的银离子,而Ag+在原位被还原成金属簇。该方法的实现仅限于带负电的磷酸盐骨架,具有良好的选择性,避免了非特异性信号的干扰,提高了精度。对构建的传感器进行DNA金属化,通过AgNO3中Ag+的吸附和NaBH4的还原作用。从图6中可以看出,银纳米颗粒与固态AgCl之间的转化是可逆的,而锋利的银氧化峰(电位为0.15V)和还原峰(电位为0.04V)则证明了DNA金属化的成功实现。
实施例7:加标回收实验可以验证所构建的传感器在临床应用中的潜力。将人血清(来自健康志愿者)稀释100倍制备复合基质溶液。添加ctDNA标准溶液作为回收实验参考。根据线性方程,计算实际样品中ctDNA的浓度,得到满意的回收率(95.7%-106.0%)和RSD(3.8%-6.5%)(表1),显示出该策略在未来临床样品分析中的巨大潜力。
表1回收率
Figure BDA0003871005720000071

Claims (7)

1.一个基于Exo Ⅰ和HCR反应的电化学核酸生物传感器的制备方法,其特征在于,在HCR反应中滴加Exo Ⅰ溶液,用于酶切掉未与靶标结合的捕获探针。
2.根据权利要求1所述的制备方法,其特征在于,包括如下步骤:将巯基化的捕获探针、MCH溶液、靶标溶液、Exo Ⅰ溶液、启动子溶液、含有发夹H1和H2的溶液依次滴加于修饰后的金电极表面。
3.根据权利要求2所述的制备方法,其特征在于,巯基化的捕获探针的序列为:5’-HS-(CH2)6C TAC GCC ACT-3’;靶标的序列为:5’-GTT GGA GCT AGT GGC GTA G-3’;启动子的序列为:5’-AGC TCC AAC AGT CTA GGA TTC GGC GTG GGT TAA-3’;发夹H1的序列为:5’-CAAAGT AGT CTA GGA TTC GGC GTG TTA ACC CAC GCC GAATCC TAG ACT-3’;发夹H2的序列为:5’-CAC GCC GAA TCC TAG ACT ACT TTG AGT CTA GGA TTC GGC GTG GGT TAA-3’。
4.根据权利要求2所述的制备方法,其特征在于,启动子序列设计成两部分,一部分与捕获的靶标序列相配对结合,另一部分充当启动子的作用引发两个发夹探针之间的交替反应。
5.根据权利要求2所述的制备方法,其特征在于,金电极的内径为2mm,其修饰过程为:将金电极用0.05μm粒径的Al2O3粉末抛光打磨,再在0.5M NaOH、0.5M H2SO4、1M KCl+0.5MH2SO4、0.05M H2SO4中进行一系列氧化和还原循环,通过循环伏安法进行电化学清洗。
6.根据权利要求2所述的制备方法,其特征在于,具体步骤包括:
将6μL 0.05μM捕获探针滴到金电极工作区域,在4℃下孵育1.5h形成自组装单分子膜,用HEPES缓冲溶液清洗;
再滴加6μL 1mM MCH溶液以填充空白区域并去除非特异性吸附在金电极表面的DNA,从而帮助自组装膜保持良好的界面取向,在4℃下孵育20min,用HEPES缓冲溶液清洗;
继续滴加6μL含有KRAS基因突变序列的靶标溶液,在4℃下孵育1h,用HEPES缓冲溶液清洗;
接着滴加5μL 0.1U/mL Exo Ι溶液,在37℃下孵育10min,来切割未结合靶标的捕获探针,用HEPES缓冲溶液清洗;
随后滴加6μL 0.5μM启动子溶液,在4℃下孵育1h,在电极表面形成夹心杂交模式,留下引发结构域,以触发H1和H2之间的后续聚合;用HEPES缓冲溶液清洗;
两个发夹H1和H2分别加热到95℃5min,冷却至室温,然后在DNA杂交缓冲液中混合到最终浓度1.5μM后使用;最后滴加6μL 1.5μM含有发夹H1和H2的溶液,在4℃下孵育1.5h,用HEPES缓冲溶液清洗;
将修饰后的金电极浸泡在100μM AgNO3溶液中1h,用HEPES缓冲溶液清洗;
随后,将电极浸泡在10mM NaBH4溶液中10min,并用HEPES缓冲溶液清洗。
7.利用权利要求1-6任一所述制备方法制备的电化学核酸生物传感器。
CN202211197064.6A 2022-09-29 2022-09-29 基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法 Pending CN115586231A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211197064.6A CN115586231A (zh) 2022-09-29 2022-09-29 基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211197064.6A CN115586231A (zh) 2022-09-29 2022-09-29 基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN115586231A true CN115586231A (zh) 2023-01-10

Family

ID=84778540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211197064.6A Pending CN115586231A (zh) 2022-09-29 2022-09-29 基于Exo Ⅰ和HCR反应的电化学核酸生物传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN115586231A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461349A (zh) * 2001-04-17 2003-12-10 三星电子株式会社 一种提高杂交核酸检测灵敏度的方法
US20070111202A1 (en) * 2000-04-14 2007-05-17 Andcare, Inc. Electrochemical detection of nucleic acid sequences
CN110243905A (zh) * 2019-06-12 2019-09-17 南京市第二医院 一种用于检测端粒酶活性的电化学传感器及其检测方法
CN112649479A (zh) * 2020-11-25 2021-04-13 重庆医科大学 基于四面体三脚架辅助的多发夹串级联组装构建通用型电化学生物传感器超灵敏检测靶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111202A1 (en) * 2000-04-14 2007-05-17 Andcare, Inc. Electrochemical detection of nucleic acid sequences
CN1461349A (zh) * 2001-04-17 2003-12-10 三星电子株式会社 一种提高杂交核酸检测灵敏度的方法
CN110243905A (zh) * 2019-06-12 2019-09-17 南京市第二医院 一种用于检测端粒酶活性的电化学传感器及其检测方法
CN112649479A (zh) * 2020-11-25 2021-04-13 重庆医科大学 基于四面体三脚架辅助的多发夹串级联组装构建通用型电化学生物传感器超灵敏检测靶

Similar Documents

Publication Publication Date Title
Sabahi et al. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer
Topkaya et al. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges
Zhang et al. A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection
Zheng et al. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry
Xiao et al. Ultrasensitive electrochemical microRNA-21 biosensor coupling with carboxylate-reduced graphene oxide-based signal-enhancing and duplex-specific nuclease-assisted target recycling
Ji et al. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein
Lucarelli et al. Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors
Tosar et al. Electrochemical DNA hybridization sensors applied to real and complex biological samples
Ge et al. Electro-grafted electrode with graphene-oxide-like DNA affinity for ratiometric homogeneous electrochemical biosensing of microRNA
CA2616259C (en) Electrocatalytic nucleic acid hybridization detection
Yu et al. Combining padlock exponential rolling circle amplification with CoFe2O4 magnetic nanoparticles for microRNA detection by nanoelectrocatalysis without a substrate
Wang et al. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review
Khodadoust et al. High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers
Ravalli et al. A DNA aptasensor for electrochemical detection of vascular endothelial growth factor
Feng et al. Rolling circle amplification in electrochemical biosensor with biomedical applications
Zhai et al. A label-free genetic biosensor for diabetes based on AuNPs decorated ITO with electrochemiluminescent signaling
Li et al. Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection
CN110687172B (zh) 一种电化学发光生物传感器、制备方法及其在碱基切除修复酶检测中的应用
Xie et al. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires
JP2006514264A (ja) 液体溶媒中の検体の測定
Jia et al. Ultrasensitive electrochemical detection of circulating tumor DNA by hollow polymeric nanospheres and dual enzyme assisted target amplification strategy
Xu et al. A facile approach for fabrication of three-dimensional platinum-nanoporous gold film and its application for sensitive detection of microRNA-126 combining with catalytic hairpin assembly reaction
Radfar et al. A novel signal amplification tag to develop rapid and sensitive aptamer-based biosensors
Long et al. Fe Single-Atom Carbon Dots Nanozyme Collaborated with Nucleic Acid Exonuclease III-Driven DNA Walker Cascade Amplification Strategy for Circulating Tumor DNA Detection
Hu et al. An electrochemical DNA biosensor coupled with dual amplification strategy based on DNA-Au bio-bar codes and silver enhancement for highly sensitive and selective detection of MDR1 gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination