CN115552816A - 基于波束阻挡确定的链路自适应 - Google Patents

基于波束阻挡确定的链路自适应 Download PDF

Info

Publication number
CN115552816A
CN115552816A CN202180032172.5A CN202180032172A CN115552816A CN 115552816 A CN115552816 A CN 115552816A CN 202180032172 A CN202180032172 A CN 202180032172A CN 115552816 A CN115552816 A CN 115552816A
Authority
CN
China
Prior art keywords
beams
link adaptation
adaptation information
configuration
downlink transmissions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202180032172.5A
Other languages
English (en)
Other versions
CN115552816B (zh
Inventor
K·迪穆
周彦
骆涛
P·加尔
J·蒙托霍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN115552816A publication Critical patent/CN115552816A/zh
Application granted granted Critical
Publication of CN115552816B publication Critical patent/CN115552816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

描述了用于无线通信的方法、系统和设备。例如,一种用于用户设备(UE)处的无线通信的方法可以包括:接收用于报告与波束阻挡相关联的反馈的配置。UE可以对经由多个波束的集合的一个或多个下行链路传输执行解码过程。UE可以根据该配置来确定解码过程的失败是否是所述多个波束中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。UE还可以发送否定确认(NACK)和链路自适应信息,其中NACK确认是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡。

Description

基于波束阻挡确定的链路自适应
交叉引用
本专利申请要求享受由Dimou等人于2020年5月13日提交的、标题为“LINKADAPTATION UPON BEAM BLOCKING DETERMINATION”的美国临时专利申请No.63/024,265和由Dimou等人于2021年5月11日提交的、标题为“LINK ADAPTATION UPON BEAM BLOCKINGDETERMINATION”的美国专利申请No.17/317,683的权益,这两份申请中的每一份都被转让给本申请的受让人。
技术领域
概括地说,下文涉及无线通信,并且更具体地,涉及基于波束阻挡确定的链路自适应。
背景技术
广泛地部署无线通信系统,以便提供各种类型的通信内容,诸如语音、视频、分组数据、消息传送、广播等等。这些系统可能能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。这样的多址系统的示例包括第四代(4G)系统(诸如长期演进(LTE)系统、改进的LTE(LTE-A)系统或LTE-A Pro系统)和第五代(5G)系统(其可以被称为新无线电(NR)系统)。这些系统可以采用诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)或者离散傅里叶变换扩展正交频分复用(DFT-S-OFDM)之类的技术。无线多址通信系统可以包括一个或多个基站或者一个或多个网络接入节点,每一个基站或者网络接入节点同时支持针对多个通信设备(其可以另外被称为用户设备(UE))的通信。
在一些无线通信系统中,UE可以基于该UE处通信的解码结果,向基站报告反馈。例如,当解码成功时,UE可以发送肯定确认(ACK),或者当解码不成功时,UE可以发送否定确认(NACK)。在一些示例中,基站可以基于接收到ACK来清除重传缓冲区。基站还可以基于接收到NACK来确定重新发送与反馈相关联的通信。然而,ACK/NACK信息可能不允许基站确定初始通信的解码不成功的原因。因此,基站可能无法高效地调整重传的通信参数。因此,可能需要改进的技术来确保高效的重传,以提高通信质量。
发明内容
所描述的技术涉及支持基于波束阻挡确定的链路自适应的改进的方法、系统、设备和装置。通常,所描述的技术提供了例如在超可靠通信期间,基于附加反馈信息的高效的链路自适应。网络可以将用户设备(UE)配置为报告诸如肯定确认(ACK)或否定确认(NACK)之类的反馈。该配置还可以包括要被UE用于波束阻挡检测和报告的参数。例如,UE可以被配置为在解码失败时,使用NACK报告波束阻挡检测结果。波束阻挡检测结果可以通过允许UE与基站共享链路信息(例如,对完全或部分波束阻挡的检测),从而允许UE和基站处的优化的链路自适应。波束阻挡检测可以是基于对参考信号(例如,波束阻挡检测参考信号)的检测的。在一些情况下,UE可以使用一个或多个门限来确定波束阻挡的程度(例如,完全、部分或无波束阻挡)。
描述了一种UE处的无线通信的方法。该方法可以包括:接收用于报告与波束阻挡相关联的反馈的配置;对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程;根据所述配置来确定所述解码过程的失败是否是多个波束的集合中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及发送NACK和链路自适应信息,其中所述NACK是基于所述解码过程的所述失败的,以及所述链路自适应信息是基于确定所述多个波束的集合中的所述一个或多个波束是否至少被部分地阻挡的。
描述了一种用于UE处的无线通信的装置。该装置可以包括处理器、与所述处理器耦合的存储器、以及被存储在所述存储器中的指令。所述指令可以由所述处理器可执行以使该装置进行以下操作:接收用于报告与波束阻挡相关联的反馈的配置;对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程;根据所述配置来确定所述解码过程的失败是否是多个波束的集合中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及发送NACK和链路自适应信息,其中所述NACK是基于所述解码过程的所述失败的,以及所述链路自适应信息是基于确定所述多个波束的集合中的所述一个或多个波束是否至少被部分地阻挡的。
描述了另一种用于UE处的无线通信的装置。该装置可以包括:用于接收用于报告与波束阻挡相关联的反馈的配置的单元;用于对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程的单元;用于根据所述配置来确定所述解码过程的失败是否是多个波束的集合中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果的单元;用于发送NACK和链路自适应信息的单元,其中所述NACK是基于所述解码过程的所述失败的,以及所述链路自适应信息是基于确定多个波束的集合中的所述一个或多个波束是否至少被部分地阻挡的。
描述了一种存储用于UE处的无线通信的代码的非暂时性计算机可读介质。所述代码可以包括由处理器可执行以进行以下操作的指令:接收用于报告与波束阻挡相关联的反馈的配置;对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程;根据所述配置来确定所述解码过程的失败是否是多个波束的集合中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及发送NACK和链路自适应信息,其中所述NACK是基于所述解码过程的所述失败的,以及所述链路自适应信息是基于确定多个波束的集合中的所述一个或多个波束是否至少被部分地阻挡的。
本文所描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于以下项的操作、特征、单元或指令:接收参考信号,其中,根据所述配置来确定所述解码过程的失败是否可能是多个波束的集合中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,可以是基于所述参考信号的,其中根据所述配置来确定所述解码过程的失败是否可能是多个波束的集合中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:将所述参考信号的接收功率与门限进行比较;以及基于所述接收功率满足门限(例如,所述接收功率小于所述门限,或者所述接收功率小于或等于所述门限),确定多个波束的集合中的所述一个或多个波束可能被阻挡。
本文所描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于以下项的操作、特征、单元或指令:接收参考信号,其中,根据所述配置来确定所述解码过程的失败是否可能是多个波束的集合中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,可以是基于所述参考信号的,其中根据所述配置来确定所述解码过程的失败是否可能是多个波束的集合中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:将所述参考信号的接收功率与第一门限和第二门限进行比较;以及基于所述接收功率满足所述第一门限和所述第二门限(例如,所述接收功率大于所述第一门限并小于所述第二门限,或者所述接收功率大于或等于所述第一门限并小于或等于所述第二门限),确定所述多个波束的集合中的所述一个或多个波束可能被部分地阻挡。
本文所描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于以下项的操作、特征、单元或指令:接收参考信号,其中,根据所述配置来确定所述解码过程的失败是否可能是多个波束的集合中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:将所述参考信号的接收功率与第一门限和第二门限进行比较;以及基于所述接收功率满足所述第一门限和所述第二门限(例如,所述接收功率大于所述第一门限并大于所述第二门限,或者所述接收功率大于或等于所述第一门限并大于或等于所述第二门限),确定多个波束的集合中的所述一个或多个波束可能没有被部分地阻挡。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,发送所述NACK和所述链路自适应信息可以包括:用于基于确定多个波束的集合中的所述一个或多个波束是否可能至少被部分地阻挡,经由波束扫描中的多个上行链路波束的集合来发送所述NACK和所述链路自适应信息的操作、特征、单元或指令。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述链路自适应信息包括以下项中的至少一项:对至少一个新下行链路波束的请求、对至少一个新下行链路波束以及重用调制与编码方案(MCS)的请求、或者对新MCS以及重用多个波束的集合的请求。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,单个控制信道消息包括所述NACK和所述链路自适应信息。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,发送所述NACK和所述链路自适应信息可以包括用于以下项的操作、特征、单元或指令:在第一控制信道消息中发送所述NACK;以及在第二控制信道消息中发送所述链路自适应信息。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,接收用于报告与波束阻挡相关联的反馈的所述配置可以包括:用于接收无线电资源控制(RRC)消息的操作、特征、单元或指令,所述RRC消息包括用于报告与波束阻挡相关联的反馈的信息元素(IE)。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述一个或多个下行链路传输可以是经由多个波束的集合接收的半持久传输。
描述了一种用于基站处的无线通信的方法。该方法可以包括:发送用于报告与波束阻挡相关联的反馈的配置;经由多个波束的集合来发送一个或多个下行链路传输;接收根据所述配置的NACK和链路自适应信息,其中所述NACK是基于解码过程的失败的,以及所述链路自适应信息与多个波束的集合中的至少一个波束相关联;基于所述NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数。
描述了一种用于基站处的无线通信的装置。该装置可以包括处理器、与所述处理器耦合的存储器、以及被存储在所述存储器中的指令。所述指令可以由所述处理器可执行以使该装置进行以下操作:发送用于报告与波束阻挡相关联的反馈的配置;经由多个波束的集合来发送一个或多个下行链路传输;根据所述配置来接收NACK和链路自适应信息,其中所述NACK是基于解码过程的失败的,并且所述链路自适应信息与多个波束集合中的至少一个波束相关联;基于所述NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的的通信参数。
描述了另一种用于基站处的无线通信的装置。该装置可以包括:用于发送用于报告与波束阻挡相关联的反馈的配置的单元;用于经由多个波束的集合来发送一个或多个下行链路传输的单元;用于接收根据所述配置的NACK和链路自适应信息的单元,其中所述NACK是基于解码过程的失败的,并且所述链路自适应信息与多个波束的集合中的至少一个波束相关联;用于基于所述NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输的单元;以及用于基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数的单元。
描述了一种存储用于基站处的无线通信的代码的非暂时性计算机可读介质。所述代码可以包括由处理器可执行以进行以下操作的指令:发送用于报告与波束阻挡相关联的反馈的配置;经由多个波束的集合来发送一个或多个下行链路传输;接收根据所述配置的NACK和链路自适应信息,其中所述NACK是基于解码过程的失败的,并且所述链路自适应信息与多个波束的集合中的至少一个波束相关联;基于所述NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数。
本文所描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括:用于基于所述NACK和所述链路自适应信息,针对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传,执行下行链路波束扫描过程的操作、特征、单元或指令。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,用于报告与波束阻挡相关联的反馈的所述配置包括:与波束阻挡确定相关联的第一门限和与部分波束阻挡确定相关联的第二门限。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,接收所述NACK和所述链路自适应信息可以包括:用于基于所述多个波束的集合中的所述一个或多个波束是否可能至少被部分地阻挡,经由波束扫描的多个上行链路波束的集合中的至少一个上行链路波束来接收所述NACK和所述链路自适应信息的操作、特征、单元或指令。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述链路自适应信息包括对至少一个新下行链路波束的请求,以及所述通信参数包括至少一个传输配置指示符(TCI)状态。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述链路自适应信息包括对至少一个新下行链路波束以及重用MCS的请求,以及所述通信参数包括至少一个TCI状态。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述链路自适应信息包括用于更新MCS以及重用多个波束的集合的请求,以及所述通信参数包括所述MCS。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,单个控制信息消息包括所述NACK和所述链路自适应信息。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,接收所述NACK和所述链路自适应信息可以包括用于以下项的操作、特征、单元或指令:在第一控制信道消息中接收所述NACK;以及在第二控制信道消息中接收所述链路自适应信息。
在本文所描述的方法、装置和非暂时性计算机可读介质的一些示例中,发送用于报告与波束阻挡相关联的反馈的所述配置可以包括:用于发送RRC消息的操作、特征、单元或指令,所述RRC消息包括用于报告与波束阻挡相关联的反馈的IE。
附图说明
图1示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的无线通信系统的示例。
图2示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的无线通信系统的示例。
图3示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的时间线的示例。
图4示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的流程图的示例。
图5示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的过程流的示例。
图6和图7示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备的框图。
图8示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的通信管理器的框图。
图9示出根据本公开内容的各方面的包括设备的系统的示意图,其中该设备支持基于波束阻挡确定的链路自适应。
图10和图11示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备的框图。
图12示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的通信管理器的框图。
图13示出根据本公开内容的各方面的包括设备的系统的示意图,其中该设备支持基于波束阻挡确定的链路自适应。
图14至图20示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法的流程图。
具体实施方式
用户设备(UE)可以被配置为执行波束阻挡检测,并在反馈中包括附加信息,以用于基于波束阻挡检测的改进的链路自适应。常规地,基站可以从UE接收否定确认(NACK),NACK指示UE未能成功地解码来自基站的传输。基站可能能够调整调制和编码方案(MCS)、资源块组(RBG)和传输配置指示符(TCI)状态(例如,波束)以尝试成功重传。然而,基站可能无法确定传输未被成功地解码的原因。因此,基站可能在没有来自UE的关于失败的足够信息的情况下确定链路自适应。该链路自适应可能是过度的或无法改善基站与UE之间的链路。例如,基站可能不必要地基于从UE接收到NACK来确定执行波束扫描以切换到新波束。UE处的解码失败可能是由于来自相邻小区的临时干扰。因此,由于波束切换消耗过度的功率,所以与切换波束相比,来自基站的在不同资源中的同一波束上的重传将是更好的链路自适应。
如本文描述的,通过将UE配置为包括除了NACK反馈之外的链路自适应信息,可以避免上文描述的低效的链路自适应。例如,链路自适应信息可以是基于波束阻挡检测过程的。UE可以尝试解码物理下行链路共享信道(PDSCH)。如果UE能够成功地解码PDSCH,则UE可以向基站发送肯定确认(ACK)。如果UE未能成功地解码PDSCH,则UE可以基于参考信号来执行波束阻挡评估。在一些情况下,参考信号可以是波束阻挡检测参考信号,诸如但不限于解调参考信号(DM-RS)、相位跟踪参考信号(PT-RS)或信道状态信息参考信号(CSI-RS)。例如,UE可以确定在传输期间是否发生了完全的波束阻挡。如果发生了完全的波束阻挡,则UE可以包括针对来自基站的用于重传的新下行链路波束的请求、以及经由上行链路波束扫描发送的NACK。如果没有发生完全的波束阻挡,则UE可以评估是否发生了部分波束阻挡,并基于评估来调整NACK传输和链路自适应信息。在一些示例中,UE可以假设UE处的上行链路发射波束与下行链路接收波束之间的波束互易性,以便UE可以基于与下行链路接收波束相关联的解码尝试来确定针对上行链路发射波束的链路自适应。来自基站的下行链路传输可以是来自多个发送接收点(TRP)的半持久调度的传输。在一些情况下,UE可以在超可靠低时延配置下操作。
当针对波束阻挡检测进行了配置时,UE和基站可以避免不必要的功率消耗过程(例如,波束扫描)。当与基于通知的波束切换而无波束阻挡检测和报告相比时,波束阻挡检测和报告的配置可以使UE和基站以改进的可靠性进行通信,其可以导致减少的错误。因此,由于来自更少的波束切换和更少想重传的更少的干扰,可以存在提高的系统频谱效率。
首先在无线通信系统的背景下描述本公开内容的各方面。通过与基于波束阻挡确定的链路自适应有关的装置图、系统图和流程图进一步示出并且参照上述各图描述本公开内容的各方面。
图1示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的无线通信系统100的示例。该无线通信系统100可以包括一个或多个基站105、一个或多个UE 115和核心网络130。在一些示例中,无线通信系统100可以是长期演进(LTE)网络、改进的LTE(LTE-A)网络、LTE-APro网络或者新无线电(NR)网络。在一些示例中,无线通信系统100可以支持增强型宽带通信、超可靠(例如,关键任务)通信、低时延通信、与低成本和低复杂度设备的通信、或者其任何组合。
基站105可以被分散在整个地理区域中以形成无线通信系统100,并且可以是不同形式的或具有不同能力的设备。基站105和UE 115可以经由一个或多个通信链路125无线地通信。每个基站105可以提供覆盖区域110,UE 115和基站105可以在覆盖区域110上建立一个或多个通信链路125。覆盖区域110可以是基站105和UE 115可以在其上根据一种或多种无线电接入技术来支持对信号的传送的地理区域的示例。
UE 115可以被分散在无线通信系统100的整个覆盖区域110中,并且每个UE 115在不同的时间可以是静止的、或移动的、或二者兼有。UE 115可以是不同形式的或具有不同能力的设备。在图1中示出了一些示例UE 115。本文描述的UE 115可能能够与诸如其它UE115、基站105或网络设备(例如,核心网络节点、中继设备、集成接入和回程(IAB)节点、或其它网络设备)之类的各种类型的设备进行通信,如图1中所示。
基站105可以与核心网络130进行通信,或者彼此之间进行通信,或者二者兼有。例如,基站105可以通过一个或多个回程链路120(例如,经由S1、N2、N3或者其它接口)与核心网络130对接。基站105可以在回程链路120(例如,经由X2、Xn或者其它接口)上直接地(例如,在基站105之间直接地)或者间接地(例如,经由核心网络130)、或者二者兼有地彼此进行通信。在一些示例中,回程链路120可以是或者包括一个或多个无线链路。
本文描述的基站105中的一个或多个基站105可以包括或者可以被本领域普通技术人员称为基站收发机、无线电基站、接入点、无线电收发机、节点B、演进型节点B(eNB)、下一代节点B或者giga节点B(它们中的任何一个都可以被称为gNB)、家庭节点B、家庭演进型节点B或者其它适当的术语。
UE 115可以包括或者可以被称为移动设备、无线设备、远程设备、手持设备或者用户设备或者某种其它适当的术语,其中,“设备”还可以被称为单元、站、终端或者客户端、以及其它示例。UE 115还可以包括或者可以被称为个人电子设备,诸如蜂窝电话、个人数字助理(PDA)、平板计算机、膝上型计算机、或个人计算机。在一些示例中,UE 115可以包括或者被称为无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备、或者机器类型通信(MTC)设备、以及其它示例,它们可以在诸如家电、或车辆、仪表、以及其它示例的各种物品中实现。
本文描述的UE 115可能能够与各种类型的设备(诸如有时可以充当中继的其它UE115、以及基站105、和包括宏eNB或gNB、小型小区eNB或gNB、或中继基站以及其它示例的网络设备)进行通信,如图1中所示。
UE 115和基站105可以通过一个或多个载波,经由一个或多个通信链路125彼此无线地通信。术语“载波”可以指代具有规定的物理层结构来支持通信链路125的射频频谱资源集合。例如,用于通信链路125的载波可以包括根据用于给定无线电接入技术(例如,LTE、LTE-A、LTE-A Pro、NR)的一个或多个物理层信道进行操作的射频频谱带的一部分(例如,带宽部分(BWP))。每个物理层信道可以携带捕获信令(例如,同步信号、系统信息)、协调用于载波的操作的控制信令、用户数据或其它信令。无线通信系统100可以使用载波聚合或多载波操作来支持与UE 115的通信。根据载波聚合配置,UE 115可以被配置有多个下行链路分量载波和一个或多个上行链路分量载波。载波聚合可以与频分双工(FDD)和时分双工(TDD)分量载波一起使用。
在一些示例中(例如,在载波聚合配置中),载波还可以具有捕获信令或协调用于其它载波的操作的控制信令。载波可以与频率信道(例如,演进型通用移动电信系统陆地无线电接入(E-UTRA)绝对射频信道号(EARFCN))相关联,并且可以根据信道光栅(raster)在放置以供UE 115发现。载波可以在独立模式下操作,在该情况下UE 115可以经由载波进行初始捕获和连接,或者载波可以在非独立模式下操作,在该情况下,使用(例如,相同或不同的无线电接入技术的)不同的载波来锚定连接。
无线通信系统100中所示的通信链路125可以包括从UE 115到基站105的上行链路传输,或者从基站105到UE 115的下行链路传输。载波可以携带下行链路或上行链路通信(例如,在FDD模式下)或者可以被配置为携带下行链路和上行链路通信(例如,在TDD模式下)。
载波可以与射频频谱的特定带宽相关联,并且在一些示例中,载波带宽可以被称为载波或无线通信系统100的“系统带宽”。例如,载波带宽可以是特定无线电接入技术的载波的多个确定带宽之一(例如,1.4、3、5、10、15、20、40或80兆赫(MHz))。无线通信系统100的设备(例如,基站105、UE 115或二者)可以具有支持特定载波带宽上的通信的硬件配置,或者可以是可配置的以支持载波带宽集合中的一个载波带宽上的通信。在一些示例中,无线通信系统100可以包括支持经由与多个载波带宽相关联的载波进行同时通信的基站105或UE 115。在一些示例中,每个被服务的UE 115可以被配置用于在载波带宽的部分(例如,子带、BWP)或全部上进行操作。
在载波上发送的信号波形可以由多个子载波构成(例如,使用诸如正交频分复用(OFDM)或离散傅里叶变换扩展OFDM(DFT-S-OFDM)之类的多载波调制(MCM)技术)。在采用MCM技术的系统中,资源单元可以由一个符号周期(例如,一个调制符号的持续时间)和一个子载波组成,其中符号周期和子载波间隔是逆相关的。由每个资源单元携带的比特的数量可以取决于调制方案(例如,调制方案的阶数、调制方案的编码率、或二者)。因此,UE 115接收的资源单元越多且调制方案的阶数越高,针对UE 115的数据速率就可以越高。无线通信资源可以指代射频频谱资源、时间资源和空间资源(例如,空间层或波束)的组合,并且对多个空间层的使用可以进一步增加用于与UE115的通信的数据速率或数据完整性。
一个载波可以支持一个或多个数字方案,其中数字方案可以包括子载波间隔(Δf)和循环前缀。可以将载波划分成具有相同或不同数字方案的一个或多个BWP。在一些示例中,UE 115可以配置有多个BWP。在一些示例中,载波的单个BWP在给定时间可以是活动的,并且可以将针对UE115的通信限制于一个或多个活动的BWP。
可以将用于基站105或UE 115的时间间隔表达成基本时间单位的倍数(例如,基本时间单位可以指代Ts=1/(Δfmax·Nf)秒的采样周期),其中Δfmax可以表示最大支持的子载波间隔,并且Nf可以表示最大支持的离散傅里叶变换(DFT)大小。可以根据无线电帧来对通信资源的时间间隔进行组织,其中每个无线电帧具有指定的持续时间(例如,10毫秒(ms))。每个无线电帧可以通过系统帧号(SFN)(例如,从0到1023的范围)来标识。
每个帧可以包括多个连续编号的子帧或时隙,并且每个子帧或时隙可以具有相同的持续时间。在一些示例中,可以将帧划分(例如,在时域中)为子帧,并且可以进一步将每个子帧划分为多个时隙。替代地,每个帧可以包括可变数量的时隙,并且时隙的数量可以取决于子载波间隔。每个时隙可以包括多个符号周期(例如,取决于附加到每个符号周期之前的循环前缀的长度)。在一些无线通信系统100中,可以进一步将时隙划分为包含一个或多个符号的多个微时隙。除了循环前缀之外,每个符号周期可以包含一个或多个(例如,Nf)采样周期。符号周期的持续时间可以取决于子载波间隔或操作频带。
子帧、时隙、微时隙或符号可以是无线通信系统100的最小调度单位(例如,在时域中),并且可以被称为传输时间间隔(TTI)。在一些示例中,TTI持续时间(例如,TTI中的符号周期的数量)可以是可变的。另外地或替代地,无线通信系统100的最小调度单位可以被动态地选择(例如,在缩短的TTI(sTTI)的突发中)。
可以根据各种技术,将物理信道复用在载波上。例如,可以使用时分复用(TDM)技术、频分复用(FDM)技术或者混合TDM-FDM技术中的一种或多种,将物理控制信道和物理数据信道复用在下行链路载波上。用于物理控制信道的控制区域(例如,控制资源集(CORESET))可以通过多个符号周期来定义,并且可以跨越系统带宽或载波的系统带宽的子集延伸。可以为UE 115的集合配置一个或多个控制区域(例如,CORESET)。例如,UE 115中的一个或多个UE 115可以针对控制信息,根据一个或多个搜索空间集合来监测或搜索控制区域,并且每个搜索空间集合可以包括以级联方式布置的具有一个或多个聚合等级的一个或多个控制信道候选。用于控制信道候选的聚合等级可以指代与针对具有给定有效载荷大小的控制信息格式编码的信息相关联的控制信道资源(例如,控制信道元素(CCE))的数量。搜索空间集合可以包括被配置用于向多个UE 115发送控制信息的公共搜索空间集合和用于向特定UE 115发送控制信息的特定于UE的搜索空间集合。
每个基站105可以经由一个或多个小区(例如,宏小区、小型小区、热点或其它类型的小区或其任何组合)来提供通信覆盖。术语“小区”可以指代用于(例如,在载波上)与基站105的通信的逻辑通信实体,并且可以与用于区分相邻小区的标识符(例如,物理小区标识符(PCID)、虚拟小区标识符(VCID)等等)相关联。在一些示例中,小区也可以指代逻辑通信实体在其上操作的地理覆盖区域110或者地理覆盖区域110的一部分(例如,扇区)。根据各种因素(诸如基站105的能力),这样的小区的范围可以从较小的区域(例如,结构、结构的子集)到较大的区域。例如,小区可以是或者包括建筑物、建筑物的子集、或地理覆盖区域110之间或与之重叠的外部空间、以及其它示例。
宏小区通常覆盖相对大的地理区域(例如,半径为若干千米),并且可以允许由与支持宏小区的网络提供商具有服务订阅的UE 115进行不受限制的接入。与宏小区相比,小型小区可以与低功率基站105相关联,并且小型小区可以在与宏小区相同或者不同的(例如,许可的、非许可的)频带中进行操作。小型小区可以向与网络提供商具有服务订阅的UE115提供不受限制的接入,或者可以向与该小型小区具有关联的UE 115(例如,封闭用户组(CSG)中的UE 115、与家庭或办公室中的用户相关联的UE 115)提供受限制的接入。基站105可以支持一个或多个小区,并且还可以支持使用一个或多个分量载波在一个或多个小区上的通信。
在一些示例中,运营商可以支持多个小区,并且可以根据可以为不同类型的设备提供接入的不同协议类型(例如,MTC、窄带IoT(NB-IoT)、增强型移动宽带(eMBB))来配置不同的小区。
在一些示例中,基站105可以是可移动的,并且因此提供针对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同技术相关联的不同地理覆盖区域110可以重叠,但不同的地理覆盖区域110可以由相同的基站105来支持。在其它示例中,与不同技术相关联的重叠的地理覆盖区域110可以由不同的基站105来支持。例如,无线通信系统100可以包括异构网络,在其中不同类型的基站105使用相同或不同的无线电接入技术来提供针对各种地理覆盖区域110的覆盖。
无线通信系统100可以支持同步或异步操作。对于同步操作而言,基站105可以具有类似的帧时序,并且来自不同基站105的传输在时间上可以近似地对齐。对于异步操作而言,基站105可以具有不同的帧时序,并且在一些示例中,来自不同基站105的传输可以在时间上不对齐。本文描述的技术可以用于同步操作或异步操作。
诸如MTC或IoT设备之类的一些UE 115可以是低成本的或低复杂度的设备,并且可以提供机器之间的自动化通信(例如,经由机器到机器(M2M)通信)。M2M通信或MTC可以指代允许设备在无需人工干预的情况下彼此进行通信或者与基站105进行通信的数据通信技术。在一些示例中,M2M通信或MTC可以包括来自于集成了传感器或仪表以测量或者捕获信息并将这样的信息中继到中央服务器或者应用程序的设备的通信,中央服务器或者应用程序利用该信息或者向与该应用程序进行交互的人员呈现该信息。一些UE 115可以被设计为收集信息或者实现机器或其它设备的自动化行为。用于MTC设备的应用的示例包括:智能计量、库存监测、水位监测、设备监测、医疗保健监测、野生生物监测、天气和地质事件监测、船队管理和跟踪、远程安全感测、物理接入控制和基于交易的业务计费。
一些UE 115可以被配置为采用减少功耗的操作模式,诸如半双工通信(例如,支持经由发送或接收的单向通信但不支持同时的发送和接收的模式)。在一些示例中,可以以降低的峰值速率来执行半双工通信。用于UE 115的其它省电技术包括:当不参与活动通信、在有限带宽上操作(例如,根据窄带通信)、或者这些技术的组合时,进入省电深度休眠模式。例如,UE 115可以被配置用于使用窄带协议类型的操作,其中该窄带协议类型与载波内的、载波的报护频带内的、或者载波之外的规定部分或范围(例如,子载波或资源块(RB)的集合)相关联。
无线通信系统100可以被配置为支持超可靠通信或低时延通信或者其各种组合。例如,无线通信系统100可以被配置为支持超可靠低时延通信(URLLC)或任务关键通信。UE115可以被设计为支持超可靠、低时延或关键功能(例如,任务关键功能)。超可靠通信可以包括私人通信或群组通信,并且可以通过一种或多种任务关键型服务(诸如任务关键型一键通(MCPTT)、任务关键型视频(MCVideo)或任务关键型数据(MCData))来支持。对任务关键功能的支持可以包括对服务划分优先级,并且任务关键服务可以用于公共安全或一般商业应用。在本文中可以可互换地使用术语超可靠、低时延、任务关键和超可靠低时延。
在一些示例中,UE 115可能还能够通过设备到设备(D2D)通信链路135直接地与其它UE 115进行通信(例如,使用对等(P2P)或D2D协议)。使用D2D通信的一个或多个UE 115可以位于基站105的地理覆盖区域110内。这样的组中的其它UE 115可以位于基站105的地理覆盖区域110之外,或者以其它方式不能够从基站105接收传输。在一些示例中,经由D2D通信进行通信的UE 115的组可以利用一对多(1:M)系统,在该系统中,每个UE 115向该组中的每个其它UE 115进行发送。在一些示例中,基站105有助于对用于D2D通信的资源的调度。在其它情况下,在不涉及基站105的情况下,在UE 115之间执行D2D通信。
在一些系统中,D2D通信链路135可以是车辆(例如,UE 115)之间的通信信道(诸如侧行链路通信信道)的示例。在一些示例中,车辆可以使用车辆到万物(V2X)通信、车辆到车辆(V2V)通信或这些项的某种组合进行通信。车辆可以发信号通知与交通状况、信号调度、天气、安全、紧急情况有关的信息、或者与V2X系统有关的任何其它信息。在一些示例中,V2X系统中的车辆可以与诸如路边单元的路边基础设施进行通信,或者使用车辆到网络(V2N)通信来经由一个或多个网络节点(例如,基站105)与网络进行通信、或者与二者进行通信。
核心网络130可以提供用户认证、接入授权、跟踪、互联网协议(IP)连接、以及其它接入、路由或者移动性功能。核心网络130可以是演进型分组核心(EPC)或5G核心(5GC),其可以包括管理接入和移动性的至少一个控制平面实体(例如,移动性管理实体(MME)、接入和移动性管理功能(AMF))、以及将分组路由或者互连到外部网络的至少一个用户平面实体(例如,服务网关(S-GW)、分组数据网络(PDN)网关(P-GW)或者用户平面功能(UPF))。控制平面实体可以管理非接入层(NAS)功能,诸如针对由与核心网络130相关联的基站105服务的UE 115的移动性、认证和承载管理。用户IP分组可以通过用户平面实体来传送,用户平面实体可以提供IP地址分配以及其它功能。用户平面实体可以连接到网络运营商IP服务150。运营商IP服务150可以包括针对互联网、内联网、IP多媒体子系统(IMS)的接入,或者分组交换流式传输服务。
网络设备(诸如基站105)中的一些网络设备可以包括诸如接入网络实体140之类的子组件,其可以是接入节点控制器(ANC)的示例。每个接入网络实体140可以通过一个或多个其它接入网络传输实体145(其可以被称为无线电头端、智能无线电头端或者发送/接收点(TRP))与UE 115进行通信。每个接入网络传输实体145可以包括一个或多个天线面板。在一些配置中,每个接入网络实体140或基站105的各种功能可以被分布在各种网络设备(例如,无线电头端和ANC)上,或者被合并在单一网络设备(例如,基站105)中。
无线通信系统100可以使用一个或多个频带(通常在300兆赫兹(MHz)到300吉赫兹(GHz)的范围内)进行操作。通常,从300MHz到3GHz的区域被称为极高频(UHF)区域或者分米频带,这是由于波长范围在长度上从大约一分米到一米。UHF波可能被建筑物和环境特征阻挡或者改变方向,但是,这些波可能足以穿透结构,以供宏小区向位于室内的UE 115提供服务。与使用频谱的低于300MHz的高频(HF)或者特高频(VHF)部分的较小频率和较长波的传输相比,UHF波的传输可以与更小的天线和更短的距离(例如,小于100千米)相关联。
无线通信系统100还可以使用从3GHz到30GHz的频带(其还被称为厘米频带)在超高频(SHF)区域中进行操作,或者在频谱的至高频(EHF)区域(例如,从30GHz到300GHz)(该区域也被称为毫米频带)中进行操作。在一些示例中,无线通信系统100可以支持UE 115与基站105之间的毫米波(mmW)通信,并且相应设备的EHF天线可能比UHF天线更小和更密集。在一些示例中,这可以有助于在设备内使用天线阵列。但是,与SHF或UHF传输相比,EHF传输的传播可能遭受到甚至更大的大气衰减和更短的距离。在使用一个或多个不同频率区域的传输上可以采用本文所公开的技术,并且对跨越这些频率区域的频带的指定使用可能由于国家或监管机构而不同。
无线通信系统100可以利用许可的和非许可的射频频谱带。例如,无线通信系统100可以采用许可辅助接入(LAA)、LTE非许可(LTE-U)无线电接入技术、或者诸如5GHz工业、科学和医疗(ISM)频带之类的非许可频带中的NR技术。当在非许可射频频谱带中操作时,诸如基站105和UE 115之类的设备可以采用载波监听以用于冲突检测和避免。在一些示例中,非许可频带中的操作可以是基于结合在许可的频带中操作的分量载波的载波聚合配置(例如,LAA)。非许可频谱中的操作可以包括下行链路传输、上行链路传输、P2P传输或D2D传输、以及其它示例。
基站105或UE 115可以被装备有多个天线,这些天线可以用于采用诸如发射分集、接收分集、多输入多输出(MIMO)通信或波束成形之类的技术。基站105或UE 115的天线可以位于一个或多个天线阵列或天线面板中,它们可以支持MIMO操作或者发送或接收波束成形。例如,一个或多个基站天线或天线阵列可以共址于天线组件(诸如天线塔)处。在一些示例中,与基站105相关联的天线或天线阵列可以位于不同的地理位置中。基站105可以具有带有多行和多列天线端口的天线阵列,基站105可以使用该天线阵列来支持与UE 115的通信的波束成形。类似地,UE 115可以具有一个或多个天线阵列,这些天线阵列可以支持各种MIMO或波束成形操作。另外地或替代地,天线面板可以针对经由天线端口发送的信号,支持射频波束成形。
基站105或UE 115可以使用MIMO通信来利用多径信号传播,并且通过经由不同的空间层来发送或接收多个信号来增加谱效率。这样的技术可以被称为空间复用。例如,发送设备可以经由不同的天线或者天线的不同组合来发送所述多个信号。同样,接收设备可以经由不同的天线或者天线的不同组合来接收所述多个信号。所述多个信号中的每个信号可以被称为单独的空间流,并且可以携带与相同数据流(例如,相同码字)或者不同数据流(例如,不同码字)相关联的比特。不同的空间层可以与用于信道测量和报告的不同天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO)和多用户MIMO(MU-MIMO),在SU-MIMO情况下,将多个空间层发送到同一接收设备,在MU-MIMO情况下,将多个空间层发送到多个设备。
波束成形(其还可以被称为空间滤波、定向发送或定向接收)是可以在发送设备或接收设备(例如,基站105、UE 115)处使用以沿着发送设备与接收设备之间的空间路径来成形或者导引天线波束(例如,发送波束、接收波束)的信号处理技术。可以通过将经由天线阵列的天线元件传送的信号进行组合,以使得按照关于天线阵列的特定方位传播的一些信号经历相长干涉而其它信号经历相消干涉,来实现波束成形。对经由天线元件传送的信号的调整可以包括:发送设备或接收设备向经由与该设备相关联的天线元件携带的信号应用幅度偏移、相位偏移或二者。可以通过与特定的方位(例如,关于发射设备或接收设备的天线阵列、或者关于某个其它方位)相关联的波束成形权重集合来定义与天线元件中的每个天线元件相关联的调整。
基站105或UE 115可以使用波束扫描技术作为波束成形操作的一部分。例如,基站105可以使用多个天线或天线阵列(例如,天线面板)来进行波束成形操作,以用于与UE 115的定向通信。基站105可以在不同方向上多次发送一些信号(例如,同步信号、参考信号、波束选择信号或其它控制信号)。例如,基站105可以根据与不同发送方向相关联的不同波束成形权重集合来发送信号。可以使用不同波束方向上的传输来(例如,由诸如基站105之类的发送设备或由诸如UE 115之类的接收设备)识别由基站105稍后进行的发送或接收的波束方向.
基站105可以在单个波束方向(例如,与诸如UE 115之类的接收设备相关联的方向)上发送一些信号(诸如与特定接收设备相关联的数据信号)。在一些示例中,与沿单个波束方向的传输相关联的波束方向可以基于在一个或多个波束方向上发送的信号来确定。例如,UE 115可以接收由基站105在不同方向上发送的信号中的一个或多个信号,并且可以向基站105报告对该UE 115以最高信号质量或以其它方式可接受的信号质量接收的信号的指示。
在一些示例中,可以使用多个波束方向来执行由设备(例如,由基站105或UE 115)进行的传输,并且该设备可以使用数字预编码或射频波束成形的组合,来生成用于发送(例如,从基站105到UE 115)的组合波束。UE 115可以报告指示用于一个或多个波束方向的预编码权重的反馈,并且该反馈可以对应于跨越系统带宽或一个或多个子带的配置数量的波束。基站105可以发送参考信号(例如,特定于小区的参考信号(CRS)、CSI-RS),该参考信号可以是预编码的或未预编码的。UE115可以提供针对波束选择的反馈,其可以是预编码矩阵指示符(PMI)或基于码本的反馈(例如,多面板类型码本、线性组合类型码本、端口选择类型码本)。虽然参考由基站105在一个或多个方向上发送的信号描述了这些技术,但是UE 115可以采用类似的技术用于在不同方向上多次地发送信号(例如,以便识别用于由UE 115进行的后续发送或接收的波束方向)或者用于在单个方向上发送信号(例如,用于向接收设备发送数据)。
当接收来自基站105的各种信号(诸如同步信号、参考信号、波束选择信号或其它控制信号)时,接收设备(例如,UE 115)可以尝试多个接收配置(例如,定向监听)。例如,接收设备可以通过以下方式来尝试多个接收方向:经由不同天线子阵列进行接收、通过根据不同天线子阵列来处理接收的信号、通过根据被应用于在天线阵列的多个天线元件处接收的信号的不同的接收波束成形权重集合(例如,不同方向监听权重集合)进行接收、或者通过根据被应用于在天线阵列的多个天线元件处接收的信号的不同的接收波束成形权重集合来处理接收的信号,这些方式中的任何一种可以被称为根据不同的接收配置或接收方向进行“监听”。在一些示例中,接收设备可以使用单个接收配置来沿单个波束方向进行接收(例如,当接收数据信号时)。可以在基于根据不同接收配置方向进行监听所确定的波束方向(例如,基于根据多个波束方向进行监听而被确定为具有最高信号强度、最高信噪比(SNR)或以其它方式可接受的信号质量的波束方向)上,对齐单个接收配置。
无线通信系统100可以是根据分层协议栈进行操作的基于分组的网络。在用户平面中,承载或者分组数据汇聚协议(PDCP)层处的通信可以是基于IP的。无线电链路控制(RLC)层可以执行分组分段和重组,以通过逻辑信道进行通信。介质访问控制(MAC)层可以执行优先级处理,以及逻辑信道到传输信道的复用。MAC层还可以使用错误检测技术、纠错技术或二者来支持MAC层处的重传,以提高链路效率。在控制平面中,无线电资源控制(RRC)协议层可以提供对UE 115与基站105或者支持用于用户平面数据的无线电承载的核心网络130之间的RRC连接的建立、配置和维持。在物理层处,可以将传输信道映射到物理信道。
UE 115和基站105可以支持对数据的重传,以增加成功地接收到数据的可能性。混合自动重传请求(HARQ)反馈是用于增加通过通信链路125正确地接收数据的可能性的一种技术。HARQ可以包括纠错(例如,使用循环冗余校验(CRC))、前向纠错(FEC)和重传(例如,自动重传请求(ARQ))的组合。HARQ可以在差的无线电状况(例如,低信噪比状况)下提高MAC层处的吞吐量。在一些示例中,设备可以支持同一时隙HARQ反馈,其中设备可以针对在特定时隙的先前符号中接收的数据,在该时隙中提供HARQ反馈。在其它情况下,设备可以在后续时隙中,或者根据某个其它时间间隔来提供HARQ反馈。
在一些情况下,UE 115可以(例如,经由RRC消息)被配置为确定在解码不成功时,是否检测到波束阻挡。该确定可以是基于多个配置的或确定的信号功率门限的。UE 115还可以被配置为基于波束阻挡确定来报告建议的链路自适应。如本文所描述的,UE 115可以利用NACK反馈来指示链路自适应信息。更具体地,UE 115可以尝试对来自基站105的PDSCH进行解码。如果UE 115能够成功地解码PDSCH,则UE 115可以向基站105发送ACK。如果UE115无法成功地解码PDSCH,则UE 115可以基于参考信号(例如,CRS、CSI-RS、波束阻挡检测参考信号)来执行波束阻挡评估。
例如,UE 115可以基于第一功率门限来确定在传输期间是否发生了完全的波束阻挡。如果发生了完全的波束阻挡,则UE 115可以包括针对来自基站的用于重传的新的下行链路波束的请求、以及经由上行链路波束扫描发送的NACK。如果没有发生完全的波束阻挡,则UE 115可以基于第二功率门限来评估是否发生了部分波束阻挡。然后,UE 115可以基于评估来调整NACK传输和链路自适应信息。基站105可以接收NACK和链路自适应信息,并基于链路自适应信息,使用经调整的通信参数(诸如MCS和TCI状态)来执行重传。
图2示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的无线通信系统200的示例。在一些示例中,无线通信系统200可以实现无线通信系统100的各方面。无线通信系统200可以包括UE 115-a和基站105-a,它们可以是如参考图1所描述的UE115和基站105的相应示例。
在无线通信系统200中,基站105-a和UE 115-a可以彼此相通信。例如,基站105-a可以在下行链路205-a上向UE 115-a发送信息,以及UE 115-a可以在上行链路205-b上向基站105-a发送信息。基站105-a可以(例如,经由RRC消息)将UE 115-a配置为执行波束阻挡检测,并将检测的调查结果与反馈(例如,ACK和NACK)一起报告回给基站105-a。例如,可以在诸如信道状态信息(CSI)测量配置RRC消息或不同的配置消息之类的RRC消息中包含信息元素(IE)。该配置可以包括用于波束阻挡检测的参数,诸如一个或多个功率门限、或何时经由上行链路波束扫描来发送NACK。在一些示例中,下行链路205-a和上行链路205-b可以被配置用于超可靠低时延通信。
基站105-a可以使用多个TRP来发送PDSCH 210。具体而言,可以在第一时间经由波束215-a来发送PDSCH 210-a的第一传输,以及可以在第二时间经由波束215-b来发送PDSCH210-b的第二传输。传输PDSCH 210-a和210-b可以包括相同的数据分组,并且可以均被指派相同的序列号。在一些示例中,PDSCH 210可以由基站105-a半持久地调度,并且无线通信系统200可以是物联网(IoT)系统,该IoT系统使用小的分组大小周期性地(例如,每N毫秒(ms)一次)进行半持久地通信。在一些情况下,在IoT系统中,业务可能不会改变。
UE 115-a可以尝试对PDSCH 210进行解码。例如,UE 115-a可以尝试对PDSCH 210-a和210-b进行联合解码。在一些情况下,UE 115-a可能无法成功地解码PDSCH 210。不成功的解码可能是波束阻挡、下行链路干扰、交叉链路干扰、衰落以及许多其它原因的结果。因此,UE 115-a可以评估解码失败是否是由于下行链路205-a的波束阻挡造成的。例如,UE115-a可以基于第一功率门限(例如,层1或层3参考信号接收功率(RSRP))来确定在PDSCH210的传输期间是否发生了完全的波束阻挡。如果发生了完全的波束阻挡,则UE 115-a可以连同NACK一起,在物理上行链路控制信道(PUCCH)220中报告该阻挡(例如,在CSI-RS报告中)并且请求来自基站105-a的用于重传的新的下行链路波束。在一些情况下,UE 115-a可以(例如,经由PUCCH 220)在单个控制信道消息中发送该请求和NACK。在一些情况下,该单个控制信道消息可以是单个PUCCH格式。在一些情况下,UE 115-a可以在不同的控制信道消息中发送该请求和NACK。在一些情况下,UE 115-a可以经由上行链路波束扫描215-c来发送PUCCH 220。
如果没有发生完全的波束阻挡,则UE 115-a可以基于第二功率门限(例如,层1或层3RSRP)来确定是否发生了部分波束阻挡。然后,UE 115-a可以基于评估来调整PUCCH 220中的NACK传输和链路自适应信息。例如,如果UE 115-a确定发生了部分波束阻挡,则UE115-a可以使用功率门限来确定包括NACK的PUCCH 220是否应当使用上行链路波束扫描215-c进行发送。另外地或替代地,如果UE 115-a确定发生了部分波束阻挡,则UE 115-a可以请求相对于用于PDSCH 210的MCS的较低的MCS和相同的下行链路波束,或者请求相同或不同的MCS用于不同于波束215-a和215-b的新波束上的重传。在另一个示例中,如果UE115-a确定没有发生完全的或部分的波束阻挡,则UE 115-a可以与PUCCH 220的NACK或CSI-RS报告一起向基站105-a报告该信息(例如,在与NACK或者CSI-RS相同的控制信道消息中)。在一些情况下,可以以单个PUCCH格式来发送该报告和NACK。在一些情况下,UE 115-a可以在不同的控制信道消息中发送该报告和NACK。该确定可以指示解码失败是慢衰落或来自另一小区的下行链路干扰的结果,这可能得益于较低的MCS,但可能不是得益于新波束。
基站105-a可以经由PUCCH 220或经由CSI-RS报告,接收NACK和链路自适应信息。因此,基站105-a可以基于链路自适应信息,使用经调整的通信参数(诸如MCS或TCI状态)来执行重传。因此,基站105-a可以作出关于采取何种链路自适应操作以高效地向UE 115-a进行重新发送的知情决策。
图3示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的时间线300的示例。在一些示例中,时间线300可以实现无线通信系统100的各方面。时间线300可以包括UE 115-b和基站105-b,它们可以是如参考图1和图2所描述的UE 115和基站105的相应示例。
如上面参考图2所描述的,基站105-b可以尝试经由相应的波束315-a和315-b向UE115-b进行对PDSCH 310-a和310-b的多TRP传输。UE 115-b可以执行针对PDSCH 310-a和310-b的解码过程,但是该解码可能是不成功的。因此,UE 115-b可以执行波束阻挡检测过程以确定链路自适应信息,以与PUCCH 320-a中的NACK一起向基站105-b进行指示。
例如,如果式1到式5中的一个或多个为真,则UE 115-b可以确定完全的波束阻挡导致了解码失败。例如,当式1和式2为真并且式3至式5不可用时(例如,层3测量是不可用的),当式1至式4为真并且式5不可用时,或者当式1至式5为真时,可能发生波束阻挡。更具体地,UE可以在第一时间实例评估式1:
L1_RSRPaverageSystemBandwidth<L1_RSRPThreshold1 (1)
此外,UE可以在第一时间实例评估式2:
max(L1_RSRPResourceBlock)<L1_RSRPThreshold2 (2)
另外地或替代地,UE可以使用在相干时间上取的平均值来评估式3:
L3_RSRPaverageSystemBandwidth<L3_RSRPThreshold3 (3)
另外地或替代地,UE可以使用在相干时间上取的平均值来评估式4:
max(L3_RSRPResourceBlock)<L3_RSRPThreshold4 (4)
另外地或替代地,当第一时间实例与起始时间之间的差值大于相干时间时,UE可以评估式5:
Figure BDA0003917268110000131
当基于上面的条件发生波束阻挡时,则UE 115-b可以经由上行链路波束扫描来发送具有NACK和链路自适应信息的PUCCH 320-a,该链路自适应信息指示发生了阻挡。
当上面的波束阻挡条件为假时,UE 115-b可以评估是否发生了部分波束阻挡。例如,如果式6至式10中的一个或多个为真,则UE 115-b可以确定部分波束阻挡导致了解码失败。例如,当式1和式2为假、式6和式7为假、并且式3至式5和式8至式10不可用时,可能发生部分波束阻挡。在另一个示例中,当式1至式4为假,式6至式9为真,并且式5和式10不可用时,可能发生部分波束阻挡。在另一个示例中,当式1至式5为假并且式6至式10为真时,可能发生部分波束阻挡。更具体地,UE可以在第一时间实例评估式1和式6:
L1_RSRPaverageSystemBandwidth<L1_RSRPThreshold1a (6)
此外,UE可以在第一时间实例评估式2和7:
max(L1_RSRPResourceBlock)<L1_RSRPThreshold2a (7)
另外地或替代地,UE可以使用在相干时间上取的平均值来评估式3和式8:
L3_RSRPaverageSystemBandwidth<L3_RSRPThreshold3a (8)
另外地或替代地,UE可以使用在相干时间上取的平均值来评估式4和式9:
max(L3_RSRPResourceBlock)<L3_RSRPThreshold4a (9)
另外地或替代地,当第一时间实例与起始时间之间的差值大于相干时间时,UE可以评估式5和式10:
L1_RSRPt1-L1_RSRPt0<L1_RSRP_DropThreshold5a (10)
当基于上面的条件发生部分波束阻挡时,UE 115-b可以评估波束阻挡检测参考信号的层1RSRP是否高于第一门限。如果波束阻挡检测参考信号的层1RSRP高于第一门限,则UE 115-b可以不利用上行链路波束扫描来发送具有NACK和链路自适应信息(其指示波束315-c上发生了部分阻挡)的PUCCH 320-a。如果波束阻挡检测参考信号的层1RSRP不高于第一门限,则UE 115-b可以利用上行链路波束扫描来发送具有NACK和指示发生部分阻挡的链路自适应信息的PUCCH 320-a。
在一些情况下,PUCCH 320-a中的链路自适应信息可以请求新的下行链路波束。因此,基站105-b可以经由下行链路波束扫描来发送下行链路控制信息(DCI)325,以分别选择两个新波束315-d和315-e来用于PDSCH 310-c和310-d的重传。另外地或替代地,基站105-b可以更新用于PDSCH310-c或310-d的重传的MCS。根据UE对较低MCS的请求,在已经使用最低MCS的情况下,UE可以及时请求重复,作为对链路自适应的措施。因此,基站105-b可以确定如何调整用于与UE 115-b的链路的通信参数,以成功地重新发送PDSCH 310-c和310-d。UE115-b可以成功地解码PDSCH310-c和310-d中的一个或两个,并且UE 115-b可以在没有波束扫描的情况下,通过在波束315-f上在PUCCH 320-b中发送ACK来响应。
在一些示例中,在至少部分地波束阻挡检测时,UE 115-b通常可以请求新波束来用于下行链路重传。在激活若干下行链路波束并测量其信号强度的情况下,UE 115-b可以向基站105-b指示优选的下行链路波束(例如,TCI状态ID)。
图4示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的流程图400的示例。在一些示例中,流程图400可以实现无线通信系统100的各方面。流程图400可以是在UE(诸如如参考图1至图3所描述的UE 115)处实现的波束阻挡检测过程。
在405处,UE可以开始波束阻挡检测操作的示例。波束阻挡检测操作可以作为其它波束管理操作的一部分而被包括。在410处,UE可以确定该UE是否能够接收PDSCH的至少一部分。如果UE能够接收PDSCH的至少一部分,则UE进入415。但是,如果UE未能接收PDSCH的至少一部分或者不能确定基站是否发送了PDSCH,则UE可以进入450。
在415处,UE可以确定是否能够对PDSCH正确地解码。如果解码成功,则UE可以发送ACK并返回到流程图的开头。如果解码不成功,则UE可能不发送ACK并进入420。
在420处,UE可以确定解码失败是否是由于波束阻挡。例如,UE可以确定式1至式5中的一个或多个为真。如果存在波束阻挡,则UE进入425。在425处,UE可以利用上行链路波束扫描过程来发送NACK,并可以请求新的下行链路波束以用于由基站进行的重传。如果UE确定式1到式5中的一个或多个为假,则UE可以确定不存在完全的波束阻挡,并进入430。
在430处,UE可以确定解码失败是否是由于部分波束阻挡。例如,UE可以确定式1到式5中的一个或多个是否为假并且式6到式10中的一个或多个是否为真。如果式1至式5中的一个或多个为假并且式6至式10中的相关联的式子也为假,则UE可以确定不存在部分波束阻挡,并返回到流程图的开始。如果UE确定式1至式5中的一个或多个为假并且来自式6至式10中的一个或多个的相关联的条件为真,则UE可以确定解码失败至少部分地是由于部分波束阻挡而导致的,并进入435。
在435处,UE可以评估针对PDSCH和波束阻挡检测参考信号所观察到的层1RSRP是否高于层1RSRP门限。如果层1RSRP高于该门限,则UE可以进入440。如果层1RSRP等于或低于该门限,则UE可以进入445。
在440处,UE可以不利用上行链路波束扫描过程来发送NACK,并且可以请求以下项之一:相对于被评估的传输,较低的MCS和相同的下行链路波束用于重传,或者相对于被评估的传输,相同的MCS和新的下行链路波束用于重传。在UE请求较低的MCS时,如果已经使用了最低的MCS,则UE可以及时请求重复,作为针对链路自适应的措施。
在445处,UE可以利用上行链路波束扫描过程来发送NACK,并且可以请求以下项之一:相对于被评估的传输,较低的MCS和相同的下行链路波束用于重传,或者相对于被评估的传输,相同的MCS和新的下行链路波束用于重传。在UE请求较低的MCS时,如果已经使用了最低的MCS,则UE可以及时请求重复,作为针对链路自适应的措施。
在450处,UE可以确定其是否接收到波束阻挡参考信号。如果UE没有接收到波束阻挡参考信号,则UE可以返回到流程图的开始。如果UE确实接收到波束阻挡参考信号,则UE可以进入455。
在455处,UE可以确定波束阻挡参考信号是否经历了波束阻挡。例如,UE可以确定式1到式5中的一个或多个对于参考信号为真。如果存在波束阻挡,则UE进入460。在460处,UE可以利用上行链路波束扫描过程来请求新的下行链路波束以用于重传。如果UE确定式1到式5中的一个或多个对于参考信号为假,则UE可以确定不存在完全的波束阻挡,并进入465。
在465处,UE可以确定波束阻挡参考信号是否经历了部分波束阻挡。例如,对于参考信号,UE可以确定式1到式5中的一个或多个是否为假并且式6到式10中的一个或多个是否为真。如果式1到式5中的一个或多个为假并且来自式6到式10的相关联的式子也为假,则UE可以确定不存在部分波束阻挡,并返回到流程图的开始。如果UE确定式1到式5中的一个或多个为假并且来自式6到式10中的一或多个的相关联的条件为真,则UE可以确定波束阻挡参考信号经历了部分波束阻挡,并进入470。
在470处,UE可以评估针对波束阻挡检测参考信号所观测到的层1RSRP是否高于层1RSRP门限。如果层1RSRP高于该门限,则UE可以进入475。如果层1RSRP等于或低于该门限,则UE可以进入460。
在475处,UE可以不利用上行链路波束扫描过程来请求新的下行链路波束以用于重传。
图5示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的过程流500的示例。在一些示例中,过程流500可以实现无线通信系统100的各方面。将过程流500示出为由UE 115-c来实现,其中UE 115-c可以是如参照图1和图2所描述的UE 115的示例。例如,UE 115-c可以是图2的UE 115-a或图3的UE 115-b的示例。过程流500也被示出为由基站105-c实现,基站105-c可以是如参考图1和图2所描述的基站105的示例。例如,基站105-c可以是图2的基站105-a或图3的基站105-b的示例。
在对过程流500的以下描述中,UE 115-c和基站105-c的操作可能以与所示的示例性顺序不同的顺序发生。某些示出的操作也可以不在过程流500中,或者可以将其它操作添加到过程流500。应当理解的是,虽然示出UE 115-c和基站105-c执行过程流500的多个操作,但是任何无线设备都可以执行所示的操作。用于报告与波束阻挡相关联的反馈的配置可以包括与波束阻挡确定相关联的第一门限和与部分波束阻挡确定相关联的第二门限。
在505处,基站105-c可以发送用于报告与波束阻挡相关联的反馈的配置,以及UE115-c可以接收该配置。例如,该配置可以被包括在RRC消息的IE中。
在510处,基站105-c可以经由多个波束来发送PDSCH。在一些示例中,可以将PDSCH与参考信号一起发送,该参考信号被配置用于UE 115-c检测波束阻挡(例如,波束阻挡检测参考信号)。UE 115-c可以接收波束阻挡检测参考信号,其中,在520处根据配置来确定解码过程的失败是否是所述多个发射波束中的一个或多个发射波束在下行链路传输期间至少被部分地阻挡的结果,是至少部分基于波束阻挡检测参考信号。在一些情况下,PDSCH可能是半持久调度的传输。
在515处,UE 115-c可以尝试对经由相应的多个发射波束发送的多个下行链路传输中的至少一个下行链路传输执行解码过程。
在520处,UE 115-c可以根据在505处接收的配置,确定在515处的解码过程的失败是否是在510处的多个发射波束中的一个或多个发射波束在下行链路传输期间至少被部分地阻挡的结果。在一些示例中,该确定可以包括将波束阻挡检测参考信号的接收功率与门限进行比较,并至少部分地基于接收功率小于该门限来确定多个发射波束中的一个或多个发射波束被阻挡。在其它示例中,该确定可以包括:将波束阻挡检测参考信号的接收功率与第一门限和第二门限进行比较,并至少部分地基于接收功率大于第一门限且小于第二门限来确定多个发射波束中的一个或多个发射波束被部分地阻挡。在另一示例中,该确定可以包括:将波束阻挡检测参考信号的接收功率与第一门限和第二门限进行比较,并至少部分地基于接收功率大于第一门限并大于第二门限来确定多个发射波束中的一个或多个发射波束没有被部分地阻挡。
在525处,UE 115-c可以基于在520处评估是否发生波束阻挡的结果来确定链路自适应信息。在一些示例中,链路自适应信息包括对至少一个新的下行链路波束的请求。在一些情况下,链路自适应信息包括对至少一个新的下行链路波束的请求以及对MCS的重用。在其它情况下,链路自适应信息包括对新MCS的请求以及对多个发射波束的重用。
在530处,UE 115-c可以发送NACK和链路自适应信息并且基站105-c可以对其进行接收,其中NACK是至少部分地基于515处的解码过程的失败的,并且链路自适应信息是至少部分地基于在520处确定多个发射波束中的一个或多个发射波束是否至少被部分地阻挡的。在一些情况下,UE115-c可以至少部分地基于确定多个发射波束中的一个或多个发射波束是否至少被部分地阻挡,经由波束扫描中的多个上行链路波束来发送NACK和链路自适应信息。在一些示例中,单个控制信道消息包括NACK和链路自适应信息。例如,UE 115-c可以发送上行链路控制消息(例如,PUCCH),该上行链路控制消息包括指示以下各项中的一项或多项的多个比特的链路自适应信息:针对重传的请求、对MCS的修改、或针对新波束的请求。在一些示例中,上行链路控制消息可以包括比特集合,这些比特可以指示请求的组合的集合中的一个组合(例如,第一值可以指示对MCS的修改,第二值可以指示针对新波束的请求,第三值可以指示针对新波束的请求和对MCS的修改)。在其它示例中,可以在第一控制信道消息中发送NACK,并且可以在第二、不同的控制信道信息中发送链路自适应信息。
在535处,基站105-c可以至少部分地基于在530处接收到的NACK来确定重新发送来自510的多个下行链路传输中的至少一个下行链路传输。
在540处,基站105-c可以至少部分地基于在530处接收到的链路自适应信息来调整用于在545处对所述多个下行链路传输中的至少一个下行链路传输的重传的通信参数。例如,基站105-c可以至少部分地基于NACK和链路自适应信息,针对多个下行链路传输中的至少一个下行链路传输的重传,执行下行链路波束扫描过程。另外地或替代地,基站105-c可以使用不同的波束进行重传,可以修改用于重传的MCS,或者如果MCS已经处于最低级别,则可以发送对重传的多次重复。
在545处,基站105-c可以根据通信参数来重新发送多个下行链路传输中的至少一个下行链路传输。
在550处,UE 115-c可以对重传进行成功地解码。
图6示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备605的框图600。设备605可以是如本文所描述的UE 115的各方面的示例。设备605可以包括接收机610、通信管理器615和发射机620。设备605还可以包括处理器。这些组件中的每个组件可以彼此相通信(例如,经由一个或多个总线)。
接收机610可以接收诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道、以及与基于波束阻挡确定的链路自适应有关的信息等等)相关联的控制信息之类的信息。可以将信息传送到设备605的其它组件。接收机610可以是参照图9所描述的收发机920的各方面的示例。接收机610可以利用单个天线或者一组天线。
通信管理器615可以接收用于报告与波束阻挡相关联的反馈的配置,对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程,根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果,并发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,并且链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。通信管理器615可以是本文所描述的通信管理器910的各方面的示例。
通信管理器615或者其子组件可以用硬件、由处理器执行的代码(例如,软件或固件)、或者其任何组合的方式来实现。如果用由处理器执行的代码的方式来实现,则被设计为执行本公开内容中所描述的功能的通用处理器、DSP、专用集成电路(ASIC)、FPGA或者其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任何组合可以执行通信管理器615或者其子组件的功能。
通信管理器615或者其子组件可以物理地位于各个位置,包括被分布使得通过一个或多个物理组件在不同的物理位置处实现功能的部分功能。在一些示例中,根据本公开内容的各个方面,通信管理器615或者其子组件可以是单独的和不同的组件。在一些示例中,根据本公开内容的各个方面,可以将通信管理器615或者其子组件与一个或多个其它硬件组件进行组合,这些硬件组件包括但不限于输入/输出(I/O)组件、收发机、网络服务器、另一个计算设备、本公开内容中所描述的一个或多个其它组件或者其组合。
发射机620可以发送由设备605的其它组件所生成的信号。在一些示例中,发射机620可以与接收机610共址在收发机模块中。例如,发射机620可以是参照图9所描述的收发机920的各方面的示例。发射机620可以利用单个天线或一组天线。
图7示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备705的框图700。设备705可以是如本文所描述的设备605或UE 115的各方面的示例。设备705可以包括接收机710、通信管理器715和发射机740。设备705还可以包括处理器。这些组件中的每个组件可以彼此相通信(例如,经由一个或多个总线)。
接收机710可以接收诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道、以及与基于波束阻挡确定的链路自适应有关的信息等等)相关联的控制信息之类的信息。可以将信息传送到设备705的其它组件。接收机710可以是参照图9所描述的收发机920的各方面的示例。接收机710可以利用单个天线或者一组天线。
通信管理器715可以是如本文所描述的通信管理器615的各方面的示例。通信管理器715可以包括反馈报告管理器720、解码器725、波束阻挡组件730和反馈组件735。通信管理器715可以是本文所描述的通信管理器910的各方面的示例。
反馈报告管理器720可以接收用于报告与波束阻挡相关联的反馈的配置。解码器725对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程(例如,其中所述一个或多个下行链路传输可以是经由相应的发射波束集合从基站发送的)。波束阻挡组件730可以根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。反馈组件735可以发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。
发射机740可以发送由设备705的其它组件生成的信号。在一些示例中,发射机740可以与接收机710共址在收发机模块中。例如,发射机740可以是参照图9所描述的收发机920的各方面的示例。发射机740可以利用单个天线或一组天线。
图8示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的通信管理器805的框图800。通信管理器805可以是本文所描述的通信管理器615、通信管理器715或者通信管理器910的各方面的示例。通信管理器805可以包括反馈报告管理器810、解码器815、波束阻挡组件820、反馈组件825、参考信号管理器830、比较组件835、第一控制信道管理器840、第二控制信道管理器845和RRC控制器850。这些模块中的每个模块可以彼此直接地或者间接地进行通信(例如,经由一个或多个总线)。
反馈报告管理器810可以接收用于报告与波束阻挡相关联的反馈的配置801。例如,反馈报告管理器810可以经由接收机710来获得配置801。在一些情况下,配置801可以被包含在RRC消息的IE中。例如,反馈报告管理器810可以从RRC控制器850获得IE信息814。在一些情况下,配置801可以被包含在从较低层(例如,比RRC协议层更低的层,诸如从MAC协议层接收的MAC控制元素(MAC CE))接收的消息中。
解码器815可以对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程。例如,解码器815可以经由接收机710获得与来自基站的一个或多个波束的解调相对应的信息802。来自基站的一个或多个波束可以对应于旨在针对于由通信管理器805所支持的设备的PDSCH传输。在一些情况下,所述下行链路传输集合可以是经由来自基站的一个或多个波束来半持久地发送的。
波束阻挡组件820可以根据配置801来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。例如,阻挡组件820可以从解码器815获得经解码的信息803。阻挡组件820可以将经解码的信息803与从反馈报告管理器810获得的配置信息804进行比较,以做出关于波束阻挡的确定。在一些情况下,配置信息804可以包括一个或多个门限。在一些示例中,波束阻挡组件820可以基于接收功率小于门限来确定波束集合中的一个或多个波束被阻挡。在一些示例中,波束阻挡组件820可以基于接收功率小于或等于门限来确定波束集合中的一个或多个波束被阻挡。在一些示例中,波束阻挡组件820可以基于接收功率大于第一门限并小于第二门限来确定波束集合中的一个或多个波束被部分地阻挡。在一些示例中,波束阻挡组件820可以基于接收功率大于或等于第一门限并且小于或等于第二门限来确定波束集合中的一个或多个波束被部分地阻挡。在一些示例中,波束阻挡组件820可以基于接收功率大于第一门限并且大于第二门限来确定波束集合中的一个或多个波束没有被部分地阻挡。在一些示例中,波束阻挡组件820可以基于接收功率大于或等于第一门限并且大于或等于第二门限来确定波束集合中的一个或多个波束没有被部分地阻挡。
反馈组件825可以发送NACK 807和链路自适应信息808,其中NACK 807是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。在一些情况下,反馈组件825可以从波束阻挡组件820获得波束阻挡信息806,并将NACK 807和链路自适应信息808传递到发射机740,发射机740可以向基站发送与NACK 807和链路自适应信息808相对应的信号。在一些示例中,反馈组件825可以基于确定波束集合中的一个或多个波束是否至少被部分地阻挡,经由波束扫描中的上行链路波束集合来发送NACK 807和链路自适应信息808。在一些情况下,链路自适应信息808包括对至少一个新下行链路波束的请求。在一些情况下,链路自适应信息808包括对至少一个新下行链路波束以及重用MCS的请求。在一些情况下,链路自适应信息808包括对新MCS以及重用多个波束的集合的请求。在一些情况下,单个控制信道消息包括NACK 807和链路自适应信息808。
参考信号管理器830可以接收参考信号809,其中根据配置801来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在下行链路传输期间至少被部分地阻挡的结果,是基于参考信号809的。在一些示例中,参考信号管理器830可以经由接收机710来获得参考信号809。在一些示例中,波束阻挡组件820可以根据从反馈报告管理器810获得的配置信息804以及从参考信号管理器830获得的参考信号信息811来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在下行链路传输期间至少被部分地阻挡的结果。
比较组件835可以将参考信号809的接收功率与门限进行比较。例如,比较组件835可以从参考信号管理器830获得接收功率信息812。比较组件835可以从反馈报告管理器810获得在配置信息804中提供的门限,以将参考信号809的接收功率信息812与门限进行比较。在一些示例中,比较组件835可以将参考信号809的接收功率与第一门限和第二门限进行比较。在一些情况下,比较组件835可以从反馈报告管理器810获得配置信息804中的第一门限和第二门限。比较组件835可以将参考信号809的接收功率信息812与第一门限和第二门限进行比较。
第一控制信道管理器840可以在第一控制信道消息中发送NACK 807。例如,第一控制信道管理器840可以将NACK 807传递到发射机740,发射机740可以向基站发送与NACK807相对应的信号。
第二控制信道管理器845可以在第二控制信道消息中发送链路自适应信息。例如,第二控制信道管理器845可以将链路自适应信息808传递到发射机740,发射机740可以向基站发送与链路自适应信息808相对应的信号。
RRC控制器850可以接收RRC消息813,该RRC消息813包括用于报告与波束阻挡相关联的反馈的IE。例如,RRC控制器850可以经由接收机710来获得RRC消息813。在一些情况下,RRC控制器850可以将IE信息814传递到反馈报告管理器810。在一些情况下,IE信息814可以提供用于报告与波束阻挡相关联的反馈的配置801。
图9示出根据本公开内容的各方面的包括设备905的系统900的示意图,设备905支持基于波束阻挡确定的链路自适应。设备905可以是如本文所描述的设备605、设备705或者UE 115的示例,或者包括设备605、设备705或者UE 115的组件。设备905可以包括用于双向语音和数据通信的组件,其包括用于发送通信的组件和用于接收通信的组件,包括通信管理器910、I/O控制器915、收发机920、天线925、存储器930和处理器940。这些组件可以经由一个或多个总线(例如,总线945)进行电子通信。
通信管理器910可以接收用于报告与波束阻挡相关联的反馈的配置,对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程,根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果,以及发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。
I/O控制器915可以管理针对设备905的输入和输出信号。I/O控制器915还可以管理未被集成到设备905中的外围设备。在一些情况下,I/O控制器915可以表示针对外部的外围设备的物理连接或端口。在一些情况下,I/O控制器915可以利用诸如
Figure BDA0003917268110000191
Figure BDA0003917268110000192
之类的操作系统或者另一种已知的操作系统。在其它情况下,I/O控制器915可以表示调制解调器、键盘、鼠标、触摸屏或者类似的设备,或者与这些设备进行交互。在一些情况下,可以将I/O控制器915实现成处理器的一部分。在一些情况下,用户可以经由I/O控制器915或者经由I/O控制器915所控制的硬件组件,与设备905进行交互。
收发机920可以经由一个或多个天线、有线链路或无线链路进行双向地通信,如本文描述的。例如,收发机920可以表示无线收发机,并且可以与另一个无线收发机进行双向地通信。收发机920还可以包括调制解调器,用以对分组进行调制并且将经调制的分组提供给天线以进行发送,以及用以对从天线接收的分组进行解调。
在一些情况下,无线设备可以包括单个天线925。但是,在一些情况下,该设备可以具有一个以上的天线925,这些天线925可能能够同时地发送或接收多个无线传输。
存储器930可以包括RAM和ROM。存储器930可以存储包括指令的计算机可读、计算机可执行代码935,指令当被执行时,使得处理器执行本文所描述的各种功能。在一些情况下,除了别的之外,存储器930可以包含基本输入/输出系统(BIOS),BIOS可以控制基本硬件或者软件操作(诸如与外围组件或者设备的交互)。
处理器940可以包括智能硬件设备(例如,通用处理器、数字信号处理器(DSP)、CPU、微控制器、ASIC、现场可编程门阵列(FPGA)、可编程逻辑器件、分立门或晶体管逻辑组件、分立硬件组件或者其任何组合)。在一些情况下,处理器940可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以被集成到处理器940中。处理器940可以被配置为执行被存储在存储器(例如,存储器930)中的计算机可读指令,以使设备905执行各种功能(例如,支持基于波束阻挡确定的链路自适应的功能或任务)。
代码935可以包括用于实现本公开内容的各方面的指令,其包括用于支持无线通信的指令。代码935可以被存储在诸如系统存储器或其它类型的存储器之类的非暂时性计算机可读介质中。在一些情况下,代码935可以不直接地由处理器940可执行,而是可以使得计算机(例如,当被编译和执行时)执行本文所描述的功能。
图10示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备1005的框图1000。设备1005可以是如本文所描述的基站105的各方面的示例。设备1005可以包括接收机1010、通信管理器1015和发射机1020。设备1005还可以包括处理器。这些组件中的每个组件可以彼此相通信(例如,经由一个或多个总线)。
接收机1010可以接收诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道、以及与基于波束阻挡确定的链路自适应有关的信息等等)相关联的控制信息之类的信息。可以将信息传送到设备1005的其它组件。接收机1010可以是参照图13所描述的收发机1320的各方面的示例。接收机1010可以利用单个天线或者一组天线。
通信管理器1015可以发送用于报告与波束阻挡相关联的反馈的配置,经由多个波束的集合来发送一个或多个下行链路传输,接收根据该配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联,基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输,以及基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。通信管理器1015可以是本文所描述的通信管理器1310的各方面的示例。
通信管理器1015或者其子组件可以用硬件、由处理器执行的代码(例如,软件或固件)、或者其任何组合的方式来实现。如果用由处理器执行的代码的方式来实现,则被设计为执行本公开内容中所描述的功能的通用处理器、DSP、专用集成电路(ASIC)、FPGA或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任何组合,可以执行通信管理器1015或者其子组件的功能。
通信管理器1015或者其子组件可以物理地位于各个位置,包括被分布使得通过一个或多个物理组件在不同的物理位置处实现功能的部分功能。在一些示例中,根据本公开内容的各个方面,通信管理器1015或者其子组件可以是单独的和不同的组件。在一些示例中,根据本公开内容的各个方面,可以将通信管理器1015或者其子组件与一个或多个其它硬件组件进行组合,其中这些硬件组件包括但不限于:输入/输出(I/O)组件、收发机、网络服务器、另一个计算设备、本公开内容中所描述的一个或多个其它组件或者其组合。
发射机1020可以发送由设备1005的其它组件生成的信号。在一些示例中,发射机1020可以与接收机1010共址在收发机模块中。例如,发射机1020可以是参照图13所描述的收发机1320的各方面的示例。发射机1020可以利用单个天线或者一组天线。
图11示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的设备1105的框图1100。设备1105可以是如本文所描述的设备1005或基站105的各方面的示例。设备1105可以包括接收机1110、通信管理器1115和发射机1145。设备1105还可以包括处理器。这些组件中的每个组件可以彼此相通信(例如,经由一个或多个总线)。
接收机1110可以接收诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道、以及与基于波束阻挡确定的链路自适应有关的信息等等)相关联的控制信息之类的信息。可以将信息传送到设备1105的其它组件。接收机1110可以是参照图13所描述的收发机1320的各方面的示例。接收机1110可以利用单个天线或者一组天线。
通信管理器1115可以是如本文所描述的通信管理器1015的各方面的示例。通信管理器1115可以包括反馈报告控制器1120、多TRP传输管理器1125、反馈组件1130、重传管理器1135和通信参数控制器1140。通信管理器1115可以是本文所描述的通信管理器1310的各方面的示例。
反馈报告控制器1120可以发送用于报告与波束阻挡相关联的反馈的配置。多TRP传输管理器1125可以经由多个波束的集合来发送一个或多个下行链路传输(例如,其中所述一个或多个下行链路传输可以是经由相应的发射波束的集合从基站发送的)。反馈组件1130可以接收根据该配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联。重传管理器1135基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。通信参数控制器1140可以基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。
发射机1145可以发送设备1105的其它组件生成的信号。在一些示例中,发射机1145可以与接收机1110共址在收发机模块中。例如,发射机1145可以是参照图13所描述的收发机1320的各方面的示例。发射机1145可以利用单个天线或者一组天线。
图12示出根据本公开内容的各方面的支持基于波束阻挡确定的链路自适应的通信管理器1205的框图1200。通信管理器1205可以是本文所描述的通信管理器1015、通信管理器1115或者通信管理器1310的各方面的示例。通信管理器1205可以包括反馈报告控制器1210、多TRP传输管理器1215、反馈组件1220、重传管理器1225、通信参数控制器1230、参考信号管理器1235、波束扫描组件1240、第一控制信道管理器1245、第二控制信道管理器1250和RRC控制器1255。这些模块中的每个模块可以彼此直接地或者间接地进行通信(例如,经由一个或多个总线)。
反馈报告控制器1210可以发送用于报告与波束阻挡相关联的反馈的配置1201。在一些情况下,配置1201可以被包含在RRC消息的IE中。例如,反馈报告控制器1210可以将IE信息1214传递到RRC控制器1255。RRC控制器1255可以生成用于由发射机1145发送的RRC消息。在一些情况下,配置1201可以被包含在从较低层(例如,比RRC协议层更低的层,诸如从MAC协议层接收的MAC CE)接收的消息中。在一些情况下,用于报告与波束阻挡相关联的反馈的配置1201包括:与波束阻挡确定相关联的第一门限以及与部分波束阻挡确定相关联的第二门限。
多TRP传输管理器1215可以经由多个波束的集合来发送一个或多个下行链路传输。例如,下行链路传输可以是PDSCH传输。多TRP传输管理器1215可以准备PDSCH传输,并将波束传输信息1216传递到发射机1145以用于发送。在一些情况下,下行链路传输的集合是经由相应的波束集合来半持久地发送的。
反馈组件1220可以接收根据配置1201的NACK 1207和链路自适应信息1208,其中NACK1207是基于解码过程的失败的,以及链路自适应信息1208与多个波束的集合中的至少一个波束相关联。在一些示例中,反馈组件1220可以基于发射波束的集合中的一个或多个发射波束是否至少被部分地阻挡,经由波束扫描的上行链路波束的集合中的至少一个上行链路波束来接收NACK 1207和链路自适应信息1208。在一些情况下,反馈组件1220可以从接收机1110获得NACK 1207和链路自适应信息1208,接收机1110可以从UE接收与NACK 1207和链路自适应信息1208相对应的信号。反馈组件1220可以将波束阻挡信息1206传递到重传管理器1225。在一些情况下,单个控制信息消息包括NACK 1207和链路自适应信息1208。
重传管理器1225可以基于NACK 1207来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。例如,重传管理器1225可以基于波束阻挡信息1206(例如,在波束阻挡信息1206中标识的NACK 1207)来做出该确定。在一些示例中,重传管理器1225可以根据通信参数来重新发送下行链路传输的集合中的至少一个下行链路传输。例如,重传管理器1225可以将重传信息1217传递到多TRP传输管理器1215,多TRP传输管理器1215可以准备PDSCH重传并将波束重传信息1218传递给发射机1145以用于发送。
通信参数控制器1230可以基于链路自适应信息1208来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。在一些情况下,重传管理器1225可以将(例如,经由波束阻挡信息1206接收的)链路自适应信息1208传递到通信参数控制器1230。在一些情况下,链路自适应信息1208包括对至少一个新下行链路波束的请求,并且其中通信参数包括至少一个TCI状态。在一些情况下,链路自适应信息1208包括对至少一个新下行链路波束以及重用MCS的请求,并且其中通信参数包括至少一个TCI状态。在一些情况下,链路自适应信息1208包括用于更新MCS和重用多个波束的集合的请求,并且其中通信参数包括MCS。
参考信号管理器1235可以发送参考信号。例如,参考信号管理器1235可以准备参考信号传输(例如,DM-RS、PT-RS或CSI-RS),并将参考信号传输信息1219传递给发射机1145以用于发送。
波束扫描组件1240可以基于NACK 1207和链路自适应信息1208,针对一个或多个下行链路传输中的至少一个下行链路传输的重传,执行下行链路波束扫描过程。例如,波束扫描组件1240可以准备波束扫描传输,并将波束扫描传输信息1221传递到发射机1145以用于发送。在一些情况下,重传管理器1225可以将波束阻挡信息1206(例如,NACK 1207和链路自适应信息1208)传递到波束扫描组件1240。
第一控制信道管理器1245可以在第一控制信道消息中接收NACK 1207。例如,第一控制信道管理器1245可以从接收机1110获得NACK 1207,接收机1110可以从UE接收与NACK1207相对应的信号。
第二控制信道管理器1250可以在第二控制信道消息中接收链路自适应信息1208。例如,第二控制信道管理器1250可以从接收机1110获得链路自适应信息1208,接收机1110可以从UE接收与链路自适应信息1208相对应的信号。
RRC控制器1255可以发送RRC消息,该RRC消息包括用于报告与波束阻挡相关联的反馈的IE。例如,RRC控制器1255可以将RRC消息1213传递到发射机1145以用于发送。在一些情况下,RRC控制器1255可以从反馈报告控制器1210获得IE信息1214。在一些情况下,IE信息1214可以向UE提供用于报告与波束阻挡相关联的反馈的配置。
图13示出根据本公开内容的各方面的包括设备1305的系统1300的示意图,设备1305支持基于波束阻挡确定的链路自适应。设备1305可以是如本文所描述的设备1005、设备1105或基站105的示例,或者包括设备1005、设备1105或基站105的组件。设备1305可以包括用于双向语音和数据通信的组件,其包括用于发送通信的组件和用于接收通信的组件,包括通信管理器1310、网络通信管理器1315、收发机1320、天线1325、存储器1330、处理器1340和站间通信管理器1345。这些组件可以经由一个或多个总线(例如,总线1350)进行电子通信。
通信管理器1310可以发送用于报告与波束阻挡相关联的反馈的配置,经由多个波束的集合来发送一个或多个下行链路传输,接收根据该配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联,基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输,并基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。
网络通信管理器1315可以管理与核心网络的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1315可以管理用于客户端设备(诸如一个或多个UE 115)的数据通信的传输。
收发机1320可以经由一个或多个天线、有线链路或无线链路进行双向地通信,如本文描述的。例如,收发机1320可以表示无线收发机,并且可以与另一个无线收发机进行双向地通信。收发机1320还可以包括调制解调器,用以对分组进行调制并将经调制的分组提供给天线以进行发送,以及用以对从天线接收的分组进行解调。
在一些情况下,该无线设备可以包括单个天线1325。但是,在一些情况下,该设备可以具有一个以上的天线1325,这些天线1325可能能够同时地发送或接收多个无线传输。
存储器1330可以包括RAM、ROM或者其组合。存储器1330可以存储包括指令的计算机可读代码1335,指令当被处理器(例如,处理器1340)执行时,使得该设备执行本文所描述的各种功能。在一些情况下,除了别的之外,存储器1330可以包含BIOS,BIOS可以控制基本硬件或者软件操作(诸如与外围组件或者设备的交互)。
处理器1340可以包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、可编程逻辑器件、分立门或晶体管逻辑组件、分立硬件组件或者其任何组合)。在一些情况下,处理器1340可以被配置为使用存储器控制器来操作存储器阵列。在一些情况下,存储器控制器可以被集成到处理器1340中。处理器1340可以被配置为执行被存储在存储器(例如,存储器1330)中的计算机可读指令,以使得设备1305执行各种功能(例如,支持基于波束阻挡确定的链路自适应的功能或任务)。
站间通信管理器1345可以管理与其它基站105的通信,并且可以包括用于与其它基站105协作地控制与UE 115的通信的控制器或调度器。例如,站间通信管理器1345可以协调到UE 115的传输的调度,以用于诸如波束成形或者联合传输之类的各种干扰缓解技术。在一些示例中,站间通信管理器1345可以提供LTE/LTE-A无线通信网络技术中的X2接口以提供基站105之间的通信。
代码1335可以包括用于实现本公开内容的各方面的指令,其包括用于支持无线通信的指令。代码1335可以被存储在诸如系统存储器或其它类型的存储器之类的非暂时性计算机可读介质中。在一些情况下,代码1335可以不直接地由处理器1340可执行,而是可以使得计算机(例如,当被编译和执行时)执行本文所描述的功能。
图14示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1400的流程图。方法1400的操作可以由如本文所描述的UE 115或者其组件来实现。例如,方法1400的操作可以由如参照图6至图9所描述的通信管理器来执行。在一些示例中,UE可以执行指令集合来控制该UE的功能单元,以执行本文所描述的功能。另外地或替代地,UE可以使用专用硬件来执行本文所描述的功能的各方面。
在1405处,UE可以接收用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1405的操作。在一些示例中,1405的操作的各方面可以由如参照图6至图9所描述的反馈报告管理器来执行。
在1410处,UE可以对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程。可以根据本文所描述的方法来执行1410的操作。在一些示例中,1410的操作的各方面可以由如参照图6至图9所描述的解码器来执行。
在1415处,UE可以根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。可以根据本文所描述的方法来执行1415的操作。在一些示例中,1415的操作的各方面可以由如参照图6至图9所描述的波束阻挡组件来执行。
在1420处,UE可以发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。可以根据本文所描述的方法来执行1420的操作。在一些示例中,1420的操作的各方面可以由如参照图6至图9所描述的反馈组件来执行。
图15示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1500的流程图。方法1500的操作可以由如本文所描述的UE 115或者其组件来实现。例如,方法1500的操作可以由如参照图6至图9所描述的通信管理器来执行。在一些示例中,UE可以执行指令集合来控制该UE的功能单元,以执行本文所描述的功能。另外地或替代地,UE可以使用专用硬件来执行本文所描述的功能的各方面。
在1505处,UE可以接收用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1505的操作。在一些示例中,1505的操作的各方面可以由如参照图6至图9所描述的反馈报告管理器来执行。
在1510处,UE可以接收参考信号,其中根据配置来确定解码过程的失败是否可以是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果,可以是基于参考信号的。可以根据本文所描述的方法来执行1510的操作。在一些示例中,1510的操作的各方面可以由如参照图6至图9所描述的参考信号管理器来执行。
在1515处,UE可以对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程。可以根据本文所描述的方法来执行1515的操作。在一些示例中,1515的操作的各方面可以由如参照图6至图9所描述的解码器来执行。
在1520处,UE可以根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。可以根据本文所描述的方法来执行1520的操作。在一些示例中,1520的操作的各方面可以由如参照图6至图9所描述的波束阻挡组件来执行。
在1525处,UE可以发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。可以根据本文所描述的方法来执行1525的操作。在一些示例中,1520的操作的各方面可以由如参照图6至图9所描述的反馈组件来执行。
图16示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1600的流程图。方法1600的操作可以由如本文所描述的UE 115或者其组件来实现。例如,方法1600的操作可以由如参照图6至图9所描述的通信管理器来执行。在一些示例中,UE可以执行指令集合来控制该UE的功能单元,以执行本文所描述的功能。另外地或替代地,UE可以使用专用硬件来执行本文所描述的功能的各方面。
在1605处,UE可以接收RRC消息,该RRC消息包括用于报告与波束阻挡相关联的反馈的IE。可以根据本文所描述的方法来执行1605的操作。在一些示例中,1605的操作的各方面可以由如参照图6至图9所描述的RRC控制器来执行。
在1610处,UE可以接收用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1610的操作。在一些示例中,1610的操作的各方面可以由如参照图6至图9所描述的反馈报告管理器来执行。
在1615处,UE可以对经由多个波束的集合接收的一个或多个下行链路传输执行解码过程。可以根据本文所描述的方法来执行1615的操作。在一些示例中,1615的操作的各方面可以由如参照图6至图9所描述的解码器来执行。
在1620处,UE可以根据配置来确定解码过程的失败是否是多个波束的集合中的一个或多个波束在一个或多个下行链路传输期间至少被部分地阻挡的结果。可以根据本文所描述的方法来执行1620的操作。在一些示例中,1620的操作的各方面可以由如参照图6至图9所描述的波束阻挡组件来执行。
在1625处,UE可以发送NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息是基于确定多个波束的集合中的一个或多个波束是否至少被部分地阻挡的。可以根据本文所描述的方法来执行1625的操作。在一些示例中,1625的操作的各方面可以由如参照图6至图9所描述的反馈组件来执行。
图17示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1700的流程图。方法1700的操作可以由如本文所描述的基站105或者其组件来实现。例如,方法1700的操作可以由如参照图10至图13所描述的通信管理器来执行。在一些示例中,基站可以执行指令集合来控制该基站的功能单元,以执行本文所描述的功能。另外地或替代地,基站可以使用专用硬件来执行本文所描述的功能的各方面。
在1705处,基站可以发送用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1705的操作。在一些示例中,1705的操作的各方面可以由如参照图10至图13所描述的反馈报告控制器来执行。
在1710处,基站可以经由多个波束的集合来发送一个或多个下行链路传输。可以根据本文所描述的方法来执行1710的操作。在一些示例中,1710的操作的各方面可以由如参照图10至图13所描述的多TRP传输管理器来执行。
在1715处,基站可以接收根据该配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联。可以根据本文所描述的方法来执行1715的操作。在一些示例中,1715的操作的各方面可以由如参照图10至图13所描述的反馈组件来执行。
在1720处,基站可以基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。可以根据本文所描述的方法来执行1720的操作。在一些示例中,1720的操作的各方面可以由如参照图10至图13所描述的重传管理器来执行。
在1725处,基站可以基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。可以根据本文所描述的方法来执行1725的操作。在一些示例中,1725的操作的各方面可以由如参照图10至图13所描述的通信参数控制器来执行。
图18示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1800的流程图。方法1800的操作可以由如本文所描述的基站105或者其组件来实现。例如,方法1800的操作可以由如参照图10至图13所描述的通信管理器来执行。在一些示例中,基站可以执行指令集合来控制该基站的功能单元,以执行本文所描述的功能。另外地或替代地,基站可以使用专用硬件来执行本文所描述的功能的各方面。
在1805处,基站可以发送用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1805的操作。在一些示例中,1805的操作的各方面可以由如参照图10至图13所描述的反馈报告控制器来执行。
在1810处,基站可以经由多个波束的集合来发送一个或多个下行链路传输。可以根据本文所描述的方法来执行1810的操作。在一些示例中,1810的操作的各方面可以由如参照图10至图13所描述的多TRP传输管理器来执行。
在1815处,基站可以发送参考信号。可以根据本文所描述的方法来执行1815的操作。在一些示例中,1815的操作的各方面可以由如参照图10至图13所描述的参考信号管理器来执行。
在1820处,基站可以接收根据所述配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联。可以根据本文所描述的方法来执行1820的操作。在一些示例中,1820的操作的各方面可以由如参照图10至图13所描述的反馈组件来执行。
在1825处,基站可以基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。可以根据本文所描述的方法来执行1825的操作。在一些示例中,1825的操作的各方面可以由如参照图10至图13所描述的重传管理器来执行。
在1830处,基站可以基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。可以根据本文所描述的方法来执行1830的操作。在一些示例中,1830的操作的各方面可以由如参照图10至图13所描述的通信参数控制器来执行。
图19示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法1900的流程图。方法1900的操作可以由如本文所描述的基站105或者其组件来实现。例如,方法1900的操作可以由如参照图10至图13所描述的通信管理器来执行。在一些示例中,基站可以执行指令集合来控制该基站的功能单元,以执行本文所描述的功能。另外地或替代地,基站可以使用专用硬件来执行本文所描述的功能的各方面。
在1905处,基站可以发送用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行1905的操作。在一些示例中,1905的操作的各方面可以由如参照图10至图13所描述的反馈报告控制器来执行。
在1910处,基站可以经由多个波束的集合来发送一个或多个下行链路传输。可以根据本文所描述的方法来执行1910的操作。在一些示例中,1910的操作的各方面可以由如参照图10至图13所描述的多TRP传输管理器来执行。
在1915处,基站可以接收根据所述配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联。可以根据本文所描述的方法来执行1915的操作。在一些示例中,1915的操作的各方面可以由如参照图10至图13所描述的反馈组件来执行。
在1920处,基站可以基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。可以根据本文所描述的方法来执行1920的操作。在一些示例中,1920的操作的各方面可以由如参照图10至图13所描述的重传管理器来执行。
在1925处,基站可以基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。可以根据本文所描述的方法来执行1925的操作。在一些示例中,1925的操作的各方面可以由如参照图10至图13所描述的通信参数控制器来执行。
在1930处,基站可以基于NACK和链路自适应信息,针对下行链路传输的集合中的至少一个下行链路传输的重传,执行下行链路波束扫描过程。可以根据本文所描述的方法来执行1930的操作。在一些示例中,1930的操作的各方面可以由如参照图10至图13所描述的波束扫描组件来执行。
图20示出根据本公开内容的各方面的说明支持基于波束阻挡确定的链路自适应的方法2000的流程图。方法2000的操作可以由如本文所描述的基站105或者其组件来实现。例如,方法2000的操作可以由如参照图10至图13所描述的通信管理器来执行。在一些示例中,基站可以执行指令集合来控制该基站的功能单元,以执行本文所描述的功能。另外地或替代地,基站可以使用专用硬件来执行本文所描述的功能的各方面。
在2005处,基站可以发送用于报告与波束阻挡相关联的反馈的配置。可以根据本文所描述的方法来执行2005的操作。在一些示例中,2005的操作的各方面可以由如参照图10至图13所描述的反馈报告控制器来执行。
在2010处,基站可以经由多个波束的集合来发送一个或多个下行链路传输。可以根据本文所描述的方法来执行2010的操作。在一些示例中,2010的操作的各方面可以由如参照图10至图13所描述的多TRP传输管理器来执行。
在2015处,基站可以接收根据所述配置的NACK和链路自适应信息,其中NACK是基于解码过程的失败的,以及链路自适应信息与多个波束的集合中的至少一个波束相关联。可以根据本文所描述的方法来执行2015的操作。在一些示例中,2015的操作的各方面可以由如参照图10至图13所描述的反馈组件来执行。
在2020处,基站可以基于NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。可以根据本文所描述的方法来执行2020的操作。在一些示例中,2020的操作的各方面可以由如参照图10至图13所描述的重传管理器来执行。
在2025处,基站可以基于链路自适应信息来调整用于对一个或多个下行链路传输中的至少一个下行链路传输的重传的通信参数。可以根据本文所描述的方法来执行2025的操作。在一些示例中,2025的操作的各方面可以由如参照图10至图13所描述的通信参数控制器来执行。
在2030处,基站可以根据通信参数来重新发送所述一个或多个下行链路传输中的至少一个下行链路传输。可以根据本文所描述的方法来执行2030的操作。在一些示例中,2030的操作的各方面可以由如参照图10至图13所描述的重传管理器来执行。
应当注意的是,本文所描述的方法描述了可能的实现,并且可以对这些操作和步骤进行重新排列或者以其它方式进行修改,并且其它实现是可能的。此外,可以对来自各方法中的两种或更多种方法的各方面进行组合。
以下提供了对本公开内容的各方面的概述:
方面1:一种用于UE处的无线通信的方法,包括:接收用于报告与波束阻挡相关联的反馈的配置;对经由多个波束接收的一个或多个下行链路传输执行解码过程;根据所述配置来确定所述解码过程的失败是否是所述多个波束中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及发送NACK和链路自适应信息,其中所述NACK是至少部分地基于所述解码过程的所述失败的,以及所述链路自适应信息是至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡的。
方面2:根据方面1所述的方法,还包括:接收参考信号,其中,根据所述配置来确定所述解码过程的失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分基于所述参考信号的,并且其中,根据所述配置来确定所述解码过程的失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:将所述参考信号的接收功率与门限进行比较;以及至少部分地基于所述接收功率满足门限来确定所述多个波束中的所述一个或多个波束被阻挡。
方面3:根据方面1所述的方法,还包括:接收参考信号,其中,根据所述配置来确定所述解码过程的失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分地基于所述参考信号的,并且其中,根据所述配置来确定所述解码过程的失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:将所述参考信号的接收功率与第一门限和第二门限进行比较;以及至少部分地基于所述接收功率满足所述第一门限和所述第二门限来确定所述多个波束中的所述一个或多个波束被部分地阻挡。
方面4:根据方面1所述的方法,其中,发送所述NACK和所述链路自适应信息还包括:至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描中的多个上行链路波束来发送所述NACK和所述链路自适应信息。
方面5:根据方面1至4中的任何一项所述的方法,其中,所述链路自适应信息包括以下项中的至少一项:对至少一个新下行链路波束的请求、对至少一个新下行链路波束以及重用MCS的请求、或者对新MCS以及重用所述多个波束的请求。
方面6:根据方面1至5中的任何一项所述的方法,其中,单个控制信道消息包括所述NACK和所述链路自适应信息。
方面7:根据方面1至5中的任何一项所述的方法,其中,发送所述NACK和所述链路自适应信息包括:在第一控制信道消息中发送所述NACK;以及在第二控制信道消息中发送所述链路自适应信息。
方面8:根据方面1至7中的任何一项所述的方法,其中,接收用于报告与波束阻挡相关联的反馈的所述配置还包括:接收RRC消息,所述RRC消息包括用于报告与波束阻挡相关联的反馈的IE。
方面9:根据方面1至8中的任何一项所述的方法,其中,所述一个或多个下行链路传输是经由所述多个波束接收的半持久传输。
方面10:一种用于基站处的无线通信的方法,包括:发送用于报告与波束阻挡相关联的反馈的配置;经由多个波束来发送一个或多个下行链路传输;接收根据所述配置的NACK和链路自适应信息,其中所述NACK是至少部分地基于解码过程的失败的,以及所述链路自适应信息与所述多个波束中的至少一个波束相关联;至少部分地基于所述NACK来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及至少部分地基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数。
方面11:根据方面10所述的方法,还包括:至少部分地基于所述NACK和所述链路自适应信息,针对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传,执行下行链路波束扫描过程。
方面12:根据方面10或11中的任何一项所述的方法,其中,用于报告与波束阻挡相关联的反馈的所述配置包括:与波束阻挡确定相关联的第一门限和与部分波束阻挡确定相关联的第二门限。
方面13:根据方面10至12中的任何一项所述的方法,其中,接收所述NACK和所述链路自适应信息还包括:至少部分地基于所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描的多个上行链路波束中的至少一个上行链路波束来接收所述NACK和所述链路自适应信息。
方面14:根据方面10至13中的任何一项所述的方法,其中,所述链路自适应信息包括对至少一个新下行链路波束的请求,并且所述通信参数包括至少一个TCI状态。
方面15:根据方面10至13中的任何一项所述的方法,其中,所述链路自适应信息包括对至少一个新下行链路波束以及重用MCS的请求,并且所述通信参数包括至少一个TCI状态。
方面16:根据方面10至13中的任何一项所述的方法,其中,所述链路自适应信息包括用于更新MCS以及重用所述多个波束的请求,并且所述通信参数包括所述MCS。
方面17:根据方面10至16中的任何一项所述的方法,其中,单个控制信息消息包括所述NACK和所述链路自适应信息。
方面18:根据方面10至16中的任何一项所述的方法,其中,接收所述NACK和所述链路自适应信息还包括:在第一控制信道消息中接收所述NACK;以及在第二控制信道消息中接收所述链路自适应信息。
方面19:根据方面10至18中的任何一项所述的方法,其中,发送用于报告与波束阻挡相关联的反馈的所述配置还包括:发送RRC消息,所述RRC消息包括用于报告与波束阻挡相关联的反馈的IE。
方面20:一种用于UE处的无线通信的装置,包括处理器、与所述处理器耦合的存储器、以及指令,其被存储在所述存储器中并且由所述处理器可执行以使得该装置执行方面1至9中的任何一项所述的方法。
方面21:一种用于UE处的无线通信的装置,包括用于执行方面1至9中的任何一项所述的方法的至少一个单元。
方面22:一种存储用于UE处的无线通信的代码的非暂时性计算机可读介质,所述代码包括由处理器可执行以执行方面1至9中的任何一项所述的方法的指令。
方面23:一种用于基站处的无线通信的装置,包括处理器、与所述处理器耦合的存储器、以及指令,其被存储在所述存储器中并且由所述处理器可执行以使得该装置执行方面10至19中的任何一项所述的方法。
方面24:一种用于基站处的无线通信的装置,包括用于执行方面10至19中的任何一项所述的方法的至少一个单元。
方面25:一种存储用于基站处的无线通信的代码的非暂时性计算机可读介质,所述代码包括由处理器可执行以执行方面10至19中的任何一项所述的方法的指令。
虽然为了举例的目的而描述了LTE、LTE-A、LTE-A Pro或NR系统的各方面,并在描述的大部分内容中使用LTE、LTE-A、LTE-A Pro或者NR术语,但本文所描述的技术可适用于LTE、LTE-A、LTE-A Pro或NR网络之外。例如,所描述的技术可以适用于各种其它无线通信系统,诸如超移动宽带(UMB)、电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、闪速OFDM以及本文未明确提及的其它系统和无线电技术。
本文所描述的信息和信号可以使用多种不同的技术和方法中的任何一种来表示。例如,在贯穿描述中提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或粒子、光场或粒子或者其任何组合来表示。
利用被设计为执行本文所描述的功能的通用处理器、DSP、ASIC、CPU、FPGA或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任何组合,可以实现或执行结合本文的公开内容描述的各种说明性的框和组件。通用处理器可以是微处理器,但是在替代方案中,处理器可以是任何处理器、控制器、微控制器或者状态机。处理器也可以被实现为计算设备的组合(例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP核的结合,或者任何其它这样的配置)。
本文描述的功能可以用硬件、由处理器执行的软件、固件、或者其任何组合的方式来实现。如果用由处理器执行的软件的方式来实现,则可以将功能存储在计算机可读介质上,或者作为计算机可读介质上的一个或多个指令或代码进行传输。其它示例和实现在本公开内容及所附权利要求书的保护范围之内。例如,由于软件的本质,本文所描述的功能可以使用由处理器执行的软件、硬件、固件、硬连线或者这些项中的任何项的组合来实现。用于实现功能的特征可以物理地位于各个位置,包括被分布使得在不同的物理位置处实现功能的部分功能。
计算机可读介质包括非暂时性计算机存储介质和通信介质二者,通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。非暂时性存储介质可以是通用或专用计算机可以存取的任何可用介质。通过举例而非限制的方式,非暂时性计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、闪存、压缩光盘(CD)ROM或其它光盘存储、磁盘存储或其它磁存储设备、或者可以被用于携带或存储具有指令或数据结构形式的期望的程序代码单元并可以由通用或专用计算机、或者通用或专用处理器存取的任何其它非暂时性介质。此外,可以将任何连接适当地称作计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术,从网站、服务器或其它远程源发送的,那么所述同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线电和微波之类的无线技术被包括在所述计算机可读介质的定义中。如本文所使用的,磁盘和光盘包括CD、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中磁盘通常磁性地复制数据,而光盘则用激光来光学地复制数据。上面的组合也被包括在计算机可读介质的保护范围之内。
如本文(包括在权利要求书中)所使用的,如项目的列表(例如,以诸如“中的至少一个”或“中的一个或多个”之类的短语为结束的项目的列表)中所使用的“或”指示包含性的列表,使得例如A、B或C中的至少一项的列表意味着A、或B、或C、或AB、或AC、或BC、或ABC(即,A和B和C)。此外,如本文所使用的,短语“基于”不应被解释为引用封闭的条件集合。例如,被描述成“基于条件A”的示例步骤可以是基于条件A和条件B二者的,而不脱离本公开内容的保护范围。换言之,如本文所使用的,应当以与短语“至少部分地基于”相同的方式来解释短语“基于”。
在附图中,类似的组件或特征可以具有相同的附图标记。此外,相同类型的各个组件可以通过在附图标记之后跟随有虚线以及用于区分相似组件的第二标记来进行区分。如果在说明书中仅使用了第一附图标记,则该描述可适用于具有相同的第一附图标记的相似组件中的任何一个组件,而不管第二附图标记或其它后续附图标记。
本文结合附图阐述的描述对示例配置进行了描述,但并不表示可以被实现的或者在权利要求书的保护范围之内的所有示例。本文使用的术语“示例”意味着“用作示例、实例或说明”,而非“优选的”或“比其它示例具有优势”。详细描述包括用于提供对所描述的技术的理解的目的的具体细节。但是,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的示例的概念造成模糊,以框图形式示出了公知的结构和设备。
提供本文的描述,以使得本领域普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容的各种修改将是显而易见的,并且本文定义的总体原理可以在不脱离本公开内容的保护范围的情况下被适用于其它变型。因此,本公开内容不限于本文所描述的示例和设计方案,而是要符合与本文公开的原理和新颖性特征相一致的最广的范围。

Claims (30)

1.一种用于用户设备(UE)处的无线通信的装置,包括:
处理器;
存储器,其与所述处理器耦合;以及
指令,其被存储在所述存储器中并由所述处理器可执行,以使所述装置进行以下操作:
接收用于报告与波束阻挡相关联的反馈的配置;
对经由多个波束接收的一个或多个下行链路传输执行解码过程;
根据所述配置来确定所述解码过程的失败是否是所述多个波束中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及
发送否定确认和链路自适应信息,其中,所述否定确认是至少部分地基于所述解码过程的所述失败的,以及所述链路自适应信息是至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡的。
2.根据权利要求1所述的装置,其中,所述指令由所述处理器进一步可执行,以使所述装置进行以下操作:
接收参考信号,其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分地基于所述参考信号的,并且
其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:
将所述参考信号的接收功率与门限进行比较;以及
至少部分地基于所述接收功率满足所述门限来确定所述多个波束中的所述一个或多个波束被阻挡。
3.根据权利要求1所述的装置,其中,所述指令由所述处理器进一步可执行,以使所述装置进行以下操作:
接收参考信号,其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分地基于所述参考信号的,并且
其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:
将所述参考信号的接收功率与第一门限和第二门限进行比较;以及
至少部分地基于所述接收功率满足所述第一门限和所述第二门限来确定所述多个波束中的所述一个或多个波束被部分地阻挡。
4.根据权利要求1所述的装置,其中,用于发送所述否定确认和所述链路自适应信息的指令由所述处理器可执行,以使所述装置进行以下操作:
至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描中的多个上行链路波束来发送所述否定确认和所述链路自适应信息。
5.根据权利要求1所述的装置,其中,所述链路自适应信息包括对至少一个新下行链路波束的请求、或者对至少一个新下行链路波束以及重用调制与编码方案的请求。
6.根据权利要求1所述的装置,其中,所述链路自适应信息包括对新调制与编码方案以及重用所述多个波束的请求。
7.根据权利要求1所述的装置,其中,单个控制信道消息包括所述否定确认和所述链路自适应信息。
8.根据权利要求1所述的装置,其中,用于发送所述否定确认和所述链路自适应信息的指令由所述处理器可执行,以使所述装置进行以下操作:
在第一控制信道消息中发送所述否定确认;以及
在第二控制信道消息中发送所述链路自适应信息。
9.根据权利要求1所述的装置,其中,用于接收用于报告与波束阻挡相关联的反馈的所述配置的指令由所述处理器可执行,以使所述装置进行以下操作:
接收包括用于报告与波束阻挡相关联的反馈的信息元素的无线电资源控制消息。
10.根据权利要求1所述的装置,其中,所述一个或多个下行链路传输是经由所述多个波束接收的半持久传输。
11.一种用于基站处的无线通信的装置,包括:
处理器;
存储器,其与所述处理器耦合;以及
指令,其被存储在所述存储器中并由所述处理器可执行,以使所述装置进行以下操作:
发送用于报告与波束阻挡相关联的反馈的配置;
经由多个波束来发送一个或多个下行链路传输;
接收根据所述配置的否定确认和链路自适应信息,其中,所述否定确认是至少部分地基于解码过程的失败的,以及所述链路自适应信息与所述多个波束中的至少一个波束相关联;
至少部分地基于所述否定确认来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及
至少部分地基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数。
12.根据权利要求11所述的装置,其中,所述指令由所述处理器进一步可执行,以使所述装置进行以下操作:
至少部分地基于所述否定确认和所述链路自适应信息,针对所述一个或多个下行链路传输中的所述至少一个下行链路传输的所述重传,执行下行链路波束扫描过程。
13.根据权利要求11所述的装置,其中,用于报告与波束阻挡相关联的反馈的所述配置包括:与波束阻挡确定相关联的第一门限和与部分波束阻挡确定相关联的第二门限。
14.根据权利要求11所述的装置,其中,用于接收所述否定确认和所述链路自适应信息的指令由所述处理器可执行,以使所述装置进行以下操作:
至少部分地基于所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描的多个上行链路波束中的至少一个上行链路波束来接收所述否定确认和所述链路自适应信息。
15.根据权利要求11所述的装置,其中:
所述链路自适应信息包括对至少一个新下行链路波束的请求,以及
所述通信参数包括至少一个传输配置指示符状态。
16.根据权利要求11所述的装置,其中:
所述链路自适应信息包括对至少一个新下行链路波束以及重用调制与编码方案的请求,以及
所述通信参数包括至少一个传输配置指示符状态。
17.根据权利要求11所述的装置,其中:
所述链路自适应信息包括用于更新调制与编码方案以及重用所述多个波束的请求,以及
所述通信参数包括所述调制与编码方案。
18.根据权利要求11所述的装置,其中,单个控制信息消息包括所述否定确认和所述链路自适应信息。
19.根据权利要求11所述的装置,其中,用于接收所述否定确认和所述链路自适应信息的指令由所述处理器可执行,以使所述装置进行以下操作:
在第一控制信道消息中接收所述否定确认;以及
在第二控制信道消息中接收所述链路自适应信息。
20.根据权利要求11所述的装置,其中,用于发送用于报告与波束阻挡相关联的反馈的所述配置的指令由所述处理器可执行,以使所述装置进行以下操作:
发送包括用于报告与波束阻挡相关联的反馈的信息元素的无线电资源控制消息。
21.一种用于用户设备(UE)处的无线通信的方法,包括:
接收用于报告与波束阻挡相关联的反馈的配置;
对经由多个波束接收的一个或多个下行链路传输执行解码过程;
根据所述配置来确定所述解码过程的失败是否是所述多个波束中的一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果;以及
发送否定确认和链路自适应信息,其中,所述否定确认是至少部分地基于所述解码过程的所述失败的,以及所述链路自适应信息是至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡。
22.根据权利要求21所述的方法,还包括:
接收参考信号,其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分地基于所述参考信号的,并且
其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:
将所述参考信号的接收功率与门限进行比较;以及
至少部分地基于所述接收功率满足所述门限来确定所述多个波束中的所述一个或多个波束被阻挡。
23.根据权利要求21所述的方法,还包括:
接收参考信号,其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果,是至少部分地基于所述参考信号的,并且
其中,根据所述配置来确定所述解码过程的所述失败是否是所述多个波束中的所述一个或多个波束在所述一个或多个下行链路传输期间至少被部分地阻挡的结果包括:
将所述参考信号的接收功率与第一门限和第二门限进行比较;以及
至少部分地基于所述接收功率满足所述第一门限和所述第二门限来确定所述多个波束中的所述一个或多个波束被部分地阻挡。
24.根据权利要求21所述的方法,其中,发送所述否定确认和所述链路自适应信息包括:
至少部分地基于确定所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描中的多个上行链路波束来发送所述否定确认和所述链路自适应信息。
25.根据权利要求21所述的方法,其中,所述链路自适应信息包括对至少一个新下行链路波束的请求、或者对至少一个新下行链路波束以及重用调制与编码方案的请求。
26.根据权利要求21所述的方法,其中,所述链路自适应信息包括对新调制与编码方案以及重用所述多个波束的请求。
27.一种用于基站处的无线通信的方法,包括:
发送用于报告与波束阻挡相关联的反馈的配置;
经由多个波束来发送一个或多个下行链路传输;
接收根据所述配置的否定确认和链路自适应信息,其中,所述否定确认是至少部分地基于解码过程的失败的,以及所述链路自适应信息与所述多个波束中的至少一个波束相关联;
至少部分地基于所述否定确认来确定重新发送所述一个或多个下行链路传输中的至少一个下行链路传输;以及
至少部分地基于所述链路自适应信息来调整用于对所述一个或多个下行链路传输中的所述至少一个下行链路传输的重传的通信参数。
28.根据权利要求27所述的方法,还包括:
至少部分地基于所述否定确认和所述链路自适应信息,针对所述一个或多个下行链路传输中的所述至少一个下行链路传输的所述重传,执行下行链路波束扫描过程。
29.根据权利要求27所述的方法,其中,用于报告与波束阻挡相关联的反馈的所述配置包括:与波束阻挡确定相关联的第一门限和与部分波束阻挡确定相关联的第二门限。
30.根据权利要求27所述的方法,其中,接收所述否定确认和所述链路自适应信息包括:
至少部分地基于所述多个波束中的所述一个或多个波束是否至少被部分地阻挡,经由波束扫描的多个上行链路波束中的至少一个上行链路波束来接收所述否定确认和所述链路自适应信息。
CN202180032172.5A 2020-05-13 2021-05-12 基于波束阻挡确定的链路自适应 Active CN115552816B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063024265P 2020-05-13 2020-05-13
US63/024,265 2020-05-13
US17/317,683 2021-05-11
US17/317,683 US11678203B2 (en) 2020-05-13 2021-05-11 Link adaptation upon beam blocking determination
PCT/US2021/031931 WO2021231534A1 (en) 2020-05-13 2021-05-12 Link adaptation upon beam blocking determination

Publications (2)

Publication Number Publication Date
CN115552816A true CN115552816A (zh) 2022-12-30
CN115552816B CN115552816B (zh) 2024-07-16

Family

ID=78512163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180032172.5A Active CN115552816B (zh) 2020-05-13 2021-05-12 基于波束阻挡确定的链路自适应

Country Status (4)

Country Link
US (1) US11678203B2 (zh)
EP (1) EP4150806A1 (zh)
CN (1) CN115552816B (zh)
WO (1) WO2021231534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784758B2 (en) * 2021-02-18 2023-10-10 Qualcomm Incorporated Hybrid automatic repeat request (HARQ) procedure using multiple beams in a wireless wide area network (WWAN)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220398A1 (en) * 2017-01-27 2018-08-02 Qualcomm Incorporated Multi-link new radio (nr)-physical downlink control channel (pdcch) design
WO2019039882A1 (ko) * 2017-08-24 2019-02-28 삼성전자 주식회사 안테나를 포함하는 전자 장치
US20200112993A1 (en) * 2017-03-23 2020-04-09 Convida Wireless, Llc Beam training and initial access
CN111052630A (zh) * 2017-09-11 2020-04-21 高通股份有限公司 毫米波系统中的波束选择
CN111095817A (zh) * 2017-09-18 2020-05-01 高通股份有限公司 通过控制信道信令对波束切换命令的传输

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484983B2 (en) 2017-02-06 2019-11-19 Nokia Technologies Oy Robust control channel transmission scheme
CN108810940B (zh) * 2017-04-28 2020-06-02 维沃移动通信有限公司 波束恢复处理方法和终端
CN111149306A (zh) 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和系统
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
EP4184849A1 (en) * 2018-08-09 2023-05-24 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
CN113348633B (zh) * 2019-02-01 2024-10-18 联想(新加坡)私人有限公司 侧链故障检测和恢复
US11991009B2 (en) * 2021-02-24 2024-05-21 Qualcomm Incorporated Combined acknowledgement feedback using subsets of possible decoding events

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220398A1 (en) * 2017-01-27 2018-08-02 Qualcomm Incorporated Multi-link new radio (nr)-physical downlink control channel (pdcch) design
US20200112993A1 (en) * 2017-03-23 2020-04-09 Convida Wireless, Llc Beam training and initial access
WO2019039882A1 (ko) * 2017-08-24 2019-02-28 삼성전자 주식회사 안테나를 포함하는 전자 장치
CN111052630A (zh) * 2017-09-11 2020-04-21 高通股份有限公司 毫米波系统中的波束选择
CN111095817A (zh) * 2017-09-18 2020-05-01 高通股份有限公司 通过控制信道信令对波束切换命令的传输

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
""R1-1912844 Remaining Issues on Multi-TRP Transmission Enhancements"", 3GPP TSG_RAN\\WG1_RL1, 9 November 2019 (2019-11-09), pages 1 - 8 *

Also Published As

Publication number Publication date
EP4150806A1 (en) 2023-03-22
WO2021231534A1 (en) 2021-11-18
CN115552816B (zh) 2024-07-16
US20210360435A1 (en) 2021-11-18
US11678203B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
WO2021164726A1 (en) Demodulation reference signal multi-slot bundling indication
WO2021257240A1 (en) Uplink traffic prioritization across multiple links
WO2022164891A2 (en) Multiple sidelink feedback channel occasion procedures
WO2021183450A1 (en) Sidelink communication during a downlink slot
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
CN115462019A (zh) 多播传输反馈和缓冲处理
CN116058049A (zh) 用于同时上行链路控制信道和上行链路共享信道传输的上行链路控制信息复用规则
CN115552816B (zh) 基于波束阻挡确定的链路自适应
US11916672B2 (en) Feedback error handling for wireless systems
US20220014313A1 (en) Efficient turbo hybrid automatic repeat request feedback reporting
US20230091901A1 (en) Soft-information to help base station with duplex configuration
US11973606B2 (en) Prioritization between feedback transmissions and receptions over sidelink
WO2021163982A1 (en) Demodulation reference signal multi-slot bundling indication
CN116848811A (zh) 确定上行链路控制信道重复因子
US20230299883A1 (en) Using a configured negative acknowledgement transmission scheme for error cause indication
WO2022227001A1 (en) Techniques for radio resource control reconfiguration alignment
US20230254092A1 (en) Flexible feedback with outer coding
WO2022241610A1 (en) Reduction of duplicate acknowledgments
US20210345247A1 (en) Wakeup signal selected cell indication
US20230379750A1 (en) Enhanced decoding feedback for traffic type differentiation
WO2022067837A1 (en) Control signaling for rateless codes with feedback
WO2021226916A1 (en) Packet sequence number based network resynchronization
WO2022212839A1 (en) Techniques for dynamically applying a repetition factor for a beam
WO2022169854A1 (en) Code block group based cross-bandwidth part scheduling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant