CN115578753B - Human body key point detection method, device, electronic equipment and storage medium - Google Patents
Human body key point detection method, device, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN115578753B CN115578753B CN202211167898.2A CN202211167898A CN115578753B CN 115578753 B CN115578753 B CN 115578753B CN 202211167898 A CN202211167898 A CN 202211167898A CN 115578753 B CN115578753 B CN 115578753B
- Authority
- CN
- China
- Prior art keywords
- human body
- feature map
- key point
- detected
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 163
- 238000003860 storage Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000004590 computer program Methods 0.000 claims description 15
- 238000010586 diagram Methods 0.000 abstract description 7
- 244000309466 calf Species 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000000689 upper leg Anatomy 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉人工智能技术领域,尤其涉及一种人体关键点检测方法、装置、电子设备及存储介质。The present invention relates to the technical field of artificial intelligence, in particular to a human body key point detection method, device, electronic equipment and storage medium.
背景技术Background technique
随着社会的进步和科技的发展,在线教育、智慧医疗、智能机器人等行业不断的兴起,基于人体关键点信息进行互动的功能需求越来越多。其中,人体关键点检测是很多高层视觉任务的基础,例如利用人体关键点检测技术可以进行行为识别、服饰解析、行人重识别等。With the progress of society and the development of science and technology, online education, smart medical care, intelligent robots and other industries continue to rise, and there are more and more functional requirements for interaction based on key points of the human body. Among them, human key point detection is the basis of many high-level visual tasks, such as behavior recognition, clothing analysis, pedestrian re-identification, etc., using human key point detection technology.
相关技术中,通常采用卷积神经网络通过监督学习的方式学习出图片或视频中的人体关键点,但此种方法主要是针对人体稀疏部位的关键点进行检测。In related technologies, the convolutional neural network is usually used to learn the key points of the human body in pictures or videos through supervised learning, but this method is mainly for detecting the key points of sparse parts of the human body.
然而对于人体稠密关键点,由于人体稠密关键点在人体各部位分布密度差异较大,因此相关技术中对人体所有关键点采用同样的网络结构进行检测,会导致对关键点稠密的部位检测精度低;因此,如何提高对人体全身关键点的检测精度是目前亟待解决的问题。However, for the dense key points of the human body, since the distribution density of the dense key points of the human body varies greatly in various parts of the human body, in related technologies, all key points of the human body are detected using the same network structure, which will result in low detection accuracy for dense key points. ; Therefore, how to improve the detection accuracy of the key points of the whole body of the human body is an urgent problem to be solved at present.
发明内容Contents of the invention
针对现有技术存在的问题,本发明实施例提供一种人体关键点检测方法、装置、电子设备及存储介质。Aiming at the problems existing in the prior art, embodiments of the present invention provide a human body key point detection method, device, electronic equipment, and storage medium.
本发明提供一种人体关键点检测方法,包括:The present invention provides a human body key point detection method, comprising:
获取待检测人体图像;Obtain an image of a human body to be detected;
基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;Based on the human body image to be detected, generate a first feature map and a second feature map corresponding to the human body image to be detected; the first feature map and the second feature map have different resolutions;
基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。Based on the first feature map, the second feature map and prior knowledge of key point density, determine the key point detection result corresponding to the human body image to be detected; the key point density prior knowledge is used to distinguish all Describe the dense parts of the human body key points and the sparse parts of the human body key points in the second feature map.
可选地,所述关键点密集度先验知识通过以下方式得到:Optionally, the prior knowledge of key point density is obtained in the following manner:
获取各人体部位的关键点数量;Obtain the number of key points of each human body part;
基于所述关键点数量及各所述人体部位对应的二维矩形面积,确定所述关键点密集度先验知识。Based on the number of key points and the area of a two-dimensional rectangle corresponding to each of the human body parts, the prior knowledge of key point density is determined.
可选地,所述基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果,包括:Optionally, the determining the key point detection result corresponding to the human body image to be detected based on the first feature map, the second feature map, and key point density prior knowledge includes:
基于所述第一特征图,确定所述待检测人体图像中人体关键点稀疏部位对应的第一检测结果;Based on the first feature map, determine a first detection result corresponding to a sparse human body key point in the human body image to be detected;
基于所述第一特征图,确定所述第二特征图对应的多个身体部件检测框,所述身体部件检测框用于对所述第二特征图进行裁剪;Based on the first feature map, determine a plurality of body part detection frames corresponding to the second feature map, and the body part detection frames are used to crop the second feature map;
基于第二特征图、各所述身体部件检测框及所述关键点密集度先验知识,确定所述待检测人体图像中人体关键点稠密部位对应的第二检测结果。Based on the second feature map, each of the body part detection frames and the prior knowledge of the density of key points, determine a second detection result corresponding to a human body key point dense part in the image of the human body to be detected.
可选地,所述基于所述第一特征图,确定所述待检测人体图像中人体关键点稀疏部位对应的第一检测结果,包括:Optionally, the determining a first detection result corresponding to a sparse human body key point in the human body image to be detected based on the first feature map includes:
将所述第一特征图进行下采样操作,得到第一目标特征图;performing a downsampling operation on the first feature map to obtain a first target feature map;
将所述第一目标特征图输入卷积层,得到所述卷积层输出的所述第一检测结果。Inputting the first target feature map into a convolutional layer to obtain the first detection result output by the convolutional layer.
可选地,所述基于第二特征图、各所述身体部件检测框及所述关键点密集度先验知识,确定所述待检测人体图像中人体关键点稠密部位对应的第二检测结果,包括:Optionally, based on the second feature map, each of the body part detection frames and the prior knowledge of key point density, determining the second detection result corresponding to the human body key point dense part in the human body image to be detected, include:
利用所述身体部件检测框对所述第二特征图裁剪,得到各所述人体部位对应的第三特征图;clipping the second feature map by using the body part detection frame to obtain a third feature map corresponding to each of the human body parts;
基于所述关键点密集度先验知识,确定至少一个第二目标特征图,所述第二目标特征图为各所述第三特征图中属于人体关键点稠密部位对应的特征图;Based on the prior knowledge of key point density, at least one second target feature map is determined, and the second target feature map is a feature map corresponding to a dense part of the human body key points in each of the third feature maps;
基于各所述第二目标特征图,确定所述第二检测结果。Based on each of the second target feature maps, the second detection result is determined.
可选地,所述基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图,包括:Optionally, the generating a first feature map and a second feature map corresponding to the human body image to be detected based on the human body image to be detected includes:
将所述待检测人体图像输入残差网络模型,得到所述残差网络模型输出的初始特征图;Inputting the human body image to be detected into a residual network model to obtain an initial feature map output by the residual network model;
将所述初始特征图进行多次上采样操作,得到所述第一特征图及所述第二特征图。performing multiple upsampling operations on the initial feature map to obtain the first feature map and the second feature map.
本发明还提供一种人体关键点检测装置,包括:The present invention also provides a human body key point detection device, comprising:
第一获取模块,用于获取待检测人体图像;The first acquisition module is used to acquire human body images to be detected;
生成模块,用于基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;A generating module, configured to generate a first feature map and a second feature map corresponding to the human body image to be detected based on the human body image to be detected; the first feature map and the second feature map have different resolutions;
第一确定模块,用于基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。The first determination module is used to determine the key point detection result corresponding to the human body image to be detected based on the first feature map, the second feature map and key point density prior knowledge; the key point density The prior knowledge is used to distinguish dense parts of human body key points from sparse parts of human body key points in the second feature map.
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述人体关键点检测方法。The present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. When the processor executes the program, the key points of any one of the above-mentioned human bodies are realized. Detection method.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述人体关键点检测方法。The present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the human body key point detection method described in any one of the above-mentioned methods is realized.
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述人体关键点检测方法。The present invention also provides a computer program product, including a computer program, and when the computer program is executed by a processor, the human body key point detection method described in any one of the above-mentioned methods is realized.
本发明提供的人体关键点检测方法、装置、电子设备及存储介质,基于获取到的待检测人体图像,生成分辨率不同的第一特征图及第二特征图;由于关键点密集度先验知识能够区分第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度。The human body key point detection method, device, electronic equipment, and storage medium provided by the present invention generate a first feature map and a second feature map with different resolutions based on the acquired human body image to be detected; due to the prior knowledge of the key point density It can distinguish dense parts of human body key points from sparse parts of human body key points in the second feature map. Therefore, based on the prior knowledge of the first feature map, the second feature map and the density of key points, different discrimination methods can be used for different key points. On the basis of ensuring the detection accuracy of the sparse parts of the key points of the human body, the accurate detection of the dense parts of the key points of the human body is realized, and the detection accuracy of the key points of the whole body of the human body is improved.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the present invention or the technical solutions in the prior art, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description are the present invention. For some embodiments of the invention, those skilled in the art can also obtain other drawings based on these drawings without creative effort.
图1是本发明提供的人体关键点检测方法的流程示意图之一;Fig. 1 is one of the schematic flow charts of the human body key point detection method provided by the present invention;
图2是本发明提供的人体关键点检测方法的流程示意图之二;Fig. 2 is the second schematic flow diagram of the human body key point detection method provided by the present invention;
图3是本发明提供的人体关键点检测装置的结构示意图;Fig. 3 is a schematic structural diagram of a human body key point detection device provided by the present invention;
图4是本发明提供的电子设备的结构示意图。Fig. 4 is a schematic structural diagram of an electronic device provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the present invention. Obviously, the described embodiments are part of the embodiments of the present invention , but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
为了便于更加清晰地理解本申请各实施例,首先对一些相关的背景知识进行如下介绍。In order to facilitate a clearer understanding of the embodiments of the present application, some relevant background knowledge is introduced as follows.
由于人体关节关键点分布稀疏并且均匀,因此直接采用卷积神经网络,利用监督学习方式便可以直接学习从图像到人体关键点的映射。Since the distribution of key points of human joints is sparse and uniform, the convolutional neural network is directly used, and the mapping from images to key points of human body can be directly learned by using supervised learning methods.
但是对于人体稠密关键点,在身体各部位分布密度差异较大,对所有关键点采用同样的网络结构导致关键点稠密的部分检测精度低。However, for the dense key points of the human body, the distribution density of each part of the body is quite different, and the same network structure is used for all key points, resulting in low detection accuracy for dense key points.
并且,相关技术中对人体全身关键点检测的手段为将人体分成不同部件,对每个部件分别训练一个模型,这种非端到端的方法对模型管理,训练,数据制作等带来了额外的挑战和负担,使得在实际使用中大大受限。Moreover, the method of detecting key points of the whole body of the human body in related technologies is to divide the human body into different parts and train a model for each part separately. This non-end-to-end method brings additional costs to model management, training, data production, etc. Challenges and burdens greatly restrict practical use.
因此,针对上述存在的技术问题,为了提高对人体全身关键点的检测精度,本发明提供一种人体关键点检测方法、装置、电子设备及存储介质。Therefore, aiming at the above-mentioned existing technical problems, in order to improve the detection accuracy of the key points of the whole body of the human body, the present invention provides a method, device, electronic equipment and storage medium for detecting the key points of the human body.
下面结合图1对本发明提供的人体关键点检测方法进行具体描述。图1是本发明提供的人体关键点检测方法的流程示意图之一,参见图1所示,该方法包括步骤101-步骤103,其中:The method for detecting human body key points provided by the present invention will be specifically described below in conjunction with FIG. 1 . Fig. 1 is one of the schematic flow charts of the human body key point detection method provided by the present invention, as shown in Fig. 1, the method includes step 101-
步骤101、获取待检测人体图像。
首先需要说明的是,本发明的执行主体可以是具有人体关键点检测功能的任何电子设备,例如可以为智能手机、智能手表、台式电脑、手提电脑等任何一种。First of all, it needs to be explained that the execution subject of the present invention can be any electronic device with the function of detecting key points of the human body, for example, it can be any kind of smart phone, smart watch, desktop computer, laptop computer, etc.
由于人体稠密关键点在人体各部位分布密度差异较大,如果对人体所有关键点采取同样的网络结构进行检测,会导致对关键点稠密的部位检测精度低。Due to the large difference in the distribution density of the dense key points of the human body in various parts of the human body, if the same network structure is used for detection of all key points of the human body, the detection accuracy of dense key points will be low.
因此,为了提高对人体全身关键点的检测精度,在本实施例中,首先需要获取待检测人体图像。Therefore, in order to improve the detection accuracy of the key points of the whole body of the human body, in this embodiment, it is first necessary to obtain an image of the human body to be detected.
具体地,待检测人体图像是指待关键点检测的人体全身图像,在该待检测的人体全身图像中包括人的头部、上臂、下臂、躯干、大腿、小腿、手、脚等部位。Specifically, the human body image to be detected refers to the whole body image of the human body to be detected by key points, and the whole body image of the human body to be detected includes the head, upper arm, lower arm, torso, thigh, calf, hand, foot and other parts of the person.
步骤102、基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同。
在本实施例中,在获取到待检测人体图像之后,需要基于待检测人体图像,生成分辨率不同的第一特征图以及第二特征图;In this embodiment, after the human body image to be detected is obtained, it is necessary to generate a first feature map and a second feature map with different resolutions based on the human body image to be detected;
其中,第一特征图为低分辨率的特征图,例如分辨率为128*128;第二特征图为高分辨率的特征图,例如分辨率为512*512。Wherein, the first feature map is a low-resolution feature map, for example, the resolution is 128*128; the second feature map is a high-resolution feature map, for example, the resolution is 512*512.
步骤103、基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。Step 103: Based on the first feature map, the second feature map, and the prior knowledge of key point density, determine the key point detection result corresponding to the human body image to be detected; the key point density prior knowledge is used In order to distinguish the human body key point dense part and the human body key point sparse part in the second feature map.
在本实施例中,需要基于第一特征图、第二特征图及关键点密集度先验知识,确定待检测人体图像对应的关键点检测结果。In this embodiment, it is necessary to determine the key point detection result corresponding to the human body image to be detected based on the first feature map, the second feature map, and the prior knowledge of key point density.
具体地,由于关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此待检测人体图像对应的关键点检测结果具体可以分为:人体关键点稀疏部位对应的第一检测结果以及人体关键点稠密部位对应的第二检测结果。Specifically, since the prior knowledge of the key point density is used to distinguish the human body key point dense part and the human body key point sparse part in the second feature map, the key point detection results corresponding to the human body image to be detected can be specifically divided into: The first detection result corresponding to the sparse key point parts of the human body and the second detection result corresponding to the dense key point parts of the human body.
可选地,在本发明实施例一种可能的实现方式中,所述关键点密集度先验知识具体可以通过以下步骤[1]-步骤[2]得到:Optionally, in a possible implementation of the embodiment of the present invention, the prior knowledge of key point density can be obtained through the following steps [1]-step [2]:
步骤[1]、获取各人体部位的关键点数量;Step [1], obtaining the number of key points of each human body part;
步骤[2]、基于所述关键点数量及各所述人体部位对应的二维矩形面积,确定所述关键点密集度先验知识。Step [2], based on the number of key points and the two-dimensional rectangular area corresponding to each of the human body parts, determine the prior knowledge of key point density.
在本实施例中,关键点密集度先验知识用于区分人体关键点稠密部位和人体关键点稀疏部位;其中,人体的各个部位分别为:头部、上臂、下臂、躯干、大腿、小腿、手、脚,在每一个部位中都有预设的关键点数量。In this embodiment, the prior knowledge of key point density is used to distinguish between dense key point parts of the human body and sparse key point parts of the human body; where the various parts of the human body are: head, upper arm, lower arm, torso, thigh, calf , hands, feet, each part has a preset number of key points.
在获取到各人体部位的关键点数量之后,针对每一个人体部位,需要用该部位的关键点数量除以该部位对应的二维矩形面积,得到该部位对应的目标结果;After obtaining the number of key points of each body part, for each body part, it is necessary to divide the number of key points of the part by the area of the two-dimensional rectangle corresponding to the part to obtain the target result corresponding to the part;
然后设置一个阈值,在目标结果大于此阈值的情况下,该部位为人体关键点稠密部位;反之,在目标结果小于此阈值的情况下,该部位为人体关键点稀疏部位。Then set a threshold. If the target result is greater than this threshold, the part is a dense part of human key points; otherwise, if the target result is smaller than this threshold, this part is a sparse part of human key points.
在上述实施方式中,引入关键点密集度先验知识,基于关键点数量及各人体部位对应的二维矩形面积,能够确定出第二特征图中的人体关键点稠密部位和人体关键点稀疏部位;进而能够实现针对不同关键点部位采用不同分辨率的特征图进行检测。In the above embodiment, the prior knowledge of key point density is introduced, and based on the number of key points and the two-dimensional rectangular area corresponding to each body part, the human body key point dense part and the human body key point sparse part in the second feature map can be determined ; and then it is possible to use feature maps with different resolutions for detection of different key points.
本发明提供的人体关键点检测方法,基于获取到的待检测人体图像,生成分辨率不同的第一特征图及第二特征图;由于关键点密集度先验知识能够区分第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度。The human body key point detection method provided by the present invention generates the first feature map and the second feature map with different resolutions based on the obtained human body image to be detected; Human body key point dense parts and human body key point sparse parts, therefore, based on the first feature map, the second feature map and the prior knowledge of key point density, it is possible to detect different key point parts using feature maps with different resolutions. On the basis of ensuring the detection accuracy of the sparse parts of the key points of the human body, the accurate detection of the dense parts of the key points of the human body is realized, and the detection accuracy of the key points of the whole body of the human body is improved.
可选地,所述基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图,具体可以通过以下步骤a)-步骤b)实现:Optionally, based on the human body image to be detected, generating the first feature map and the second feature map corresponding to the human body image to be detected can be specifically implemented through the following steps a)-step b):
步骤a)、将所述待检测人体图像输入残差网络模型,得到所述残差网络模型输出的初始特征图;Step a), input the human body image to be detected into the residual network model, and obtain the initial feature map output by the residual network model;
步骤b)、将所述初始特征图进行多次上采样操作,得到所述第一特征图及所述第二特征图。Step b), performing multiple upsampling operations on the initial feature map to obtain the first feature map and the second feature map.
在本实施例中,在获取到待检测人体图像(例如分辨率为512*512)之后,需要将待检测人体图像输入残差网络模型(例如ResNet-50)进行基础特征提取,得到残差网络模型输出的初始特征图(例如分辨率为16*16)的特征图。In this embodiment, after obtaining the image of the human body to be detected (for example, the resolution is 512*512), it is necessary to input the image of the human body to be detected into the residual network model (for example, ResNet-50) for basic feature extraction to obtain the residual network The feature map of the initial feature map output by the model (for example, with a resolution of 16*16).
然后将初始特征图进行多次上采样操作,得到第一特征图及第二特征图。Then the initial feature map is subjected to multiple upsampling operations to obtain the first feature map and the second feature map.
具体地,在得到分辨率为16*16的初始特征图之后,将该初始特征图输入多个上采样模块,最终分别得到不同上采样模块输出的第一特征图(例如分辨率为128*128)及第二特征图(例如分辨率为512*512);Specifically, after obtaining an initial feature map with a resolution of 16*16, the initial feature map is input into multiple upsampling modules, and finally the first feature maps output by different upsampling modules (for example, a resolution of 128*128 ) and the second feature map (for example, the resolution is 512*512);
其中,每个上采样模块包括2倍上采样层、3*3尺度的卷积层、批归一化层和ReLU层。Among them, each upsampling module includes 2 times upsampling layer, 3*3 scale convolution layer, batch normalization layer and ReLU layer.
在上述实施方式中,通过将待检测人体图像输入残差网络模型,然后将残差网络模型输出的初始特征图进行多次上采样操作,得到分辨率不同的第一特征图及第二特征图,进而可以针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度。In the above embodiment, by inputting the human body image to be detected into the residual network model, and then performing multiple upsampling operations on the initial feature map output by the residual network model, the first feature map and the second feature map with different resolutions are obtained , and then different key points can be detected by using feature maps with different resolutions. On the basis of ensuring the detection accuracy of sparse key points of the human body, the accurate detection of dense key points of the human body is realized, thereby improving the accuracy of key points of the human body. point detection accuracy.
可选地,所述基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果,可以通过以下步骤1)-步骤3)实现:Optionally, the determination of the key point detection result corresponding to the human body image to be detected based on the first feature map, the second feature map, and the prior knowledge of key point density can be performed through the following steps 1)- Step 3) Realize:
步骤1)、基于所述第一特征图,确定所述待检测人体图像中人体关键点稀疏部位对应的第一检测结果;Step 1), based on the first feature map, determine the first detection result corresponding to the sparse part of the human body key points in the human body image to be detected;
步骤2)、基于所述第一特征图,确定所述第二特征图对应的多个身体部件检测框,所述身体部件检测框用于对所述第二特征图进行裁剪;Step 2), based on the first feature map, determine a plurality of body part detection frames corresponding to the second feature map, and the body part detection frames are used to crop the second feature map;
步骤3)、基于第二特征图、各所述身体部件检测框及所述关键点密集度先验知识,确定所述待检测人体图像中人体关键点稠密部位对应的第二检测结果。Step 3), based on the second feature map, the detection frame of each body part and the prior knowledge of key point density, determine the second detection result corresponding to the human body key point dense part in the human body image to be detected.
在本实施例中,由于人体关键点稀疏部位并不需要高分辨率的特征图进行检测,因此可以直接基于第一特征图,确定待检测人体图像中人体关键点稀疏部位对应的第一检测结果。In this embodiment, since the sparse parts of the human body key points do not require high-resolution feature maps for detection, the first detection result corresponding to the sparse parts of the human body key points in the human body image to be detected can be determined directly based on the first feature map .
为了能在高分辨率的特征图(即第二特征图)上裁剪出人体关键点稠密部位的特征,排除其他部位特征干扰;In order to be able to cut out the features of the dense parts of the key points of the human body on the high-resolution feature map (ie, the second feature map), and eliminate the interference of other parts of the feature;
因此,在本实施例中,需要在第一特征图后同时接一个人体部位检测网络,分别输出头,上臂,下臂,躯干,大腿,小腿,手,脚部位在第一特征图上的身体部件检测框,并将该身体部件检测框等比放大到第二特征图上;各身体部件检测框用于对第二特征图进行裁剪,得到各人体部位对应的特征图。Therefore, in this embodiment, a human body part detection network needs to be connected to the first feature map at the same time, and the head, upper arm, lower arm, torso, thigh, calf, hand, and foot parts of the body on the first feature map are respectively output Part detection frame, and the body part detection frame is proportionally enlarged to the second feature map; each body part detection frame is used to crop the second feature map to obtain the feature map corresponding to each human body part.
最后,基于第二特征图、各身体部件检测框及关键点密集度先验知识,即可确定待检测人体图像中人体关键点稠密部位对应的第二检测结果。Finally, based on the second feature map, the detection frame of each body part, and the prior knowledge of key point density, the second detection result corresponding to the dense key point parts of the human body in the human body image to be detected can be determined.
在上述实施方式中,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度。In the above embodiment, based on the first feature map, the second feature map and the prior knowledge of key point density, it is possible to use feature maps with different resolutions for detection of different key points, and to ensure the detection accuracy of sparse key points of the human body. On the basis of this method, the accurate detection of the dense parts of the key points of the human body is realized, and the detection accuracy of the key points of the whole body of the human body is improved.
可选地,所述基于所述第一特征图,确定所述待检测人体图像中人体关键点稀疏部位对应的第一检测结果,具体可以通过以下步骤(1)-步骤(2)实现:Optionally, based on the first feature map, determining the first detection result corresponding to the sparse part of the human body key points in the human body image to be detected can be specifically implemented through the following steps (1)-step (2):
步骤(1)、将所述第一特征图进行下采样操作,得到第一目标特征图;Step (1), carrying out the down-sampling operation on the first feature map to obtain the first target feature map;
步骤(2)、将所述第一目标特征图输入卷积层,得到所述卷积层输出的所述第一检测结果。Step (2), inputting the first target feature map into a convolutional layer, and obtaining the first detection result output by the convolutional layer.
在本实施例中,由于人体关键点稀疏部位并不需要高分辨率的特征图进行检测,因此直接将第一特征图进行下采样操作,得到第一目标特征图;然后将第一目标特征图输入卷积层,得到第一检测结果。In this embodiment, since the sparse parts of the key points of the human body do not require a high-resolution feature map for detection, the first feature map is directly down-sampled to obtain the first target feature map; then the first target feature map Enter the convolutional layer to obtain the first detection result.
具体地,首先将第一特征图(例如分辨率为128*128)输入下采样模块,其中,下采样模块至少包括3*3卷积层、最大池化层、批归一化层以及ReLU层。Specifically, first input the first feature map (for example, with a resolution of 128*128) into the downsampling module, wherein the downsampling module includes at least a 3*3 convolutional layer, a maximum pooling layer, a batch normalization layer, and a ReLU layer .
在将分辨率为128*128的第一特征图输入下采样模块后,即可得到第一目标特征图(即第一目标特征图的分辨率降低至64*64)。After inputting the first feature map with a resolution of 128*128 into the downsampling module, the first target feature map can be obtained (that is, the resolution of the first target feature map is reduced to 64*64).
最后将分辨率为64*64的第一目标特征图输入1*1卷积层,即可得到多通道的热力图,以热力图方式输出待检测人体图像中人体关键点稀疏部位对应的第一检测结果。Finally, input the first target feature map with a resolution of 64*64 into the 1*1 convolutional layer to obtain a multi-channel heat map, and output the first object corresponding to the sparse key points of the human body in the human body image to be detected in the form of a heat map. Test results.
在上述实施方式中,针对人体关键点稀疏部位,直接采用第一特征图进行关键点检测,保证了人体关键点稀疏部位的检测精度。In the above implementation manner, for the sparse key point parts of the human body, the first feature map is directly used for key point detection, which ensures the detection accuracy of the sparse key point parts of the human body.
可选地,所述基于第二特征图、各所述身体部件检测框及所述关键点密集度先验知识,确定所述待检测人体图像中人体关键点稠密部位对应的第二检测结果,具体可以通过以下步骤[a]-步骤[c]实现:Optionally, based on the second feature map, each of the body part detection frames and the prior knowledge of key point density, determining the second detection result corresponding to the human body key point dense part in the human body image to be detected, Specifically, it can be achieved through the following steps [a]-step [c]:
步骤[a]、利用所述身体部件检测框对所述第二特征图裁剪,得到各所述人体部位对应的第三特征图;Step [a], using the body part detection frame to crop the second feature map to obtain a third feature map corresponding to each of the human body parts;
步骤[b]、基于所述关键点密集度先验知识,确定至少一个第二目标特征图,所述第二目标特征图为各所述第三特征图中属于人体关键点稠密部位对应的特征图;Step [b], based on the prior knowledge of the key point density, determine at least one second target feature map, the second target feature map is the feature corresponding to the key point dense part of the human body in each of the third feature maps picture;
步骤[c]、基于各所述第二目标特征图,确定所述第二检测结果。Step [c], based on each of the second target feature maps, determine the second detection result.
在本实施例中,由于基于身体部件检测框已经得到人身体各个部位在第二特征图上的位置和大小信息,因此利用身体部件检测框可以对第二特征图裁剪,得到各人体部位对应的第三特征图。In this embodiment, since the position and size information of each part of the human body on the second feature map has been obtained based on the body part detection frame, the body part detection frame can be used to crop the second feature map to obtain the corresponding body parts. The third feature map.
例如,在第一特征图后接一个人体部位检测网络,分别输出头,上臂,下臂,躯干,大腿,小腿,手,脚部位在第一特征图上的身体部件检测框,并将该身体部件检测框等比放大到第二特征图上;利用该身体部件检测框对第二特征图进行裁剪,进而得到头,上臂,下臂,躯干,大腿,小腿,手,脚部位对应的第三特征图;For example, a human body part detection network is connected after the first feature map, and the body part detection frames of the head, upper arm, lower arm, torso, thigh, calf, hand, and foot on the first feature map are respectively output, and the body The part detection frame is enlarged proportionally to the second feature map; the body part detection frame is used to crop the second feature map, and then the third part corresponding to the head, upper arm, lower arm, torso, thigh, calf, hand, and foot is obtained. feature map;
然后基于关键点密集度先验知识,确定出各第三特征图中属于人体关键点稠密部位对应的特征图作为第二目标特征图。Then, based on the prior knowledge of the key point density, the feature map corresponding to the dense part of the human body key point in each third feature map is determined as the second target feature map.
为了对所有特征图采取与第一特征图相同的关键点检测网络,需要将第二目标特征图进行缩放,直至与第一特征图的分辨率相同;In order to adopt the same key point detection network as the first feature map for all feature maps, the second target feature map needs to be scaled until it has the same resolution as the first feature map;
最后将缩放后的第二目标特征图输入下采样模块以及1*1卷积层,即可得到待检测人体图像中人体关键点稠密部位对应的第二检测结果;其中,下采样模块至少包括3*3卷积层、最大池化层、批归一化层以及ReLU层。Finally, the scaled second target feature map is input into the downsampling module and the 1*1 convolutional layer, and the second detection result corresponding to the dense key points of the human body in the human body image to be detected can be obtained; wherein, the downsampling module includes at least 3 *3 convolutional layer, maximum pooling layer, batch normalization layer and ReLU layer.
在上述实施方式中,基于获取到的待检测人体图像,生成分辨率不同的第一特征图及第二特征图;由于关键点密集度先验知识能够区分第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度;同时本方法为端到端的检测方式,针对人体关键点稠密部位和关键点稀疏部位均采用相同的关键点检测网络,无需针对人体不同部位训练不同模型,从而降低了人体关键点检测的复杂度,避免了非端到端、关键点检测模型训练复杂、模型管理困难、数据制作成本高等问题,节省了人力、物力资源。In the above embodiment, based on the obtained human body image to be detected, the first feature map and the second feature map with different resolutions are generated; due to the prior knowledge of key point density, it is possible to distinguish the density of key points of the human body in the second feature map Therefore, based on the first feature map, the second feature map and the prior knowledge of key point density, it is possible to use feature maps with different resolutions for different key point parts to detect, ensuring that the key points of the human body On the basis of the detection accuracy of sparse parts, the accurate detection of dense parts of key points of the human body is realized, and the detection accuracy of key points of the whole body of the human body is improved. The point sparse parts all use the same key point detection network, and there is no need to train different models for different parts of the human body, thereby reducing the complexity of human key point detection, avoiding non-end-to-end, complex key point detection model training, and difficult model management. Problems such as high cost of data production save manpower and material resources.
图2是本发明提供的人体关键点检测方法的流程示意图之二,参见图2所示,该方法包括步骤201-步骤208,其中:Fig. 2 is the second schematic flow diagram of the human body key point detection method provided by the present invention, as shown in Fig. 2, the method includes step 201-
步骤201、获取待检测人体图像。
步骤202、将待检测人体图像输入残差网络模型,得到残差网络模型输出的初始特征图。Step 202: Input the human body image to be detected into the residual network model to obtain an initial feature map output by the residual network model.
步骤203、将初始特征图进行多次上采样操作,得到第一特征图及第二特征图;第一特征图和第二特征图的分辨率不同。
步骤204、将第一特征图进行下采样操作,得到第一目标特征图。Step 204: Perform a down-sampling operation on the first feature map to obtain a first target feature map.
步骤205、将第一目标特征图输入卷积层,得到卷积层输出的第一检测结果。Step 205: Input the first target feature map into the convolutional layer, and obtain the first detection result output by the convolutional layer.
步骤206、利用身体部件检测框对第二特征图裁剪,得到各人体部位对应的第三特征图。
步骤207、基于关键点密集度先验知识,确定至少一个第二目标特征图,其中,第二目标特征图为各第三特征图中属于人体关键点稠密部位对应的特征图。Step 207 : Determine at least one second target feature map based on the prior knowledge of key point density, wherein the second target feature map is a feature map corresponding to the dense key point parts of the human body in each third feature map.
需要说明的是,关键点密集度先验知识具体可以通过以下步骤[1]-步骤[2]得到:It should be noted that the prior knowledge of key point density can be obtained through the following steps [1]-step [2]:
步骤[1]、获取各人体部位的关键点数量;Step [1], obtaining the number of key points of each human body part;
步骤[2]、基于所述关键点数量及各所述人体部位对应的二维矩形面积,确定所述关键点密集度先验知识。Step [2], based on the number of key points and the two-dimensional rectangular area corresponding to each of the human body parts, determine the prior knowledge of key point density.
步骤208、基于各第二目标特征图,确定第二检测结果。Step 208: Determine a second detection result based on each second target feature map.
需要说明的是,本发明对步骤204-步骤205与步骤206-步骤208的执行顺序不作限定,即执行顺序不分先后。It should be noted that the present invention does not limit the execution order of steps 204-205 and steps 206-208, that is, the order of execution is not in particular order.
本发明提供的人体关键点检测方法,基于获取到的待检测人体图像,生成分辨率不同的第一特征图及第二特征图;由于关键点密集度先验知识能够区分第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度;同时本方法为端到端的检测方式,针对人体关键点稠密部位和关键点稀疏部位均采用相同的关键点检测网络,无需针对人体不同部位训练不同模型,从而降低了人体关键点检测的复杂度,避免了非端到端、关键点检测模型训练复杂、模型管理困难、数据制作成本高等问题,节省了人力、物力资源节省了人力、物力资源。The human body key point detection method provided by the present invention generates the first feature map and the second feature map with different resolutions based on the obtained human body image to be detected; Human body key point dense parts and human body key point sparse parts, therefore, based on the first feature map, the second feature map and the prior knowledge of key point density, it is possible to detect different key point parts using feature maps with different resolutions. On the basis of ensuring the detection accuracy of the sparse parts of the key points of the human body, the accurate detection of the dense parts of the key points of the human body is realized, thereby improving the detection accuracy of the key points of the whole body of the human body; at the same time, this method is an end-to-end detection method for the key points of the human body Both the dense part and the key point sparse part use the same key point detection network, and there is no need to train different models for different parts of the human body, thereby reducing the complexity of human key point detection and avoiding the complexity of non-end-to-end key point detection model training. Problems such as difficult model management and high data production costs save manpower and material resources.
下面对本发明提供的人体关键点检测装置进行描述,下文描述的人体关键点检测装置与上文描述的人体关键点检测方法可相互对应参照。图3是本发明提供的人体关键点检测装置的结构示意图,如图3所示,该人体关键点检测装置300包括:获取模块301、生成模块302及确定模块303,其中:The human body key point detection device provided by the present invention is described below, and the human body key point detection device described below and the human body key point detection method described above can be referred to in correspondence. Fig. 3 is a schematic structural diagram of a human body key point detection device provided by the present invention. As shown in Fig. 3, the human body key
第一获取模块301,用于获取待检测人体图像;The first obtaining
生成模块302,用于基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;A
第一确定模块303,用于基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。The first determining
本发明提供的人体关键点检测装置,基于获取到的待检测人体图像,生成分辨率不同的第一特征图及第二特征图;由于关键点密集度先验知识能够区分第二特征图中的人体关键点稠密部位和人体关键点稀疏部位,因此,基于第一特征图、第二特征图及关键点密集度先验知识,能够针对不同关键点部位采用不同分辨率的特征图进行检测,在保证人体关键点稀疏部位检测精度的基础上,实现了对人体关键点稠密部位的精确检测,进而提高了对人体全身关键点的检测精度。The human body key point detection device provided by the present invention generates a first feature map and a second feature map with different resolutions based on the obtained human body image to be detected; Human body key point dense parts and human body key point sparse parts, therefore, based on the first feature map, the second feature map and the prior knowledge of key point density, it is possible to detect different key point parts using feature maps with different resolutions. On the basis of ensuring the detection accuracy of the sparse parts of the key points of the human body, the accurate detection of the dense parts of the key points of the human body is realized, and the detection accuracy of the key points of the whole body of the human body is improved.
可选地,所述装置还包括:Optionally, the device also includes:
第二获取模块,用于获取各人体部位的关键点数量;The second obtaining module is used to obtain the number of key points of each human body part;
第二确定模块,用于基于所述关键点数量及各所述人体部位对应的二维矩形面积,确定所述关键点密集度先验知识。The second determination module is configured to determine the prior knowledge of key point density based on the number of key points and the two-dimensional rectangular area corresponding to each of the human body parts.
可选地,第一确定模块303,进一步用于:Optionally, the first determining
基于所述第一特征图,确定所述待检测人体图像中人体关键点稀疏部位对应的第一检测结果;Based on the first feature map, determine a first detection result corresponding to a sparse human body key point in the human body image to be detected;
基于所述第一特征图,确定所述第二特征图对应的多个身体部件检测框,所述身体部件检测框用于对所述第二特征图进行裁剪;Based on the first feature map, determine a plurality of body part detection frames corresponding to the second feature map, and the body part detection frames are used to crop the second feature map;
基于第二特征图、各所述身体部件检测框及所述关键点密集度先验知识,确定所述待检测人体图像中人体关键点稠密部位对应的第二检测结果。Based on the second feature map, each of the body part detection frames and the prior knowledge of the density of key points, determine a second detection result corresponding to a human body key point dense part in the image of the human body to be detected.
可选地,第一确定模块303,进一步用于:Optionally, the first determining
将所述第一特征图进行下采样操作,得到第一目标特征图;performing a downsampling operation on the first feature map to obtain a first target feature map;
将所述第一目标特征图输入卷积层,得到所述卷积层输出的所述第一检测结果。Inputting the first target feature map into a convolutional layer to obtain the first detection result output by the convolutional layer.
可选地,第一确定模块303,进一步用于:Optionally, the first determining
利用所述身体部件检测框对所述第二特征图裁剪,得到各所述人体部位对应的第三特征图;clipping the second feature map by using the body part detection frame to obtain a third feature map corresponding to each of the human body parts;
基于所述关键点密集度先验知识,确定至少一个第二目标特征图,所述第二目标特征图为各所述第三特征图中属于人体关键点稠密部位对应的特征图;Based on the prior knowledge of key point density, at least one second target feature map is determined, and the second target feature map is a feature map corresponding to a dense part of the human body key points in each of the third feature maps;
基于各所述第二目标特征图,确定所述第二检测结果。Based on each of the second target feature maps, the second detection result is determined.
可选地,生成模块302,进一步用于:Optionally, the
将所述待检测人体图像输入残差网络模型,得到所述残差网络模型输出的初始特征图;Inputting the human body image to be detected into a residual network model to obtain an initial feature map output by the residual network model;
将所述初始特征图进行多次上采样操作,得到所述第一特征图及所述第二特征图。performing multiple upsampling operations on the initial feature map to obtain the first feature map and the second feature map.
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行人体关键点检测方法,该方法包括:获取待检测人体图像;基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG. 4, the electronic device may include: a processor (processor) 410, a communication interface (Communications Interface) 420, a memory (memory) 430 and a
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above logic instructions in the
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的人体关键点检测方法,该方法包括:获取待检测人体图像;基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。On the other hand, the present invention also provides a computer program product. The computer program product includes a computer program that can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can Executing the human body key point detection method provided by the above methods, the method includes: acquiring a human body image to be detected; based on the human body image to be detected, generating a first feature map and a second feature map corresponding to the human body image to be detected; The first feature map and the second feature map have different resolutions; based on the first feature map, the second feature map, and prior knowledge of key point density, determine the corresponding Key point detection results; the prior knowledge of the key point density is used to distinguish the human body key point dense part and the human body key point sparse part in the second feature map.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的人体关键点检测方法,该方法包括:获取待检测人体图像;基于所述待检测人体图像,生成所述待检测人体图像对应的第一特征图及第二特征图;所述第一特征图和所述第二特征图的分辨率不同;基于所述第一特征图、所述第二特征图及关键点密集度先验知识,确定所述待检测人体图像对应的关键点检测结果;所述关键点密集度先验知识用于区分所述第二特征图中的人体关键点稠密部位和人体关键点稀疏部位。In yet another aspect, the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the human body key point detection method provided by the above methods, the method The method includes: acquiring a human body image to be detected; generating a first feature map and a second feature map corresponding to the human body image to be detected based on the human body image to be detected; distinguishing the first feature map and the second feature map rate is different; based on the first feature map, the second feature map and the prior knowledge of key point density, determine the key point detection result corresponding to the human body image to be detected; the key point density prior knowledge is used In order to distinguish the human body key point dense part and the human body key point sparse part in the second feature map.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the above description of the implementations, those skilled in the art can clearly understand that each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware. Based on this understanding, the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211167898.2A CN115578753B (en) | 2022-09-23 | 2022-09-23 | Human body key point detection method, device, electronic equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211167898.2A CN115578753B (en) | 2022-09-23 | 2022-09-23 | Human body key point detection method, device, electronic equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115578753A CN115578753A (en) | 2023-01-06 |
CN115578753B true CN115578753B (en) | 2023-05-05 |
Family
ID=84580804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211167898.2A Active CN115578753B (en) | 2022-09-23 | 2022-09-23 | Human body key point detection method, device, electronic equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115578753B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110309706A (en) * | 2019-05-06 | 2019-10-08 | 深圳市华付信息技术有限公司 | Face critical point detection method, apparatus, computer equipment and storage medium |
WO2021197466A1 (en) * | 2020-04-03 | 2021-10-07 | 百果园技术(新加坡)有限公司 | Eyeball detection method, apparatus and device, and storage medium |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109711273B (en) * | 2018-12-04 | 2020-01-17 | 北京字节跳动网络技术有限公司 | Image key point extraction method and device, readable storage medium and electronic equipment |
CN110705365A (en) * | 2019-09-06 | 2020-01-17 | 北京达佳互联信息技术有限公司 | Human body key point detection method and device, electronic equipment and storage medium |
KR102250756B1 (en) * | 2019-11-29 | 2021-05-10 | 연세대학교 산학협력단 | Method and Apparatus for Extracting Key Point Using Bidirectional Message Passing Structure |
CN111860276B (en) * | 2020-07-14 | 2023-04-11 | 咪咕文化科技有限公司 | Human body key point detection method, device, network equipment and storage medium |
CN112686097A (en) * | 2020-12-10 | 2021-04-20 | 天津中科智能识别产业技术研究院有限公司 | Human body image key point posture estimation method |
CN112967216B (en) * | 2021-03-08 | 2023-06-09 | 平安科技(深圳)有限公司 | Method, device, equipment and storage medium for detecting key points of face image |
CN113657321B (en) * | 2021-08-23 | 2024-04-26 | 平安科技(深圳)有限公司 | Dog face key point detection method, device, equipment and medium based on artificial intelligence |
CN114913541A (en) * | 2021-09-24 | 2022-08-16 | 同济大学 | Human body key point detection method, device and medium based on orthogonal matching pursuit |
CN114332484A (en) * | 2021-11-10 | 2022-04-12 | 腾讯科技(深圳)有限公司 | Key point detection method and device, computer equipment and storage medium |
CN114821087B (en) * | 2022-04-15 | 2024-12-27 | 苏州立创致恒电子科技有限公司 | A detection and description model and method for key points of depth images |
-
2022
- 2022-09-23 CN CN202211167898.2A patent/CN115578753B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110309706A (en) * | 2019-05-06 | 2019-10-08 | 深圳市华付信息技术有限公司 | Face critical point detection method, apparatus, computer equipment and storage medium |
WO2021197466A1 (en) * | 2020-04-03 | 2021-10-07 | 百果园技术(新加坡)有限公司 | Eyeball detection method, apparatus and device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN115578753A (en) | 2023-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11798132B2 (en) | Image inpainting method and apparatus, computer device, and storage medium | |
KR102451198B1 (en) | Method and device for generating image | |
CN109359539B (en) | Attention evaluation method, apparatus, terminal device and computer-readable storage medium | |
CN111325664B (en) | Style migration method and device, storage medium and electronic equipment | |
CN111414915B (en) | Character recognition method and related equipment | |
KR101955919B1 (en) | Method and program for providing tht region-of-interest in image by deep-learing algorithm | |
US11574500B2 (en) | Real-time facial landmark detection | |
CN110827236B (en) | Brain tissue layering method, device and computer equipment based on neural network | |
CN111339902A (en) | Liquid crystal display number identification method and device of digital display instrument | |
CN110147753A (en) | Method and device for detecting small objects in image | |
CN111539349A (en) | Training method and device for gesture recognition model, gesture recognition method and device | |
CN110781980A (en) | Target detection model training method, target detection method and device | |
CN111444807A (en) | Object detection method, apparatus, electronic device and computer readable medium | |
CN117576405A (en) | Tongue picture semantic segmentation method, device, equipment and medium | |
CN115731341A (en) | Three-dimensional human head reconstruction method, device, equipment and medium | |
CN116704324A (en) | Target detection method, system, device and storage medium based on underwater images | |
CN110472673B (en) | Parameter adjustment method, fundus image processing device, fundus image processing medium and fundus image processing apparatus | |
CN110910478A (en) | GIF graph generation method, device, electronic equipment and storage medium | |
KR20200005853A (en) | Method and System for People Count based on Deep Learning | |
CN115578753B (en) | Human body key point detection method, device, electronic equipment and storage medium | |
CN116884036A (en) | Live pig posture detection method, device, equipment and medium based on YOLOv5DA | |
CN116362301A (en) | Model quantization method and related equipment | |
CN116416507A (en) | Multi-target image detection method, device, computer equipment and medium | |
CN115311680A (en) | Human image quality detection method, device, electronic device and storage medium | |
CN114782768A (en) | Training method of pre-training network model, medical image processing method and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |