CN115562299A - Navigation method, device, mobile robot and medium of a mobile robot - Google Patents
Navigation method, device, mobile robot and medium of a mobile robot Download PDFInfo
- Publication number
- CN115562299A CN115562299A CN202211326593.1A CN202211326593A CN115562299A CN 115562299 A CN115562299 A CN 115562299A CN 202211326593 A CN202211326593 A CN 202211326593A CN 115562299 A CN115562299 A CN 115562299A
- Authority
- CN
- China
- Prior art keywords
- mobile robot
- controller
- output
- parameters
- short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000015654 memory Effects 0.000 claims description 54
- 230000006870 function Effects 0.000 claims description 24
- 238000012549 training Methods 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 7
- 230000006403 short-term memory Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002520 smart material Substances 0.000 description 4
- 229920002595 Dielectric elastomer Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 229920000431 shape-memory polymer Polymers 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及机器人技术领域,尤其涉及一种移动机器人的导航方法、装置、移动机器人及介质。The invention relates to the technical field of robots, in particular to a navigation method and device for a mobile robot, a mobile robot and a medium.
背景技术Background technique
随着科学技术的快速发展,一种由传感器和自动控制器等机构组成的具有移动功能的机器人系统成为热门研究方向之一,移动机器人被广泛应用生产业、建筑业和监控行业等领域。With the rapid development of science and technology, a robot system with mobile functions composed of sensors and automatic controllers has become one of the hot research directions. Mobile robots are widely used in production, construction and monitoring industries.
在实际的场景应用中,移动机器人通常需要按照预设轨迹进行导航移动,但是受到移动机器人的机身性能参数和外部环境的影响,移动机器人的实际轨迹通常会与预设轨迹之间存在轨迹误差,导致移动机器人无法准确到达目标位置执行任务操作。In actual scene applications, mobile robots usually need to navigate and move according to preset trajectories, but due to the influence of the performance parameters of the mobile robot's fuselage and the external environment, there is usually a trajectory error between the actual trajectory of the mobile robot and the preset trajectory , resulting in the mobile robot being unable to accurately reach the target location to perform the task operation.
现有的移动机器人的导航方法主要依赖于单一的纠偏算法,使得移动机器人的导航精确度并不高。The existing navigation methods of mobile robots mainly rely on a single deviation correction algorithm, which makes the navigation accuracy of mobile robots not high.
发明内容Contents of the invention
本发明实施例提供了一种移动机器人的导航方法、装置、移动机器人及介质,以解决现有的移动机器人的导航方法依赖于单一纠偏算法的问题,提高了移动机器人的导航精确度。Embodiments of the present invention provide a mobile robot navigation method, device, mobile robot and medium to solve the problem that the existing mobile robot navigation method relies on a single deviation correction algorithm and improve the navigation accuracy of the mobile robot.
根据本发明一个实施例提供了一种移动机器人的导航方法,该方法包括:According to one embodiment of the present invention, a navigation method for a mobile robot is provided, the method comprising:
在移动机器人执行当前移动操作之后,将所述移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数;After the mobile robot performs the current movement operation, input the current sensor data of the mobile robot into the pre-trained target network model to obtain the output first controller parameters;
基于所述移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数;determining second controller parameters based on current actual trajectory parameters and current preset trajectory parameters of the mobile robot;
基于所述第一控制器参数和所述第二控制器参数,控制所述移动机器人执行下一移动操作。Based on the first controller parameter and the second controller parameter, the mobile robot is controlled to perform a next moving operation.
根据本发明另一个实施例提供了一种移动机器人的导航装置,该装置包括:According to another embodiment of the present invention there is provided a navigation device for a mobile robot, the device comprising:
第一控制器参数确定模块,用于在移动机器人执行当前移动操作之后,将所述移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数;The first controller parameter determination module is used to input the current sensor data of the mobile robot into the pre-trained target network model to obtain the output first controller parameters after the mobile robot performs the current movement operation;
第二控制器参数确定模块,用于基于所述移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数;The second controller parameter determination module is used to determine the second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot;
移动机器人控制模块,用于基于所述第一控制器参数和所述第二控制器参数,控制所述移动机器人执行下一移动操作。A mobile robot control module, configured to control the mobile robot to perform a next moving operation based on the first controller parameter and the second controller parameter.
根据本发明另一个实施例提供了一种移动机器人,所述移动机器人包括:驱动控制器和至少一个传感器;According to another embodiment of the present invention, a mobile robot is provided, and the mobile robot includes: a drive controller and at least one sensor;
其中,所述传感器用于采集传感器数据;Wherein, the sensor is used to collect sensor data;
所述驱动控制器包括至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例所述的移动机器人的导航方法。The drive controller includes at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores a computer program executable by the at least one processor, and the computer program is executed by the The at least one processor is executed, so that the at least one processor can execute the navigation method of the mobile robot described in any embodiment of the present invention.
根据本发明另一个实施例,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本发明任一实施例所述的移动机器人的导航方法。According to another embodiment of the present invention, a computer-readable storage medium is provided, the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to implement any of the embodiments of the present invention when executed. Navigation methods for mobile robots.
本发明实施例的技术方案,通过在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数,基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作,基于两个维度分别获得控制器参数,解决了现有的移动机器人的导航方法依赖于单一纠偏算法的问题,提高了移动机器人的导航精确度。In the technical solution of the embodiment of the present invention, after the mobile robot performs the current movement operation, the current sensor data of the mobile robot is input into the pre-trained target network model to obtain the output first controller parameters, based on the current The actual trajectory parameters and the current preset trajectory parameters are used to determine the second controller parameters. Based on the first controller parameters and the second controller parameters, the mobile robot is controlled to perform the next movement operation, and the controller parameters are respectively obtained based on the two dimensions. The problem that the existing mobile robot navigation method relies on a single deviation correction algorithm is solved, and the navigation accuracy of the mobile robot is improved.
应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or important features of the embodiments of the present invention, nor is it intended to limit the scope of the present invention. Other features of the present invention will be easily understood from the following description.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1为本发明一个实施例所提供的一种移动机器人的导航方法的流程图;Fig. 1 is the flowchart of the navigation method of a kind of mobile robot provided by one embodiment of the present invention;
图2为本发明一个实施例所提供的另一种移动机器人的导航方法的流程图;FIG. 2 is a flowchart of another mobile robot navigation method provided by an embodiment of the present invention;
图3为本发明一个实施例所提供的一种目标网络模型的架构图;FIG. 3 is an architecture diagram of a target network model provided by an embodiment of the present invention;
图4为本发明一个实施例所提供的一种移动机器人的导航方法的具体实例的流程图;4 is a flowchart of a specific example of a navigation method for a mobile robot provided by an embodiment of the present invention;
图5为本发明一个实施例所提供的一种移动机器人的导航装置的结构示意图;FIG. 5 is a schematic structural diagram of a navigation device for a mobile robot provided by an embodiment of the present invention;
图6为本发明一个实施例所提供的一种移动机器人的结构示意图;Fig. 6 is a schematic structural diagram of a mobile robot provided by an embodiment of the present invention;
图7为本发明一个实施例所提供的一种驱动控制器的结构示意图。Fig. 7 is a schematic structural diagram of a drive controller provided by an embodiment of the present invention.
具体实施方式detailed description
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
图1为本发明一个实施例所提供的一种移动机器人的导航方法的流程图,本实施例可适用于对移动机器人进行导航跟踪的情况,该方法可以由移动机器人的导航装置来执行,该移动机器人的导航装置可以采用硬件和/或软件的形式实现,该移动机器人的导航装置可配置于移动机器人中。如图1所示,该方法包括:Fig. 1 is a flow chart of a navigation method for a mobile robot provided by an embodiment of the present invention. This embodiment is applicable to the situation where a mobile robot is navigated and tracked, and the method can be executed by a navigation device of a mobile robot. The navigation device of the mobile robot can be implemented in the form of hardware and/or software, and the navigation device of the mobile robot can be configured in the mobile robot. As shown in Figure 1, the method includes:
S110、在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数。S110. After the mobile robot performs the current movement operation, input the current sensor data of the mobile robot into the pre-trained target network model to obtain the output first controller parameters.
本实施例中的移动机器人可以是软体机器人或机械机器人,尤其适用于软体机器人。其中,软体机器人是利用柔软的智能材料制作的,与机械机器人不同,软体机器人的驱动方式主要取决于所使用的智能材料,如智能材料一般为介电弹性体(DE)、离子聚合物金属复合材料(IPMC)、形状记忆合金(SMA)、形状记忆聚合物(SMP)等等。此处对软体机器人所使用的智能材料不作限定。The mobile robot in this embodiment can be a soft robot or a mechanical robot, and is especially suitable for a soft robot. Among them, soft robots are made of soft smart materials. Unlike mechanical robots, the driving method of soft robots mainly depends on the smart materials used. For example, smart materials are generally dielectric elastomers (DE), ion polymer metal composites, etc. materials (IPMC), shape memory alloys (SMA), shape memory polymers (SMP) and more. The smart materials used in the soft robot are not limited here.
由于机械机器人可以依赖传统机械算法构建力学或运动学模型,因此现有技术大多直接基于传感器数据计算机械机器人的控制器参数,但软体机器人的驱动特性并不适用于传统机械算法,传感器数据与控制器参数并不存在可拟合的曲线规律,据此,本发明实施例提出采用目标网络模型模拟传感器数据与控制器参数之间的关联规律的方法。Since mechanical robots can rely on traditional mechanical algorithms to construct mechanical or kinematic models, most of the existing technologies calculate the controller parameters of mechanical robots directly based on sensor data, but the driving characteristics of soft robots are not suitable for traditional mechanical algorithms, sensor data and control. There is no curve law that can be fitted to the sensor parameters. Accordingly, the embodiment of the present invention proposes a method of using the target network model to simulate the correlation law between the sensor data and the controller parameters.
其中,示例性的,当前传感器数据包括但不限于三轴的当前速度、三轴的当前加速度、三轴的当前角速度、三轴的当前角度、当前温度、当前风速等等,其中,三轴包括x轴、y轴和z轴。此处对移动机器人采集到的当前传感器数据不作限定,用户可根据实际需求在移动机器人上设置所需的传感器。Wherein, for example, the current sensor data includes but not limited to the current speed of the three axes, the current acceleration of the three axes, the current angular velocity of the three axes, the current angle of the three axes, the current temperature, the current wind speed, etc., wherein the three axes include x-axis, y-axis and z-axis. The current sensor data collected by the mobile robot is not limited here, and the user can set the required sensors on the mobile robot according to actual needs.
其中,示例性的,目标网络模型的模型架构包括但不限于CNN网络(ConvolutionalNeural Networks,卷积神经网络)、FCN网络(Fully Convolutional Networks,全卷积神经网络)、残差网络(ResNet)、DNN网络(Deep Neural Networks,深度神经网络)、RNN网络(Recurrent Neural Network,循环神经网络)、多通道LSTM网络(Long Short-TermMemory,长短时记忆)或Transformer网络等等,此处对目标网络模型的模型架构不作限定。Wherein, exemplary, the model architecture of target network model includes but not limited to CNN network (ConvolutionalNeural Networks, convolutional neural network), FCN network (Fully Convolutional Networks, fully convolutional neural network), residual network (ResNet), DNN network (Deep Neural Networks, deep neural network), RNN network (Recurrent Neural Network, cyclic neural network), multi-channel LSTM network (Long Short-Term Memory, long-short-term memory) or Transformer network, etc., here the target network model The model architecture is not limited.
其中,示例性的,第一控制器参数包括但不限于电流的幅值、电流的频率、电流的占空比、电流的持续时间、电压的幅值、电压的频率、电压的占空比和电压的持续时间等等,此处对第一控制器参数不作限定,用户可根据实际需求进行自定义设置。Among them, exemplary, the first controller parameters include but not limited to the amplitude of the current, the frequency of the current, the duty cycle of the current, the duration of the current, the amplitude of the voltage, the frequency of the voltage, the duty cycle of the voltage and The duration of the voltage, etc., there is no limitation on the parameters of the first controller, and the user can customize the settings according to actual needs.
S120、基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数。S120. Determine second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot.
其中,具体的,当前实际轨迹参数用于表征移动机器人在执行当前移动操作之后的实际轨迹参数,示例性的,实际轨迹参数包括但不限于实际位置坐标、实际航向角度等等。此处对实际轨迹参数不作限定。Specifically, the current actual trajectory parameters are used to represent the actual trajectory parameters of the mobile robot after performing the current movement operation. Exemplarily, the actual trajectory parameters include but are not limited to actual position coordinates, actual heading angles, and the like. The actual trajectory parameters are not limited here.
其中,具体的,当前预设轨迹参数用于表征移动机器人在执行当前移动操作之后的预设轨迹参数,示例性的,预设轨迹参数包括但不限于预设位置坐标、预设航向角度等等。此处对预设轨迹参数不作限定。Specifically, the current preset trajectory parameters are used to characterize the preset trajectory parameters of the mobile robot after performing the current movement operation. Exemplarily, the preset trajectory parameters include but are not limited to preset position coordinates, preset heading angles, etc. . There is no limitation to the preset track parameters here.
在一个可选实施例中,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数,包括:采用预设闭环控制算法,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数。In an optional embodiment, determining the second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot includes: using a preset closed-loop control algorithm, based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot. Set the trajectory parameters and determine the second controller parameters.
其中,示例性的,预设闭环控制算法包括但不限于位式控制算法、PID控制算法、鲁棒控制算法、大林算法和LQR(Linear Quadratic Regulator线性二次型调节器)算法等等。此处对预设闭环控制算法不作限定。Wherein, for example, the preset closed-loop control algorithm includes but not limited to positional control algorithm, PID control algorithm, robust control algorithm, Dalin algorithm and LQR (Linear Quadratic Regulator linear quadratic regulator) algorithm and so on. The preset closed-loop control algorithm is not limited here.
在上述实施例的基础上,可选的,该方法还包括:获取视觉设备采集到的当前实际轨迹参数,和/或,基于当前传感器数据,确定当前实际轨迹参数。On the basis of the foregoing embodiments, optionally, the method further includes: acquiring current actual trajectory parameters collected by the vision device, and/or, based on current sensor data, determining the current actual trajectory parameters.
在一个可选实施例中,移动机器人上安装有视觉设备或者场景环境中安装有视觉设备,用于基于采集到的轨迹图像,确定当前实际轨迹参数。In an optional embodiment, a vision device is installed on the mobile robot or in the scene environment to determine the current actual trajectory parameters based on the collected trajectory images.
在另一个可选实施例中,具体的,基于上一实际轨迹参数和当前传感器数据,确定当前实际轨迹参数。In another optional embodiment, specifically, the current actual trajectory parameter is determined based on the last actual trajectory parameter and current sensor data.
在另一个可选实施例中,将视觉设备采集到的当前实际轨迹参数以及基于当前传感器数据确定的当前实际轨迹参数的均值作为移动机器人的当前实际轨迹参数。In another optional embodiment, the average value of the current actual trajectory parameters collected by the vision device and the current actual trajectory parameters determined based on the current sensor data is used as the current actual trajectory parameters of the mobile robot.
S130、基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作。S130. Based on the first controller parameter and the second controller parameter, control the mobile robot to perform the next moving operation.
在一个可选实施例中,将第一控制器参数和第二控制器参数的均值作为目标控制器参数,基于目标控制器参数控制移动机器人执行下一步移动操作。其中,具体的,目标控制器参数用于表征输入到移动机器人上的驱动控制器中的参数数据,示例性的,驱动控制器包括但不限于被控电源和PWM模块。In an optional embodiment, the average value of the first controller parameter and the second controller parameter is used as the target controller parameter, and the mobile robot is controlled to perform the next movement operation based on the target controller parameter. Wherein, specifically, the target controller parameter is used to characterize the parameter data input into the driving controller of the mobile robot. Exemplarily, the driving controller includes but not limited to a controlled power supply and a PWM module.
其中,示例性的,第一控制器参数中的电压幅值为5V,第二控制器参数中的电压幅值为7V,则目标控制器参数中的电压幅值为6V。Wherein, for example, the voltage amplitude in the first controller parameter is 5V, the voltage amplitude in the second controller parameter is 7V, and the voltage amplitude in the target controller parameter is 6V.
本实施例的技术方案,通过在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数,基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作,基于两个维度分别获得控制器参数,解决了现有的移动机器人的导航方法依赖于单一纠偏算法的问题,提高了移动机器人的导航精确度。In the technical solution of this embodiment, after the mobile robot performs the current movement operation, the current sensor data of the mobile robot is input into the pre-trained target network model to obtain the output first controller parameters, based on the current actual situation of the mobile robot The trajectory parameters and the current preset trajectory parameters determine the second controller parameters, control the mobile robot to perform the next movement operation based on the first controller parameters and the second controller parameters, and obtain the controller parameters based on the two dimensions respectively, which solves the problem of Existing navigation methods for mobile robots rely on the problem of a single deviation correction algorithm, which improves the navigation accuracy of mobile robots.
图2为本发明一个实施例所提供的另一种移动机器人的导航方法的流程图,本实施例对上述实施例中的目标网络模型进行进一步细化。如图2所示,该方法包括:FIG. 2 is a flow chart of another mobile robot navigation method provided by an embodiment of the present invention. This embodiment further refines the target network model in the foregoing embodiments. As shown in Figure 2, the method includes:
S210、将训练传感器数据集中的各训练传感器数据输入到初始网络模型中,得到输出的至少一个预测控制器参数。S210. Input each training sensor data in the training sensor data set into the initial network model, and obtain at least one output predictive controller parameter.
其中,示例性的,训练传感器数据集可以是在移动机器人移动过程中传感器采集到的传感器数据。Wherein, for example, the training sensor data set may be sensor data collected by the sensor during the movement of the mobile robot.
S220、基于各预测控制器参数以及与各预测控制器参数分别对应的标准控制器参数,确定损失函数。S220. Determine a loss function based on each predictive controller parameter and a standard controller parameter respectively corresponding to each predictive controller parameter.
其中,示例性的,标准控制器参数可以是在移动机器人移动过程中输入到驱动控制器中的参数数据。Wherein, for example, the standard controller parameters may be parameter data input into the drive controller during the moving process of the mobile robot.
在一个可选实施例中,当前时刻采集到的当前训练传感器数据对应的标准控制器参数为下一时刻采集到的标准控制器参数。In an optional embodiment, the standard controller parameters corresponding to the current training sensor data collected at the current moment are the standard controller parameters collected at the next moment.
其中,示例性的,损失函数包括但不限于平方损失函数、对数损失函数、指数损失函数、逻辑回归损失函数、Huber损失函数、交叉熵损失函数和Kullback-Leibler散度损失函数等等。此处对损失函数不作限定。Wherein, for example, the loss function includes but not limited to square loss function, logarithmic loss function, exponential loss function, logistic regression loss function, Huber loss function, cross entropy loss function and Kullback-Leibler divergence loss function and so on. The loss function is not limited here.
S230、基于损失函数,对初始网络模型的模型参数进行调整,直到损失函数收敛时,得到训练完成的目标网络模型。S230. Based on the loss function, adjust the model parameters of the initial network model until the loss function converges to obtain a trained target network model.
在上述实施例的基础上,可选的,该方法还包括:将验证传感器数据集中的各验证传感器输入到目标网络模型中,得到输出的至少一个预测控制器参数,基于各预测控制器参数以及与各预测控制器参数分别对应的标准控制器参数,确定目标网络模型的性能参数;在性能参数不满足预设参数标准的情况下,对目标网络模型的超参数进行调整,继续对调整后的目标网络模型进行训练。On the basis of the above embodiments, optionally, the method further includes: inputting each verification sensor in the verification sensor data set into the target network model, obtaining at least one output predictive controller parameter, based on each predictive controller parameter and The standard controller parameters corresponding to each predictive controller parameter are used to determine the performance parameters of the target network model; when the performance parameters do not meet the preset parameter standards, the hyperparameters of the target network model are adjusted, and the adjusted The target network model is trained.
其中,示例性的,超参数包括但不限于网络层数、网络节点数、迭代次数和学习率等等。Wherein, for example, the hyperparameters include but not limited to the number of network layers, the number of network nodes, the number of iterations, the learning rate and so on.
这样设置的好处在于,可以提高训练得到的目标网络模型的泛化能力。The advantage of this setting is that it can improve the generalization ability of the trained target network model.
在本实施例中,目标网络模型为多通道长短时记忆模型。在一个可选实施例中,目标网络模型包括输出模块和至少一个长短时记忆模块,其中,第一个长短时记忆模块用于基于输入的当前传感器数据,输出第一个长短时特征向量,第i个长短时记忆模块用于基于输入的当前传感器数据以及第i-1个长短时记忆模块输出的第i-1个长短时特征向量,输出第i个长短时特征向量,输出模块用于基于第n个长短时记忆模块输出的第n个长短时特征向量,输出第一控制器参数;其中,i为大于1且小于n的整数,n表示目标网络模型中的长短时记忆模块的数量。In this embodiment, the target network model is a multi-channel long-short-term memory model. In an optional embodiment, the target network model includes an output module and at least one long-short-term memory module, wherein the first long-short-term memory module is used to output the first long-short-term feature vector based on the input current sensor data, and the second The i long-short-term memory module is used to output the i-th long-short-term feature vector based on the input current sensor data and the i-1th long-short-term feature vector output by the i-1th long-short-term memory module, and the output module is used based on The nth long-short-term feature vector output by the nth long-short-term memory module outputs the first controller parameter; wherein, i is an integer greater than 1 and less than n, and n represents the number of long-short-term memory modules in the target network model.
在一个可选实施例中,第i个长短时记忆模块包括输入单元和长短时记忆单元,输入单元包括第一线性层、自注意力层和第二线性层,第一线性层用于对输入的当前传感器数据进行线性编码,输出第一传感器特征,自注意力层用于基于第一线性层输出的第一传感器特征,输出融合传感器数据,第二线性层用于对自注意力层输出的融合传感器数据进行线性编码,输出第二传感器特征,长短时记忆单元用于基于第二线性层输出的第二传感器特征以及第i-1个长短时记忆模块输出的第i-1个长短时特征向量,输出第i个长短时特征向量。In an optional embodiment, the i-th long-short-term memory module includes an input unit and a long-short-term memory unit, the input unit includes a first linear layer, a self-attention layer, and a second linear layer, and the first linear layer is used to input The current sensor data is linearly encoded to output the first sensor feature, the self-attention layer is used to output the fusion sensor data based on the first sensor feature output by the first linear layer, and the second linear layer is used to output the self-attention layer. Fusion sensor data for linear encoding, output the second sensor feature, the long-short-term memory unit is used to output the second sensor feature based on the second linear layer and the i-1th long-short-term feature output by the i-1th long-short-term memory module Vector, output the i-th long-short-time feature vector.
其中,自注意力层用于实现多通道的数据融合。示例性的,自注意力层满足公式:Among them, the self-attention layer is used to realize multi-channel data fusion. Exemplarily, the self-attention layer satisfies the formula:
其中,Q表示查询向量矩阵,K表示键向量矩阵,V表示值向量矩阵,dk表示用于查询的向量。Among them, Q represents the query vector matrix, K represents the key vector matrix, V represents the value vector matrix, and dk represents the vector used for querying.
其中,具体的,长短时记忆单元包括记忆单元c、输入门i、遗忘门f和输出门o。其中,长短时记忆单元在t时刻的更新过程满足下述公式:Wherein, specifically, the long-short-term memory unit includes a memory unit c, an input gate i, a forget gate f and an output gate o. Among them, the update process of the long-short-term memory unit at time t satisfies the following formula:
ft=σ(Wf·[ht-1,xt]+bf);it=σ(Wi·[ht-1,xt]+bi);f t = σ(W f ·[h t-1 ,x t ]+b f ); it =σ(W i ·[h t -1 ,x t ]+b i );
ot=σ(Wo·[ht-1,xt]+bo);ht=ot⊙tanh(ct)o t =σ(W o ·[h t-1 ,x t ]+b o ); h t =o t ⊙tanh(c t )
其中,xt表示长短时记忆单元在t时刻的输入数据,ft、it、ct和ot分别表示遗忘门、输入门、记忆单元和输出门在t时刻的值,表示记忆单元的候选记忆状态值,ht表示长短时记忆单元输出的长短时特征向量,σ表示logistic sigmoid函数,Wf、Wi、Wc、Wo、bf、bi、bc和bo表示权重矩阵。Among them, x t represents the input data of the long-short-term memory unit at time t, f t , it , c t and o t represent the values of the forget gate, input gate, memory unit and output gate at time t , respectively, Indicates the candidate memory state value of the memory unit, h t indicates the long-short-term feature vector output by the long-short-term memory unit, σ indicates the logistic sigmoid function, W f , W i , W c , W o , b f , bi , b c and b o represents the weight matrix.
图3为本发明一个实施例所提供的一种目标网络模型的架构图。具体的,目标网络模型包括输出模块以及与n个时刻分别对应的长短时记忆模块,其中,输出模块包括线性层和激活层,每个长短时记忆模块分别包括输入单元和和长短时记忆单元,其中,输入单元包括第一线性层、自注意力层和第二线性层。目标网络模型输出的第一控制器参数包括用于电压调制的电压参数、用于电流调制的电流参数以及用于PWM调制的占空比。Fig. 3 is a structure diagram of a target network model provided by an embodiment of the present invention. Specifically, the target network model includes an output module and long-short-term memory modules corresponding to n moments, wherein the output module includes a linear layer and an activation layer, and each long-short-term memory module includes an input unit and a long-short-term memory unit, Wherein, the input unit includes a first linear layer, a self-attention layer and a second linear layer. The first controller parameters output by the target network model include voltage parameters for voltage modulation, current parameters for current modulation, and duty cycles for PWM modulation.
S240、在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数。S240. After the mobile robot performs the current moving operation, input the current sensor data of the mobile robot into the pre-trained target network model to obtain the output first controller parameters.
S250、基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数。S250. Determine second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot.
S260、基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作。S260. Based on the first controller parameter and the second controller parameter, control the mobile robot to perform the next moving operation.
在一个可选实施例中,基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作,包括:基于第一控制器参数和第二控制器参数,确定控制器参数误差;基于第一控制器参数和控制器参数误差,确定目标控制器参数,并基于目标控制器参数,控制移动机器人执行下一移动操作。In an optional embodiment, controlling the mobile robot to perform the next movement operation based on the first controller parameter and the second controller parameter includes: determining the controller parameter error based on the first controller parameter and the second controller parameter ; Based on the first controller parameter and the error of the controller parameter, determine the target controller parameter, and based on the target controller parameter, control the mobile robot to perform the next movement operation.
其中,具体的,控制器参数误差用于表征第一控制器参数和第二控制器参数之间的比例差值数据。Wherein, specifically, the controller parameter error is used to represent the proportional difference data between the first controller parameter and the second controller parameter.
其中,示例性的,目标控制器参数α*满足公式:Wherein, exemplary, the target controller parameter α * satisfies the formula:
α*=α1±λ|α1-α2|α * =α 1 ±λ|α 1 -α 2 |
其中,α1表示第一控制器参数,λ表示比例系数,α2表示第二控制器参数。Among them, α1 represents the first controller parameter, λ represents the proportional coefficient, and α2 represents the second controller parameter.
其中,具体的,在第一控制器参数小于第二控制器参数的情况下,目标控制器参数等于第一控制器参数与控制器参数误差之和,在第一控制器参数大于第二控制器参数的情况下,目标控制器参数等于第一控制器参数与控制器参数误差的差值。Specifically, when the first controller parameter is smaller than the second controller parameter, the target controller parameter is equal to the sum of the first controller parameter and the controller parameter error, and when the first controller parameter is greater than the second controller parameter In the case of parameters, the target controller parameter is equal to the difference between the first controller parameter and the controller parameter error.
在另一个可选实施例中,基于第二控制器参数和控制器参数误差,确定目标控制器参数,并基于目标控制器参数,控制移动机器人执行下一移动操作。In another optional embodiment, the target controller parameter is determined based on the second controller parameter and the error of the controller parameter, and based on the target controller parameter, the mobile robot is controlled to perform the next moving operation.
这样设置的好处在于,可以进一步提高目标控制器参数的精确度,从而进一步提高移动机器人的导航精确度。The advantage of this setting is that the accuracy of the target controller parameters can be further improved, thereby further improving the navigation accuracy of the mobile robot.
图4为本发明一个实施例所提供的一种移动机器人的导航方法的具体实例的流程图,以移动机器人为软体机器人为例进行示例性说明,具体的,软体机器人上设置有驱动控制器、传感器和视觉设备。Fig. 4 is a flow chart of a specific example of a navigation method for a mobile robot provided by an embodiment of the present invention, which is illustrated by taking the mobile robot as a soft robot as an example. Specifically, the soft robot is provided with a drive controller, sensors and vision devices.
其中,在软体机器人执行当前移动操作之后且到达终点之前,将视觉设备采集到的当前实际轨迹数据发送给PID算法模块,以使PID算法模块基于当前预设轨迹参数和当前实际轨迹参数,确定确定第二控制器参数α2。将传感器采集到的当前传感器数据输入到目标网络模型中,得到输出的第一控制器参数α1。将基于第一控制器参数α1和第二控制器参数α2确定的目标控制器参数α*输入到软体机器人上的驱动控制器中,以使驱动控制器控制软体机器人执行下一移动操作。Among them, after the soft robot performs the current moving operation and before reaching the end point, the current actual trajectory data collected by the visual device is sent to the PID algorithm module, so that the PID algorithm module can determine based on the current preset trajectory parameters and the current actual trajectory parameters. Second controller parameter α 2 . The current sensor data collected by the sensor is input into the target network model to obtain the output first controller parameter α 1 . The target controller parameter α * determined based on the first controller parameter α 1 and the second controller parameter α 2 is input into the drive controller on the soft robot, so that the drive controller controls the soft robot to perform the next movement operation.
本实施例的技术方案,通过将训练传感器数据集中的各训练传感器数据输入到初始网络模型中,得到输出的至少一个预测控制器参数,基于各预测控制器参数以及与各预测控制器参数分别对应的标准控制器参数,确定损失函数,基于损失函数,对初始网络模型的模型参数进行调整,直到损失函数收敛时,得到训练完成的目标网络模型,解决了目标网络模型的训练问题,通过选择多通道LSTM模型作为目标网络模型,保证了目标网络模型与移动机器人的导航场景的适配性,进一步提高了移动机器人的导航精确度。In the technical solution of this embodiment, by inputting each training sensor data in the training sensor data set into the initial network model, at least one output predictive controller parameter is obtained, based on each predictive controller parameter and corresponding to each predictive controller parameter The standard controller parameters, determine the loss function, adjust the model parameters of the initial network model based on the loss function, until the loss function converges, and get the target network model after training, which solves the training problem of the target network model. The channel LSTM model is used as the target network model, which ensures the adaptability of the target network model and the navigation scene of the mobile robot, and further improves the navigation accuracy of the mobile robot.
图5为本发明一个实施例所提供的一种移动机器人的导航装置的结构示意图。如图5所示,该装置包括:第一控制器参数确定模块310、第二控制器参数确定模块320和移动机器人控制模块330。Fig. 5 is a schematic structural diagram of a navigation device for a mobile robot provided by an embodiment of the present invention. As shown in FIG. 5 , the device includes: a first controller
其中,第一控制器参数确定模块310,用于在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数;Wherein, the first controller
第二控制器参数确定模块320,用于基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数;The second controller
移动机器人控制模块330,用于基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作。The mobile
本实施例的技术方案,通过在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数,基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作,基于两个维度分别获得控制器参数,解决了现有的移动机器人的导航方法依赖于单一纠偏算法的问题,提高了移动机器人的导航精确度。In the technical solution of this embodiment, after the mobile robot performs the current movement operation, the current sensor data of the mobile robot is input into the pre-trained target network model to obtain the output first controller parameters, based on the current actual situation of the mobile robot The trajectory parameters and the current preset trajectory parameters determine the second controller parameters, control the mobile robot to perform the next movement operation based on the first controller parameters and the second controller parameters, and obtain the controller parameters based on the two dimensions respectively, which solves the problem of Existing navigation methods for mobile robots rely on the problem of a single deviation correction algorithm, which improves the navigation accuracy of mobile robots.
在上述实施例的基础上,可选的,该装置还包括:On the basis of the foregoing embodiments, optionally, the device further includes:
目标网络模型训练模块,用于将训练传感器数据集中的各训练传感器数据输入到初始网络模型中,得到输出的至少一个预测控制器参数;The target network model training module is used to input each training sensor data in the training sensor data set into the initial network model to obtain at least one predictive controller parameter output;
基于各预测控制器参数以及与各预测控制器参数分别对应的标准控制器参数,确定损失函数;Determining a loss function based on each predictive controller parameter and standard controller parameters respectively corresponding to each predictive controller parameter;
基于损失函数,对初始网络模型的模型参数进行调整,直到损失函数收敛时,得到训练完成的目标网络模型。Based on the loss function, the model parameters of the initial network model are adjusted until the loss function converges, and the trained target network model is obtained.
在上述实施例的基础上,可选的,目标网络模型包括输出模块和至少一个长短时记忆模块,其中,第一个长短时记忆模块用于基于输入的当前传感器数据,输出第一个长短时特征向量,第i个长短时记忆模块用于基于输入的当前传感器数据以及第i-1个长短时记忆模块输出的第i-1个长短时特征向量,输出第i个长短时特征向量,输出模块用于基于第n个长短时记忆模块输出的第n个长短时特征向量,输出第一控制器参数;其中,i为大于1且小于n的整数,n表示目标网络模型中的长短时记忆模块的数量。On the basis of the above embodiments, optionally, the target network model includes an output module and at least one long-short-term memory module, wherein the first long-short-term memory module is used to output the first long-short-term memory module based on the input current sensor data. The feature vector, the i-th long-short-term memory module is used to output the i-1th long-short-term feature vector based on the input current sensor data and the output of the i-1-th long-short-term memory module, output the i-th long-short-term feature vector, and output The module is used to output the first controller parameter based on the nth long-short-term feature vector output by the nth long-short-term memory module; wherein, i is an integer greater than 1 and less than n, and n represents the long-short-term memory in the target network model number of modules.
在上述实施例的基础上,可选的,第i个长短时记忆模块包括输入单元和长短时记忆单元,输入单元包括第一线性层、自注意力层和第二线性层,第一线性层用于对输入的当前传感器数据进行线性编码,输出第一传感器特征,自注意力层用于基于第一线性层输出的第一传感器特征,输出融合传感器数据,第二线性层用于对自注意力层输出的融合传感器数据进行线性编码,输出第二传感器特征,长短时记忆单元用于基于第二线性层输出的第二传感器特征以及第i-1个长短时记忆模块输出的第i-1个长短时特征向量,输出第i个长短时特征向量。On the basis of the foregoing embodiments, optionally, the i-th long-short-term memory module includes an input unit and a long-short-term memory unit, the input unit includes a first linear layer, a self-attention layer, and a second linear layer, and the first linear layer It is used to linearly encode the input current sensor data, output the first sensor feature, the self-attention layer is used to output the first sensor feature based on the first linear layer output, and output the fusion sensor data, and the second linear layer is used for self-attention The fusion sensor data output by the force layer is linearly encoded, and the second sensor feature is output, and the long-short-term memory unit is used based on the second sensor feature output by the second linear layer and the i-1th output of the i-1th long-short-term memory module. long-short-time feature vector, and output the i-th long-short-time feature vector.
在上述实施例的基础上,可选的,移动机器人控制模块330,具体用于:On the basis of the above embodiments, optionally, the mobile
基于第一控制器参数和第二控制器参数,确定控制器参数误差;determining a controller parameter error based on the first controller parameter and the second controller parameter;
基于第一控制器参数和控制器参数误差,确定目标控制器参数,并基于目标控制器参数,控制移动机器人执行下一移动操作。Based on the first controller parameter and the error of the controller parameter, a target controller parameter is determined, and based on the target controller parameter, the mobile robot is controlled to perform a next moving operation.
在上述实施例的基础上,可选的,第二控制器参数确定模块320,具体用于:On the basis of the above embodiments, optionally, the second controller
采用预设闭环控制算法,基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数。A preset closed-loop control algorithm is used to determine the second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot.
在上述实施例的基础上,可选的,该装置还包括:On the basis of the foregoing embodiments, optionally, the device further includes:
当前实际轨迹参数确定模块,用于获取视觉设备采集到的当前实际轨迹参数,和/或,基于当前传感器数据,确定当前实际轨迹参数。The current actual trajectory parameter determination module is configured to obtain the current actual trajectory parameters collected by the vision device, and/or, based on the current sensor data, determine the current actual trajectory parameters.
本发明实施例所提供的移动机器人的导航装置可执行本发明任意实施例所提供的移动机器人的导航方法,具备执行方法相应的功能模块和有益效果。The mobile robot navigation device provided by the embodiments of the present invention can execute the mobile robot navigation method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
图6为本发明一个实施例所提供的一种移动机器人的结构示意图。移动机器人包括驱动控制器410和至少一个传感器420,传感器420用于采集传感器数据。图6以移动机器人上安装有两个传感器420为例进行示例性说明。其中,示例性的,至少一个传感器420包括但不限于里程计、陀螺仪、惯性传感器、压力传感器、温度传感器等等。本发明实施例所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。Fig. 6 is a schematic structural diagram of a mobile robot provided by an embodiment of the present invention. The mobile robot includes a
在上述实施例的基础上,可选的,移动机器人还包括视觉设备430,用于采集当前实际轨迹参数。示例性的,视觉设备430可以为视觉传感器。On the basis of the above embodiments, optionally, the mobile robot further includes a
图7为本发明一个实施例所提供的一种驱动控制器的结构示意图。如图7所示,驱动控制器410包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(ROM)12、随机访问存储器(RAM)13等,其中,存储器存储有可被至少一个处理器11执行的计算机程序,处理器11可以根据存储在只读存储器(ROM)12中的计算机程序或者从存储单元18加载到随机访问存储器(RAM)13中的计算机程序,来执行各种适当的动作和处理。在RAM 13中,还可存储驱动控制器410操作所需的各种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(I/O)接口15也连接至总线14。Fig. 7 is a schematic structural diagram of a drive controller provided by an embodiment of the present invention. As shown in FIG. 7 , the
驱动控制器410中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如各种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许驱动控制器410通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in the
处理器11可以是各种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的各个方法和处理,例如移动机器人的导航方法。
在一些实施例中,移动机器人的导航方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到驱动控制器410上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的移动机器人的导航方法的一个或多个步骤。备选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行移动机器人的导航方法。In some embodiments, the navigation method of the mobile robot may be implemented as a computer program tangibly embodied in a computer-readable storage medium, such as the
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.
本发明实施例五还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使处理器执行一种移动机器人的导航方法,该方法包括:Embodiment 5 of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the processor execute a navigation method for a mobile robot, the method comprising:
在移动机器人执行当前移动操作之后,将移动机器人的当前传感器数据输入到预先训练完成的目标网络模型中,得到输出的第一控制器参数;After the mobile robot performs the current mobile operation, input the current sensor data of the mobile robot into the pre-trained target network model to obtain the output first controller parameters;
基于移动机器人的当前实际轨迹参数和当前预设轨迹参数,确定第二控制器参数;Determining second controller parameters based on the current actual trajectory parameters and the current preset trajectory parameters of the mobile robot;
基于第一控制器参数和第二控制器参数,控制移动机器人执行下一移动操作。Based on the first controller parameter and the second controller parameter, the mobile robot is controlled to perform the next moving operation.
在本发明的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, apparatus or device. A computer readable storage medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. Alternatively, a computer readable storage medium may be a machine readable signal medium. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。In order to provide interaction with the user, the systems and techniques described herein can be implemented on an electronic device having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)) for displaying information to the user. monitor); and a keyboard and pointing device (eg, a mouse or a trackball) through which the user can provide input to the electronic device. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: local area networks (LANs), wide area networks (WANs), blockchain networks, and the Internet.
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。A computing system can include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the problems of difficult management and weak business expansion in traditional physical hosts and VPS services. defect.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present invention may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution of the present invention can be achieved, there is no limitation herein.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementation methods do not constitute a limitation to the protection scope of the present invention. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211326593.1A CN115562299A (en) | 2022-10-27 | 2022-10-27 | Navigation method, device, mobile robot and medium of a mobile robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211326593.1A CN115562299A (en) | 2022-10-27 | 2022-10-27 | Navigation method, device, mobile robot and medium of a mobile robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115562299A true CN115562299A (en) | 2023-01-03 |
Family
ID=84768098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211326593.1A Pending CN115562299A (en) | 2022-10-27 | 2022-10-27 | Navigation method, device, mobile robot and medium of a mobile robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115562299A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117348577A (en) * | 2023-12-05 | 2024-01-05 | 青岛宇方机器人工业股份有限公司 | Production process simulation detection method, device, equipment and medium |
-
2022
- 2022-10-27 CN CN202211326593.1A patent/CN115562299A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117348577A (en) * | 2023-12-05 | 2024-01-05 | 青岛宇方机器人工业股份有限公司 | Production process simulation detection method, device, equipment and medium |
CN117348577B (en) * | 2023-12-05 | 2024-03-12 | 青岛宇方机器人工业股份有限公司 | Production process simulation detection method, device, equipment and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11836596B2 (en) | Neural networks with relational memory | |
CN110023965B (en) | System, method, and storage medium for selecting a neural network of actions | |
US11868866B2 (en) | Controlling agents using amortized Q learning | |
WO2018224471A1 (en) | Selecting actions using multi-modal inputs | |
WO2019197613A1 (en) | Graph neural networks representing physical systems | |
US20220366245A1 (en) | Training action selection neural networks using hindsight modelling | |
WO2018189404A1 (en) | Distributional reinforcement learning | |
CN108356816B (en) | Output position-based single-arm manipulator event-triggered ADP controller structure | |
EP4014161A1 (en) | Training action selection neural networks using q-learning combined with look ahead search | |
CN110717381A (en) | Human intention understanding method facing human-computer cooperation and based on deep stacking Bi-LSTM | |
CN106406518A (en) | Gesture control device and gesture recognition method | |
CN116848532A (en) | Attention neural network with short term memory cells | |
Wodziński et al. | Sequential classification of palm gestures based on A* algorithm and MLP neural network for quadrocopter control | |
CN112571420B (en) | Dual-function model prediction control method under unknown parameters | |
CN115562299A (en) | Navigation method, device, mobile robot and medium of a mobile robot | |
WO2023222887A1 (en) | Intra-agent speech to facilitate task learning | |
CN108051001B (en) | A robot movement control method, system and inertial sensing control device | |
US20240051124A1 (en) | Simulation of robotics devices using a neural network systems and methods | |
Feng et al. | Infrared camera assisted uav autonomous control via deep reinforcement learning | |
CN115502965B (en) | Robot control method, system, robot and medium | |
CN110531620B (en) | Adaptive control method of car climbing system based on Gaussian process approximation model | |
US11731279B2 (en) | Systems and methods for automated tuning of robotics systems | |
CN117863186A (en) | Mechanical arm control method, device, equipment and medium | |
US20240054340A1 (en) | Finding a stationary point of a loss function by an iterative algorithm using a variable learning rate value | |
US11410042B2 (en) | Dynamic Boltzmann machine for estimating time-varying second moment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |