CN115572939A - 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用 - Google Patents

基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用 Download PDF

Info

Publication number
CN115572939A
CN115572939A CN202211357387.7A CN202211357387A CN115572939A CN 115572939 A CN115572939 A CN 115572939A CN 202211357387 A CN202211357387 A CN 202211357387A CN 115572939 A CN115572939 A CN 115572939A
Authority
CN
China
Prior art keywords
micro
layer
nano structure
bionic
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211357387.7A
Other languages
English (en)
Inventor
陈星�
洪念成
徐增辉
李响
邹亚男
向阳
李飞
殷术林
王富强
张鑫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Zhonghuan Ecological Environmental Protection Technology Co ltd
Cscec Central New Energy Co ltd
Harbin Institute of Technology Weihai
Original Assignee
China Construction Zhonghuan Ecological Environmental Protection Technology Co ltd
Cscec Central New Energy Co ltd
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Zhonghuan Ecological Environmental Protection Technology Co ltd, Cscec Central New Energy Co ltd, Harbin Institute of Technology Weihai filed Critical China Construction Zhonghuan Ecological Environmental Protection Technology Co ltd
Priority to CN202211357387.7A priority Critical patent/CN115572939A/zh
Publication of CN115572939A publication Critical patent/CN115572939A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用,属于辐射制冷技术领域。为解决现有辐射制冷技术无法兼顾采光和制冷双重需求的问题,本发明提供了一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,包括自上而下设置的仿生银蚁毛发微纳结构层和多层介质薄膜层,所述仿生银蚁毛发微纳结构层由PET材料制备而成,所述仿生银蚁毛发微纳结构层的表面呈阵列分布有锥体微纳结构,所述锥体微纳结构表面呈阵列分布有微球褶皱结构。本发明实现了辐射制冷薄膜选择性透射可见光、阻挡近红外光线,以及与太空换热的功能,能够应用到对采光和外观要求较高的设施中,如各类大型商业建筑、太阳能电池及汽车车窗等场景。

Description

基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方 法与应用
技术领域
本发明属于辐射制冷技术领域,尤其涉及一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用。
背景技术
随着化石能源的消耗和温室气体的排放,人类正面临巨大的能源与环境危机。辐射制冷作为一种零能耗被动式制冷技术,能够减少用于制冷的能耗,从而缓解这场危机,因此它拥有非常广阔的应用前景。目前的辐射制冷技术主要通过提高材料在太阳光谱波段的反射率和8-13μm“大气窗口”波段的发射率来提升制冷性能。随着研究的逐渐深入,一系列实现日间降温的辐射制冷材料被制备出来,如辐射制冷薄膜、辐射制冷涂层、木结构材料和等级多孔聚合物结构材料,已能够应用到包括建筑屋顶及外墙、飞机廊桥、冷藏车、大型油库等领域,且能够实现可观的制冷功率。
虽然目前的日间辐射制冷技术已经能够实现较高的制冷功率,但是在应用过程中很少考虑应用场景对采光和外观的要求,例如火车站、机场的屋顶及廊桥,展览大厅的透明顶棚等;少数考虑可见光高透射性能的辐射制冷涂层未能屏蔽近红外热量对制冷负荷的影响。因此,亟需设计开发一种具有可见光波段、近红外波段和大气窗口波段多光谱调控功能的新型辐射制冷技术。
发明内容
为解决现有辐射制冷技术无法兼顾采光和制冷双重需求的问题,本发明提供了一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用。
本发明的技术方案:
基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,包括自上而下设置的仿生银蚁毛发微纳结构层和多层介质薄膜层,所述仿生银蚁毛发微纳结构层由PET材料制备而成,所述仿生银蚁毛发微纳结构层的表面呈阵列分布有锥体微纳结构,所述锥体微纳结构表面呈阵列分布有微球褶皱结构;所述锥体微纳结构和微球褶皱结构的高度比为2.5~3.5:0.2~0.3;所述多层介质薄膜层包括自上而下设置的PET制冷层、ITO分频层和Al2O3基底层。
进一步的,所述锥体微纳结构为金字塔型主体结构,所述金字塔型主体结构的底边长范围是2.5~3.5μm,高度范围是2.5~3.5μm;所述锥体微纳结构在所述仿生银蚁毛发微纳结构层表面呈等距排列,间距为4~15μm。
进一步的,所述微球褶皱结构的微球半径范围是0.2~0.3μm,所述微球褶皱结构在所述锥体微纳结构表面呈等距排列,间距为0.2~1.5μm。
进一步的,所述PET制冷层的厚度为10~100μm,ITO分频层的厚度为1~3μm,Al2O3基底层的厚度为0.8~3μm。
进一步的,所述仿生银蚁毛发微纳结构层和所述PET制冷层的PET原料均替换为PMMA。
一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,步骤如下:
步骤一、制备仿生银蚁毛发微纳结构层:
采用干法结合湿法刻蚀技术制备凹型仿生银蚁毛发微纳结构模板,以所得凹型仿生银蚁毛发微纳结构模板为基础采用纳米压印方法制备仿生银蚁毛发微纳结构层;
步骤二、制备多层介质薄膜层:
采用真空磁控溅射法、物理气相沉积法、化学气相沉积或电子束蒸发法逐层制备Al2O3基底层、ITO分频层和PET制冷层,得到多层介质薄膜层;
步骤三、制备透明辐射制冷薄膜;
将步骤一所得仿生银蚁毛发微纳结构层铺设于步骤二所得多层介质薄膜层的PET制冷层上,得到仿生银蚁毛发微纳结构的透明辐射制冷薄膜。
进一步的,步骤一采用具有多尺度纹理的制绒硅片作为模板,所述制绒硅片表面的绒面是通过干法结合湿法刻蚀形成的,其结构尺寸与银蚁毛发微结构特征尺寸相当。
进一步的,步骤一所述纳米压印方法的具体工艺为将所得凹型仿生银蚁毛发微纳结构模板和透明有机片材叠放在热压系统中,将热压温度在28~32min内由57~63℃升温至127~133℃,施加6.0~8.0kN的压纹载荷并持续55~65s,然后在4~6min内将温度冷却至57~63℃,得到透明仿生银蚁毛发微纳结构层。
进一步的,步骤二所述真空磁控溅射法中Al2O3基底层的加工压力为0.7Pa,镀膜功率为800W~2200W,镀膜时间为4~12小时;ITO分频层的氩氧比为40:1~25:1,镀膜功率为1200-2200W,镀膜时间为0.6~2.8小时;PET制冷层的镀膜功率为700W~2000W,镀膜时间为1~6小时。
基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜在玻璃建筑外墙、光伏电池、汽车车窗中的应用。
本发明的有益效果:
本发明利用仿生银蚁毛发微纳结构和多种薄膜结构复合时的综合光学性能,实现了辐射制冷薄膜选择性透射可见光、阻挡近红外光线,以及与太空换热的功能,具有太阳辐射波段和大气窗口波段多光谱调控的性能优势。通过基于现代电磁理论的时域有限差分法(FDTD)计算得出,该辐射制冷薄膜对近红外波段光线的平均透过率最低仅为15.9%,同时对可见光的平均透过率最高可达80.7%,近红外透射率最低仅为15.9%,大气窗口平均发射率最高可达96.7%。使用该薄膜能够使辐射制冷技术能够应用到对采光和外观要求较高的设施中,如各类大型商业建筑、太阳能电池以及汽车车窗等场景。
附图说明
图1为基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的结构示意图;
图2为基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的工作原理示意图;
图3为实施例1制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;
图4为实施例2制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;
图5为实施例3制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;
图6为实施例1制备的辐射制冷薄膜和对比例1制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率曲线对比图;
图7为实施例1制备的辐射制冷薄膜和对比例1制备的辐射制冷薄膜的大气窗口(8-13μm)发射率曲线对比图;
图中,1、仿生银蚁毛发微纳结构,1-1、锥体微纳结构,1-2、微球褶皱结构,2、多层介质薄膜层,2-1、PET制冷层,2-2、ITO分频层,2-3、Al2O3基底层。
具体实施方式
下面结合实施例对本发明的技术方案做进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。下列实施例中未具体注明的工艺设备或装置均采用本领域内的常规设备或装置,若未特别指明,本发明实施例中所用的原料等均可市售获得;若未具体指明,本发明实施例中所用的技术手段均为本领域技术人员所熟知的常规手段。
实施例1
本实施例提供了一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法。
本实施例提供的基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜包括自上而下设置的仿生银蚁毛发微纳结构层1和多层介质薄膜层2。
本实施例的仿生银蚁毛发微纳结构层1由PET材料制备而成,仿生银蚁毛发微纳结构层1的表面呈阵列分布有锥体微纳结构1-1,锥体微纳结构1-1在所述仿生银蚁毛发微纳结构层表面呈等距排列,间距为10μm。锥体微纳结构1-1表面呈阵列分布有微球褶皱结构1-2。本实施例的锥体微纳结构为金字塔型主体结构,微球褶皱结构1-2在所述金字塔型主体结构表面呈等距排列,间距为1.0μm。本实施例中金字塔型主体结构的底边长是3μm,高是3μm,褶皱微球的半径是0.15μm。
本实施例中多层介质薄膜层2包括自上而下设置的PET(聚对苯二甲酸乙二醇酯)制冷层2-1、ITO(氧化铟锡)分频层2-2和Al2O3基底层2-3,其中PET制冷层2-1的厚度是10μm,ITO分频层2-2的厚度是2μm,Al2O3基底层2-3的厚度是2.5μm。
本实施例中仿生银蚁毛发微纳结构层1和PET制冷层2-1的PET原料均可由PMMA替换。
本实施例中基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,步骤如下:
步骤一、制备仿生银蚁毛发微纳结构层:
采用具有多尺度纹理的制绒硅片作为模板,所述制绒硅片表面的绒面是通过干法结合湿法刻蚀形成的,其结构尺寸与银蚁毛发微结构特征尺寸相当。
(1)模板前期准备-硅片和玻璃清洗
利用激光技术把制绒硅片切成8×8cm2的面积尺寸,置于清洗架上然后整体放入清洗室,硅片之间不要紧贴并留有一定空间以确保对硅片可进行全方位清洗。清洗按照如下步骤进行:第一步,在超声波清洗机中分别用硅片(玻璃)清洗液、无水乙醇溶液、去离子水分别超声20min,之后将硅片和玻璃片分别放置,并用保鲜膜密封放入干燥箱中烘干。烘干之后硅片需要第二步清洗,这次清洗是在培养皿中,四种清洗液按顺序分别超声清洗20min,选用顺序为:去离子水、娃哈哈矿泉水、异丙醇、乙醇。清洗之后放入干燥箱中烘干。硅片模板的前期准备清洗工作已经完成。
(2)硅片模板疏水处理-浸泡法
硅片疏水处理是硅片正式作为模板涂膜之前很重要的一步操作,因为这一步将关系到硅片的可重复利用度以及成膜质量,若不对硅片进行疏水处理,将对后期纳米压印的脱模产生很大阻力,造成硅片的破碎并加重薄膜表面的粗糙程度。具体过程如下:取出80ml正己烷,再用移液枪吸取80μL三氯硅烷往烧杯中逐滴滴入,即正己烷和三氯硅烷的体积比为1000:1,在充分搅拌均匀后用玻璃棒引入玻璃培养皿中,然后在混合溶液中放入制绒硅片模板静置浸泡15~25min。浸泡完成后的制绒硅片再根据步骤(1)中第二步的清洗顺序在干净的培养皿中进行清洗并烘干。经过这样疏水处理的制绒硅片具有很大的水接触角,图形转印之后,可以方便PET的脱模。
本实施例的纳米压印方法的具体工艺为将所得凹型仿生银蚁毛发微纳结构模板和透明有机片材叠放在热压系统中,将热压温度在30min内由60℃升温至130℃,施加7.0kN的压纹载荷并持续60s,然后在5min内将温度冷却至60℃,得到透明仿生银蚁毛发微纳结构层。
步骤二、制备多层介质薄膜层:
本实施例采用真空磁控溅射法逐层在玻璃基底上制备Al2O3基底层、ITO分频层和PET制冷层,得到多层介质薄膜层。蒸发前,基材应在超声波清洗器中清洗约25分钟以去除表面污垢物。在蒸发过程中,薄膜厚度和沉积速率由石英晶体振荡器监控,膜层的厚度通过控制沉积速率和时间来控制。此外,速率和厚度监测系统将根据薄膜的厚度特性进一步校准和验证。磁控溅射反应之后,进行退火工艺,温度范围为80~120℃。清洗基板和沉积后的热处理过程,均有助于提升膜层间结合力。
真空磁控溅射法中Al2O3基底层的加工压力为0.7Pa,镀膜功率为800W~2200W,镀膜时间为4~12小时;ITO分频层的氩氧比为40:1~25:1,镀膜功率为1200-2200W,镀膜时间为0.6~2.8小时;PET制冷层的镀膜功率为700W~2000W,镀膜时间为1~6小时。
步骤三、制备透明辐射制冷薄膜;
将步骤一所得仿生银蚁毛发微纳结构层铺设于步骤二所得多层介质薄膜层的PET制冷层上,得到仿生银蚁毛发微纳结构的透明辐射制冷薄膜。
本实施例中,仿生银蚁毛发微纳结构的几何形状和大小是在撒哈拉沙漠银蚁毛发的基础上设计的,其表面结构由金字塔锥体和微球褶皱等微观结构组成。利用仿生银蚁毛发微纳结构和介质层薄膜结构优异的光谱调控能力,能够兼顾建筑采光和制冷需求的透明辐射制冷薄膜,以拓展辐射制冷技术的适用范围,包括玻璃建筑外墙、光伏电池、汽车车窗等领域。
利用仿生银蚁毛发微纳结构和多种薄膜结构复合时的综合光学性能,实现了辐射制冷薄膜选择性透射可见光、阻挡近红外光线,以及与太空换热的功能,具有太阳辐射波段和大气窗口波段多光谱调控的性能优势,使辐射制冷薄膜能够兼顾采光和制冷性能。
图3为本实施例制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;如图所示,辐射制冷薄膜的可见光透射率为78.3%,近红外透射率仅为15.9%,大气窗口发射率为93.8%。
实施例2
本实施例提供了一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法。
本实施例与实施例1的区别仅在于:本实施例的仿生银蚁毛发微纳结构层1由PET材料制备而成,仿生银蚁毛发微纳结构层1的表面呈阵列分布有锥体微纳结构1-1,锥体微纳结构1-1在所述仿生银蚁毛发微纳结构层表面呈等距排列,间距为10μm。锥体微纳结构1-1表面呈阵列分布有微球褶皱结构1-2。本实施例的锥体微纳结构为金字塔型主体结构,微球褶皱结构1-2在所述金字塔型主体结构表面呈等距排列,间距为1.0μm。本实施例中金字塔型主体结构的底边长是3μm,高是3μm,褶皱微球的半径是0.15μm。
本实施例中多层介质薄膜层2包括自上而下设置的PET(聚对苯二甲酸乙二醇酯)制冷层2-1、ITO(氧化铟锡)分频层2-2和Al2O3基底层2-3,其中PET制冷层2-1的厚度是50μm,ITO分频层2-2的厚度是1.5μm,Al2O3基底层2-3的厚度是2μm。
图4为本实施例制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;如图所示,辐射制冷薄膜的可见光透射率为80.1%,近红外透射率仅为23.3%,大气窗口发射率为96.7%。
实施例3
本实施例提供了一种基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法。
本实施例与实施例1的区别仅在于:本实施例的仿生银蚁毛发微纳结构层1由PET材料制备而成,仿生银蚁毛发微纳结构层1的表面呈阵列分布有锥体微纳结构1-1,锥体微纳结构1-1在所述仿生银蚁毛发微纳结构层表面呈等距排列,间距为10μm。锥体微纳结构1-1表面呈阵列分布有微球褶皱结构1-2。本实施例的锥体微纳结构为金字塔型主体结构,微球褶皱结构1-2在所述金字塔型主体结构表面呈等距排列,间距为1.0μm。本实施例中金字塔型主体结构的底边长是3μm,高是3μm,褶皱微球的半径是0.15μm。
本实施例中多层介质薄膜层2包括自上而下设置的PET(聚对苯二甲酸乙二醇酯)制冷层2-1、ITO(氧化铟锡)分频层2-2和Al2O3基底层2-3,其中PET制冷层2-1的厚度是10μm,ITO分频层2-2的厚度是1.5μm,Al2O3基底层2-3的厚度是2μm。
图5为本实施例制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率及大气窗口(8-13μm)发射率曲线图;如图所示,辐射制冷薄膜的可见光透射率为80.7%,近红外透射率仅为23.9%,大气窗口发射率为89.7%。
对比例1
本对比例提供了一种没有仿生微纳结构的辐射制冷薄膜。
本对比例仅有多层介质薄膜层,且多层介质薄膜层的制备方法与实施例1相同。本对比例多层介质薄膜层包括自上而下设置的PET制冷层、ITO分频层和Al2O3基底层,其中PET制冷层的厚度是10μm,ITO分频层的厚度是2μm,Al2O3基底层的厚度是2.5μm。
图6为实施例1制备的辐射制冷薄膜和对比例1制备的辐射制冷薄膜的太阳光谱(0.3-2.5μm)透射率曲线对比图;图7为实施例1制备的辐射制冷薄膜和对比例1制备的辐射制冷薄膜的大气窗口。如图所示,对比例1辐射制冷薄膜的可见光透射率为72.8%,大气窗口发射率为91.5%。因此,通过对比可知仿生微纳结构可以同时提升辐射制冷薄膜的采光性能和制冷性能。

Claims (10)

1.基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,其特征在于,包括自上而下设置的仿生银蚁毛发微纳结构层(1)和多层介质薄膜层(2),所述仿生银蚁毛发微纳结构层(1)由PET材料制备而成,所述仿生银蚁毛发微纳结构层(1)的表面呈阵列分布有锥体微纳结构(1-1),所述锥体微纳结构(1-1)表面呈阵列分布有微球褶皱结构(1-2);所述锥体微纳结构(1-1)和微球褶皱结构(1-2)的高度比为2.5~3.5:0.2~0.3;所述多层介质薄膜层(2)包括自上而下设置的PET制冷层(2-1)、ITO分频层(2-2)和Al2O3基底层(2-3)。
2.根据权利要求1所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,其特征在于,所述锥体微纳结构(1-1)为金字塔型主体结构,所述金字塔型主体结构的底边长范围是2.5~3.5μm,高度范围是2.5~3.5μm;所述锥体微纳结构(1-1)在所述仿生银蚁毛发微纳结构层表面呈等距排列,间距为4~15μm。
3.根据权利要求1或2所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,其特征在于,所述微球褶皱结构(1-2)的微球半径范围是0.2~0.3μm,所述微球褶皱结构(1-2)在所述锥体微纳结构(1-1)表面呈等距排列,间距为0.2~1.5μm。
4.根据权利要求3所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,其特征在于,所述PET制冷层(2-1)的厚度为10~100μm,ITO分频层(2-2)的厚度为1~3μm,Al2O3基底层(2-3)的厚度为0.8~3μm。
5.根据权利要求4所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜,其特征在于,所述仿生银蚁毛发微纳结构层(1)和所述PET制冷层(2-1)的PET原料均替换为PMMA。
6.一种如权利要求1-5任一所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,其特征在于,步骤如下:
步骤一、制备仿生银蚁毛发微纳结构层:
采用干法结合湿法刻蚀技术制备凹型仿生银蚁毛发微纳结构模板,以所得凹型仿生银蚁毛发微纳结构模板为基础采用纳米压印方法制备仿生银蚁毛发微纳结构层;
步骤二、制备多层介质薄膜层:
采用真空磁控溅射法、物理气相沉积法、化学气相沉积或电子束蒸发法逐层制备Al2O3基底层、ITO分频层和PET制冷层,得到多层介质薄膜层;
步骤三、制备透明辐射制冷薄膜;
将步骤一所得仿生银蚁毛发微纳结构层铺设于步骤二所得多层介质薄膜层的PET制冷层上,得到仿生银蚁毛发微纳结构的透明辐射制冷薄膜。
7.根据权利要求6所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,其特征在于,步骤一采用具有多尺度纹理的制绒硅片作为模板,所述制绒硅片表面的绒面是通过干法结合湿法刻蚀形成的,其结构尺寸与银蚁毛发微结构特征尺寸相当。
8.根据权利要求6或7所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,其特征在于,步骤一所述纳米压印方法的具体工艺为将所得凹型仿生银蚁毛发微纳结构模板和透明有机片材叠放在热压系统中,将热压温度在28~32min内由57~63℃升温至127~133℃,施加6.0~8.0kN的压纹载荷并持续55~65s,然后在4~6min内将温度冷却至57~63℃,得到透明仿生银蚁毛发微纳结构层。
9.根据权利要求8所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜的制备方法,其特征在于,步骤二所述真空磁控溅射法中Al2O3基底层的加工压力为0.7Pa,镀膜功率为800W~2200W,镀膜时间为4~12小时;ITO分频层的氩氧比为40:1~25:1,镀膜功率为1200-2200W,镀膜时间为0.6~2.8小时;PET制冷层的镀膜功率为700W~2000W,镀膜时间为1~6小时。
10.如权利要求1-4任一所述基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜在玻璃建筑外墙、光伏电池、汽车车窗中的应用。
CN202211357387.7A 2022-11-01 2022-11-01 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用 Pending CN115572939A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211357387.7A CN115572939A (zh) 2022-11-01 2022-11-01 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211357387.7A CN115572939A (zh) 2022-11-01 2022-11-01 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115572939A true CN115572939A (zh) 2023-01-06

Family

ID=84589068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211357387.7A Pending CN115572939A (zh) 2022-11-01 2022-11-01 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115572939A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117471593A (zh) * 2023-12-28 2024-01-30 迈默智塔(无锡)科技有限公司 一种选择性透射隔膜和选择性透射玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030744A (zh) * 2019-04-09 2019-07-19 中国科学技术大学 一种光谱自适应的白天太阳能集热夜间辐射制冷涂层材料
CN113527740A (zh) * 2021-07-15 2021-10-22 伊诺福科光学技术有限公司 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
CN114714692A (zh) * 2022-05-10 2022-07-08 哈尔滨工业大学(威海) 基于仿生玫瑰花瓣微纳结构的可见-近红外分频型辐射制冷薄膜及其制备方法与应用
KR20220130443A (ko) * 2021-03-18 2022-09-27 고려대학교 산학협력단 투명 복사 냉각 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030744A (zh) * 2019-04-09 2019-07-19 中国科学技术大学 一种光谱自适应的白天太阳能集热夜间辐射制冷涂层材料
KR20220130443A (ko) * 2021-03-18 2022-09-27 고려대학교 산학협력단 투명 복사 냉각 소자
CN113527740A (zh) * 2021-07-15 2021-10-22 伊诺福科光学技术有限公司 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
CN114714692A (zh) * 2022-05-10 2022-07-08 哈尔滨工业大学(威海) 基于仿生玫瑰花瓣微纳结构的可见-近红外分频型辐射制冷薄膜及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴万春;黄金华;魏明明;李东;徐华;鲁越晖;: "撒哈拉银蚁仿生结构在光伏组件冷却中的应用", 宁波大学学报(理工版), no. 03, 10 May 2020 (2020-05-10), pages 74 - 80 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117471593A (zh) * 2023-12-28 2024-01-30 迈默智塔(无锡)科技有限公司 一种选择性透射隔膜和选择性透射玻璃
CN117471593B (zh) * 2023-12-28 2024-04-02 迈默智塔(无锡)科技有限公司 一种选择性透射隔膜和选择性透射玻璃

Similar Documents

Publication Publication Date Title
Sarkın et al. A review of anti-reflection and self-cleaning coatings on photovoltaic panels
CN114714692A (zh) 基于仿生玫瑰花瓣微纳结构的可见-近红外分频型辐射制冷薄膜及其制备方法与应用
CN110274326B (zh) 一种日间辐射制冷器及其制备方法
JP2016511940A (ja) 薄膜太陽電池パネル及びその製造方法
KR101000040B1 (ko) 나노 보온단열층이 형성된 복층 창호시스템 및 그 제조방법
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
WO2014150322A2 (en) Coated article including broadband and omnidirectional anti-reflective transparent coating, and/or method of making the same
CN115572939A (zh) 基于仿生银蚁毛发微纳结构的透明辐射制冷薄膜及其制备方法与应用
JPWO2008152887A1 (ja) 可視光透過日射熱反射膜
CN110030744B (zh) 一种光谱自适应的白天太阳能集热夜间辐射制冷涂层材料
CN102064223B (zh) 一种太阳能电池组件盖板玻璃及太阳能电池组件
Zhou et al. Radiative cooling for energy sustainability: Materials, systems, and applications
Meng et al. Hierarchical superhydrophobic poly (vinylidene fluoride-co-hexafluoropropylene) membrane with a bead (SiO2 nanoparticles)-on-string (nanofibers) structure for all-day passive radiative cooling
CN203920357U (zh) 一种车载太阳能天窗
CN103346200A (zh) 玻璃基板及其制造方法和薄膜太阳能电池的制造方法
CN112460837B (zh) 基于dbs算法的二氧化钛选择性吸波器及设计方法
Xin et al. Effects of polysiloxane doping on transmittance and durability of sol–gel derived antireflective coatings for photovoltaic glass
CN202616270U (zh) 一种非跟踪聚光光伏发电用梯度折射率透镜
CN103066161A (zh) 一种太阳电池复合减反射膜的制备工艺
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
Karasu et al. Solar glass panels: a review
CN108099299B (zh) 一种可见光透明的辐射致冷多层膜
CN114924342A (zh) 一种选择性红外辐射隐身材料及其制备方法
CN201853724U (zh) 一种太阳能电池组件
CN115220221A (zh) 一种非对称光子镜增强辐射热管理器件的设置与制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination