CN115554401A - 一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用 - Google Patents

一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用 Download PDF

Info

Publication number
CN115554401A
CN115554401A CN202211223647.1A CN202211223647A CN115554401A CN 115554401 A CN115554401 A CN 115554401A CN 202211223647 A CN202211223647 A CN 202211223647A CN 115554401 A CN115554401 A CN 115554401A
Authority
CN
China
Prior art keywords
unsupported
ruthenium complex
preparation
multifunctional
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211223647.1A
Other languages
English (en)
Inventor
赵华
朱慧云
陈永洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Publication of CN115554401A publication Critical patent/CN115554401A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种基于钌配合物的无载体多功能纳米颗粒的制备及抗肿瘤应用,属于医药领域。其特征在于所述多功能纳米颗粒是在无载体条件下,由一种光疗药和一种化疗药通过分子间的相互作用力形成,其中光疗药为具有光敏性质的钌配合物,化疗药为DNA修复抑制剂TH287。所得的多功能纳米颗粒具有独特的纳米特性,提高了药物水溶性,增强了肿瘤靶向性,通过化疗‑光疗联合治疗放大了对肿瘤细胞的氧化损伤,增强了疗效,也避免了合成载体带来的安全性等问题。本制备方法简单易行,具有潜在的临床应用价值。

Description

一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿 瘤应用
技术领域
本发明涉及一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用,属于医药技术领域。
背景技术
由于钌配合物的低毒性和广谱抗癌活性可以在一定程度上克服铂类化疗药物的缺点,基于钌配合物的金属抗肿瘤药物的研发受到了越来越广泛的关注。其中,含有多吡啶配体的钌配合物往往具有良好的和易于调节的光物理和光化学性质,在光活化抗肿瘤中具有潜在的应用前景。基于金属配合物的光活化药物的抗肿瘤作用机制主要有两种:一是通过激发光照射后,产生活性氧自由基(ROS),如单重态氧(102),氧化断裂DNA;二是通过发生光致配体解离生成水解产物,从而与DNA碱基或其他生物活性分子发生配位反应,进而杀死肿瘤细胞。尽管具有潜在的抗癌活性,但大多数已报道的钌配合物在生理条件下稳定性较差、血液循环半衰期短、缺乏肿瘤特异性,这是钌基抗癌试剂进一步临床开发的主要障碍。为了解决这些问题,将钌配合物封装在纳米系统中,以提高药物生物相容性和肿瘤靶向性的策略越来越受到研究者们的青睐。
肿瘤细胞会通过激活自身的修复机制,对受损的DNA进行修复,以维持癌细胞的基因组稳定性和存活。肿瘤细胞中存在的固有DNA损伤修复机制将极大地降低氧化疗法在肿瘤治疗中的疗效。
已报道的大部分纳米载药系统仍然由传统合成载体材料组成,存在载药率低和潜在副作用等问题。本发明涉及的无载体多功能纳米颗粒是一种纯药物体系,由具有光疗活性的钌配合物和DNA修复抑制剂TH287组成,钌配合物光照下产生1O2氧化断裂DNA并发生配体解离,TH287抑制DNA损伤修复,通过小粒径粒子的EPR效应及光疗-化疗联合疗法的协同作用,可以实现较好的抗肿瘤作用,具有重要的意义。
发明内容
本发明的主要目的是提供一种基于钌配合物的无载体多功能纳米颗粒的制备方法及应用,通过光疗-化疗的协同作用提高其抗肿瘤效果。
为实现本发明目的所采用的技术方案是:
本发明提供了一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用,其特征在于:所述多功能纳米颗粒是在无载体条件下,钌配合物与MTH1抑制剂通过分子间相互作用力自组装而成,其制备方法包括以下步骤:
(1)分别用适量有机溶剂溶解钌配合物和MTH1抑制剂,取一定量钌配合物溶液和MTH1抑制剂溶液混合。
(2)将步骤(1)的混合液在搅拌条件下逐滴分散到一定量的水中,超声,在黑暗条件下搅拌过夜。
(3)将步骤(2)的混合液透析,离心,取上清液即得。
本发明技术方案的进一步改进在于:所述钌配合物为钌芳烃配合物[(η6-p-cymene)Ru(dpb)(py)](PF6)2(dpb=2,3-bis(2-pyridyl)benzoquinoxaline,py=pyridine),作为光敏性药物,光照下产生1O2并发生配体解离,所述MTH1抑制剂为TH287,抑制DNA的自我修复。
本发明技术方案的进一步改进在于:所述步骤(1)中适量的有机溶剂为二甲亚砜,钌配合物和TH287的分子摩尔比为1:1~1:3,所述两种药物混合的时间为4h。
所述步骤(2)中的水为超纯水,体积为2mL,超声时间为20min。
所述步骤(3)中透析时间为2h,所用透析袋的截留分子量为1000,离心转速为3000rpm,离心时间为10min。
采用了上述技术方案,本发明取得的技术进步是:
本发明开发了一种基于钌配合物的无载体多功能纳米颗粒的制备方法,该制备方法通过自组装技术实现,可以避免载体潜在的毒性,提高两种疏水性药物的生物利用度,实现了光疗-化疗协同抗肿瘤效果,具有潜在的临床应用价值。
附图说明
图1是本发明实施例中所述钌配合物[(η6-p-cymene)Ru(dpb)(py)](PF6)2和TH287的结构式
图2是本发明实施例1获得的钌配合物多功能纳米药物的TEM图(a)和SEM图(b)
图3是本发明实施例1获得的钌配合物多功能纳米药物的粒径分布图(a)和zeta电位图(b)
图4(a)是本发明实施例4获得的钌配合物多功能纳米药物及参比药物在光照条件下细胞存活率对比图;图4(b)是钌配合物多功能纳米药物光照和黑暗条件下细胞存活率对比图
图5是本发明实施例5获得的钌配合物多功能纳米药物在细胞内生成ROS情况图
具体实施方式
下面将结合具体实施例及附图对本发明的技术方案进行详细描述,以便于本领域技术人员理解,但不以任何方式限制本发明。
实施例1
将钌配合物和TH287分别用DMSO溶解,配成浓度为10mg/mL和10mg/mL的两种溶液,然后取钌配合物溶液0.1mL、TH287溶液0.0286mL(分子摩尔比为1:1)混合在一起,再缓慢滴入正在搅拌的2mL超纯水中并搅拌10min,超声20min,黑暗条件下搅拌过夜,将混合液转移到截留分子量为1000的透析袋中,在超纯水中透析2h,收集透析袋内液体并离心10min,取上清液即得。
实施例2
将钌配合物和TH287分别用DMSO溶解,配成浓度为10mg/mL和10mg/mL的两种溶液,然后取钌配合物溶液0.1mL、TH287溶液0.0573mL(分子摩尔比为1:2)混合在一起,再缓慢滴入正在搅拌的2mL超纯水中并搅拌10min,超声20min,黑暗条件下搅拌过夜,将混合液转移到截留分子量为1000的透析袋中,在超纯水中透析2h,收集透析袋内液体并离心10min,取上清液即得。
实施例3
将钌配合物和TH287分别用DMSO溶解,配成浓度为10mg/mL和10mg/mL的两种溶液,然后取钌配合物溶液0.1mL、TH287溶液0.0859mL(分子摩尔比为1:3)混合在一起,再缓慢滴入正在搅拌的2mL超纯水中并搅拌10min,超声20min,黑暗条件下搅拌过夜,将混合液转移到截留分子量为1000的透析袋中,在超纯水中透析2h,收集透析袋内液体并离心10min,取上清液即得。
应用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对实施例1、2和3钌配合物多功能纳米颗粒进行形貌表征,由于肿瘤的特殊生理结构特征(血管、渗漏等),粒径小于200nm的纳米颗粒基于增强的通透性和保留(EPR)效应有利于在肿瘤部位积累。图2(a)为所得实施例1的TEM图,图2(b)为所得实施例1的SEM图。由图中可见,所得分子摩尔比为1:1(R-T)的自组装纳米药物粒径大约为100nm,呈均匀的圆形,适合在肿瘤部位积累。应用马尔文粒度仪对其水合粒径及电位进行表征,如图3(a)所示,纳米复合物的水合粒径为232.43nm,分散性较好,如图3(b)所示纳米复合物的zeta电位为16.1mV。
实施例4
CCK8法评估纳米药物对体外肿瘤细胞的杀伤效果,步骤为下:
将A549细胞以5000~10000/孔的密度接种于96孔板,于恒温培养箱(37℃,5%CO2)中孵育24h,弃去旧培养液,加入含有不同浓度纳米复合物(R-T)、单体[(η6-p-cymene)Ru(dpb)(py)](PF6)2(Ru@)、单体TH287(TH287@)以及两个单体药物简单混合(Ru+TH287)的DMEM溶液,继续培养4h,光照组用LED双通道控制器(λ=427nm)光照15min,光照之后继续培养20h,黑暗组除不光照外其余条件与光照组均一致,加入CCK8试剂1.5h后,通过酶标仪检测450nm处的OD值,计算细胞存活率。
从图4(a)可以看出R-T、Ru@、TH287@及Ru+TH287对A549细胞的抑制作用均呈浓度依赖性,且与其他药物相比,R-T对细胞的杀伤作用显著提高。可能是R-T提高了两个疏水药物的水溶性,增加了向肿瘤细胞的传递和积累。并且与黑暗条件相比,R-T在光照条件下的细胞杀伤效果明显提高,如图4(b)所示,因为光照条件下钌配合物可以产生1O2氧化DNA并发生配体解离,生成水解产物,从而与DNA碱基或其他生物活性分子发生配位反应,进而双重杀死肿瘤细胞。
实施例5
DCFH-HA作为荧光探针检测纳米复合物在细胞内ROS的产生,步骤如下:
将A549细胞接种在15MM共聚焦皿中,于恒温培养箱(37℃,5%CO2)中培养24h,加相当于钌配合物10μM、TH2871μM的纳米复合物和同等浓度钌配合物或TH287的DMEM溶液,孵育4h,PBS洗涤2次,加入10μM DCFH-DA探针,恒温箱培养30min,光照组用LED双通道控制器(λ=427nm)光照25min,PBS洗涤3次,于激光共聚焦显微镜下观察ROS的产生情况。
纳米复合物在细胞内生成ROS的结果如图5所示。从图5中可以看出,纳米复合物的光照处理组的荧光强于其他组,表明细胞内ROS的生成量比其他处理组高,在光照下增加了细胞内ROS的含量,可能因为细胞对纳米复合物的摄取量更多,从而可以放大对肿瘤细胞的氧化损伤,增强疗效。

Claims (6)

1.一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用,其特征在于:所述多功能纳米颗粒是无载体条件下,钌配合物与MTH1抑制剂通过分子间相互作用力自组装而成,其制备方法包括以下步骤:
(1)分别用适量有机溶剂溶解钌配合物和MTH1抑制剂,取一定量钌配合物溶液和MTH1抑制剂溶液混合;
(2)将步骤(1)的混合液在搅拌条件下逐滴分散到适量的水中,超声,在黑暗条件下搅拌过夜;
(3)将步骤(2)的混合液透析,离心,取上清液即得。
2.根据权利要求1所述的一种基于钌配合物的无载体多功能纳米颗粒的制备,其特征在于:所述钌配合物为钌芳烃配合物[(η6-p-cymene)Ru(dpb)(py)](PF6)2,MTH1抑制剂为TH287。
3.根据权利要求1所述的一种基于钌配合物的无载体多功能纳米颗粒的制备,其特征在于:所述步骤(1)中适量的有机溶剂为二甲亚砜(DMSO),钌配合物和TH287的摩尔比为1:1~1:3,两种药物混合的时间为4h。
4.根据权利要求1所述的一种基于钌配合物的无载体多功能纳米颗粒的制备,其特征在于:所述步骤(2)中的水为超纯水,体积为2mL,超声时间为20min。
5.根据权利要求1所述的一种基于钌配合物的无载体多功能纳米颗粒的制备,其特征在于:所述步骤(3)中透析时间为2h,所用透析袋的截留分子量为1000,离心转速为3000rpm,离心时间为10min。
6.权利要求1所述的一种基于钌配合物的无载体多功能纳米颗粒在抗肿瘤方面的应用。
CN202211223647.1A 2022-09-24 2022-10-08 一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用 Pending CN115554401A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211168831 2022-09-24
CN2022111688310 2022-09-24

Publications (1)

Publication Number Publication Date
CN115554401A true CN115554401A (zh) 2023-01-03

Family

ID=84744734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211223647.1A Pending CN115554401A (zh) 2022-09-24 2022-10-08 一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用

Country Status (1)

Country Link
CN (1) CN115554401A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032801A1 (en) * 2001-01-26 2005-02-10 Faustus Forschungs Cie. Translational Cancer Research Gmbh Compositions containing a ruthenium(III) complex and a heterocycle
US20170197976A1 (en) * 2014-06-04 2017-07-13 Thomas Helledays Stiftelse For Medicinsk Forskning Mth1 inhibitors for treatment of cancer
CN107432932A (zh) * 2017-08-01 2017-12-05 暨南大学 纳米钌复合材料及其制备方法和在载药和制备抗肿瘤药物中的应用
CN110272457A (zh) * 2019-07-05 2019-09-24 中国科学院理化技术研究所 一种具有光活化性能的钌配合物及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032801A1 (en) * 2001-01-26 2005-02-10 Faustus Forschungs Cie. Translational Cancer Research Gmbh Compositions containing a ruthenium(III) complex and a heterocycle
US20170197976A1 (en) * 2014-06-04 2017-07-13 Thomas Helledays Stiftelse For Medicinsk Forskning Mth1 inhibitors for treatment of cancer
CN107432932A (zh) * 2017-08-01 2017-12-05 暨南大学 纳米钌复合材料及其制备方法和在载药和制备抗肿瘤药物中的应用
CN110272457A (zh) * 2019-07-05 2019-09-24 中国科学院理化技术研究所 一种具有光活化性能的钌配合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIAN WANG等: "Understanding the molecular mechanism for the differential inhibitory activities of compounds against MTH1", 《 SCIENTIFIC REPORTS》, vol. 7, pages 40557 *
XIN-YU LI等: "Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy", 《SMALL》, vol. 17, pages 2102470 *
YONGJIE CHEN等: "Fine control on the photochemical and photobiological properties of Ru(II) arene complexes", 《DALTON TRANS.》, vol. 44, no. 16, pages 7347 - 7354 *

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy
Cun et al. Copper-based metal–organic frameworks for biomedical applications
Gao et al. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy
Rengaraj et al. Porous NH2-MIL-125 as an efficient nano-platform for drug delivery, imaging, and ROS therapy utilized low-intensity visible light exposure system
CN113018267B (zh) 不饱和脂肪酸-光敏剂共组装纳米粒及其构建方法和应用
Zhang et al. An intelligent hypoxia-relieving chitosan-based nanoplatform for enhanced targeted chemo-sonodynamic combination therapy on lung cancer
Ding et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy
CN110652497A (zh) 一种双效治疗的靶向药物递送系统及其制备方法与应用
Ren et al. A versatile nanoplatform based on multivariate porphyrinic metal–organic frameworks for catalytic cascade-enhanced photodynamic therapy
Liu et al. In situ self-assembled biosupramolecular porphyrin nanofibers for enhancing photodynamic therapy in tumors
CN114177305A (zh) 一种诱导肿瘤细胞多机制死亡的前药纳米粒及其制备方法、应用
Zhu et al. A MnO2-coated multivariate porphyrinic metal–organic framework for oxygen self-sufficient chemo-photodynamic synergistic therapy
Dong et al. Tumor microenvironment-responsive Zn/Cu nanoparticles for enhanced chemodynamic therapy
Wu et al. Endogenous NO-release multi-responsive hollow mesoporous silica nanoparticles for drug encapsulation and delivery
CN110917349B (zh) 一种碗状isp复合功能性纳米粒子及其制备方法和应用
Zaheer et al. Recent trends in nobel metals and carbon dots in the costume of hybrid nano architecture
US8431143B2 (en) Therapeutic method of administering pharmaceutical titanium dioxide composite and light irradiation
CN115554401A (zh) 一种基于钌配合物的无载体多功能纳米颗粒的制备及其抗肿瘤应用
CN111450081B (zh) 增强型化动力治疗的蛋白纳米粒子、其制备方法和应用
Wang et al. Polycyclodextrin as a linker for nanomedicine fabrication and synergistic anticancer application
Zhu et al. Polyoxometalates immobilized on MIL-100 (Fe) as an emerging platform for eliminating breast cancer tumor cells
Faustova et al. Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo
CN113679837A (zh) 一种窄带隙无机纳米酶治疗试剂及其制备方法与应用
CN107812189B (zh) 一种主动靶向特定肿瘤细胞的竹红菌素纳米制剂及其制备方法和应用
CN112516310A (zh) 一种肿瘤酸环境响应的纳米前药的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230103

WD01 Invention patent application deemed withdrawn after publication