CN115565711A - 一种单能高能伽马源的制备方法 - Google Patents
一种单能高能伽马源的制备方法 Download PDFInfo
- Publication number
- CN115565711A CN115565711A CN202211156626.2A CN202211156626A CN115565711A CN 115565711 A CN115565711 A CN 115565711A CN 202211156626 A CN202211156626 A CN 202211156626A CN 115565711 A CN115565711 A CN 115565711A
- Authority
- CN
- China
- Prior art keywords
- energy
- target
- laser
- proton beam
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
- G21G4/04—Radioactive sources other than neutron sources
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Particle Accelerators (AREA)
Abstract
本发明公开了一种单能高能伽马源的制备方法,激光器发射激光经反射镜后通过聚焦镜上聚焦后入射到薄膜靶上得到质子束流;高速质子束流轰击厚靶得到单能高能的伽马射线源;具有相对论强度的超短超强激光经过反射聚焦入射到薄膜靶上,薄膜靶在激光的作用下电离获得数MeV以上且方向性极好的质子;质子束流轰击厚靶,当质子束在靶中慢化相应的核反应共振能量时,发生共振核反应产生单能的伽玛射线源。本发明的方法极大的缩小了制备单能伽马射线源系统的体积,减少了占地面积,为提供可移动的单能高能伽玛源提供了技术基础;且本发明通过激光加速与共振核反应相结合制备出具有极好的单色性的伽玛射线,可应用于爆炸物检测、光核反应截面测量等研究工作。
Description
技术领域
本发明属于放射源技术领域,具体涉及一种利用激光加速质子结合质子打靶反应产生单能高能伽马源的制备方法。
背景技术
上世纪80年代以来,随着激光技术的飞速发展和广泛应用,使得激光在核科学技术中的应用越来越受到人们的关注,利用激光从事核物理核技术方面的相关的研究工作也有了大量的报导。其中利用激光产生高能伽玛源来从事核物理的研究工作成为了重要的研究方向。
高能伽玛光源在基础核物理研究、核废料嬗变、放射性医疗、爆炸物检测等方面都有重要的研究意义和应用价值。目前利用超短超强产生的高能伽玛光源主要是依赖于激光加速电子打靶,通过高能电子的韧致辐射来产生高能的伽玛光子,这种产生的高能伽玛光子能量不单一,是有一定能量分布的伽玛能谱。这种非单能伽玛源对于一些基础核物理和核技术的研究非常不利。
发明内容
针对现有技术所存在的上述技术问题,本发明的目的在于提供一种将基于激光加速质子与质子打靶的超短超强激光器的高能单能伽玛源的制备方法。
为实现上述发明目的,本发明采用的技术方案如下:一种单能高能伽马源的制备方法,激光器发射激光入射到薄膜靶上得到质子束流;高速质子束流轰击厚靶得到单能高能的伽马射线源。
进一步地,所述激光器发射激光经反射镜后在聚焦镜上聚焦后入射到薄膜靶上。
进一步地,所述激光器发射的激光功率密度≥1019W/cm2。
进一步地,所述薄膜靶为CH膜、Al膜、Cu膜中的任意一种。
进一步地,所述薄膜靶的厚度约为4~10μm。
进一步地,所述厚靶为13C、LiF、10B、3H、Al靶中的任意一种。
进一步地,所述厚靶的面密度为100μg/cm2~5mg/cm2。
采用本发明的技术方案带来的有益效果是,一种单能高能伽马源的制备方法,激光器发射激光经反射镜后再聚焦镜上聚焦后入射到薄膜靶上得到质子束流;高速质子束流轰击厚靶,质子束在厚靶中慢化为共振反应能量时发生共振核反应得到单能高能的伽马射线源;本发明的方法极大的缩小了制备单能伽马射线源系统的体积,减少了占地面积,为提供可移动的单能高能伽玛源提供了技术基础;且本发明通过激光加速与共振核反应相结合制备出具有极好的单色性的伽玛射线,可应用于爆炸物检测、光核反应截面测量等研究工作。
附图说明
图1是本发明实施例制备单能高能伽马源的方法示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
参照附图1,本发明实施例提供了一种单能高能伽马源的制备方法,激光器发射激光入射到薄膜靶上得到高速的质子束流;高速质子束流轰击厚靶得到单能高能的伽马射线源。
本发明实施例采用具有相对论强度的超短超强激光入射到薄膜靶上,在薄膜靶前表面附近通过共振吸收、真空加热等机制产生大量高能热电子;这部分热电子在靶内往返运动,最终穿过靶体,在靶后表面外形成高温高密电子层。由于离子质量远大于电子,在初始阶段大部分离子保持不动,靶外的电子层与靶内的粒子共同形成一个很强的准静态纵向电场,即鞘层场,场强可以达到TV/m的量级。逸出靶外的质子及其他种类的离子在这个电场中可在极短的时间内被加速到很高的能量并沿着厚靶法线方向以一定的立体角出射。
优选地,所述激光器发射激光经反射镜后再经聚焦镜聚焦后入射到所述薄膜靶上。
优选地,所述激光器发射功率密度为≥1019W/cm2的激光入射在薄膜靶上。所述薄膜靶在所述功率密度的激光作用下电离得到数MeV以上且方向性极好的质子。
优选地,所述薄膜靶为CH膜、Al膜、Cu膜中的任意一种;厚度为4~10μm。
优选地,高速的质子束流轰击厚靶,质子束在厚靶中慢化为共振反应能量时发生共振核反应产生单能的伽玛射线源。
优选地,所述厚靶为13C、LiF、10B、3H、Al靶中的任意一种,其面密度为100μg/cm2~5mg/cm2。
优选地,高速的质子束流轰击13C靶,质子束在厚靶中慢化为1.75MeV时与13C发生13C(p,γ)14N共振核反应,产生9.17MeV的单能伽玛射线源。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (7)
1.一种单能高能伽马源的制备方法,其特征是:激光器发射激光入射到薄膜靶上得到高速的质子束流;高速质子束流轰击厚靶得到单能高能的伽马射线源。
2.根据权利要求1所述的一种单能高能伽马源的制备方法,其特征是:所述激光器发射激光经反射镜后再经聚焦镜聚焦后入射到所述薄膜靶上。
3.根据权利要求1所述的一种单能高能伽马源的制备方法,其特征是:所述激光器发射功率密度1019W/cm2以上的激光入射在薄膜靶上。
4.根据权利要求1所述的一种单能高能伽马源的制备方法,其特征是:所述薄膜靶为CH膜、Al膜、Cu膜中的任意一种;厚度为4~10μm。
5.根据权利要求1所述的一种单能高能伽马源的制备方法,其特征是:高速的质子束流轰击厚靶,质子束在厚靶中慢化为相应的核反应共振能量时发生共振核反应产生单能的伽玛射线源。
6.根据权利要求1所述的一种单能高能伽马源的制备方法,其特征是:所述厚靶为13C、LiF、10B、3H、Al靶中的任意一种,其面密度为100μg/cm2~5mg/cm2。
7.根据权利要求1或6所述的一种单能高能伽马源的制备方法,其特征是:高速的质子束流轰击13C靶,质子束在厚靶中慢化为1.75MeV时与13C发生13C(p,γ)14N共振核反应,产生9.17MeV的单能伽玛射线源。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211156626.2A CN115565711A (zh) | 2022-09-22 | 2022-09-22 | 一种单能高能伽马源的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211156626.2A CN115565711A (zh) | 2022-09-22 | 2022-09-22 | 一种单能高能伽马源的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115565711A true CN115565711A (zh) | 2023-01-03 |
Family
ID=84740223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211156626.2A Pending CN115565711A (zh) | 2022-09-22 | 2022-09-22 | 一种单能高能伽马源的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115565711A (zh) |
-
2022
- 2022-09-22 CN CN202211156626.2A patent/CN115565711A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Power scaling for collimated γ-ray beams generated by structured laser-irradiated targets and its application to two-photon pair production | |
Nemoto et al. | Laser-triggered ion acceleration and table top isotope production | |
Roth et al. | Laser accelerated ions and electron transport in ultra-intense laser matter interaction | |
Wolowski et al. | Fast ion emission from the plasma produced by the PALS laser system | |
Wan et al. | Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser with plasmas | |
Torrisi | Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications | |
Nishiuchi et al. | Towards a novel laser-driven method of exotic nuclei extraction− acceleration for fundamental physics and technology | |
Badziak et al. | Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions | |
Olofson et al. | Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D (-1) | |
Roth et al. | Laser accelerated ions in ICF research prospects and experiments | |
Wołowski et al. | Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation | |
Ji et al. | Near QED regime of laser interaction with overdense plasmas | |
Renard-Le Galloudec et al. | New micro-cones targets can efficiently produce higher energy and lower divergence particle beams | |
Yogo et al. | Measurement of DNA double-strand break yield in human cancer cells by high-current, short-duration bunches of laser-accelerated protons | |
CN115565711A (zh) | 一种单能高能伽马源的制备方法 | |
Hu et al. | A bright attosecond x-ray pulse train generation in a double-laser-driven cone target | |
Ogura et al. | Proton-induced nuclear reactions using compact high-contrast high-intensity laser | |
Petrov et al. | Energy and angular distribution of deuterons from high-intensity laser–target interactions | |
Kitamura et al. | Development of negative muonium ion source for muon acceleration | |
Wu et al. | Effect of inside diameter of tip on proton beam produced by intense laser pulse on double-layer cone targets | |
Badziak et al. | Generation of energetic protons from thin foil targets irradiated by a high-intensity ultrashort laser pulse | |
Krása et al. | Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source | |
Ter-Avetisyan et al. | Fast and cold negative ion and neutral atom beams from a water spray | |
Eftekhari-Zadeh et al. | Nanosecond living hot and dense plasma and high energy particles from relativistic laser-nanowire interaction | |
CN215601535U (zh) | 一种基于激光加速器的空间质子辐射优化系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |